
Practical API
Architecture and
Development with
Azure and AWS

Design and Implementation of
APIs for the Cloud
—
Thurupathan Vijayakumar

www.allitebooks.com

http://www.allitebooks.org

Practical API
Architecture and

Development with
Azure and AWS

Design and Implementation of
APIs for the Cloud

Thurupathan Vijayakumar

www.allitebooks.com

http://www.allitebooks.org

Practical API Architecture and Development with Azure and AWS

ISBN-13 (pbk): 978-1-4842-3554-6 ISBN-13 (electronic): 978-1-4842-3555-3
https://doi.org/10.1007/978-1-4842-3555-3

Library of Congress Control Number: 2018946567

Copyright © 2018 by Thurupathan Vijayakumar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book's product page, located at
www.apress.com/978-1-4842-3554-6. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Thurupathan Vijayakumar
Colombo, Sri Lanka

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3555-3
http://www.allitebooks.org

This book is dedicated to my loving parents and friends.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Practical Introduction to APIs ���1

APIs: A Practical Introduction ��2

Programmable Language Constructs ��2

Systems of Data & Operations Flow ��5

API Economy ���6

APIs in the Public Sector ���9

G2C: Government to Citizens ���9

G2B: Government to Business ���10

G2G: Government to Government ��11

Summary���11

Chapter 2: API Strategy and Architecture ��13

API Strategy ��14

API Strategy Use Case ���17

API Value Chain ���18

API Architecture ��19

API Management ���22

Summary���24

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: API Development ���25

API Development Considerations ��25

Explicit Parameters ���26

Avoid Consumer-Commanded Endpoints ��26

Documentation ��27

Security ���27

Versioning ��27

API Development Standards��28

HTTP Verbs ��28

HTTP Status Codes ��29

Error Handling ���31

URI Syntax ���33

Versioning ��34

Kick-Start API Development ��34

Implementation: ASP�NET Core ��35

Setting Up Swagger ���45

Run the API and Swagger ��48

Team Orientation in API Development ���49

Summary���50

Chapter 4: API Gateways ��51

API Gateways in a Public Cloud ���51

Endpoint Mappings ��53

Azure API Management ���56

Creating an Azure API Management Service ���57

Connecting to the Backend Service���61

Configuring API Endpoints ���64

Configuration Policies ��68

Products in Azure API Management ��72

Table of ConTenTsTable of ConTenTs

vii

Azure API Management Developer Experience ��76

Structure of the Azure API Management Components ����������������������������������81

AWS API Gateway ��82

Creating an AWS API Gateway Service ��82

Configure Methods ��84

Deploy AWS API Gateway ���89

Creating API Usage Plans ��92

Structure of AWS API Gateway Components ���94

Summary���95

Chapter 5: API Security ��97

Request-Based Security ���97

Azure API Management ���98

AWS API Gateway ��102

Authentication & Authorization ���104

API Security Design ���105

Authorizers in AWS API Gateway ���127

Summary���132

Chapter 6: Serverless APIs ���133

Serverless Computing ���133

Serverless APIs in Azure ���135

Azure Functions ���135

Azure Function Proxies ��144

Azure Logic Apps ���149

Serverless APIs in AWS ���150

AWS Lambda ���150

Creating an AWS Lambda Function ���151

Setting Up AWS Lambda with AWS API Gateway ���156

Summary���158

Table of ConTenTsTable of ConTenTs

viii

Chapter 7: Practical Design and Development ���������������������������������159

Contract-First Design ��159

Preparation ��161

Key Challenges ��162

When Not to Try It ��163

APIs in Microservices ��163

Client-Coordinated Design ���164

API Gateway Pattern ��165

APIs for Enterprise Integration ��166

Summary���167

 Index ���169

Table of ConTenTsTable of ConTenTs

ix

About the Author

Thurupathan Vijayakumar (Thuru) is a

technology architect at Tiqri Corporation.

He has experience in a range of fields in

the software industry such as software

architecture, development, cloud computing,

data security, business intelligence and

etc. In his role as a technology architect, he

works closely with business stakeholders and

developers and help them mapping business

requirements to the latest technologies and

driving innovation.

Thuru is a hard-core developer and experienced in many different

languages, including GW Basic, FoxPro, Pascal, C, C++, Visual Basic, Action

Script, Java, C#, JavaScript Go, Rust and the list grows.

He authored the book Practical Azure Application Development in

2017, which is a handy guide for getting started in Azure development.

He’s a Microsoft MVP for Microsoft Azure and a speaker in international

conferences and user group meetings. Check his blog for his most recent

work.

Blog: www.thuru.net

Twitter: @thurutweets

http://www.thuru.net/

xi

About the Technical Reviewer

Dheeraj Swami is a Technical consultant

at Microsoft India. He has more than 10

years of experience in the IT industry. He

has worked on Microsoft full stack, Hybrid

Mobile Development (Ionic), and Salesforce.

Dheeraj is a Microsoft certified Architect

in Azure technology stack and a certified

Salesforce developer, advanced developer, and

administrator.

xiii

Acknowledgments

First, I declare my acknowledgement to Apress for another successful

engagement with this book.

The content of this book is mostly influenced by the knowledge and

the experience gathered during my tenure at Tiqri Corporation, and I’m

thankful for the organization and my great colleagues, especially Ms.

Thushara Wijewardena, who has been relentlessly pushing me to write this

book, and Mr. Buddhika Jaywardhena, who tirelessly argued with me about

minimum API standards. The content in chapter 3 is greatly influenced

by many discussions we had before I had even thought of writing a book

about API development.

I declare heartful gratitude to my parents and friends, who’ve been

always there for me and supported me in completing this book.

Finally, I extend my acknowledgement to the Apress team, especially

to Rita Fernando, Nikhil Karkal, and Divya Modi, who helped me in many

ways in reaching the completion of this book.

xv

Introduction

This book, Practical API Architecture and Development with Azure

& AWS, is an meant to fill the gap between the demand for cloud-

based API architecture and design and the skills of developers. In API

implementation, developers often miss the real depth of API design,

including some critical technical aspects. Mostly this occurs because APIs

are thought of JSON emitting endpoints a client application. The growing

field of automated frameworks and tools fuels this misunderstanding

and hides the business complexity and technical criticality of API

implementation and standards.

This book is structured with a specific focus on addressing these two

issues. The first section (the first three chapters) explains the business

aspect of APIs to developers and provides a quick-start guide to API

standards implementation, with code samples. The second section

(chapters 4 through 6) provides a more technical, practical approach to

API gateways, API security, and serverless APIs using tools from Azure and

AWS. The last chapter offers a holistic approach to common design and

development use cases of APIs, including an exploration of contract-first

design.

The technical implementations are illustrated with figures and

screenshots, which allow the reader to easily follow the processes

described in the book. Additional code samples can be found at this URL:

https://github.com/thuru/paadaa

The book is targeted to developers who work in .NET stack and use

Azure or AWS.

https://github.com/thuru/paadaa

1© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3_1

CHAPTER 1

Practical
Introduction to APIs
Data is God: the ever-growing demand for data is one of the fundamental

factors influencing the disruption of many communication and integration

technologies. The preference for data over operations is a challenge for

the modern software development, orchestrating and managing the data

integrations and flow have become the key success factor in the modern

software solutions.

The demand for the data-centric software applications and the

evolving development landscape which favors adopting existing tools

and services to achieve speed and flexibility over developing everything

from scratch, make traditional integration technologies obsolete. APIs

are the current state of evolution in integration technologies and we can

see the evolution is moving towards integration as a language space. In

addition to that, modern software architectures like microservices and

serverless favor APIs over traditional integration technologies and APIs

help those architectures to foster; the benefit is mutual and complimentary

in both ways.

In theory, any programmable interface can be referred as an

API. Though the term Application Programming Interface (API) is not new

and it takes many flavors of implementations, the current usage of the term

commonly refers to a HTTP-based RESTful service.

2

Businesses expose data and operations via APIs for various reasons,

such as achieving business agility, monetizing data and business

operations, integration, enabling innovation, enabling business

ecosystems, adhering to regulatory requirements and etc.

This chapter provides an introduction to APIs with a practical

explanation, and builds the discussion toward generic topics like API

economy and how APIs are used in the public sector.

 APIs: A Practical Introduction
The software industry is already overwhelmed with buzzwords, and most of

them are created with the intention of satisfying both technical and business

stakeholders. Because of this dual audience obligation , most of these terms

do not address either business or technical stakeholders properly.

The practical approach of this book explores the meaning and builds a

common understanding of APIs for the readers' context. This is not a quest

for a new definition, but an attempt to help readers understand the context.

Note APIs have dual personalities: one is based on language
constructs or in the form of libraries/frameworks, and the second
is, as systems exposing data and operations.

 Programmable Language Constructs
First, let us look at the first “personality.” As developers, we write code

using language constructs and expose behaviors. In a typical Object

Oriented Programming (OOP) language, this is achieved by classes

implementing interfaces.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

3

Generally, these interfaces are implemented, so that parameters are

included in method signatures only when the caller is required to supply

them. If the required parameters can be acquired from the execution

context then we try to have those cross cutting-data available to different

layers by shared classes, rather than explicitly declaring them in the

method signature. The below example shows it.

The exposed interface:

internal interface IRegisrationService

{

 Task<int> RegisterBookAsync(Book book);

}

// One of the implementations

public class RegistrationService : IRegisrationService

{

 public async Task<int> RegisterBookAsync(Book book)

 {

 book.UserId = SessionProvider.GetUserId();

 // rest of the logic

 }

}

Here, the UserId is not parameterized in the current execution

context, but the implementation works because it knows from where to

get the UserId. This is fine, but this interface implementation is limited

because the service implementation is tightly coupled with the current

execution context. And others who implement this interface expected

to acquire the UserId internally. If, down the line, different clients or

assemblies want to use RegistrationService and wants to provide UserIds

from different sources, they will fail or need to handle it in the interface

implementation, resulting different implementation for each UserId

source or any other cumbersome logic.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

4

For an interface to be consumed by external callers, parameterization

is important in the method signature itself, as shown here. This makes the

implementation and the

public interface IRegisrationService

{

 Task<int> RegisterBookAsync(Book book, string UserId);

}

Creating interfaces with the consideration of external callers outside

the execution context, helps achieving loose coupling in different layers of

the code. This change is the first level realization of an exposed interface in

the development context. An interface becomes published and exposed to

external callers during this transition, so being consumable by an external

party is a fundamental characteristic of a consumable interface.

These interfaces and implementations can be published as packages.

Packages are referenced in other execution contexts, ensuring usability for

external parties, and bundled with other development tools, components,

base classes, documentation, and sample implementations. These bundles

are commonly known as Software Development Kits (SDKs). SDKs are

APIs with additional features and tools that target more experienced

developers.

packages and SDKs has helped with code reusability and code sharing.

These changes influence the way systems are programmed; developers are

not required to write all the code for a system they develop. Frameworks

and libraries came into the picture, and now we are all familiar with

package managers like NuGet, NPM, and many more. Now, we cannot

imagine a development scenario without packages.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

5

 Systems of Data & Operations Flow
The second type of API enables data and operations flow between different

systems. The need for distributed, service-based architectures is trivial due

to disparate systems and growing demand for integrations.

In this model, service contracts (data agreements) are important for

communication between different services. Initially, language-specific

interface implementations took the stage. Remote Procedure Call (RPC)

is the first level of implementation to transform the first API type to the

second.

RPC implementations are highly dependent on language and runtime.

Due to this limitation, systems developed using different languages never

had significant success in service-based architecture using RPC. The

second API type needed a different approach.

The need for language- and implementation-agnostic message

exchange between different services was acknowledged. This paved

the way for the highly used—and highly confused—industry term

Service- Oriented Architecture (SOA).

Most, SOA implementations have some form of a queue or service

bus technology and service contracts are implemented in XML/JSON.

In the SOA world, XML was leading the pack with varying types of

implementations, like SOAP.

Later with the time, the advent of web and HTTP paved the way for

web services, web services came into the picture due to the growing

need for data in the Internet world. Compared to traditional SOA

implementations, web services are Internet friendly, but due to the

overwhelming standards and implementation practices borrowed from

the SOA they are not nimble enough to cater to a growing Internet.

Eventually, more Internet-friendly—or in other words, more Internet-

native—data exchange technology was proposed. RESTful services are

based on HTTP and HTTP verbs, while JSON emerged as a lighter data

exchange format and gained popularity. The second type of API has

evolved as HTTP-based RESTful services.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

6

So now, when we use the term API, it most often refers to a

HTTP- based RESTful service with JSON-based service contracts.

But as we have discussed, APIs come in two different types: in the

form of programmable language constructs and programmable RESTful

services.

The commonality between these two is the ability to be consumed

by external parties. In the context of this book, the term API refers to the

second type, which is the Internet-friendly, HTTP-based programmable

interface.

Now we understand what an API is and the two different forms it can

take in the engineering world, as well as the meaning of API in the current

industry context. In the next section of this chapter, we will focus on API

economy and how APIs are used in the public sector.

 API Economy
Rapid technology changes and growing trends, like the Internet of Things

(IoT), the cloud, service collaboration, AR, VR, MR, and many other

buzzwords, highly influence almost every business to seek new models

that cater to industry pressure and ensure survival. This trend helps the

proliferation of APIs and API economy.

Any use of APIs for economic benefit can be generalized as

“API economy.” Businesses have their own unique data capabilities

and operations, and APIs expose data and operations to create new

opportunities.

Businesses with valuable data and operations that are expensive to

created sell them for consumption through APIs. This is direct selling.

A good example is the cognitive services that sell AI as a service via APIs.

Microsoft & Google have a wide array of such services.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

7

Businesses have increased their focus on creating new customer

experiences and finding new opportunities to serve customers better

and more efficiently. APIs help to do this, not only by exposing data and

operations, but also by enabling innovation and design thinking from

outside the organization. For example: a fashion retailer exposes his

product catalog and search operations via an API, triggering an external

developer to create an app with capabilities such as location-based or

picture-based searching. Though the fashion retailer provides the API free

of charge to the developer, it gains innovation and design thinking, which

may not be fully tapped by the internal organization.

This external innovation and design thinking is a common pattern we

can observe in many mashup applications. Because the external developer

consumes the fashion retailer’s API and mashup with other location- and

picture-based searches available from other providers to create a new

customer experience, it is a win-win situation for all parties involved.

Another way to create rich customer experiences is by focusing on

frictionless experiences by enabling ecosystems consisting of different

systems. For example, most wearable gadget manufacturers have

integrations with healthcare services. The user’s step count, distance,

heartbeat, and other details are commonly integrated with providers

through APIs, enabling a seamless customer experience ecosystem.

Consider the below example, where a smart refrigerator automatically

orders more milk when it runs out. Figure 1-1 shows the basic services,

the different stakeholders, and the high-level integrations among them.

The refrigerator manufacturer has exposed the API (IoT gateway), which

receives sensor data from the refrigerators. Assume some magic milk

sensor is able to gauge the amount of milk in the refrigerator, and the

sensor data is collected and processed in the cloud.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

8

If the milk level is below a configured threshold, the appliance

connects to a grocery store API. This API takes the order and confirms the

payment by talking to the payment gateway, which is another API. Then it

sends a message to a drone-based delivery service to pick up the milk from

the grocery store and deliver it to the customer.

The drone delivery service uses location and weather APIs to complete

the delivery. In a real-life scenario, there would be more APIs involved

from various parties, but this is a decent example for understanding

business models that use APIs from different parties.

For the refrigerator manufacturer, having a smart cloud and processing

IoT sensor data enables a value-added customer experience. For the

grocery store, accepting orders via API is an opening for e-commerce. The

refrigerator manufacturer may enable an ecosystem with multiple grocery

stores, placing orders that boost business, and may charge the stores for

this benefit.

The payment gateway employs a commission-based business model

around the API delivery service, exposing its API to manage delivery

orders—this is service-based e-commerce. It talks to other utility service

Figure 1-1. Smart Refrigerator Scenario

ChAPter 1 PrACtICAl IntroduCtIon to APIs

9

APIs to complete its task, like location and weather APIs, which are either

free or paid under commercial use. So the location and weather data

providers sell their data directly via APIs.

In the above case, we see different purposes of APIs for different parties

under different business models. Some do direct selling, some are able to

provide richer customer experience and eco-system enablement, some

expose their operations based on commission or e-commerce. All these

models are different versions of API economy, and represent different ways

that APIs can yield economic benefits for organizations.

 APIs in the Public Sector
Enabling and empowering governments through integration and data

strategy is a key purpose of APIs in the public sector.

Many governments have been working actively to provide better

experiences to citizens, businesses, and other governments via digitization

and API strategies.

There are three government service models.

• G2C: Government to Citizens

• G2B: Government to Business

• G2G: Government to Government

 G2C: Government to Citizens
This model serves citizens by providing data and operational efficiency of

a government engine through APIs. Exposing APIs allows developers and

state offices to come up with new integration models and applications,

allowing the automation and digitization of many services.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

10

The government of India has introduced a new digital identification

number for residents through the Unique Identification Authority of India.

The primary goal of this project, known as Aadhaar, is to enable unique

digital identification, integrating with myriad other government APIs to

provide a seamless citizen experience. One of the mission statements of

Aadhaar clearly identifies this goal: “Encourage innovation and provide

a platform for public and private agencies to develop Aadhaar linked

applications.”

Another good example is Japan’s open government data project. The

Information Technology Promotion Agency (IPA), a 100% government-

funded entity, executes a set of API and open data programs. This includes

APIs that expose data from disaster management sources, especially for

earthquakes. This open data strategy allows organizations and individual

application developers to come up with useful applications to serve

citizens.

 G2B: Government to Business
Government API services can also benefit businesses; it is important for

a good e-government strategy to support businesses and stimulate the

economy. Integrations and business-related government services can be

digitized to serve businesses, improve efficiency, and bring new revenue

streams to the government.

Singapore government is a leading player in data strategy, its Smart

Nation initiative is a masterpiece of data and API. On the Smart Nation

site (https://www.smartnation.sg/resources/open-data), you will find

an array of government APIs and data endpoints that serve citizens and

businesses. Notable government-to-business initiatives include datastore

APIs for developers, which reveal millions of public sector data points such

as LTA Data Mall (a variety of transport-related datasets), and MAS APIs

(APIs from the monetary authority of Singapore that help other financial

institutions and application providers).

ChAPter 1 PrACtICAl IntroduCtIon to APIs

https://www.smartnation.sg/resources/open-data

11

Through these APIs, businesses and startups have access to

government resources for establishing a business, taxation, business

information, and regulatory audits.

 G2G: Government to Government
Government-to-government service interactions occur between public

sector departments of the same government or between two different

governments.

The United States uses a huge number of APIs to facilitate data

transactions between its federal agencies and security departments, mostly

information related to national security, narcotics, and public safety. These

APIs act as either integration points or data delivery endpoints.

The New Zealand government employs data strategies that integrate

with internal government departments in other countries to fight human

trafficking. Also, central banks and similar authorities execute many

system integrations between nations using APIs.

 Summary
APIs are the current state of evolution in integration and data exchange

between different systems, but the nature of their implementation and

the business agility they provide make them more than just integration

mechanisms.

In a business context, APIs are crucial elements of economic

value creation. This has made APIs a discussion point not only among

developers, but also in boardrooms and governments.

Modern service-based architectures favor APIs and embrace API-

based service communication and integrations. The next chapter details

API strategy, and how it is developed and executed to support a business’s

vision. You will also read about how the value delivery of API happens at

different levels, and the fundamental pieces of API architecture.

ChAPter 1 PrACtICAl IntroduCtIon to APIs

13© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3_2

CHAPTER 2

API Strategy
and Architecture
The rise of APIs and the realization of the value they can bring to

the business have made APIs a relevant topic beyond the world of

technology and brought them all the way into the boardrooms. Business and

technology decisions fuel API strategy and API architecture, respectively.

In terms of implementation, APIs can either be private or public.

Private APIs serve a specific set of stakeholders, and are usually

not exposed outside these specific parties. Public APIs are open for

consumption by anyone (this does not mean they are free). There are

several factors that dictate whether an API is public or private, including

security, monetization strategy, data trends, and regulatory standards.

It is important and inevitable for business stakeholders to involve

themselves in API creation and strategizing, not only to make informed

decisions related to the data and operations APIs expose, but also to set

expectations, goals, and constraints for the operational environment;

support the business vision through API strategy; and evaluate different

business models.

The chosen business strategy should be implemented to ensure

the business goals are achieved. Integrating technical aspects into the

identified API strategy is a major role of the API architecture. In most

cases, the areas of API strategy and API architecture goes together by either

complementing or conflicting with each other in some cases.

14

 API Strategy
Any business decision involving the planning, organization, or governance

of an API is considered to be API strategy. Business stakeholders

propose a vision for the API, and technical stakeholders work on its

design and development in order to achieve the set business goals. An

API implementation often triggers a number of integrations, while data

cleansing flows from legacy systems and exposes contradictory domain

specifications between different parties.

For example, a fashion retailer looking to attract innovation and an app

ecosystem from external developers would require an API that exposes the

product catalog and sales, at bare minimum. Based on existing IT systems

and implementation, this would trigger an integration of two or more

systems to deliver the functionality of the API.

Initial API implementation of big systems or business operations

often triggers or exposes the complexity of the business and lack of

common domain understanding within the organization. As a result, API

implementations sometimes induce various collateral developments,

like data cleansing, modeling a common language, refactoring the code

base, and updating tools and frameworks. These developments are not

considered to be the components of the API implementation, but are part

of the project’s mission.

Chapter 2 apI Strategy and arChIteCture

15

The expected value of APIs is critical to many business decisions

related to innovation, business operations, integration, and monetization.

These considerations can be categorized under the following strategic

aspects of a business:

 1. Business orientation: APIs are strategized based on

the business orientation of the organization. This

exposes the purpose of business operations, to be

achieved by the API implementation. For example:

 a. An API developed for the integration of two

systems may technically reveal the point

of integration, but in business terms this is

done due to the consolidation of two business

operations which is part of a high level business

strategy.

 b. Some organizations expose APIs in order to

create and develop business ecosystems. An

airline may offer hotel bookings in addition

to their core flight booking operations. This

is possible through integrations and business

collaboration between the hotels and the

airline company.

 c. A health care service provider might expose

certain trends in health data to government

bodies. In some countries, this is a regulatory

requirement.

Chapter 2 apI Strategy and arChIteCture

16

 2. Attracting innovation and disruption: Organizations

expose data and operations (organizational

IT assets) through APIs to attract innovation

and disruption from outside the organization,

injecting new thinking and skills into the business.

Organizations get the benefit of insights on their

business data by exposing them to data scientists,

while data scientists often search for large data

dumps to do research. Here, the benefit is mutual.

 3. Monetization: Organizations with valuable data and

business operations sell them directly via APIs.

 a. Organizations with valuable data or operations

expose them as APIs, resulting in direct cash flow.

Consumers often pay a fee to use these APIs.

Examples include maps APIs and cognitive APIs.

 b. Exposing operations as APIs offers greater

flexibility for integration and the opportunity

to be part of an ecosystem, thus enabling more

business opportunities.

The above aspects of API strategy determine whether an API is private

or public, the data and operations to be exposed, the security and

authentication, monetization strategies, usage policies, and restrictions.

Exposing organizational assets through a public API has the benefit

of developer adoption, innovation and monetization. At the same time, it

brings the risk of exposing the organization’s business IT assets to a wide

range of external audience and increases attack surfaces, it also may have

the disadvantage of exposing certain data to the competitors, if not

planned well. In order to avoid those negative impacts and leverage key

benefits, API strategy and architecture should work in hand in hand to

determine, govern, and implement correct measures and correct exposure

level of the correct data.

Chapter 2 apI Strategy and arChIteCture

17

 API Strategy Use Case
Imagine an organization with more than 30 years of heritage that provides

a web-based tool for real estate valuation. The web application is licensed

to qualified valuation professionals as a monthly subscription. These

valuation professionals visit a particular location, record their findings in

the tool, and generate reports, which are mailed to relevant parties.

In 2015, the organization came to the realization the real estate

valuation market was under technology disruption. Emerging technologies

challenged standard practices; predictive maintenance by machine

learning and IoT-based sensor technologies began to dominate the

market, thus creating a challenging business environment for the

organization.

The organization’s business and technical stakeholders developed an

API strategy consisting of two major items:

• Expose data to selected machine-learning institutions

to bring innovation to the organization, via a private

API exposed to selected partners.

• Expose APIs to integrate with banks and insurance

companies, which are the main users of the valuation

reports. Previously, the reports were sent manually, and

with this new strategy, a private, partner API ecosystem

is employed to achieve smoother data flow.

In this case, API strategy is clearly laid out with two key focus areas.

One is to bring innovation to the organization and stay relevant in a rapidly

changing business environment; the second is to strengthen integrations

and enable ecosystems to create more coupled business relationships and

improve system experience.

Chapter 2 apI Strategy and arChIteCture

18

 API Value Chain
An API implementation touches different levels and layers of an

organization. Modern API implementations often include external

stakeholders and other value providers like partners, suppliers, customers,

and developers.

APIs integrate and facilitate the digitization of business flows by

connecting different stakeholders with organizational IT assets. The term

“API value chain” refers to the entire ecosystem and the affairs between

assets, API providers, and API consumers.

For example, a fashion retail store exposes its product catalog and sales

operations as a public API. The decision was made to take advantage of

app-based consumer purchases. In order to achieve this, the API should be

able to access internal IT systems—at minimum, the inventory and sales

systems.

Assuming these two systems are already in place, the decision to

expose data and operations as an API will trigger data flow between

these systems and the API layer. Then, the API will be consumed by app

developers. These developers will publish apps that consume this API,

and the API should facilitate a developer community and deliver a proper

developer experience in order to maintain steady engagement with the

developers.

This developer experience comes in two flavors. One is based on the

technical experience, including documentation, the onboarding process,

and SDKs. The other one is the financial gain for the external developers,

such as commission strategy and advertising policies.

Finally, published apps will create an app ecosystem. Apps will be

utilized by end users—users are mostly unaware of this entire value chain

and the complexity.

Figure 2-1 shows how different layers, different stakeholders at each

layer, tools and processes at different levels are connected and forms the

API value chain.

Chapter 2 apI Strategy and arChIteCture

19

The interconnection between these parties is a good example of a basic

API value chain.

 API Architecture
Business stakeholders—and other stakeholders who live in the

intersection of business and technology, like enterprise architects, data

stewards, and other organizational evangelists—define the purpose and

strategy of an API.

This decision will be evaluated in terms of the effort, budget,

organizational context, and current model of IT assets needed to execute

API implementation. API implementation next falls to the technical

stakeholders, who work closely with business stakeholders to understand

the purpose, execution, and limitations of the strategy.

For example, the CEO of a retail store chain has the goal of increasing

revenue. He collaborates with other stakeholders, like salespeople and

the CTO, finds that mobile-based purchases from their e-commerce site

are increasing, and decides to launch a mobile app to establish a more

convenient consumer experience, along with the other benefits of an

app ecosystem. The organization decides on an API and strategy, and the

technical stakeholders are responsible for implementing it.

Figure 2-1. API Value Chain

Chapter 2 apI Strategy and arChIteCture

20

In order to plan the implementation, technical stakeholders must

decide on the API architecture and identify the key constraints and forces

at play.

A typical API architecture includes six key aspects, shown in

Figure 2- 2. Each of these attributes has its own constraints and influence

on the overall API design in a given business context.

• Security: Security is critical. This aspect should address

technical concerns like authentication, authorization,

injection attacks, and DDoS attacks. There are security

concerns in the business context as well, like what data

and operations need to be exposed, how to expose

them, and to whom. Exposing data and operations that

reveal internal information about the business could

create an advantage for a competitor.

Figure 2-2. Aspects of API Architecture

Chapter 2 apI Strategy and arChIteCture

21

• Developer experience: The success of an API

implementation depends on adoption. Developers

are the primary audience of an API, and should have

a good experience with all aspects of its design. This

includes the developer portal, forums, developer tools,

and trail API endpoints.

• Performance: Performance of an API is expected at

every level, not only in terms of responsiveness, but

also availability. Caching is a common technique used

to increase the responsiveness of APIs. Many-chained

integrations and slow data translations from legacy

systems are common culprits of performance issues.

• Integration: Most enterprise-grade API

implementations have integrations with many systems,

and the majority of these systems are legacy. Either

the APIs talk to some sort of legacy integrations or

they talk to a wrapper API, which does the internal

dirty work. Combining results from different systems

and performing data operations before exposing them

is common practice for many API implementations.

Some API gateway tools have out-of-the-box basic data

translation and transformation capabilities.

• Usage & Telemetry: Measuring usage and logging and

analyzing telemetry are other important aspects of API

architecture, and there are a number of tools available

to help with this. Monitoring helps in understanding

the usage and adoption of the API, and endpoint- based

analysis reveals patterns in how API endpoints are

consumed and which endpoints are consumed together.

These details will help to continuously optimize the API

design.

Chapter 2 apI Strategy and arChIteCture

22

• Error handling: Error handling determines how an

API should behave during application-level errors and

system failures. System failures are addressed under

the system architecture, while application-level failures

are addressed under the API architecture. Application-

level error handling should address error contracts,

error documentation, error contract information level,

security, and certain access limits.

As mentioned above, each of these attributes has its own force. The API

architecture should identify the correct level of influence for each attribute

depending on the business requirement and the context.

 API Management
API Management is a solution encompassing the collections of tools used

to design and manage APIs, referring to both the standards and the tools

used to implement API architecture.

There are several API Management products on the market, and API

Management tools are some of the most highly regarded enterprise tools.

Microsoft; AWS; IB; and vendors like Apigee, MuleSoft (now Salesforce),

and WSO2 all offer API Management tools.

Though different vendors load their API Management tools using

different products, they all offer solutions for API design, API gateway, API

analytics, and API catalog.

• API design: API design includes the ability/features

like importing an API from specifications, create API

endpoints, define service contracts and generate

documentation.

Chapter 2 apI Strategy and arChIteCture

23

• API gateway: An API gateway allows configuring an

API gateway engine, manipulating requests

and responses, URL rewriting, caching, security

enforcement and pre- authentication, and applying

request-based security rules.

• API analytics: API analytics includes the analytics of

API usage, which is often configured as part of the API

gateway and tracked and monitored. Analytics provide

usage and telemetry insights and reporting dashboards.

• API catalog: An API catalog can take different forms

in vendor-specific implementations, but in general, it

lists available APIs and other access configurations.

For example, one API Management solution can have

many APIs; some may be public, while the rest could be

private access associated with a certain authentication.

The above mentioned API Management tools include granular

features like API documentation, API publishing, protocol translation,

data translations, data transformation, security capabilities, developer

portals, caching, versioning, client SDK generation, usage and telemetry

monitoring, URL rewriting, and much more.

API Management and the tools ecosystem is a big business in the IT

industry. Many integration service providers offer API Management tools,

and enterprise usage of API triggers the demand for API Management

solutions. In the following chapters, we will look at different features of the

API Management tools offered by Azure and AWS. These API Management

tools are offered as cloud services.

Chapter 2 apI Strategy and arChIteCture

24

 Summary
API strategy defines what an organization wants to achieve using APIs.

This is the critical decision-making point of API design and initiation.

API implementations touch different layers of an enterprise, as well

as external stakeholders. The flow of value between these layers keeps a

successful API implementation in place.

API architecture creates the architectural vision derived from the API

strategy and puts the technical foundation of API implementation using

the API architecture components. API Management tools are packaged

with tools to facilitate the API implementation.

In the next chapter, we will consider the fundamentals of API design

and a foundational guide for writing a proper API.

Chapter 2 apI Strategy and arChIteCture

25© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3_3

CHAPTER 3

API Development
A modern-day developer has access to myriad of tools and frameworks

to create a RESTful web service. Spinning up a quick service with CRUD

endpoints for database models is easy, but this kind of development

does not yield a fully managed API. The key difference is that not all web

services are APIs. An API implementation should be strategized beyond

just CRUD endpoints; it should facilitate business process and data flow,

follow semantics of request URIs and HTTP verbs, have proper developer

experience and documentation, implement required security measures

and have proper definitions of service contracts and versioning.

When an API development begins, mostly development teams either

jump in with their favorite API framework and start development without

considering the standards or the teams are stuck with the details of the API

implementation standards such as URI, HTTP verbs, exceptions, developer

experience, HTTP status code and naming wars. This chapter provides

a compact yet thorough set of guidelines to kick-start your API development

with the perfect balance between development and API standards.

 API Development Considerations
APIs are different from web applications and web services. Technically,

modern-day APIs are more similar to a RESTful service implementation, but

the purpose of an API is different and beyond the expectation compared to a

normal RESTful service. All APIs with RESTful semantics can be considered

to be RESTful services, but not all RESTful services are not APIs.

26

APIs are implemented to expose data and operations to callers.

Usability and adaption of an API by various external callers is a

critical success factor for any implementation To achieve this, API

implementations have additional considerations to contend with.

As stated, modern tools and frameworks offer rich features for delivering

required API implementations. Understanding fundamental API development

considerations is necessary to implement a good evolvable API.

 Explicit Parameters
API implementations should be stateless and consumer-state agnostic,

meaning that APIs should receive parameters from callers and should not

rely on any client-side, state-persistent models.

A common example is: there are RESTful services developed in

order to cater a specific web application. In such cases, it is common to

notice these services are developed to accept data from cookies, which is

acceptable from a web application to RESTful service call. But if the same

RESTful service is intended to be serve as an API for different consumers

then relying on cookies will break things. So API implementations should

have explicit parameters and accept data from URL parameters or HTTP

headers or via HTTP request body.

 Avoid Consumer-Commanded Endpoints
APIs and consumers send and receive messages using defined service

contracts. Service contract definitions are defined either by the service

or by consumers. Both are accepted methods, but consumer-defined

contracts are application-centric, whereas service-defined contracts are

based on entities and business operations.

However, it is best to avoid endpoints that serve consumer-

commanded data—consumer commanded data is about the service

contract definitions which contain specific application view model, like

various formattings of data and APIs exposing endpoints for simple

Chapter 3 apI Development

27

data aggregations. In some cases, API responses contain visual stylings like

color codes. These kinds of implementations should be avoided whenever

possible, since they tightly couple the API implementation to a specific

client and a specific application view.

 Documentation
APIs should have documentation about the used standards, version, URI

syntax, and error codes. Developer experience is not an optional element

in API development; tools like Swagger and TRex are helpful in creating

documentation and developer experience. Full-fledged API Management

tools provide rich documentation and developer experience.

 Security
API security is mandatory. Security is not only about authentication

and authorization, but also about what data is exposed in which service

contract and how endpoints are consumed by the consumers.

Displaying a data property in an error response might help the

consumer to correct the request and retry with the correct request

parameters, but at the same time, this might open a security loophole that

can exploited by a hacker to obtain certain data. It’s important to strike

a balance between APIs having helpful responses to clients whilst not

exposing sensitive information.

Also, public APIs should have security measures such as IP-based

security, tracking the usage of the API key, or limiting the call rate. Modern API

Management tools offer the aforementioned out of the box request based

security aspects.

 Versioning
APIs are software, and software evolves. API development should consider the

versioning; versioning of APIs cover two aspects, one is the versioning of the

URI and second is the versioning of the service contract. There are many API

Chapter 3 apI Development

28

versioning techniques available, and the proper technique should be chosen

in the early stages of development. Prompt notification to developers about

new versions and especially the depreciation of old versions are essential.

 API Development Standards
There are a few best practices to follow in API development. As stated in

the introduction of this chapter, sometimes developers get overwhelmed

with the available information on these standards.

The purpose of this section is to give the best minimum set of

standards to get started with the API development with less friction, at

the same time these standards allow the developers to extend to more

comprehensive implementations if required. The below five standards

are extracted from many modern API implementations and compiled as a

handy developer guide.

 HTTP Verbs
HTTP verbs are key action elements in HTTP communication. Table 3-1

shows the HTTP verbs that are most commonly used in API development.

Table 3-1. HTTP Verbs Quick Guide

HTTP Verb Common Usage

Get Get a single entity or list of entities

poSt Create an entity

Delete Delete an entity (this can be a soft delete)

pUt replace an entity

patCh Update properties of an entity

Chapter 3 apI Development

29

PUT vs PATCH: Developers often confuse these two verbs. PATCH is

the latest addition to the HTTP verbs, and well defined in RFC 5789. The

difference between PUT and PATCH requests is reflected in the way the

server processes the enclosed entity to modify the resource identified by the

Request-URI. In a PUT request, the enclosed entity is a modified version of

the resource stored on the origin server, and the client is requesting that the

stored version be replaced by the new version in the request body.

With PATCH, however, the enclosed entity contains a set of

instructions dictating how a resource currently residing on the origin

server should be modified to produce a new version. The PATCH method

affects the resource identified by the Request-URI, and it may also affect

other resources; i.e., new resources may be created, or existing ones

modified, by the application of a PATCH. It is commonly observed PUT is

being used in many edit operations, some APIs use PATCH.

 HTTP Status Codes
HTTP status codes indicate the state of a response from the server, and are

defined in ranges. Some API implementations have their own HTTP codes

as well. Table 3-2 shows the most common HTTP status codes to quick-

start API development.

Table 3-2. HTTP Status Codes Quick Guide

Status Code Common Usage

200 oK - any successfully processed request. may or may not contain

a payload.

201 CreateD - typical response code for a poSt request. Body

contains the UrI of the newly created entity.

202 aCCepteD - request is accepted. Instruct clients to proceed. may

contain a UrI to check the status of this request, which client can

use to do the follow-up.

(continued)

Chapter 3 apI Development

30

There are additional codes available for more granular responses, and

there are variations on these responses; for example, a validation error in

the entity can return “400 - Bad Request” with detailed information, or

“412 - Precondition Failed.”

Another concern developers have is about using 404 as a status code

for a resource retrieval request, such as getting an entity by ID. Some argue

that returning a 404 is not valid, since the endpoint to retrieve the resource

is valid, but the entity itself is not available. So they advocate for returning

a 400 as BadRequest or a 200 with empty body instead of 404, because the

endpoint is found.

Status Code Common Usage

204 no Content - typical response code for a pUt/patCh/Delete

request. typically, body does not contain a payload.

400 BaD reQUeSt - Generic status to indicate the issues in requests,

i.e., validation

401 UnaUthorIZeD - Used to indicate client authentication /

authorization has failed.

403 ForBIDDen - Used to indicate authorization has failed or a pre-

condition has failed.

404 not FoUnD - requested resource is not found.

408 reQUeSt tImeoUt - Server could not process the request in the

determined time. Sometimes payload contains retry information.

500 Internal Server error - any unhandled exceptions and server

errors fall under this category. Instructs clients that the issue is

with the server.

Table 3-2. (continued)

Chapter 3 apI Development

31

There are many arguments like this, but it is good design and

development practice to be consistent in using HTTP response codes

and to have detailed messages in the body, particularly during 400- and

500-based scenarios.

 Error Handling
Error handling is important, and should be implemented in a way that

is helpful to consumers in rectifying issues in the request and guiding

them to reach the API back. A common best practice is to return an error

response with at least three parameters:

• Correct HTTP status code

• API-specific error code

• Human-friendly error message

API-specific error codes help implementing the client logic easily,

rather than processing the human-friendly string message. This also

helps in implementing good flow control logic in clients. The error

response can contain details such as retry links, retry time interval, and

additional helping parameters to modify the response object.

A very latest, RFC 7807 - ‘Problem Details for HTTP APIs’ has good

information on constructing problem detail service contracts. Based on

the RFC, the problem detail response includes the following properties.

Table 3-3 shows the details of each problem detail entity. The object can be

extended with custom properties.

Chapter 3 apI Development

32

Listing 3-1. Sample Problem Detail Message as Specified in RFC 7807

{

 "type": "https://example.com/probs/out-of-credit",

 "title": "You do not have enough credit.",

 "detail": "Your current balance is 30, but that costs 50.",

 "instance": "/account/12345/msgs/abc",

 "balance": 30

}

Note Sending information in an error response is an important
decision and should be considered with care. In the above example,
sending the current balance in the error response has its own
pros and cons. overall security consideration in the development
should determine such decisions. For example, if the development
emphasizes high security with assumed breach in mind, then it is
better not to expose the balance in the error response.

Table 3-3. Problem Detail Service Contract Properties

Property Type Description

type string a UrI for the type of the error

title string Short description of the error

detail string Detailed description of the error

instance string Instance of the error

Chapter 3 apI Development

33

 URI Syntax
In a HTTP-based RESTful service, parameters are passed in the request

URI or HTTP headers, or in the request body. It is up to the API developers

to determine what parameters are sent on which path. Commonly, GET

requests pass the parameters in URI, unless there is a specific requirement

to do so such as complex search parameters are sent in request body.

URI syntax can be query string–based or based on URI fragments,

and there are endless discussions on which method is better. Modern

API frameworks support both syntaxes if a specific naming convention is

followed, but URI fragment–based syntax is generally preferred due to its

semantic approach:

api/orders/1 over api/orders?id=1

It is possible to slot the parameters in the middle of the URI; this makes

it more readable:

api/order/1/products over api/order/products?orderId=1

At the same time, URI fragments do not cope well with all scenarios,

like search/filter operations, especially when we require a search

endpoint with arbitrary parameters. If we have only one search key

value parameter at any given time, then easiest approach is introducing

a filter operation and take two parameters, one is filter property type (the

key parameter) and second property is the value parameter. In the below

example, both “category” and “fashion” are parameters:

api/products/filter/{category}/{fashion}

But more complex search scenarios are better served with a request

payload. Sending a GET request with the payload that defines properties,

values, and filter criteria in the request body would be more suitable than

chaining long URI fragments, also this might hit the limitation of the URI

length.

RESTful does not define much on the URI syntax, but developers often

argue over this topic. Using the above URI segmented approach allows the

URIs to be more human friendly, and keeps the request URIs clean from

characters like “?”, “=”, and “#.”

Chapter 3 apI Development

34

 Versioning
API versioning standards are generally handled in three different ways.

Whichever method is used, APIs expect the version from the client as a

parameter, and if the client does not specify the version, the API either falls

back to a default version or throws an error.

An API version can be stated in the request URI as a fragment (more

common) or as a query string parameter:

api/v1/products or api/products?api-version=1

Or else, state the API version in HTTP headers. Generally, the header

key “api-version” is used to pass the version to the server, but developers

can use their own custom header keys.

Or state the API version in the standard Accept header key. This header

is used for content negotiation; in a JSON-based API, the Accept header

contains the application/JSON as the default value, but some APIs expect

the version number to be in the Accept header:

application/massrover.v2+json

Regardless of the method used, implementation should be

consistent across all endpoints of the API. Also, one API can have more

than one method enabled in its implementation. The easiest and most

straightforward method of implementation is having the version in the URL.

 Kick-Start API Development
This section describes a concise approach to getting started with API

development using ASP.NET Core and related Visual Studio tooling. We

will also explore how to use an API specification to describe a RESTful API.

OpenAPI Specification (OAS) is used for this purpose, along with other

available Swagger tools.

Chapter 3 apI Development

35

The OAS uses a standard, language-agnostic interface to describe

RESTful APIs, which allows both humans and computers to discover and

understand the capabilities of the service without access to its source code.

There are rich tools available for implementing the OAS specification and

generating API documentation from the API description.

Note openapI Specification (oaS) is formally known as Swagger.
earlier versions of Swagger included both apI specification and tools.
the owner of Swagger, SmartBear, donated its specifications, making it
independent of the tooling and making the specification vendor neutral.
the tooling remains under the branded name Swagger. So, in the
current context, openapI refers to vendor-neutral specifications, and
Swagger refers to the tools used to implement those specifications.
there are various other tools available for implementing oaS.

 Implementation: ASP.NET Core
The sample API (MassRover API) has CRUD endpoints for a single entity.

To begin development, create a simple ASP.NET Core Web API application

in Visual Studio 2017. Figure 3-1 shows the selected project template in

Visual Studio.

Chapter 3 apI Development

36

Add a folder in the project and name it “Models.” Create the Product

model in this folder.

Product.cs

public class Product

{

 public int Id { get; set; }

 public string Name { get; set; }

 public DateTime? ModifiedDate { get; set; }

}

Add another folder and name it “Errors.” This folder will contain all the

used classes and enums to provide error handling implementation of the

API as defined in the RFC 7807.

Figure 3-1. ASP.NET Core API Project

Chapter 3 apI Development

37

ErrorCode.cs

public enum ErrorCode

{

 RequestContentMismatch = 18000,

 EntityNotFound = 18500

}

The sample ErrorCode enum does not contain any standards; the

implementation is specific to the application. When you develop an

API, make sure the error codes are consistent across the application and

documentation, as API consumers should make decisions and write code

based on defined standards.

Add an abstract class in the Errors folder, named “ErrorMessage,”

with the base properties of the error contract, and implement two specific

ErrorMessage concrete classes named “RequestContentErrorMessage”

and “EntityNotFoundErrorMessage.”

ErrorMessage.cs

public abstract class ErrorMessage

{

 public ErrorCode Code { get;set; }

 public string Type { get; set; }

 public string Title { get; set; }

 public string Detail { get; set; }

 public string Instance { get; set; }

 public string Info { get; set; }

}

public class RequestContentErrorMessage : ErrorMessage

{

 public RequestContentErrorMessage()

 {

 Code = ErrorCode.RequestContentMismatch;

 Type = $"https://massrover.com/doc/errors/#

Chapter 3 apI Development

38

 {ErrorCode.RequestContentMismatch.ToString()}";

 }

}

public class EntityNotFoundErrorMessage : ErrorMessage

{

 public EntityNotFoundErrorMessage()

 {

 Code = ErrorCode.RequestContentMismatch;

 Type = $https://massrover.com/doc/

errors/#{ErrorCode.EntityNotFound.ToString()};

 }

}

Next, add another class to return the correct ErrorMessage instance in

the right context. This class simulates a service that produces the correct

ErrorMessage instance. In a real-world implementation, this would be part

of the business logic.

ErrorService.cs

public static class ErrorService

{

 public static ErrorMessage

GetRequestContentMismatchErrorMessage()

 {

 return new RequestContentErrorMessage

 {

 Title = $"Request content mismatch",

 Detail = $"Error in the request context."

 };

 }

Chapter 3 apI Development

39

 public static ErrorMessage GetEntityNotFoundErrorMessage

(Type entity, int id)

 {

 return new EntityNotFoundErrorMessage

 {

 Title = $"{entity.Name} not found",

 Detail = $"No {entity.Name.ToLower()} found for

the supplied id - {id}"

 };

 }

}

Now, let’s create an ASP.NET Core controller with the actions for the

CRUD operations of Product entity. In orde to this, add an empty Web API

controller named “ProductsController” (endpoints are listed in Table 3-4).

If you’d like, you can delete the ValuesController generated with the Visual

Studio template.

ASP.NET Core provides resourceful attributes in decorating the

API. These attributes are helpful during development, and Swagger- like tools

leverage those attribute descriptions in generating the API descriptions.

Table 3-4. ProductsController Endpoints

Action Name HTTP Method Response Error Response

Getproducts Get 200 list of products -

GetproductById Get 200 product 404 - entity not Found

Createproduct poSt 201 new product -

Updateproduct pUt 204 no Content 400 - Bad request

404 - entity not Found

Deleteproduct Delete 204 no Content 404 - entity not Found

Chapter 3 apI Development

40

Note massrover apI is a sample reference implementation and
does not provide any standards in coding, application structure, code-
level architecture, or separation of concerns. It is a simple reference
application used to explain and test the detailed information in apI
development, rather than a development/architectural reference.

Follow these instructions and develop the code for

ProductController.cs. First, add a product collection (hardcoded) in the

controller as shown below.

 [Produces("application/json")]

 [Route("api/products")]

 public class ProductsController : Controller

 {

 private static List<Product> _products = new

List<Product>

 {

 new Product {Id = 1, Name = "Lithim L2",

ModifiedDate = DateTime.UtcNow.AddDays(-2)},

 new Product {Id = 2, Name = "SNU 61" }

 };

 }

Nest, let’s add two HTTP GET actions: one to retrieve all the products,

and another to retrieve a product by its ID, parameter is passed via URI

path. Also, note that the action methods are decorated with proper

attributes for the HTTP method, route parameters, and response types.

Each action has its own XML comment as well.

 /// <summary>

 /// Gets list of all Products

 /// </summary>

Chapter 3 apI Development

41

 /// <returns>List of Products</returns>

 /// <response code="200">List of Products</response>

 [HttpGet]

 [ProducesResponseType(typeof(List<Product>), 200)]

 public IActionResult GetProducts()

 {

 return Ok(_products);

 }

 /// <summary>

 /// Gets product by id

 /// </summary>

 /// <param name="id">Product id</param>

 /// <returns>Product</returns>

 /// <response code="200">Product</response>

 /// <response code="404">No Product found for the

specified id</response>

 [HttpGet("{id}")]

 [ProducesResponseType(typeof(Product), 200)]

 [ProducesResponseType(typeof(EntityNotFoundError

Message), 404)]

 public IActionResult GetProductById(int id)

 {

 var product = _products.SingleOrDefault(p => p.Id

== id);

 if (product != null)

 return Ok(product);

 else

 return NotFound

 (ErrorService.GetEntityNotFoundErrorMessage

(typeof(Product), id));

 }

Chapter 3 apI Development

42

Add an action to create new products. HTTP POST creates a new

product, taking the parameter in the request body.

 /// <summary>

 /// Creates new product

 /// </summary>

 /// <param name="product">New Product</param>

 /// <returns>Product</returns>

 /// <response code="201">Created Product for the

request</response>

 [HttpPost]

 [ProducesResponseType(typeof(Product), 201)]

 public IActionResult CreateProduct([FromBody]Product

product)

 {

 product.Id = _products.Count + 1;

 _products.Add(product);

 return CreatedAtRoute(new { id = product.Id }, product);

 }

Add the PUT method for replacing products with the specified ID. This

action requires two parameters: the ID of the product to be replaced (this

is passed as a path variable) and the product to be replaced with the new

values, which is passed in the request body.

This action returns a NoContent response with the HTTP status code

204 for the successful replacement of the product. Otherwise, it responds

with two different error contracts. One is “400 Bad Request,” with the

request content mismatched when the ID value in the path does not match

the ID value of the product in the request body. The other is “404 Not

Found,” when the requested entity with the specified ID is not found.

Chapter 3 apI Development

43

 /// <summary>

 /// Replaces a product

 /// </summary>

 /// <param name="id">New version of the Product</param>

 /// <param name="product">New version of the

Product</param>

 /// <returns></returns>

 /// <response code="204">No Content</response>

 /// <response code="400">Request mismatch</response>

 /// <response code="404">No Product found for the

specified id</response>

 [HttpPut("{id}")]

 [ProducesResponseType(204)]

 [ProducesResponseType(typeof(RequestContentError

Message),400)]

 [ProducesResponseType(typeof(EntityNotFoundError

Message), 404)]

 public IActionResult UpdateProduct(int id, [FromBody]

Product product)

 {

 if (id != product.Id)

 return BadRequest(ErrorService.GetRequest

ContentMismatchErrorMessage());

 var existingProduct = _products.SingleOrDefault

(p => p.Id == product.Id);

 if (existingProduct != null)

 {

 existingProduct = product;

 existingProduct.ModifiedDate = DateTime.UtcNow;

 }

Chapter 3 apI Development

44

 else

 return NotFound

 (ErrorService.GetEntityNotFoundErrorMessage

(typeof(Product), product.Id));

 return NoContent();

 }

Add a delete endpoint using the HTTP DELETE action.

 /// <summary>

 /// Deletes a product

 /// </summary>

 /// <param name="id">Product id</param>

 /// <returns></returns>

 /// <response code="204">No Content</response>

 /// <response code="404">No Product found for the

specified id</response>

 [HttpDelete("{id}")]

 [ProducesResponseType(204)]

 [ProducesResponseType(typeof(EntityNotFoundError

Message), 404)]

 public IActionResult DeleteProduct(int id)

 {

 var product = _products.SingleOrDefault(p => p.Id

== id);

 if (product != null)

 _products.Remove(product);

 else

 return NotFound

 (ErrorService.GetEntityNotFoundErrorMessage

(typeof(Product), id));

Chapter 3 apI Development

45

 return NoContent();

 }

This concludes the code in the ProductController. Next, we’ll set up the

Swagger tools in ASP.NET Core and leverage the tools with the decorated

attribute elements.

 Setting Up Swagger
Install the package Swashbuckle.AspNetCore in the project by executing

the following command in the Package Manager Console (PMC):

Install-Package Swashbuckle.AspNetCore

Next, set up the Startup.cs to activate Swagger tooling and get the

Swagger UI up and running in the project.

In the Startup.cs, update the ConfigureServices method, as shown

below. Update the name of the API (MassRover API) and the version

of the API (v1) in the SwaggerDoc, and update the path for the XML

documentation for Swagger to use via IncludeXmlComments.

In the sample, in order to provide the XML path, install the package

Microsoft.Extensions.PlatformAbstractions using PMC. Execute the

following:

Install-Package Microsoft.Extensions.PlatformAbstractions

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

 services.AddSwaggerGen(c =>

 {

 c.SwaggerDoc("v1", new Info { Title = "MassRover

API", Version = "v1" });

 c.IncludeXmlComments

Chapter 3 apI Development

46

 (Path.Combine(PlatformServices.Default.

Application.ApplicationBasePath,

 "MassRoverAPI.QuickStartSample.xml"));

 });

}

Update the Configure method as shown below. This enables the

Swagger UI and sets the Swagger definition endpoint.

public void Configure(IApplicationBuilder app,

IHostingEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseSwagger();

 app.UseSwaggerUI(s =>

 {

 s.SwaggerEndpoint("/swagger/v1/swagger.json",

"MassRover Open API");

 });

 app.UseMvc();

}

Finally, we will instruct Visual Studio to generate XML documentation

based on the comments.

Chapter 3 apI Development

47

Navigate to Project Properties, then the Build tab, and enable the

XML documentation file. By default, this is the path for the bin. Refer to

Figure 3-2.

Note the build configuration in visual Studio has dedicated setting
for each configuration, so you have to perform this step for each build
configuration (debug, release and etc) to generate the Xml file in the
respective build configuration setting.

Figure 3-2. XML Documentation Settings in Visual Studio

Chapter 3 apI Development

48

Note Green line problem: enabling Xml documentation causes
visual Studio to look for the Xml comments for each implementation.
this creates a visual Studio warning green line everywhere. to
suppress this, you can add the rule number (1519) in the Suppress
Warnings text, as in Figure 3-2.

 Run the API and Swagger
Now you can run the application. Navigate to the URL

http://{host}:{specified port}/swagger.

Swagger’s UI is straightforward, and leverages the XML documentation

generated by Visual Studio (Figure 3-3). It provides details of the

endpoints, parameters, response types, and response codes. It also

provides a comprehensive description of these components as described

in the XML comments.

Figure 3-3. Swagger UI

Chapter 3 apI Development

49

If you expand the PUT method, you will see a similar screen to

the one shown in Figure 3-4, including detailed explanations of HTTP

response codes and response messages. Note that Swagger leverages the

ProducesResponseType attribute to generate a model of the error contract.

The complete source of the MassRover API Quick Start Sample is found

at this repo: https://github.com/thuru/MassRoverAPI

 Team Orientation in API Development
API implementation requires both business knowledge and technical

skills. When multiple teams work together to produce services, a

horizontally cross-cutting API team is required to consolidate different

endpoints under a single API experience. API teams are commonly utilized

in microservices-based architecture implementations.

Figure 3-4. Generated Swagger UI for PUT

Chapter 3 apI Development

https://github.com/thuru/MassRoverAPI

50

In a microservices environment, different teams work on different

services, thus creating APIs with different standards. A client application

for a business user accessing these microservices requires a single

standardized API experience. API teams play a key role in standardizing

multiple streams of services under one standard channel of API. Figure 3-5

depicts this scenario.

 Summary
Developing a complete software product requires certain considerations at

the outset to avoid confusion and determine development standards. This

is quite common in any software project, but API implementations require

more significant effort in defining these standards, documentation, and

developer agreement, since they are consumed by external parties.

This chapter provides a quick-start guide with the required standards

with the balance between quick development and API standards.

Most standards described in this chapter are sufficient to kick-start an API

development. Later in the process, developers must consider more complex

standards and practices of API development as the business evolves.

Figure 3-5. API Team Works Across Multiple Teams

Chapter 3 apI Development

51© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3_4

CHAPTER 4

API Gateways
API gateways are the front layer for APIs, acting as CDNs. Though they do

not necessarily operate on edge servers like CDNs, their main function is to

abstract the underlying API or service and provide a uniform access point

to consumers. In addition to that, API gateways provide other associated

value-added features like caching, security, management, content

negotiation, and policy management.

This collection of features, stacked with other architecture components

such as developer experience, enterprise integration, telemetry, access

and request policies, and access control, form the service known as API

management. Most commercial API gateways are offered as a part of the

API management tools and services.

This chapter covers two different API management services available

from two major public cloud platforms: API Management from Azure and

API Gateway from AWS. Note that API Management and API Gateway

are the respective names of the API management services from Azure

and AWS; these are product names and should not be confused with the

generic terms “API gateway” and “API management.”

 API Gateways in a Public Cloud
Modern public cloud platforms, especially Azure and AWS, have numerous

services and platform offerings. API management is one service most

public cloud providers sell.

52

An API gateway service in a public cloud gets requests from the

Internet, most commonly via HTTP/HTTPS. When a request comes to

the API gateway, it performs actions on the inbound request, passes

the request to the backend service (or sometimes not, depending on

the configured rules, such as cached requests or default replies), then

performs actions in the outbound response. Figure 4-1 shows this scenario.

In Figure 4-1, consumers make a request through the public

Internet. There is a range of possible consumer types, including mobile

applications, websites, IoT devices, other API services, and direct human

consumers.

Figure 4-1. API Gateway Overview

API gateway services in a public cloud receive requests from the

Internet and process those requests based on its configuration. The

process acts as a pipeline, similar to any modern web server. We configure

static and dynamic rules in the pipeline and, based on this configuration,

various components process the request before sending it to the backend

service. Not all the processing components modify the request—some

work as monitoring and security checks. Some inbound processing

components may not send a specific request, depending on validations

and set rules.

Chapter 4 apI Gateways

53

After the inbound request processing is complete, if validations and

rules and configurations allow, the request will hit the backend service.

The backend service sees the processed request, not the original request

made by the consumer. Also, the API gateway decides which backend

endpoint to send the request to—this is not controlled by the consumer.

The backend service delivers a response (either success or error) to the API

gateway, and the API gateway outbound processing components apply the

configured rules and validations and send a response to the consumer. The

API gateway has full control over the requests it receives, and has the same

control over the response it delivers to the consumer.

Figure 4-1 depicts a fundamental overview of an API gateway in a

public cloud platform. Internals of implementation, configuring APIs,

connecting backend services, and configuring rules vary based on

vendor-specific implementations. In the next section, we will look at

implementation details using Azure API Management and AWS API

Gateway. As an example, we will use the MassRover product API as the

backend.

 Endpoint Mappings
As depicted in Figure 4-1, API gateways are the frontiers for client requests,

and sit between backend services and requests. In this model, API

gateways can have different mappings between backend service endpoints

and API gateway interface endpoints. This section describes the various

possible mappings and patterns related to these endpoints.

 One-to-One Mapping

One-to-one mappings are straightforward: one backend service is mapped

to one API gateway interface endpoint. Figure 4-2 depicts this.

Chapter 4 apI Gateways

54

 One-to-Many Mapping

In this case, one API gateway interface endpoint is mapped to many

different endpoints of the backend service. This mapping is used in the

API composition pattern to reduce the roundtrip in fetching data, such as

product review information and product details, in a single call. Figure 4-3

depicts this.

Figure 4-2. One-to-One Mapping

Figure 4-3. One-to-Many Mapping

Chapter 4 apI Gateways

55

 Many-to-One Mapping

This mapping is used to abstract the direct operation of the backend

service and give business meaning. Many API gateway interface endpoints

are mapped to one backend service endpoint. For example, an entity has

different states, and each state change is technically an update operation.

In a business context, each state change can be a different operation in

terms of the authorization and semantic meaning, so each API gateway

interface has different endpoints exposed with a meaningful URL pattern,

but they are mapped to a one-update endpoint of the backend service.

Figure 4-4 depicts this.

Figure 4-4. Many-to-One Mapping

 One-to-None Mapping

API gateways are good at handling requests, and are able to execute

some fixed logics and return a response without connecting to a backend

service. Often, this mapping is used in mocking during development.

Also, in some cases, though the endpoint is mapped to a backend service,

the API gateway can produce a response without contacting that service.

Figure 4-5 depicts this.

Chapter 4 apI Gateways

56

 Azure API Management
In this section, we’ll look at how to implement an API gateway using the

Azure API Management service. API Management is bundled with API

Gateway and other API management features, like the developer portal,

security, the API catalog, and caching.

Azure API Management has two components: API Gateway and the

portal. The portal provides two different experiences, publisher and

developer.

Traditionally, these two experiences are delivered via two different web

applications, shown in Figure 4-6.

Figure 4-5. One-to-None Mapping

Chapter 4 apI Gateways

57

When creating an Azure API Management service instance, Azure

provisions both the API gateway and the portal. API Gateway is the core

engine, receiving requests, processing them, connecting to the backend

service, and responding to requests.

The publisher portal provides an administration interface to configure

the API gateway and developer portal. The developer portal includes the

interface and workflows for developer onboarding, API subscriptions, and

other developer experience–related features.

As an API developer, you will spend a lot of time in the publisher portal

configuring both the API gateway and the developer portal.

 Creating an Azure API Management Service
Navigate to your Azure subscription and search for “API Management,”

then select API Management in order to create a service instance. You

will see the Azure API Management service creation blade as shown in

Figure 4-7.

Figure 4-6. Logical Composition of Azure API Management
Service

Chapter 4 apI Gateways

58

Follow these steps in the Azure API Management creation blade.

 1. Provide a name. This name sets the URL of the API

gateway and portal. Later, you can configure the

DNS for this URL. The API gateway URL appears as

yourname.azure-api.net, and the portal URL appears

as yourname.portal.azure-api.net. Appending “/

admin” to this will open the publisher portal.

 2. Select the subscription and resource group (or

create a new resource group), and select the

location.

Figure 4-7. Azure API Management Creation Blade

Chapter 4 apI Gateways

59

 3. Specify the organization name. This name will

appear in the developer portal as the organization

that publishes the API.

 4. Specify the email address of the administrator. The

user who creates the service instance will be the

default administrator, so it's best to provide the

email address of this user until you want someone

else to serve as administrator.

 5. Select the pricing tier. The Developer tier is the most

comprehensive offering, with sufficient request/

response limitations in dev/test scenarios. Upon

completing the form, you can create the Azure API

Management service instance.

Figure 4-8 shows the Azure API Management service instance

immediately after creation.

Figure 4-8. Azure API Management Overview Blade

Chapter 4 apI Gateways

60

You may notice that the links for the publisher and developer portals

appear at the top. Also, the overview blade header section displays the URL

of the developer portal and API gateway. The publisher portal URL is the

same as the developer portal URL; you should add “/admin” at the end.

Note the azure portal offers two different experiences. when you
click the publisher portal and developer portal links in the overview
blade, these portals will be opened (as long as they are valid) in
different tabs. But Microsoft azure is in the process of creating the
experience at portal.azure.com. In the future, we can assume that
portal.azure.com will be the primary workspace for both the publisher
and developer portals, replacing the publisher portal. this book refers
to the experience at portal.azure.com as often as possible.

In the overview blade, shown in Figure 4-8, on the left-hand side,

you will notice several different menu items under the API Management

section. These items define the structure of the Azure API Management

service. Click on the APIs option—this will open the APIs blade as shown

in Figure 4-9.

Figure 4-9. APIs Blade

Chapter 4 apI Gateways

61

This API blade is the primary starting point for creating APIs in the

Azure API Management service, with several options available. In terms

of Azure API Management, an API is a collection of endpoints that may or

may not connect to a backend service.

An API can also include endpoints from more than one backend

service, and one backend service can be included in multiple APIs as well.

Backend service-to-API gateway endpoint mappings are discussed in the

“Endpoint Mappings” section of this chapter.

 Connecting to the Backend Service
First, we should establish a backend service for the Azure API Management

service to connect to; we will use the MassRover API. Be sure to host the

MassRover API so that it can be accessed from the Azure API Management

service.

Assuming the MassRover API is hosted in an Azure API app service,

let's import it using the Open API specification. Since we have configured

the Open API specification in the MassRover API implementation, we can

do this with the portal GUI. As shown in Figure 4-9, click on the “Open

API” specification tile to begin the process.

Note azure apI Management offers various options for importing
and creating apIs. this chapter focuses on creating an apI from the
Open apI specification; this is commonly used practice in modern
development.

This will open a popup, as shown in Figure 4-10.

Chapter 4 apI Gateways

62

You can specify the Swagger definition URL of the hosted MassRover

API or upload the JSON file. Fill in the display name and internal name of

the API. You can also include a description if you so choose. Select the URL

protocol—HTTP, HTTPS, or both. HTTPS is ideal for security and content

compression.

An API URL suffix is optional; the base URL will change based on your

suffix. Then, select a product. In Azure API Management, products are

consumable API packages. We will look at them in more detail later in

this chapter, but at this point you will select “Starter Product” (one of the

predefined products).

Figure 4-10. Open API Specification Popup

Chapter 4 apI Gateways

63

We can version the API by selecting the checkbox. It is good practice to

version your API from the very beginning, even though the backend does

not support this. Select a versioning scheme (“Header” is selected in this

example). Next, provide a version identifier. This can be a whole version

number, date, time, or any other string value (the whole version number

is used in this example, with a “v” prefix). Finally, provide the header key

for the version—the typical setting is “api-version,” which is used in this

example.

After completing the form, click “Create” to import the MassRover API

to Azure API Management. Now the gateway is fronting the MassRover

backend service. After this step, you will see the MassRover API in the APIs

section (in addition to the Echo API, which was provisioned by default).

Figure 4-11 shows this.

Figure 4-11. API Configuration Workspace (New Portal)

On the left-hand side, you can see the created APIs and their versions.

On the right-hand side, you will see the list of endpoints and related

workspace. These endpoints are the ones available in the backend service

(MassRover API). We can add, edit, or remove endpoints as per the

requirement.

Chapter 4 apI Gateways

64

 1. APIs in the Azure API Management Service. Each

has a dedicated sub-section for each version.

 2. Endpoints of the selected version of an API.

 3. Front-end configuration panel.

 4. Inbound processing configuration section.

 5. Backend service configuration section.

 6. Outbound processing configuration section.

 Configuring API Endpoints
After importing the API using the Open API Specification, we need to

connect the backend service in order for the API to function. We can

provide the backend service URL in the settings of the API. When you

select a version of the API, before choosing any endpoint, navigate to the

settings from the top menu, as shown in Figure 4-12.

There, you can fill in the backend service URL. This should be the base

URL of the hosted MassRover API. Note that this URL should be accessible

by the Azure API Management service. Save the settings to persist the

changes.

Chapter 4 apI Gateways

65

Since the MassRover API implementation adheres to standard

API practices and Open API Specification, the endpoint mappings are

straightforward. Click on the Test tab to test the API gateway.

Figure 4-13 shows the Test tab with the ApiProductsGet endpoint

selected. This is the endpoint mapped to “get all products” in the backend

service.

As you can see in Figure 4-13, this test blade has several sections:

 1. Query parameters: Set the query parameters for the

request URLs in this section.

 2. Headers: Set the request headers. You can see

some pre-defined headers in this section. One of

them is “api-version,” which was configured in the

previous step. Other headers, mainly “ocp-apim-

trace,” instruct the trace URL for the request. During

testing, it's better to set this as “true,” as Azure API

Figure 4-12. Configuring the Backend Service URL

Chapter 4 apI Gateways

66

Management will produce a temporary URL of the

trace log that can be used outside the portal. The

other header is “option ocp-apim-subscription-

key.” This header value has the authentication to the

Azure API Management service. Every consumer

should have a subscription key in order to make

calls to Azure API Management. We will discuss

these subscription keys later in this chapter.

Figure 4-13. Azure API Management Admin Test Console

Chapter 4 apI Gateways

67

 3. Authorization: This is the section where we choose

the subscription keys. These are auto-generated

by the Azure API Management service, and we can

choose either the primary or secondary key. Two

keys are available to support the fallback during key

cycling.

 4. Request URL: You can view the request URL here. If

you add query parameters, you will notice that this

preview section changes dynamically.

 5. HTTP Request: This section previews the request

before it is sent.

Click the Send button at the bottom of the test console blade. This will

send the request to the hosted MassRover API.

Since the ocp-apim-trace header is set to true, we can see the trace

results URL in the response header “ocp-apim-trace-location.” The same

information is structured in the Trace tab. Figure 4-14 shows the response

message in the portal.

Figure 4-14. Azure API Management Admin Test Response
Message

Chapter 4 apI Gateways

68

 Configuration Policies
Next, let’s configure some policies for the API using the Design tab. We

can configure individual endpoints with more customized settings using

inbound and outbound rules. Click on an endpoint, then click the inbound

processing section (#4 in Figure 4-11).

In the right-hand corner, you will see the Edit icon. The Azure portal

provides two different edit modes—the form-based editor, which offers

less functionality but is still handy enough for most quick edits, and

the code-based editor, where we can set policies based on XML policy

snippets. Figure 4-15 shows the code editor, and on the left-hand side you

can see the list of rules that can be used.

In this section, let's remove the api-version header from the request,

as this is not implemented in the backend service yet (sending this

in the header will do no harm). We’ll also set caching policies for the

ApiProductsGet endpoint.

Figure 4-15. Inbound Policies Code Editor

Chapter 4 apI Gateways

69

Note though we navigated to the code-based policy editor from the
inbound rules section, the policy XML is a single document with all
the policy sections included—inbound, outbound, backend, and error.

In the inbound section, click on the Set HTTP Header policy under the

Transformation policies section. This will inject the Set HTTP Header XML

snippet template. See Figure 4-16.

Figure 4-16. Policy XML Snippet (Set HTTP Header)

Below is the XML snippet template.

<set-header name="header name" exists-action="override | skip |

append | delete">

 <value>value</value>

</set-header>

Edit the template by entering the header name = api-version and

exists-action = delete. Since the action is delete, we do not need the value

element. After the replacement, the policy will appear as follows:

<set-header name="api-version" exists-action="delete">

</set- header>

Chapter 4 apI Gateways

70

Next, we'll set a caching policy for this endpoint for 60 seconds. The

Azure API Management service will cache the response for 60 seconds and

respond to requests with low latency.

The caching rule should be set up with two policies. When a request

comes in, we should check the cache for the cached value, and for this we

need a cache-lookup policy in the inbound section. When the response is

received from the backend service, we should store the value of the specific

request—for this, we need a cache-store policy in the outbound section.

In the cache-lookup policy, we will set to look the cache, under

specified request context. In the below policy configuration, the request

context is cached for all the developers in all the development groups

(developer experience is described in the next section). The Accept header

and Accept-Charset header attributes will vary, meaning individual cache

entries are set for varying values for those headers. We can also set any

number of header and query string values.

<cache-lookup vary-by-developer="false" vary-by-developer-

groups="false">

 <vary-by-header>Accept</vary-by-header>

 <vary-by-header>Accept-Charset</vary-by-header>

</cache-lookup>

The cache store policy is set with a timeout period. The default cache

duration is 60 seconds, with a maximum of 2,592,000 seconds (one month)

for this policy.

<cache-store duration="60"/>

Next, let's manipulate the response headers. It’s assumed safe to hide

the implementations and server details of the backend service, so let's add

a policy to the outbound rules to remove the “X-powered-By” header value

from the backend service.

Chapter 4 apI Gateways

71

<set-header name="X-Powered-By" exists-action="delete">

</set- header>

After we configure all the policies, the full applicable policy set can be

verified in the portal using the option “Calculate effective policy.” Using

this option, you will see additional policies that come from the product

scope policies. We will look at these products in the coming sections.

Below is the total set of custom configured policies for the selected

endpoint.

<policies>

 <inbound>

 <base />

 <set-header name="api-version" exists-action="delete" />

 <cache-lookup vary-by-developer="false" vary-by-

developer-groups="false">

 <vary-by-header>Accept</vary-by-header>

 <vary-by-header>Accept-Charset</vary-by-header>

 </cache-lookup>

 </inbound>

 <backend>

 <base />

 </backend>

 <outbound>

 <base />

 <cache-store duration="60" />

 <set-header name="X-Powered-By" exists-action="delete" />

 </outbound>

Chapter 4 apI Gateways

72

 <on-error>

 <base />

 </on-error>

</policies>

You can test some the endpoint and experience the effects of the

configured policies.

Note the azure apI Management service has a rich set of policies
where conditional and complex decision-making logics can be
configured. azure apI Management also supports augmentation
of these policies via C#. you can read more about these policies
here: https://docs.microsoft.com/en-us/azure/api-
management/api-management-policies.

 Products in Azure API Management
Products are the consumable packages in Azure API Management.

Products contain APIs, and one product can have multiple APIs. We can

create products using the portal, and each product has different settings.

By default, the Azure API Management service is provisioned with two

products: Started and Unlimited.

Let’s create a product and see what options are available. Navigate to the

Products section and click Add to create a new product (see Figure 4- 17).

Chapter 4 apI Gateways

https://docs.microsoft.com/en-us/azure/api-management/api-management-policies
https://docs.microsoft.com/en-us/azure/api-management/api-management-policies

73

A product has the following properties:

 1. Display name: The publicly visible name, used in

the portal, among other places.

 2. Name: The Azure resource name—this cannot be

edited later.

 3. Description: A short description of the product. This

is a mandatory property.

 4. State: A product can be either published or not

published. Only published products are available

in the developer portal. The not- published state

is analogous to draft mode or disabled mode. By

default, the state is not published, which means the

product will be available to administrators only.

Figure 4-17. Azure API Management Products Blade

Chapter 4 apI Gateways

74

 5. Requires subscription: Indicates whether a developer

subscription is required to consume the product.

 6. Requires approval: Indicates whether the

subscription requests from developers (which are

made via the developer portal) require approval

from an administrator in the publisher portal.

 7. Subscription count level: The number of

subscriptions for this product that can be granted to

a single developer. One subscription per developer

is sufficient in most cases.

 8. Legal terms: Optional legal terms the developer should

agree and adhere to in order to consume the API.

Set the State to Published and check “Requires Subscription.” Finally,

select the API to be included in the product (we can add more than one).

We can add the MassRover API v1 to this product.

After we create the product, it will be visible in the products blade.

Click on the newly created MassRover Catalog product to configure it.

Figure 4-18 shows the product blade.

Here, we can configure the settings for the products. You will see a

number of tabs:

 1. Overview: This section shows an overview of the

product. At the top we can see the options for

changing the state of the product, and we can add

or remove APIs. Additionally, this blade shows a

summary of the access control.

 2. Settings: This section is the same as the product

creation blade. Here, we can edit the properties of

the product, except the Azure resource name.

Chapter 4 apI Gateways

75

 3. APIs: Use this section to add or remove APIs to or

from the product.

 4. Policies: This is the policy configuration for the

product. Earlier, we configured policies at the

endpoint level, and here we can configure them

at the product level, where policies are applied to

all the endpoints of all the APIs included in the

product.

 5. Access control: In this section, you can add or

remove groups who have access to the product.

 6. Subscriptions: Here, you can suspend, cancel, or

delete subscriptions to the products.

Figure 4-18. Product Configuration Blade

Chapter 4 apI Gateways

76

The Azure API Management service has three in-built access control

groups with defined permissions.

• Administrators: Administrators manage Azure API

Management service instances, creating the APIs,

operations, and products that are used by developers.

• Developers: Authenticated developer portal users

fall into this group. Developers are the customers

who build applications using your APIs. Developers

are granted access to the developer portal and build

applications that call the operations of an API.

• Guests: Unauthenticated developer portal users, such

as prospective customers visiting the developer portal

of an Azure API Management instance, fall into this

group. They can be granted certain read-only access,

such as the ability to view APIs but not call them.

Additionally, we can add custom groups, but the access control level

stays in the built-in groups. Especially when adding the all the developers

to single developer group will expose all the products to all the developers.

In order to avoid this, we can use custom groups to group the developers

and assign them access.

 Azure API Management Developer Experience
Now we have a product, and we can deliver it to developers who will

consume the API. As stated, products are the consumable packages from

the Azure API Management service.

First, navigate to the developer portal. You can get the developer

portal URL from the overview blade of the Azure API Management service,

shown in Figure 4-8. Copy the URL and navigate to it using a private

browser session. This will keep you from logging in to the developer portal

as an administrator.

Chapter 4 apI Gateways

77

The raw developer portal will look similar to the screenshot shown

in Figure 4-19. At the top, you will see the tabs Home, APIs, Products,

Applications, and Issues.

Figure 4-19. Developer Portal

The APIs section lists the APIs in the Azure API Management service

instance, and you can see the available products in the Products tab. If you

click the Products tab, you will see Started and Unlimited products (which

are default products created by the Azure API Management service during

the provision), but not the MassRover Catalog. This is because we haven't

signed in to the developer portal, and as per the product access controls,

MassRover Catalog is only accessible to administrators.

The Applications tab shows a list of registered applications using

different APIs. The Issues tab is a developer issues reporting section.

Overall, the developer portal provides a comprehensive experience,

from authentication to subscriptions to application cataloging to issue

reporting.

Chapter 4 apI Gateways

78

As an anonymous user, you can see the APIs and products (which have

guest access enabled). If you have a valid subscription key, you can use

it and test the APIs as well. Guest access is enabled for prospective API

consumers, and they can view the available endpoints and documentation.

They cannot make calls unless they have a valid subscription key.

In a typical workflow, a developer can access the developer portal in

one of three ways.

 1. A developer can sign up in the developer portal

itself using a simple registration or a configured

login provider, like Facebook or Google. This can be

configured by an administrator in the Azure portal.

 2. An administrator can add a developer via the

portal using basic authentication. In this case, the

administrator sets the username and password

for the developer. The developer can change the

password later.

 3. An administrator can send an invitation to a

developer. The administrator completes the

basic profile and an invitation will be sent to the

developer along with a link. The developer can then

complete the registration using the link and set a

password.

Register yourself as a developer, or send an invite and log in to the

developer portal as a developer.

In order access the MassRover Catalog product, we need to add the

developer groups. You can perform this action in the access control section

of the product configuration blade (see Figure 4-18).

After adding a developers group to the product, log in to the developer

portal using developer credentials. You will now see the MassRover

Catalog under the Products tab (see Figure 4-20). As a developer, you can

subscribe to this product in order to consume it.

Chapter 4 apI Gateways

79

Note the azure apI Management developer workflow is quite
comprehensive, and can be configured to your preferences. emails are
sent at different stages of the developer workflow, and email templates
are fully customizable in the portal. the developer portal branding can
also be customized. this book deliberately does not cover those areas.

Figure 4-20. Developer Portal Products—Developer Logged In

Figure 4-21. Subscribing to a Product—Developer Experience

Click on the product, accept the terms and conditions, and click

subscribe. This is shown in Figure 4-21.

Chapter 4 apI Gateways

80

Since we configured the MassRover Catalog product to accept

subscriptions without approval, you will see the product on the developer

page immediately after you subscribe, as shown in Figure 4-22.

Figure 4-22. Developer Subscriptions Page—Developer Experience

A developer can access and generate subscription keys on the

developer subscription page. The keys should be submitted under the

ocp- apim- subscription-key header. The subscription keys act as a

first-level security feature, but more importantly, they are used to track

developers, usage, and policy configurations.

Developers can use their subscription keys and test APIs in the

developer portal itself. The Azure API Management developer portal

includes a test console with code samples to consume the endpoints.

Developers can also register their applications using the developer

portal.

Chapter 4 apI Gateways

81

 Structure of the Azure API Management
Components
In Azure API Management, an API is a collection of endpoints, which may

or may not connect to a backend service. Also, these endpoints can connect

to different backend services as well. Each version of the API is treated as a

separate API. Policies can be configured at both API and endpoint levels.

APIs are linked with products, and products are consumable packages.

We can configure policies at the product level as well. Products can include

multiple APIs. Developers can consume published products (endpoints

of the APIs included in the product). A developer can have more than one

subscription to each product. Each subscription is identified by a subscription

key, and each subscription key is scoped to a product. A developer cannot use

a single subscription key for two different products (see Figure 4-23).

Figure 4-23. Structure of Azure API Management

Chapter 4 apI Gateways

82

Subscriptions are granted via the developer portal. As illustrated, the

developer has two subscriptions to Product A and one subscription to Product

B. In the developer portal, you can configure additional workflows during the

subscription process, like external sign-in and payment processing.

 AWS API Gateway
API Gateway is the commercial name of the API management service

offered in AWS. You can create an AWS API Gateway instance in AWS. AWS

API Gateway offers features like caching, request control, authentications,

mocking, and API publishing via AWS Marketplace.

API Gateway is tightly coupled with other AWS services like VPC and

Lambda. It also allows client SDK generation for popular platforms like

iOS and Android. It has pipeline of API gateway public interfaces, request

processing, connection to the backend service (or mocking), and response

processing.

 Creating an AWS API Gateway Service
Assuming you have an AWS account with IAM permission to perform

actions, log in to the AWS console, search for API Gateway, and create an

AWS Gateway instance. Click “Import from Swagger” and copy the Swagger

definition of the MassRover API in the panel (Figure 4-24), or upload the

definition file. AWS also has a sample API implementation option.

In the Settings section, select the endpoint type. There are two options

for this.

• Edge optimized: This the default option, which enables

the AWS Cloud Front distribution and improves

connection time. This is a good choice in most cases.

API requests from clients will be routed to the nearest

CloudFront edge servers across AWS regions (similar to

the CDN).

Chapter 4 apI Gateways

83

• Regional: This option will route client requests to the

region-specific API gateway, bypassing CloudFront

distribution. A request from the same region has

the benefit of avoiding an unnecessary round trip to

CloudFront, but requests from other regions may have

latency. This can be achieved by deploying region-

specific API gateways in target regions.

Figure 4-24. AWS API Gateway Provisioning

Click Import to import the MassRover API definition. After the import,

you will see the API in the panel. AWS API Gateway structures APIs as

resources and methods. The API URI segment is a resource, and HTTP

actions are referred to as methods.

Chapter 4 apI Gateways

84

In a URI segment like api/products, API and products are two different

resources. A resource can have other resources and methods, and path

parameters can also be added as resources. You can use curly braces to

indicate the path parameters, as shown in Figure 4-25.

In the MassRover API, the products and the path parameter (ID)

are different resources and have methods within them. Methods are

associated with the HTTP verb.

Figure 4-25. API Structure in AWS API Gateway

You can select a resource and add a resource or method to it using

the Actions drop-down menu on top. When adding a path parameter as a

resource, use curly braces. Click on “method” to configure it.

 Configure Methods
Since we have only imported the definition of the API, the configuration

should be performed. There are a few different options for configuring

the backend service for a method. Click on the GET method under api/

products, and you will see the panel shown in Figure 4-26.

Chapter 4 apI Gateways

85

This is the phase 1 panel, and we must choose the integration point for

the selected method. From a basic configuration, select the HTTP option

and paste the URL of the hosted MassRover API product’s endpoint in the

Endpoint URL text box. This will complete the backend integration for

the selected method. You can also choose “mock” as an option and later

connect to the right service.

Content Handling offers three different options to handle the request

body of the specific method.

• Pass-through: This is the default option, used when no

content conversion is required.

• Convert to binary: This is used when the backend

service requires the body to be in binary format, when

the original request is submitted in base64 format.

• Convert to text: Converts the binary input body request

to base64 string. This is used when the backend service

requires the binary body to be in a string-based format.

HTTP proxy integration is used to streamline the backend service as a

single API entry point. The HTTP verb ANY is used in this case, as this will

allow the method to accept any HTTP requests from the client.

Chapter 4 apI Gateways

86

After configuring the integration point, we can test the method. Click

on the specific method, and you will see a panel as depicted in Figure 4-27.

This shows the AWS API Gateway request and response flow.

The requests are received by the AWS Gateway public interface, then

passed to the method request, then to the integration request process,

and finally to the backend service. Similarly, responses are received in the

integration response, processed, and forwarded to the client.

Figure 4-26. API Method Configuration—Panel 1

Chapter 4 apI Gateways

87

In this pipeline, the path parameters, query string parameters, header

values, and content payload body mappings should all be mapped

between the method request and integration request. These mappings are

used to add, edit, or drop specific values.

If the client sends a request with the header “version” but the backend

service expects the header “api-version,” then this should be mapped

between the method request and integration request. In order to do this,

we should first define the method request variable. Click on Method

Request and expand the HTTP Request Headers section, shown in

Figure 4-28. Add a header from the client request.

Figure 4-28. Method Header Mapping

Figure 4-27. API Method Configuration—Panel 2

Chapter 4 apI Gateways

88

Next, we will create the mapping of this header value in the integration

request. Go back to the pipeline panel (Figure 4-27). Click on Integration

Request and expand the HTTP Request Headers section, shown in

Figure 4-29.

Here, we can set the mappings using the AWS API Gateway mapping

syntax. This syntax is very straightforward:

method.request.{path|header|querystring}.{parameter_name}

In this case, we should map the incoming header (version) to the api-

version. Create a header value and apply the following mapping in the text

box (shown in Figure 4-29):

method.request.header.version

Figure 4-29. Integration Request Header Mapping

After the integration, test the method endpoint. You will provide a

header value named “version” in the request. We can check the mapping

of the header value in the logs.

Method request headers: {version=v1}

Endpoint request headers: {api-version=v1, x-amzn-

apigateway-api-id=pciz9lt9p5, Accept=application/json, User-

Agent=AmazonAPIGateway_pciz9lt9p5, X-Amzn-Trace-Id=Root=1-

5a8001d3- ad377f517777323dd3897df2}

Chapter 4 apI Gateways

89

In order to drop a header being passed to the backend service, you can

simply remove the mapping in the integration request, as shown in the

logs below. There's a header (abc) in the request, but it is not in the request

forwarded to the backend service. Note that when you add parameters

in the method request, they are automatically mapped in the integration

request, so you have to explicitly remove the mappings.

Method request headers: {abc=zzz, version=v1}

Endpoint request headers: {api-version=v1, x-amzn-

apigateway-api-id=pciz9lt9p5, Accept=application/json, User-

Agent=AmazonAPIGateway_pciz9lt9p5, X-Amzn-Trace-Id=Root=1-

5a800263- ed2e227b694e156930d6176e}

You can also specify the models for the request/response payload in

the Models section of an API and use them in the mapping. Also, Gateway

responses are used to configure the HTTP status code, response messages,

and header values of the API gateway.

 Deploy AWS API Gateway
We must deploy the API in order to allocate usage plans and define API

keys. In the panel shown in Figure 4-27, select the Deploy API action from

the Actions menu. This will prompt you to create a stage (as shown in

Figure 4-30). Stages are the different environments of the deployed APIs.

All methods should have integrations; once this condition is fulfilled, you

can deploy the API.

Chapter 4 apI Gateways

90

Once the stage is created, we can configure more things at the stage

level. Also, since we can create any number of stages, we can deploy

the same API in different environments. Figure 4-31 shows the stage

options. In this panel, the Settings section includes options for the request

level, caching, and client certificate. You can also tag the stage with the

necessary key value pairs.

Figure 4-30. Creating a Stage and Deploying the API

Chapter 4 apI Gateways

91

• Settings: In the Settings section, we can configure

caching. AWS API Gateway allows us to select the cache

size, and it is priced accordingly. In the method level,

we can configure whether a specific method should

be cached or not. We can also configure the method

throttling in this section; throttling is used to secure

the rate limit of the API. Finally, we can set the client

certificate for authentication. Chapter 5 explains the

rate limits and authentication in more detail.

• Logs: Here, we can configure the logs for the API. In the

AWS world, this is typically the CloudWatch service.

• Stage variables: We can set variables as key value pairs,

which can be accessed in the mappings.

• SDK generation: AWS provides support for generating

client SDKs for the API. This includes popular mobile

programming languages Android and SWIFT, and

languages like Java and Ruby.

• Export: Here, we can export the API definition in

different formats.

Figure 4-31. API Stage Settings

Chapter 4 apI Gateways

92

• Deployment history: This section contains the

deployment history of the stage.

• Documentation history: This section displays the

history for the attached documentation of the stage.

Documents can be created, edited, and published in

the Documentation section of the API.

• Canary: This section allows us to set a canary for the

stage. Canary releases make sure certain portions of

traffic go to the mentioned canary, while the rest go

to the older version. Consider a scenario where a new

version of the backend is available; this can be reached

with the header value api-version = v2. But we do not

want to route all the traffic to the v2, so we will set a

canary release on the stage and select the percentage

of the traffic that should go to the new version. The

new version is identified by the variable, and we can

override it in the canary settings by submitting a new

canary variable.

 Creating API Usage Plans
Next, we will create API usage plans to be consumed. Usage plans help

to meter API usage and regulate it via throttling limits. We can assign

different API stages to a single-usage plan, and it can contain stages from

different APIs.

Click on the Usage Plans option in the main menu on the left-hand

side. Create a usage plan as shown in Figure 4-32.

Chapter 4 apI Gateways

93

Once you name the plan, you can enable throttling and define the

request quote for the plan. In the next step, we will select the API and the

stage of the API to be included in the plan. In order to track the throttling

and quota limits, we should assign API keys to the usage plan. AWS API

Gateway uses the subscription to meter the requests.

We can either import an existing key or request the AWS API Gateway

to autogenerate the key. Click on Create API Key and add to Usage Plan

(refer to Figure 4-33). Assuming you don't have any keys available, here

you can choose to autogenerate the key. The new key will be assigned to

the usage plan.

Figure 4-32. Creating an API Usage Plan

Chapter 4 apI Gateways

94

The newly created key can be found in the API Keys section. Finally,

you will create the usage plan. Once it has been created, you can click

on the plan and edit its properties. When you select a plan, you will see

a tab called Marketplace, which is the developer delivery channel for the

API. We can associate the usage plan with an AWS Marketplace product

using the product code.

 Structure of AWS API Gateway Components
AWS API Gateway can have multiple APIs, and each API has set of resources.

Each resource can have more resources or methods in it, and each method

has an associated integration with a backend service or a mock.

An API is deployed in stages. One API can have many stages, and each

stage can have its own settings and configurations. A usage plan can have

many APIs. Usage plans have quotas and throttling settings, tracked by

subscription keys. Developers access usage plans from AWS Marketplace;

this is the API monetization mechanism in the AWS context.

Figure 4-33. Creating API Keys for Usage Plan

Chapter 4 apI Gateways

95

Figure 4-34. AWS API Gateway Structure

 Summary
API gateways act as the middleware for backend services. They handle

request and response orchestration, flow control, and security. Vendor-

specific API gateways are often bundled as API management services,

which include other elements of API architecture and value delivery

elements such as developer experience, performance features, and

monitoring features.

In the modern service-based architecture context, API gateways play a

primary role in surviving separation and management. Internet-based API

gateway services like Azure API Management and AWS API Gateway act as

public-facing proxies for backend services.

Chapter 4 apI Gateways

96

This chapter provided information about API gateways, the different

endpoint mapping scenarios, and the practical implementation of API

gateways from Azure and AWS service offerings. We also introduced the

fundamentals of using API gateways in mocking and other architectural

patterns.

Chapter 4 apI Gateways

97© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3_5

CHAPTER 5

API Security
APIs expose data and business operations, so they must be secure. As an

API developer, you should protect APIs from unauthorized consumers,

control the consumption rate, and govern the data. Strategic API design

helps to achieve the protection and governance of business-sensitive data.

The scale of the cloud and the flexibility it offers yield many different

challenges in securing APIs. Developers combine different security

implementations at different levels of a system in an API implementation.

This chapter covers common security measures implemented in Azure

and AWS API layers. The details are covered under two major topics:

request- based security implementations and authentication.

Request-based security implementations dictate policies and

constraints on API consumption—mainly, who can consume and

how much—while authentication dictates policies and constraints on

authentication and authorization, mainly in terms of who the consumer is

and what the consumer can access.

 Request-Based Security
Request-based security implementations identify a consumer and apply

constraints on their consumption, either by limiting the consumption rate

or allowing or blocking the consumer. In this implementation, identification

of the consumer is simple and does not include a complex authentication

mechanism. In general, API keys are used to identify the consumer.

98

In the API economy especially in the direct selling model, the

consumption rate is a fundamental parameter in defining different API

SKUs. In rare cases, we can observe limits on API features as a selling

model. Cloud API management services such as Azure API Management

and AWS API Gateway have these settings built in, and we can configure

them to implement request-based security rules.

 Azure API Management
Azure API Management has configurable request-based security settings,

the rules of which are applied using Azure API Management policies. If

you're new to Azure API Management policies, I recommend reading

chapter 4 before reading this section.

 Subscriptions and Subscription Keys

In Azure API Management, in order make a successful request to an API

offered as an Azure API Management product (for more about products,

see chapter 4), a consumer should have a valid subscription key associated

with that product. API developers can request or automatically retrieve

(depending on the setting) subscription keys for products in the developer

portal.

A single subscription to a product provides two subscription keys—

primary and secondary. Having two subscription keys helps manage the

downtime during key rollover. Subscription keys are sent to the Azure

API Management gateway in the request header ocp-apim-subscription-

key. Usage is tracked at the subscription level regardless of which key is

used.

In most cases, subscription keys are used to track usage, but Azure API

Management allows developers to configure usage limits based on other

parameters, like IP address or response codes.

Chapter 5 apI SeCurIty

99

 Request Rate Limits

Navigate to the Azure API Management service and select the Azure API

Management product MassRover Catalog we created in chapter 4. Then

navigate to the policies section of the product and add the rate-limiting

policies.

Product-level policies are applied to all the endpoints in an aggregated

manner. If the rate is 10 requests per minute for a product and the product

has two API endpoints, the consumer can make a maximum of 10 requests

per minute as a combined request rate, but is not allowed to make 10

requests to each endpoint separately. We can apply endpoint-level policies

to enforce such rules. In general, request-based policies are applied at the

product level.

The following policy statement in the inbound section allows 2000

calls in 60 seconds for the API endpoints included in the specific product.

<rate-limit calls="2000" renewal-period="60" />

If the caller exceeds this limit, Azure API Management will respond

with a 429 HTTP code (too many requests). The body will contain the

message and the retry time period, and the caller must wait for that time

period for the request to go through. The body containing the remaining

time helps to implement smart retry logic rather than hitting the gateway

in random intervals.

With the above policy in place, the rate limit is applied based on the

subscription key; technically, the subscription key works as the increment

counter key for the requests.

We can control the request rate using an arbitrary key value as

well. The key can be any variable that can be accessed by Azure API

Chapter 5 apI SeCurIty

100

Management, and the key value can be any accessible value in the request

context. The below example shows the request rate limit by the IP address.

<rate-limit-by-key calls="1000"

 renewal-period="90"

 increment-condition="@(context.Response.

StatusCode == 200)"

 counter-key="@(context.Request.IpAddress)"/>

The above policy allows 1000 requests, and returns 200 in 90 seconds

for each IP address. So a caller with an IP address cannot make more than

1000 calls in 90 seconds, which returns 200.

Another example would be rejecting calls that cause the server to

return 500. The below policy statement applies restrictions based on a

header value; if a request with a particular header value causes the server

to fail 10 times in 60 seconds, then the consumer will be blocked until the

renewal period refreshes.

<rate-limit-by-key calls="10"

 renewal-period="60"

 increment-condition="@(context.Response.

StatusCode == 500)"

 counter-key="@(context.Request.Headers.massrover_

token)"/>

 Quota Limits

Quota limits are applied primarily to control request quotas. In practical

scenarios, this is used for the monetization of APIs, where different SKUs

can have different quotas. In order to apply quotas, we can use quota

policies.

<quota calls="100000" bandwidth="80000" renewal-period="3600" />

Chapter 5 apI SeCurIty

101

In the above policy, we can apply a quota—with a renewal period

of one hour—for a certain number of calls or a certain bandwidth in

kilobytes. Whichever threshold is met first will trigger the condition.

The above policy tracks usage based on the subscription key. As with

the rate-limiting policies, we can apply quota limits based on arbitrary

keys.

<quota-by-key calls="10000" bandwidth="3000" renewal-

period="3600"

 counter-key="@(context.Request.Headers.massrover_

token)"

 increment-condition="@(context.Response.StatusCode

>= 200 && context.Response.StatusCode < 400)”

 increment-count="@(context.Request.Method == "POST" ?

1:0)" />

This quota policy counter has the increment for the requests with the

header value massrover_token. The request increment is triggered for

the POST requests that have HTTP response 200 or above and below 400.

The policy will block more when the requests number of requests satisfies

above condition goes more than r 10000 or the request bandwidth exceeds

3000KB in one hour—whichever condition is met first.

 IP restrictions

Azure API Management has IP-based restriction policies that let us allow

or block certain IPs.

<ip-filter action="allow">

 <address-range from="10.1.1.2" to="10.1.1.16" />

</ip-filter>

Chapter 5 apI SeCurIty

102

 AWS API Gateway
AWS API Gateway has configurable, request-based security settings,

applied via API Usage Plans. Chapter 4 describes the fundamentals of

AWS API Gateway and Usage Plans, so if you're new to AWS API Gateway,

I recommend reading chapter 4 before reading this section.

 API Keys

We can generate keys for the APIs under “API Keys.” These keys are either

auto-generated by the AWS API Gateway service or custom provided.

Figure 5-1 shows the screen on which we can generate API keys. API keys

are associated with API usage plans and used for tracking requests.

Figure 5-1. AWS API Gateway API Key Generation

We can customize how consumers send API keys to the AWS API

Gateway. API keys are sent either in the HTTP header XAPIKEY_HEADER

or through the configured custom authorizers. This configuration can be

done under the Settings section of the selected API (Figure 5-2).

Chapter 5 apI SeCurIty

103

 Rate Limits

In order to configure rate limits, we must associate the API keys with the

usage plans. We set the rate limits in the usage plans, and requests are

tracked by the API keys.

One usage plan can include many APIs, and all the APIs in a usage plan

are constrained by the rate limit. In order to set the rate limits, navigate

to the selected usage plan. You will see two different settings available,

Throttling and Quota. Refer to Figure 5-3.

Figure 5-2. Settings for the API Key Request Source

Figure 5-3. AWS API Gateway Usage Plan Settings

Chapter 5 apI SeCurIty

104

As you can see, throttling has been enabled, the rate is set to 1000

requests per second, and the burst is set to 400 requests. This means that

this particular usage plan can handle 1000 requests per second without

any throttling, when those 1000 requests are evenly distributed at one

request per millisecond. The burst is the maximum number of requests

the usage plan can handle when they arrive simultaneously. The following

examples describe two different scenarios for the burst setting.

• If a consumer makes 500 calls in 500 milliseconds, in an

evenly distributed manner, then the API will respond

to the requests without throttling any of them. In the

501st millisecond, if the caller makes 405 requests, then

the requests will be throttled, since the burst rate has

been exceeded (even though the rate limit has not been

exceeded).

• If in the first millisecond a consumer makes 400

requests and then the caller tries to make 1 request

per millisecond for the remaining 999 milliseconds,

the requests will be throttled starting at the 602nd

millisecond, as this is the moment the call rate will

exceed the 1000-requests-per-second limit.

 Quota Limits

Usage plans have a quota limit setting as well, available right under the

throttling section (see Figure 5-3). We can set the quota by the number of

request per day, week, or month.

 Authentication & Authorization
In simple terms, authentication identifies a caller and authorization

provides information on whether the caller has access to the secured

resources or not. An API can implement authentication and authorization

Chapter 5 apI SeCurIty

105

in many different ways; in general, an API expects a value in the request

that includes required security information. This value can contain the

security information within itself, or in a format and scheme API can

understand, or it would be a reference to the real security information the

API can retrieve.

There are many standards and protocols available in API security, and

all of them boil down to the above mentioned criteria. Issuing a specific

value; securing it from unauthorized access and tampering; cycling the

value; validating the value; and other management tasks related to the

creation, validation, maintenance, and destruction of the value can take

many different forms depending on the technology, vendor specification,

open standards, and compliancy.

There are myriad such standards and protocols on the market. Some

are very common and widely used, and some are highly specific to a

particular vendor or technology. Details of such standards and protocols

are beyond the scope of this book, but this section covers the most

common cloud-based API authentication and authorization scenarios,

especially targeting Azure and AWS.

 API Security Design
One size does not fit all, so there is no one security design that suits all

business cases, but as stated earlier, it’s helpful to consider some key

implementation patterns.

APIs are stateless, meaning they do not maintain state information

between requests, so each request should contain all required elements for

fulfillment. The security information should also be part of each request,

assuming the API needs this information in order to fulfill the request. The

information can be in the request body, query string, or request header.

Chapter 5 apI SeCurIty

106

 API Keys

API keys are simple identifiers of a caller. As a developer, you register

yourself with the API provider or prove your identity to an API provider

to obtain a key to access the API. For example, in Google Maps’ API,

developers prove their identity via Google login before receiving the key.

This key is a random string issued by the API provider—each request

should contain the key. The API provider identifies the caller and the

access limits. Generally, this implementation is used where there’s no

specific requirement for identifying the user, but the usage needs to be

monitored. The direct-selling API model utilizes API key implementation.

Public APIs often follow this pattern; the full key management is

controlled by the API or handled at the gateway service. Recall the Azure

API Management subscription keys and AWS API Gateway API keys. The

issuing and management of the keys is handled at the gateway service, and

the backend service is unaware of the key.

In the direct-selling API model, most keys do not expire, but may be

invalidated by the API due to too many requests, suspected request-based

attacks, or missed payments. However, API consumers are not allowed to

recycle their keys for obvious security reasons (see Figure 5-4).

Chapter 5 apI SeCurIty

107

 1. The developer requests an API key from the API/API

provider. This request may have preconditions, like

certain validations or payments.

 2. When the preconditions are satisfied, the developer

receives the key from the API/API provider.

 3. The developer stores this key in the application.

 4. The application sends the key to the API in the

requests.

The developer can use the same key across different applications; the

API is not aware of it. The only information the API cares about is whether

the key is valid in terms of usage conditions and limitations.

Figure 5-4. API Key-Based Security

Chapter 5 apI SeCurIty

108

As discussed, in Azure and AWS, the gateway service handles key

management. This offloads the key management logic from the API

implementation, but if the API itself is open and allows direct access, then

the callers can successfully make direct requests to the API. Figure 5-5

depicts API key implementation at the API gateway.

Figure 5-5. API Gateway-Level API Keys

As you can see, the API gateway has the full context of the key,

and the backend service is not aware of the key implementation. Key

implementation can be brought to the backend service and used in the

business logic, but this kind of a design introduces lots of key management

logic to be written in the API itself, thus preventing the benefits of API

gateway key management.

On the other hand, if the backend API is open—and the consumer is

aware of the backend service endpoints, structure, and other details—then

requests can be made directly to the backend service by passing the API

gateway. This is a common flaw in cloud-based API implementations.

Chapter 5 apI SeCurIty

109

Deploying the API in open Internet services like AWS Beanstalk or

Azure API Apps and assuming that API gateway services (Azure API

Management or AWS API Gateway) will take care of the security just

because the API keys are configured is a major security loophole.

The real implementations should have security implemented in the

backend service, and public access to the backend service should be

locked down. Preventing public access to the backend service can be

achieved with infrastructure configuration and software implementation.

The above problem can most easily be rectified by introducing some

context between the backend service and the API gateway. Figure 5-6

depicts this.

As indicated in the previous chapters, API gateways can manipulate

a request by injecting the agreed security context into the requests they

make to the backend service.

Figure 5-6. Trust Between API Gateway and Backend Services

Chapter 5 apI SeCurIty

110

The backend service looks for the right security context in any request

it receives, and rejects requests that do not satisfy these expectations.

This security context can take different forms; the following are the most

common:

• A shared key (static string) between the API gateway

and the backend service. The backend service expects

this value as a symmetric key identifier of the API

gateway service.

• Certificate authentication between the API gateway and

the backend service, the asymmetric implementation

as backend service trusts specific certificate

authentication.

• The backend service itself, or any other trusted

authentication provider, issues tokens for the

communication between the API gateway and the

backend service.

• A mix of the above, with other network-based security

implementations, such as firewalls and IP settings,

allowing only the calls from the API gateway.

API keys at the gateway do not offer comprehensive security, so

combining them with one of the above methods secures the backend

service while offering the flexibility of API key management from the

available API gateway service.

 OpenID and OAuth

If you're a web developer or work in API development, it is highly unlikely

you haven't heard the terms OpenID and OAuth. Though they are very

common, there's a lot of confusion among developers and users between

these two standards. This section explains the difference between them, as

this is a required piece of knowledge to understand the upcoming sections.

Chapter 5 apI SeCurIty

111

Note OpenID is for authentication and Oauth is for authorization.

Yes, it is simple as that, but it is tricky to differentiate them in real-world

implementations because authorization includes authentication, meaning

that OAuth depends on OpenID. But OAuth as a standard does not specify

the particular authentication should happen via OpenID for it to function.

In terms of technical implementation, there are some similarities. For

example, both OpenID and OAuth depend on browser redirects.

OpenID identifies the user. For example, imagine you’re using

Facebook login to access a website (let’s call it example.com). When

you're navigating to example.com and you see an option to “Log in with

Facebook,” you click the button to avoid filling out a long registration form.

When you do this, if you’re already logged in to Facebook, you do not

need to enter your Facebook credentials again. This is OpenID; it facilitates

user authentication from the same provider to multiple entities. The

fundamental principle of single sign-on is based on OpenID.

Sometimes Facebook will respond with a prompt, saying that example.

com is trying to access a user’s email, photos, or other information. This is

OAuth. In this case, example.com needs to access some information from

Facebook, and requests permission by prompting you, as you're allowing

example.com to read your data stored in Facebook.

By giving consent, you're allowing example.com to read your data.

Technically, Facebook gives some access to example.com to make requests

to its resources. Once you give permission, future communication can take

place between example.com and Facebook based on the allowed grants.

This is also OAuth.

In the coming sections, we’ll see how OpenID and OAuth are used in

securing APIs.

Chapter 5 apI SeCurIty

112

 Securing APIs with Azure Active Directory V2

If you're in the Azure application development space, securing services

with Azure Active Directory (AAD) is a common requirement. AAD

has a new version of authentication API, known as v2, which has some

significant changes as compared to the previous version. In this section,

we will see how to secure APIs using AAD v2. You can read more about the

difference between v1 and v2 here: https://docs.microsoft.com/en-us/

azure/active-directory/develop/active-directory-v2-compare.

Note aaD offers comprehensive cloud-based identity management,
catering to various complex authentication flows and protocols. these
are beyond the scope of this book. For deeper insights into aaD, refer
to my book Practical Azure Application Development. https://www.
amazon.com/dp/1484228162/

In order to secure an API using any identity provider, the client should

first obtain a valid identity from the identity provider. Next, the obtained

identity is sent to the API in the request, and the API validates the identity

and serves the request. In order to validate the identity, the API should

know the identity provider and the mechanism used to validate the

identity.

Now, let's look at the setup for securing an API using AAD. There are

two major steps involved:

 1. Facilitate the client to obtain the token (the identity)

 2. Facilitate the API to validate the token

First, create the setup the client can request token from the AAD v2.

This is done via the AAD v2 OAuth authorize endpoint. The client must

make a request to this authorize endpoint, submit their credentials, and

obtain the OpenID. Below is a sample request from the client.

Chapter 5 apI SeCurIty

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-compare
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-compare
https://www.amazon.com/dp/1484228162/
https://www.amazon.com/dp/1484228162/

113

https://login.microsoftonline.com/common/oauth2/v2.0/

authorize?client_id=[client id]&response_type=id_

token&redirect_uri=[redirect uri]&scope=user.read openid

profile&nonce=3c9d2ab9-2d3b-4

As you can see, in order to make this request, the client requires, at

minimum, a registered client ID and a configured redirect URI, where AAD

will redirect the requested response type.

We need to register a client application in AAD and set that

information. Visit https://apps.dev.microsoft.com/ (which is the

endpoint to register AAD v2 applications) and navigate to the new

Application Registration Portal. Log in with your AAD credentials or

Microsoft account and create a new AAD v2 application, as shown in

Figure 5-7.

Figure 5-7. AAD V2 Application Registration

Chapter 5 apI SeCurIty

https://apps.dev.microsoft.com/

114

Specify the application platform as web and set the redirect URL

(in this case, localhost is set, so we can test this without having a real

 application deployed). The client should specify the client ID and the

configured reply URL in the request, as shown below.

https://login.microsoftonline.com/common/oauth2/

v2.0/authorize?client_id=76d88779-d888-401f-8565-

231aee385b14&response_type=id_token&redirect_uri=https://

localhost:8080&scope=openid &nonce=3c9d2ab9-2d3b-4

The client ID and the redirect URI should match the values configured

in the AAD v2 application. Since the requirement is obtaining the identity,

OpenID is specified in the scope.

You can test this using the above URL and authenticate with

your organizational or Microsoft account and retrieving the id_token

(response type). The token will be delivered to the redirect URL

(https://localhost:8080).

The above application is registered under the author's AAD account

and redirects the token to localhost, so you can safely test it by simply

pasting it in your browser.

The above request URL accepts any valid AAD authentication because

the authorization URL points to the common endpoint. This applies to

both Microsoft accounts and organizational accounts. If you want to

accept only the organizational authentication, replace “common” with

“organizations” as below.

https://login.microsoftonline.com/organizations/oauth2/v2.0/

authorize?rest-of-the-url

Chapter 5 apI SeCurIty

115

If you're designing a single-tenant application, which expects

authentication from one AAD tenant, you can specify the tenant ID in the

request URL.

https://login.microsoftonline.com/[tenant id]/oauth2/v2.0/

authorize?rest-of-the-url

Consumers can make one of the above requests, authenticate

themselves with AAD credentials, and obtain the OpenID information. In

the above described context, OpenID information is in the id_token issued

by the AAD v2 endpoint to the instructed redirect URL.

When you test the below URL:

https://login.microsoftonline.com/common/oauth2/

v2.0/authorize?client_id=76d88779-d888-401f-8565-

231aee385b14&response_type=id_token&redirect_uri=https://

localhost:8080&scope=openid &nonce=3c9d2ab9-2d3b-4

When you log in for the first time, you will see a consent screen, as

shown in Figure 5-8. This is the request from AAD v2 to get consent from

the user and issue the OpenID information to the requesting client.

Subsequent login attempts will not ask for this consent.

Chapter 5 apI SeCurIty

116

After successfully logging in and obtaining consent, AAD v2 will

redirect to the specified URL with the id_token, like below.

https://localhost:8080/#id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUz

I1NiIsImtpZCI6IjFMVE16YWtpaGlSbGFfOHoyQkVKVlhlV01xbyJ9.eyJ2ZXI

iOiIyLjAiLCJpc3MiOiJodHRwczovL2xvZ2luLm1pY3Jvc29mdG9ubGluZS5jb

20vOTE4ODA0MGQtNmM2Ny00YzViLWIxMTItMzZhMzA0YjY2ZGFkL3YyLjAiLCJz

Figure 5-8. AAD V2 Consent Screen

Chapter 5 apI SeCurIty

117

dWIiOiJBQUFBQUFBQUFBQUFBQUFBQUFBQUFKNFk4NE56dWdlYl8yTFBWcFlkbzN

jIiwiYXVkIjoiNzZkODg3NzktZDg4OC00MDFmLTg1NjUtMjMxYWVlMzg1YjE0Ii

wiZXhwIjoxNTIxNDY5NTE5LCJpYXQiOjE1MjEzODI4MTksIm5iZiI6MTUyMTM4M

jgxOSwidGlkIjoiOTE4ODA0MGQtNmM2Ny00YzViLWIxMTItMzZhMzA0YjY2ZGFk

Iiwibm9uY2UiOiIzYzlkMmFiOS0yZDNiLTQiLCJhaW8iOiJEVEghayFwMzdNamh

jcE8qWkF6aTBKb3Z0b2x4RDhVZDk5R3Ria2RaSFAqbFRVU01wbUp1Q2h1IVVtbV

hzbEoqYkFkTWU3bEtTY2JYbjlIWTFNc0tUNUxBMEM5anJBdjBaTE1XV3oyZXVnS

mZSbGdRMGNZZWlnMHd5S0piakVldE13JCQifQ.HZbpQmkdi-2yOHtwtF- zFJhz7

RJe3_GIkcmS5u5EwIV7U_5x8S_2_o6JfQ0KBpnhzop5UijP99Rjan0dTtfat2Bs

TnWZloLbKy9X30XwJzrd- 8WU2Nz7zwg24rMKEu0t6c8-uR2ze- U1dhogGQZj6eu

rvnsedL4ET9eYehvPxV18U3AsSkZ2LAERpEiZeu16G0ORWpwGBI5NvogYhkRxzY

iZGlC5MsmkvZa4VdyVce_zJ-AnGrgwBvi5oL083RFGNMKUDevHDGpefO- UW3XOq

D3WiJmvdYx3g4ZPyamYH7UgyR0DIgOXnuLIoPXEop8AgrbJkPjJRbIkRVDMqjFAww

You can use any available JWT decoding tool to see the details.

http://calebb.net/ is a good online tool used to view the internals of

JWT, and the above JWT is decoded as follows:

{

 typ: "JWT",

 alg: "RS256",

 kid: "1LTMzakihiRla_8z2BEJVXeWMqo"

}.

{

 ver: "2.0",

 iss: "https://login.microsoftonline.com/9188040d-6c67-4c5b-

b112-36a304b66dad/v2.0",

 sub: "AAAAAAAAAAAAAAAAAAAAAJ4Y84Nzugeb_2LPVpYdo3c",

 aud: "76d88779-d888-401f-8565-231aee385b14",

 exp: 1521469519,

 iat: 1521382819,

 nbf: 1521382819,

 tid: "9188040d-6c67-4c5b-b112-36a304b66dad",

 nonce: "3c9d2ab9-2d3b-4",

Chapter 5 apI SeCurIty

http://calebb.net/

118

aio: "DTH!k!p37MjhcpO*ZAzi0JovtolxD8Ud99GtbkdZHP*lTUSMpm

JuChu!UmmXslJ*bAdMe7lKScbXn9HY1MsKT5LA0C9jrAv0ZLMWWz2eugJfRlgQ0

cYeig0wyKJbjEetMw$$"

}.

After obtaining the token, consumers will send it to the API, which

should be able to validate the token and retrieve the information to be

used in the business logic.

In an ASP.NET Core application, you can use the following code to

perform the token validation and query claims from the token.

private async Task<System.IdentityModel.Tokens.Jwt.

JwtSecurityToken>

 ValidateAADIdTokenAsync(string idToken)

{

 var stsDiscoveryEndpoint = "https://login.microsoftonline.

com/common/v2.0/.well-known/openid-configuration”;

 var configRetriever = new Microsoft.IdentityModel.

Protocols.OpenIdConnect

 .OpenIdConnectConfigurationRetriever();

 var configManager = new Microsoft.IdentityModel.Protocols

 .ConfigurationManager<OpenIdConnect

Configuration>

 (stsDiscoveryEndpoint, configRetriever);

 var config = await configManager.GetConfigurationAsync();

 var tokenValidationParameters = new Microsoft.

IdentityModel.Tokens.TokenValidationParameters

 {

 IssuerSigningKeys = config.SigningKeys,

 };

Chapter 5 apI SeCurIty

119

 var tokenHandler = new JwtSecurityTokenHandler();

 tokenHandler.ValidateToken(idToken,

tokenValidationParameters, out var validatedToken);

 return validatedToken as JwtSecurityToken;

}

The method receives the token as a string and obtains the token

signing keys from the provider (AAD v2) via the secure token service

endpoint https://login.microsoftonline.com/common/v2.0/.well-

known/openid- configuration.

This URL will be used by OpenIdConfiguration in order to obtain the

signing information. You can change this URL by replacing “common” with

“organizations” or “tenant id” as per the request URL pattern discussed earlier.

The obtained signing keys and other validation settings are used to

create the TokenValidationParameters. Eventually the token is validated,

and the output will be converted to a JwtSecurityToken, which contains the

claims in the token for programmatic access.

The above code snippet “TokenValidationParameters” has a minimum

validation configuration, meaning it checks whether the token is issued

by the correct trusted entity by validating the signing keys. In the case of a

real-world implementation, more complex validation rules would be used

to perform the validation, along with signing rules such as validating the

issuer, audience, and expiration.

Note tokens and claims-based authentication go hand in hand
in implementations. there are many types of tokens, each with a
different scope and containing varying information based on the
authentication request and authentication flow. But generally speaking,
a token is a signed string that contains pieces of information (claims).
JWt is a standard token format, widely used by many providers.

Chapter 5 apI SeCurIty

https://login.microsoftonline.com/common/v2.0/.well-known/openid-configuration
https://login.microsoftonline.com/common/v2.0/.well-known/openid-configuration

120

In a practical implementation, the above token validation code snippet

would be a filter in the ASP.NET Core. Each request header from the client

would contain the id_token and be validated via the filter. Certain claims

will be retrieved from the id_token in order to execute the business logic.

Public identity providers like Google and Facebook can be used to

authenticate users. Most of the claims in those OpenID information

cannot be related to the custom business logic of a typical enterprise line

of business application, because the business logic deals mostly with

application- specific roles and permissions, which are outside the context

of the mentioned identity providers.

To solve this, we can issue the custom token from the application

after validating the identity from the external providers. In this mode, we

depend on external identity providers for authentication and issue custom

tokens for the authorization. The next section explains the process of

issuing custom tokens in more detail.

 Issuing Custom JWT Tokens

As I explained, there are certain cases where we need to create and

issue our own JWT tokens. For example, say you're developing a SaaS

application that relies on several identity providers. These identity

providers help users authenticate to the application with less friction,

and OpenID plays a key role in establishing a single sign-on experience,

but once the user is authenticated, the application should be aware of the

authorization information of the user, including roles and permissions.

In simple terms, Google or Facebook cannot store a user’s details, even

if the user is an admin of your custom application. It is the responsibility of

the backend service/application to manage the authorization.

In the previous section, I explained how to obtain a JWT token with

OpenID claims from AAD and validate it. This would help secure the API

using AAD from an authentication point of view, but once the user has

logged in, API has to determine the authorization of the user in order to

decide what the user can do inside the application.

Chapter 5 apI SeCurIty

121

The below code snippet shows how to issue a custom JWT token using

a symmetric signing key.

private string IssueJwtToken(JwtSecurityToken aadToken)

{

 var msKey = GetTokenSignKey();

 var msSigningCredentials = new Microsoft.IdentityModel.

Tokens.SigningCredentials

 (msKey, SecurityAlgorithms.HmacSha256Signature);

 var claimsIdentity = new ClaimsIdentity(new List<Claim>()

 {

 new Claim(ClaimTypes.NameIdentifier,

"thuru@massrover.com"),

 new Claim(ClaimTypes.Role, "admin"),

 }, "MassRover.Authentication");

 var msSecurityTokenDescriptor = new Microsoft.

IdentityModel.Tokens

 .SecurityTokenDescriptor()

 {

 Audience = "massrover.client",

 Issuer = "massrover.authservice",

 Subject = claimsIdentity,

 Expires = DateTime.UtcNow.AddHours(8),

 SigningCredentials = msSigningCredentials

 };

 var tokenHandler = new JwtSecurityTokenHandler();

 var plainToken = tokenHandler.CreateToken(msSecurityToken

Descriptor);

Chapter 5 apI SeCurIty

122

 var signedAndEncodedToken = tokenHandler.

WriteToken(plainToken);

 return signedAndEncodedToken;

}

The above JWT issuing code obtains the signing key from this private

method.

private Microsoft.IdentityModel.Tokens.SymmetricSecurityKey

GetTokenSignKey()

{

 var plainTextSecurityKey = "massrover secret key";

 var msKey = new Microsoft.IdentityModel.Tokens.

SymmetricSecurityKey

 (Encoding.UTF32.GetBytes(plainText

SecurityKey));

 return msKey;

}

The token-issuing code uses ClaimsIdentity to include application-

specific claims in the token subject. For the next step, Microsoft.

IdentityModel.Tokens.SecurityTokenDescriptor is used to construct a full

JWT token along with the custom claims in the subject.

This object is used to create the JWT token using the CreateToken

method from JwtSecurityTokenHandler, and the token is returned as a string.

When we issue the custom token, the API should be able to validate the

token as well, when it is returned from the callers in the requests.

The below code snippet shows the token validation code.

public bool ValidateMassRoverToken(string token)

{

 var tokenValidationParameters = new Microsoft.

IdentityModel.Tokens

Chapter 5 apI SeCurIty

123

 .TokenValidationParameters()

 {

 ValidAudiences = new string[]

 {

 "massrover.client",

 },

 ValidIssuers = new string[]

 {

 "massrover.authservice",

 },

 ValidateLifetime = true,

 IssuerSigningKey = GetSignTokenSignKey()

 };

 var tokenHandler = new JwtSecurityTokenHandler();

 tokenHandler.ValidateToken(token,

 tokenValidationParameters, out var validatedToken);

 return true;

}

The code uses the TokenValidationParameters object, which includes

token validation logic along with signing keys (retrieved from the same

private method used to issue the token). The ValidateToken method

from JwtSecurityTokenHandler validates the token using the constructed

TokenValidationParameters object.

Note that the above code snippets are not production ready, and token

flow in the production application requires software implementation along

with TLS support. The above pieces of code explain the fundamentals of

issuing and validating JWT tokens in ASP.NET Core.

Chapter 5 apI SeCurIty

124

Note there are a number of libraries and frameworks available
that provide secure and comprehensive implementations of token
management in business applications. these libraries cover many
different authentication scenarios. In real-life implementations,
you would use one of those libraries or frameworks to handle the
authentication token management, rather than writing the entire code
by yourself. Identity Server is a popular authentication framework in
the .Net world.

Once the JWT token flow is in place, consumers will send the token

in each request to the API. In typical scenarios, tokens are sent in the

Authorization header. Backend services receive the token from the HTTP

request and validate and obtain information from them to coordinate the

business logic requirements. In some cases, tokens do not contain any

information other than an identifier, but backend services know to get the

required information using this identifier. These kinds of tokens are known

as reference tokens.

In the next section, we will discuss how to use Azure API Management

to pre-authenticate requests that contain a JWT token.

 Pre-Authentication in Azure API Management

In many examples above, we saw that Azure API Management can process

request and response information. Pre-authentication at the gateway is a

good practice and prevents hitting the backend service for all requests. But

it is strongly recommended to validate the token in the backend service

and obtain the information stored there.

We will use the Validate JWT policy for this pre-authentication step.

The below snippet shows a basic JWT validation policy implementation.

Chapter 5 apI SeCurIty

125

<validate-jwt

 header-name="Authorization" failed-validation-httpcode="401 "

 failed-validation-error-message="Unauthorized"

 require-expiration-time="true"

 require-scheme="scheme"

 require-signed-tokens="true">

 <audiences>

 <audience>76d88779-d888-401f-8565-231aee385b14</audience>

 </audiences>

 <required-claims>

 <claim name="massrover-role" match="any">

 <value>admin</value>

 <value>user</value>

 </claim>

 </required-claims>

 <openid-config url=" https://login.microsoftonline.com/

common/.well-known/openid-configuration" />

</validate-jwt>

In the above snippet, I have provided the openid-config URL and

validation comparison of basic claims. The code also checks a custom

claim called massrover-role and makes sure its presence in the JWT token

and the value it can take either admin or user.

Also, note that require-expiration-time is set to true. In order to pass

this validation, the incoming JWT token should contain the exp claim.

If the exp claim is not present, validation will fail.

Chapter 5 apI SeCurIty

126

The Azure API Management JWT validation policy supports both

HS256 and RS256 signing algorithms. For HS256, they should be provided

in the policy itself as a base64 encoded string, like below.

<issuer-signing-keys>

 <key>base64 encoded key</key>

</issuer-signing-keys>

For RS256, the key must be provided via an OpenID configuration

endpoint, as shown in the sample policy above.

You can add more validation rules to this policy, including validating

custom claims, like the massrover-role claim.

Note there are concerns about bringing more business context
to apI gateways, referred to as overambitious apI gateways. read
more about this here: https://www.thoughtworks.com/radar/
platforms/overambitious-api-gateways.

In the above case, validating custom claims (massrover-role) and
controlling access may be considered bad practice, since this
brings the business logic to the gateway. at the same time, as a
tool, apI Gateway offers many features like this. you can read more
about highly customizable security at apI Gateway from this post:
https://thuru.net/2018/02/28/overambitious-api-
gateways-security-at-api-gateway-with-azure-api-
management/

Chapter 5 apI SeCurIty

127

 Authorizers in AWS API Gateway
Authorizers are set up in AWS API Gateway to authenticate incoming

requests. AWS API Gateway handles this with a Lambda function (more on

serverless in chapter 6) or AWS Cognito. Lambda is the serverless platform

of AWS, and Cognito is the AWS-based access control service.

In order to set up an authorizer, we should first create an authorizer

under the selected API. Navigate to the API, select Authorizers, and click

Create New Authorizer. You will see the panel as shown in Figure 5-9.

In the panel, provide a name for the authorizer and select the type as

Lambda, which we can write the code to do the authentication validation

logic. As Azure API Management this is done via policies in AWS API

Gateway, this done via an external serverless function with custom code.

Next, select the Lambda function, which has the authorizer logic.

In order to do that, you should have an existing Lambda function and

implementation, or provide a name (entered in the textbox) of the

function, which will be deployed later. Refer to chapter 6 for instructions

on how to create and deploy Lambda functions.

Select Token for the Lambda Event Payload. This ensures the token will

be present in the specified header. Select Request if the token is present

in the event payload request body/header/query string with the specified

value.

Chapter 5 apI SeCurIty

128

Specify the corresponding value that has the token in the Token

Source. As above, the Lambda context will look for the token in the

Authorization header.

Figure 5-9. Create AWS API Gateway Authorizer

Chapter 5 apI SeCurIty

129

The rule to look for the token in headers comes from Lambda Event

Payload type, and the value comes from Token Source. The same will apply

if you select Request as the Lambda Event Payload; the lookup will happen

in a range of places, including headers, query string parameters, stage

variables, and context parameters for the specified Token Source key.

If you’d like, you can specify a regex validation in the Token Validation

section, which prevents hitting the Lambda for tokens that are not in the

right format.

Authorization caching indicates whether to cache the authorization

policy document or not. Authorization policy documents are generated by

the authorizer for the specified token. AWS API Gateway authorizers return

an authorization policy to the AWS API Gateway with access and deny

rules specified.

You can read more about these policies here: https://docs.aws.

amazon.com/AmazonS3/latest/dev/access-policy-language-overview.

html. These policies dictate whether AWS API Gateway has access to

specific AWS resources.

Producing the policy document is the logic in the authorizer Lambda

function. As mentioned above, these policy documents control access

to AWS resources, and in terms of the application business logic, the

authorizer Lambda should have the token validation logic (something

similar to the JWT validation logic shown in the Issuing Custom JWT

Tokens section above).

After validation, Lambda will construct the policy document and

return it to AWS API Gateway, which will cache the document for the

determined period if caching is enabled. Figure 5-10 illustrates this flow.

Chapter 5 apI SeCurIty

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html

130

Figure 5-10. AWS API Gateway Authorizer Authentication Flow

After creating the Lambda authorizer, we will implement the logic,

which validates the token and policy document generation. The following

code shows how to do this:

public class Function

{

 public Policy FunctionHandler(APIGatewayCustomAuthorizer

Request authRequest,

 ILambdaContext context)

 {

 var token = authRequest.AuthorizationToken;

 Policy policy;

 if (ValidateToken(token))

 {

 var statement = new Statement(Statement.

StatementEffect.Allow);

Chapter 5 apI SeCurIty

131

 var policyStatements = new List<Statement> {

statement };

 policy = new Policy("TokenValidationPassed",

policyStatements);

 }

 else

 {

 var statement = new Statement(Statement.

StatementEffect.Deny);

 var policyStatements = new List<Statement> {

statement };

 policy = new Policy("TokenValidationFailed",

policyStatements);

 }

 return policy;

 }

 private bool ValidateToken(string token)

 {

 // JWT token validation here

 return true;

 }

}

Here, the policy document simply indicates whether access is allowed

or not, and does not contain any specific access policy to specific AWS

resources. We can create custom policy implementations, but this

implementation is sufficient enough to flow the requests to the backend

service.

Chapter 5 apI SeCurIty

132

 Summary
API security is a large field, and it is one of the security topics that is

gaining increasing attention and demand. This chapter covers a few

common areas of interest in modern application development. Note that

this chapter provides neither a comprehensive guide to API security nor

the full flow implementations of it in the selected platforms. It does provide

sufficient enough fundamental details and implementation information to

get started and discover more, based on the business requirement at hand.

As stated, API security involves different layers of implementation,

and this chapter covers them in two main sections: request-based

security and authentication- and authorization-based security. Request-

based security includes call limits, rate limits, IP restrictions, and API

key implementations. Authentication- and authorization-based security

includes API key implementations, OAuth implementations from available

providers on Azure and AWS, and implementations of custom JWT

management without any third-party libraries.

Chapter 5 apI SeCurIty

133© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3_6

CHAPTER 6

Serverless APIs
Serverless is an ephemeral computational model; serverless endpoints are

triggered based on a single event. These events spawn computation and

execute the defined logic. Neither the caller nor the developer is aware of the

computation infrastructure that emerges to serve the event. It is totally hidden

and makes the presence of the computing infrastructure highly unnoticeable.

The same goes for development and deployment, since there are no explicit

server definitions and infrastructure code packages are given to the serverless

platforms and executed. This characteristic, and the short-lived nature of the

computation, have yielded the term “serverless” in the industry.

In this chapter, we will focus on serverless technology and economics,

available serverless platforms in Azure and AWS, and how to use them in

developing APIs.

 Serverless Computing
Serverless is a highly trending topic in developer circles. Serverless

offerings come in two major types: Functions as a Service (FaaS) and

Backend as a Service (BaaS).

The FaaS model allows developers to write custom logic, create code

packages, and execute them in serverless context. These functions require

an event trigger to be executed. Major serverless platforms support

different languages and runtimes in the FaaS model. Azure Functions and

AWS Lambda are the FaaS offerings of Azure and AWS, respectively.

134

The BaaS model allows developers to easily create integrations

and workflows that trigger the usage by connecting available services

from different providers. Services like authentication, search, data

transformation, caching, integration, payments, accounting, and database

available as services allow developers to reuse them, thus reducing costs of

application design and development. The integrations between different

services and coordination of the logic flow allow us to build powerful

applications quickly. Logic Apps and Simple Workflow Service (SWF) are

the BaaS offerings from Azure and AWS respectively, though SWF is mostly

used in internal resource orchestration scenarios.

AWS started offering the serverless model with Lambda, and soon

other cloud providers jumped into the market. Now, almost all the leading

public cloud vendors provide a serverless platform. Apart from the cloud

offerings, there are numerous on-premise serverless platforms available.

The promise of the serverless economy is exemplified by two major

benefits. One is the development time. The BaaS model has embraced

third-party services and reduced development time dramatically, allowing

developers to focus on delivering value. Also, serverless hides the majority

of the deployment and management of the application. Second, the cost

of running an application in serverless is much cheaper, and though this

partly depends on the nature of the application and how it is used, the

initial offerings of serverless from major cloud vendors look very promising

in terms of cost. But serverless may not always be cheap compared to PaaS

and IaaS offerings.

From a technical angle, serverless offers the flexibility to develop fast

and deliver fast, as it removes the overhead of resource provisioning and

embraces third-party services as much as possible. Serverless is a good

candidate to be plugged into any existing system because it works based

on events. An event can be initiated by any existing system, with less wire

up and serverless logic can pick them and execute the logic. This structure

has been embraced by developers, and serverless is being used with

various legacy systems to develop new features.

Chapter 6 ServerleSS apIS

135

Serverless APIs are API functions backed by serverless platforms. Most

serverless platforms can receive HTTP events as triggers, making them

readily available to be used as APIs (Azure Functions is a good example of

this). In some cases, other API technologies are used to integrate serverless

execution with the HTTP pipeline. For example, AWS API Gateway is used

with proxy integration with Lambda to serve the API backend using the

serverless model.

 Serverless APIs in Azure
Azure has many serverless offerings, like Azure Functions, Logic Apps,

Azure Storage, Cloud messaging (Event Grid), Azure bot Services two

major serverless offerings, Azure Functions and Logic Apps but as per

current trend and market demand, we will be exploring Azure Functions

and Logic Apps. Azure Functions is a FaaS offering—developers can write

custom logic based on available triggers and execute the logic. Logic

Apps is a BaaS offering where different actions and workflow conditions

are available to execute a logic based on an event trigger. Both Azure

Functions and Logic Apps support HTTP events, meaning both can act as

standalone APIs.

 Azure Functions
Azure Functions is an offering under the Azure App Service. Let's look at

how to get started with Azure Functions and create HTTP triggers. We can

create Azure Functions in the portal using the Function Apps.

 Creating an Azure Function App

Navigate to the Azure portal, search for Function Apps, and create a

Function App service. Figure 6-1 shows the Function App creation blade.

Chapter 6 ServerleSS apIS

136

We’ll look at two settings here—the hosting plan and the storage. The

hosting plan has two options—the Consumption Plan and the App Service

Plan. We also must specify a general-purpose storage account for the

Function App.

• Consumption Plan: Azure Function host instances are

dynamically provisioned and deallocated based on

event triggers. This has auto scaling and theoretical

limit to unlimited concurrent executions, since the

Figure 6-1. Azure Function App Creation Blade

Chapter 6 ServerleSS apIS

137

underlying infrastructure is fully dynamic. This plan is

priced by usage. The maximum duration for a function

execution is 10 minutes, and the default setting is 5

minutes.

• App Service Plan: The Azure Function host runs on the

allocated App Service Plan SKU. The Function host has

dedicated allocated resources, and scaling can be set

up with the auto-scale rules of the App Service Plan.

Functions can run for more than 10 minutes. This is a

good option to consider for cases when events are almost

continuously triggered or function execution time

requires more than 10 minutes or the VNET/VPN setup.

Azure Function requires a general-purpose storage account, used to

manage event triggers and logs. When using the Consumption Plan, the

code and configurations are also stored in the selected account.

Create the Azure Function App and open it. Under the Function App

(massroverfunc), you will see three different options: Functions, Proxies,

and Slots. One Function App can have many functions; each function can

have its own event trigger. This book focuses on HTTP event triggers. Click

“Functions,” then click “New Function.” (Figure 6-2).

Chapter 6 ServerleSS apIS

138

 HTTP Trigger Function

This will open a list of options. Select “HTTP Trigger,” which will open the

HTTP trigger function creation blade (Figure 6-3).

Figure 6-2. Create New Function

Figure 6-3. HTTP Trigger Function Creation Blade

Chapter 6 ServerleSS apIS

139

Select a language and name the function. Additionally, for HTTP

triggers, we must select the Authorization level.

Note the development experience available in the portal is not
sufficient in most cases, so developers use azure Functions SDK with
an IDe like visual Studio for real-world development. this book does
not cover the development aspect of azure functions, but includes
some important points to consider. One of them is the authorization
level for http triggers. triggers can be written in C#, F#, and
JavaScript. a function always runs as an asynchronous mode.

 HTTP Trigger Function Authorization level

The portal offers three options for the HTTP trigger authorization level, but

when you create a HTTP trigger using SDK, you will have five options.

 1. Function: Authorization is based on a function-

level key value pair. This key acts as the API key

for the function. The key can be passed in the

HTTP request, either as a query parameter or

in headers. When passing the key in the query,

use the query string code, and when passing it

via headers, use the header x-functions-key. The

function-level authorization is scoped to each

individual function, resulting in a different key for

each function. This the default option. Sent in query

string is as, https://<app>.azurewebsites.net/

api/<funcname>?code=<key>

 2. Anonymous: Allows HTTP event triggers without any

keys.

Chapter 6 ServerleSS apIS

140

 3. Admin: Requires the host key. Host keys are

generated at the Function App scope. So, one host

key can be used across multiple functions which has

the authorization level set to Admin.

 4. System: Requires the master key. The master

key is a special host key that can be used to

manage the Function host. Unless your function

does management logic execution, this level of

authorization is not needed, and shouldn't be used.

 5. User: This authorization level is not key based,

but requires a valid security header (such as an

authorization header) in the request.

The above authorization levels (except User-level authorization) work

using two different types of keys.

 1. Host keys: Host keys are scoped at the Function

App level. The master key (named as _master) is a

special host key that cannot be revoked but can be

renewed.

 2. Function keys: Function keys are scoped at

individual functions. One function can have many

function keys.

Figure 6-4 shows these keys, under the Manage section of a selected

function. Though host keys are managed at the Function App level, they

are also shown under the selected function.

Chapter 6 ServerleSS apIS

141

 Configuring the Function

Navigate to the Integrate section of the function, shown in Figure 6-5.

Figure 6-4. Function App Keys

Figure 6-5. Function Integrate Section

Chapter 6 ServerleSS apIS

142

In this section, we can set the HTTP request parameter name, the

authorization level, the applicable HTTP methods to invoke the function,

the mode of the HTTP trigger (whether it is a simple HTTP trigger or a web

hook), and the route template. Route template are straightforward; we can

specify the parameters using curly braces.

If you click the Advanced editor, you can edit get JSON document for

the specified configuration.

{

 "bindings": [

 {

 "authLevel": "function",

 "name": "req",

 "type": "httpTrigger",

 "direction": "in",

 "methods": [

 "get",

 "post"

]

 },

 {

 "name": "$return",

 "type": "http",

 "direction": "out"

 }

],

 "disabled": false

}

This JSON document defines the configuration in a more developer-

friendly structure. We can edit this document to make configuration

changes to the function. Deploy a working version of the function, which

Chapter 6 ServerleSS apIS

143

will return some data in the HTTP response. You can choose to write the

logic in the portal or using an IDE.

The code snippet below returns some products (like the MassRover

API in previous chapters). The code is written in C# using Visual Studio.

Note the development and deployment of azure Functions is
beyond the scope of this book. the easiest way to develop and
publish the azure function is from visual Studio itself. to do this, the
developer must install azure Function and WebJobs tools. this can be
done using visual Studio tools and extensions.

 public static class GetProducts

 {

 [FunctionName("GetProducts")]

 public static IActionResult Run(

 [HttpTrigger(AuthorizationLevel.Function, "get",

"post", Route = null)]

 HttpRequest req, TraceWriter log)

 {

 var products = new List<Product>

 {

 new Product { Id = 1, Name = "Lithim L2"},

 new Product { Id = 2, Name = "SNU 61" }

 };

 var data = JsonConvert.SerializeObject(products);

 return (ActionResult)new OkObjectResult(data);

 }

 }

Chapter 6 ServerleSS apIS

144

 public class Product

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public DateTime? ModifiedDate { get; set; }

 }

Once you’ve published, you can get the function URL in the portal.

Since the authorization level is set to Function, we have to pass the

function key either in the query or in the headers. A sample URL would be

in the below format:

https://<function app name>.azurewebsites.net/api/<function

name>?code={key}

Also, note that one HTTP trigger function can accept multiple HTTP

verbs. This option can be used to create a quick CRUD endpoint of an

entity with a switch statement, which can serve the CRUD requests for an

entity.

 Azure Function Proxies
Azure Functions Proxies provide a core set of API development tools

specifically suited for serverless API developers. Azure Functions Proxies

allow you to composite multiple APIs across functions and services

together into one unified API surface. Azure Function Proxies can link to

external backend services or other Azure Functions, or deliver results from

mock endpoints.

The portal experience of Azure Function Proxies seems limiting, but

Azure provides a JSON document to define the Azure Function Proxies.

First, we will create an Azure Function proxy that directly calls an existing

backend service. Then, we will edit the JSON document to include more

API surface endpoints.

Chapter 6 ServerleSS apIS

145

Navigate to the Function App and click on Proxies to create an Azure

Function Proxy. You will see the Azure Function Proxy creation blade as

shown in Figure 6-6.

Figure 6-6. Azure Function Proxy Creation Blade

In the screenshot shown in Figure 6-6, an Azure Function Proxy is

created for a backend service. The route template specifies the routing

path, and we have the option to override requests and responses. Click

Create and an Azure Function Proxy will be created, and you will see the

proxy URL.

Now we have created a proxy for a backend service URL. We can have

multiple proxies and customized requests and responses, but we’ll do this

in the proxies.json document rather than in the portal.

Click on Advanced editor—this will open the editor window in the

browser, and the proxies.json file will open. The below code sample shows

the proxies.json with an additional proxy added as a mock endpoint.

Chapter 6 ServerleSS apIS

146

proxy.json

{

 "$schema": "http://json.schemastore.org/proxies",

 "proxies": {

 "Products": {

 "matchCondition": {

 "route": "/api/products"

 },

 "backendUri": "https://massroverproduct.

azurewebsites.net/api/products"

 },

 "Customers": {

 "matchCondition": {

 "route": "/api/customers",

 "methods":[

 "GET",

]

 },

 "requestOverrides":{

 "request.header":{

 "api-version":"v1"

 }

 },

 "responseOverrides":{

 "response.statusCode": "200",

 "response.statusReason": "OK",

 "response.body":"[{\"name\":\"customer1\"},

{\"name\":\"customer2\"}]"

 }

 },

Chapter 6 ServerleSS apIS

147

 "Partners":{

 "matchCondition":{

 "route":"api/partners",

 "methods":[

 "GET"

],

 },

 "backendUri":"https://localhost/api/

HttpTriggerCSharp1"

 }

 }

}

As you can see, the above document has three proxies: Products,

Customers, and Partners. The Product proxy emits the settings we chose

in Figure 6-6, which listens at the route api/products and calls an external

backend service URL. This backend service URL can be another Azure

Function as well.

The Customer proxy exposes a mock endpoint at the route api/

customers, with additional settings for request and response overrides.

The Partners proxy calls Function within the same Function App—thus,

using the localhost works in Azure as well. If the Function belongs to a

different Function App, then it should be called by its full URL.

The above model provides a single API surface consumer, and the

Azure Function Proxy abstracts the implementation details. Figure 6-7

illustrates this.

Chapter 6 ServerleSS apIS

148

Note azure Function proxies play the role of an apI Gateway,
and they can be used to mock apIs as well. In this context, azure
Function proxies provide some of the functionality of azure apI
Management, but azure apI Management is a richer, fully functional
apI management platform service, providing advanced control,
features, and additional apI management workflows such as a
developer portal and subscription management. If you are integrating
multiple apIs with simple control over http requests and responses,
azure Function proxies are preferable over azure apI Management
(and cheaper).

TR comment: Throttling is missing??

Figure 6-7. Azure Function Proxy Implementation

Chapter 6 ServerleSS apIS

149

 Azure Logic Apps
The Azure Logic App is a serverless BaaS offering, useful for creating

integration and workflows. It has many pre-built connectors to

applications and services with conditional statement blocks. For granular

customization, it offers a logical language. Logic Apps are useful in

API development because they have HTTP triggers that can act as API

endpoints.

Navigate to the Azure portal, search for Logic Apps, and create one.

The creation process is straightforward. You must name the app and

choose a subscription, resource group, and location. After the app is

created, navigate to the Logic App. There are many templates to choose

from, but for this exercise, select the Blank Logic App template to start

from scratch. The portal designer provides a number of different triggers.

Search for “HTTP” and you will find the HTTP request trigger.

Figure 6-8. Azure Logic App HTTP Request Trigger

Chapter 6 ServerleSS apIS

150

We can set the HTTP method and relative path for the request, and we

can also set the JSON schema for the request body. We can chain actions

to the trigger, and add an action to the HTTP request trigger. In the action,

you can get the possible inputs from the previous step, in this case the

request body and the ID parameter.

Finally, when you save the Logic App in the designer, it will generate

the full URL for the HTTP trigger. The URL will be similar to the one below.

https://prod-29.northcentralus.logic.azure.com/workflows/97272

16e7a4442ccb4b3f96e863374be/triggers/manual/paths/invoke/api/

products/{id}?api-version=2016-10-01&sp=%2Ftriggers%2Fmanual%2F

run&sv=1.0&sig=EuqlcN4fV8qKIfLQbteKaTkE3V5v_OkM5w-FgShMnXw

You may notice that the URL contains the relative path after the

manual/path/invoke segment, which is filled in the request. Additionally,

there are some keys and IDs to for the Logic App to identify the request.

Though the URL for the Azure Logic HTTP triggers looks complex,

these URLs can be integrated with Azure API Management or Azure

Function Proxies, resulting in a unified API surface with consumer-friendly

URI fragments.

 Serverless APIs in AWS
Serverless is a native term for AWS, and AWS has a FaaS serverless offering

called Lambda. In this section, we will build backend services using

Lambda and deliver API surface via AWS API Gateway.

 AWS Lambda
AWS Lambda is the FaaS offering from AWS. Lambda itself popularized the

serverless model and paved the way for serverless traction in commercial

software development. It supports multiple languages and platforms.

Chapter 6 ServerleSS apIS

https://prod-29.northcentralus.logic.azure.com/workflows/9727216e7a4442ccb4b3f96e863374be/triggers/manual/paths/invoke/api/products/{id}?api-version=2016-10-01&sp=/triggers/manual/run&sv=1.0&sig=EuqlcN4fV8qKIfLQbteKaTkE3V5v_OkM5w-FgShMnXw
https://prod-29.northcentralus.logic.azure.com/workflows/9727216e7a4442ccb4b3f96e863374be/triggers/manual/paths/invoke/api/products/{id}?api-version=2016-10-01&sp=/triggers/manual/run&sv=1.0&sig=EuqlcN4fV8qKIfLQbteKaTkE3V5v_OkM5w-FgShMnXw
https://prod-29.northcentralus.logic.azure.com/workflows/9727216e7a4442ccb4b3f96e863374be/triggers/manual/paths/invoke/api/products/{id}?api-version=2016-10-01&sp=/triggers/manual/run&sv=1.0&sig=EuqlcN4fV8qKIfLQbteKaTkE3V5v_OkM5w-FgShMnXw
https://prod-29.northcentralus.logic.azure.com/workflows/9727216e7a4442ccb4b3f96e863374be/triggers/manual/paths/invoke/api/products/{id}?api-version=2016-10-01&sp=/triggers/manual/run&sv=1.0&sig=EuqlcN4fV8qKIfLQbteKaTkE3V5v_OkM5w-FgShMnXw

151

The AWS Lambda function does not support HTTP triggers by

themselves, so we need to equip the serverless API via AWS API Gateway

and receive HTTP requests and pass them to AWS Lambdas. In this

section, we'll look at how to create and configure AWS Lambdas, and in the

next section we will focus on integrating them with AWS API Gateway.

 Creating an AWS Lambda Function
Navigate to the AWS portal and search for Lambda to create a function.

We can create a function from scratch, from an available template, or from

the serverless application repository. In this section, let's create a Lambda

function from scratch.

Select Author from scratch and enter the required details. Figure 6-9

illustrates this.

Figure 6-9. AWS Creating Lambda from Scratch

Chapter 6 ServerleSS apIS

152

Enter the name of the Lambda function, select the runtime, and select

a role for the Lambda function. This role defines the permissions for the

function. You can use an existing role, create a new one, or create one from

a policy template.

In this case, the role named massrover-lambda has been created from

two policy templates: Simple Microservices permissions and Basic Edge

Lambda permissions.

Once the role has been created, AWS will open the function

configuration window. The window has many sections, and this book

briefly explains them. Figure 6-10 shows the AWS Lambda designer.

Figure 6-10. AWS Lambda Designer

On the screen shown in Figure 6-10, if you scroll down, you will notice

other configuration options:

• Function code: This is the section where we upload the

Lambda code as a zip file, or we can point to file/folder

in AWS S3. In this section, we can set the Lambda

runtime as well. Handler specifies a value of the

Lambda handler; in the C# language context, this in the

form shown below:

assembly::namespace.class-name::method-name for

the C# runtime.

• Environment variable: This sets any environment

variables required to execute the Lambda function. In

Chapter 6 ServerleSS apIS

153

the Lambda execution context in C#, the environment

variables can be read from the system assembly

methods, like below:

Environment.GetEnvironmentVariable("key");

• In the environment variable section, we can set the

AWS KMS to encrypt sensitive environment variables.

You can also use environment variables to store

connection strings and other execution variables.

• Tags: These are key value pairs used to group and filter

Lambda functions. Lambda functions related one

logical work unit can be tagged with the same value

and filtered.

• Execution role: Execution role the permissions for the

Lambda function. This was set at the time of creation

(Figure 6-9), and we can change it here.

• Basic settings: In this section, we can set the maximum

memory for the Lambda function. The available

range is 128MB to 3008MB, and the CPU is allocated

proportional to the memory. Memory is allocated in

64MB chunks. We can also set the Lambda function

timeout. The maximum Lambda execution time is 300

seconds.

• Network: AWL Lambda functions run in a system

managed default VPC. In this section, we can configure

a custom AWS VPC, which makes it secure enough

that it can access resources like databases within the

specified VPC.

Chapter 6 ServerleSS apIS

154

• Debugging and error handling: When a Lambda

function fails during execution, it will retry twice

by default. If the execution is not successful after

the retries, we can configure the function to put the

messages in an AWS SNS topic or AWS SQS. This

configuration option is known as DLQ (Dead Letter

Queue). We can specify the ARN of either SNS or SQS to

act as the DLQ.

• Concurrency: This configuration deals with the

execution concurrency of Lambda functions. We

can set a specific number or use all the unreserved

concurrency of the account. An account is reserved

with 1000 concurrency executions.

• Auditing and compliance: In this section, we can

enable the audit trails of Lambda executions using AWS

CloudTrail.

By selecting the Lambda function, we can visit the designer and

configure the above settings.

After the creation of the AWS Lambda, we can write code using an IDE

and deploy it, or upload the code packages via AWS Console directly or

from AWS S3.

The below code snippet shows the returned list of products in AWS

Lambda in C#:

 public class Function

 {

 public string FunctionHandler(ILambdaContext context)

 {

 List<Product> products = new List<Product>

 {

Chapter 6 ServerleSS apIS

155

 new Product { Id = 1, Name = "Lithim L2" },

 new Product { Id = 2, Name = "SNU 61" }

 };

 var data = JsonConvert.SerializeObject(products);

 return data;

 }

 }

 public class Product

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public DateTime? ModifiedDate { get; set; }

 }

The injected ILambdaContext will give the access the execution

parameters.

Note Development and deployment of aWS lambda are beyond the
scope of this book. You can develop and publish aWS lambda from
visual Studio itself using the aWS development tools for visual Studio.

After the publish, we can invoke the Lambda from Visual Studio, as

we still haven't wired the HTTP event to the Lambda. This is done using

integration with AWS API Gateway.

Figure 6-11 shows the AWS Lambda invoke from Visual Studio. You can

see the response on the left-hand side. Also notice the log output, which

shows the used memory, execution time, and billable time of the Lambda.

Chapter 6 ServerleSS apIS

156

 Setting Up AWS Lambda with AWS API Gateway
In this section, we will set up the integration between AWS Lambda and

AWS API Gateway, which enables the functional serverless API in AWS.

Navigate to the AWS Console, create a new API in AWS API Gateway,

then create two resources under api, named “api” and “products.” (refer to

chapter 4 for more details on how to perform these actions).

Select the api/products resource and create a GET method, shown in

Figure 6-12. In the method, select the integration type Lambda Function.

Select the region and then select the Lambda Function (when you type the

name of the Lambda, it will appear in the dropdown).

When you click save, AWS will show a dialog indicating that you are

giving permission to API Gateway to invoke the Lambda function, showing

the ARN of the Lambda function.

Figure 6-11. Invoke AWS Lambda from Visual Studio

Chapter 6 ServerleSS apIS

157

Figure 6-12. AWS API Gateway Lambda Integration

Technically, the integration is complete after this step, and you can test

it using the test link in API Gateway.

We can then deploy the API by creating a stage (refer to chapter 4 for

more details). The deployed API will have a URL like this:

https://vtv6xchkkk.execute-api.us-east-1.amazonaws.com/prod/

api/products

Note the integration of the lambda with apI Gateway can be
performed from the lambda designer as well.

Chapter 6 ServerleSS apIS

https://vtv6xchkkk.execute-api.us-east-1.amazonaws.com/prod#_blank

158

 Summary
Serverless is an evolution of cloud computing that has been gaining

popularity for the development experience it offers and its more granular,

utility-based computing. Because of this, serverless is not only a new way

of developing applications, but also provides a new economic model in the

cloud computing world.

Serverless APIs are in the limelight because of the benefits mentioned

earlier, as well as its economic benefits. But serverless platforms can be

expensive in some cases.

The event-based and self-hostable nature of serverless platforms are

other major reasons developers can easily integrate this model with any

legacy application.

Chapter 6 ServerleSS apIS

159© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3_7

CHAPTER 7

Practical Design
and Development
The modern application design and development landscape design and

development landscape of modern applications is highly influenced by

emerging technologies, changing developer mindset, and the urging survival

and peer pressure to innovate. Fundamentally, there is an ever- growing

demand for data, and developers control the flow of data in applications.

APIs help developers to control and orchestrate the data flow among

services and solutions more effectively. In practical design and

development, there are some common models used developers to get the

maximum benefit from the API development strategy.

This chapter explains a few common scenarios and design practices

used in real-world development.

 Contract-First Design
As the name implies, contract-first design is focused on the service

contracts; contract first design approach is all about beginning

the development by defining service contracts and related service

endpoints. In addition to the service contract schema and the

endpoints, other aspects such as versioning, URI schemes, and naming,

are included in the design approach.

160

Defining the clear service contracts helps to understand the business

domain models. There are different techniques for identifying this, but

event storming is one widespread practice used to identify the business

flows domain models and operations. The identified domain models and

operations are the seed for the contract-first design.

In DDD (domain-driven development) and event storming world,

the term domain model is used, but in practical contract first design

approach and RESTful service design, it makes perfect sense to use the

term resources and operations.

When starting the API development with contract first approach,

first we have to absorb the business problem and start defining the

service contracts (typical JSON objects) at the API level. These JSON

objects define the schema of the service contracts; these define either

the result set from API or the incoming request body. One common and

easy implementation approach for the contract first design is to use API

mocking. Mocking APIs is a very powerful in the contract first design, it

helps the developers and business stakeholders to validate the domain

models while establishing the technical standards. This eliminates

lots of frequent rewrites and discussions at the early stages of the

development. Both Azure API Management and AWS API Gateway have

have mocking facilities, enabling you to define models and operations

right from the portal.

The idea here is basically to fast-track implementation and identify

business and usage flow gaps as early as possible, and to iterate

quickly without compromising the technical standards required for a

classy API design.

Figure 7-1 depicts this approach in a high level picture and how

different stakeholders are involved in the contract first design approach.

Chapter 7 praCtiCal Design anD Development

161

Figure 7-1. Contract-First Design

This approach requires considerable skills and strategic practices in

order to be successful. Because, the API developer and the backend service

developer.

 Preparation
The business owner or the product owner or event storming coordinator

should be aware of this design model so he or she can facilitate the

requirement flow in order to identify the resources and operations and

enable the contract first design approach.

The API developer should be skilled in mapping the domain being

discovered to the API resources and endpoints. He/she also should

experience with the chosen development/API mocking platform to

gain speed in and orchestrate the front consumers and backend service

developers.

Chapter 7 praCtiCal Design anD Development

162

Basic-level API standards differ among developers and teams. During

the above excersice the identified operations and the resources can change

in high frequency but not the agreed API standards. Chapter 3 provides a

good starting guideline of API standards, these guidelines are battle tested

and can be extended to the custom requirements.

 Key Challenges
The primary challenge of contract-first design is identifying the right

resources and operations to be exposed as APIs. There will be changes at

high frequency at the initial stages of the domain discovery but this will

gradually come to a more over stable state; identified resources will not

change (except their properties) since

For example, in a simple clinical system, a medical practitioner is an

identified resource. The attributes of this resource and the corresponding

operations will change, but the resource practitioner should not change to a

different resource in high frequency. The person who facilitate this exercise

should make sure the business domain is progressively discovered; if the

person does not strategize the domain discovery in a progressive manner

that would become a big bottleneck and a challenge for the entire process.

The second key challenge is the technical skill level of the API

developer, because the sole purpose of this design approach is to fast-track

development and enable API consumers as quick as possible. If there’s a

requirement for a mobile application, then the mobile developer should

be enabled from day one, as soon as the requirements begin to flow, API

endpoints with the defined operation and standards should be available

from the day in order to achieve this, so an API developer lacking the

technical skills in the chosen platform will cause a bottleneck in the

implementation.

Finally, the team—the API developers, backend service developers

and the consumers—should be aware of and well-disciplined with the

approved API standards. Note, as in the Figure 7-1 the approach has many

Chapter 7 praCtiCal Design anD Development

163

roles, but in smaller projects this does not map to different individuals

playing those roles. There can be situations one single developer/one

single team doing all things.

 When Not to Try It
This design approach would not be suitable in high-level usage flow

scenarios. In an event storming model, discussions reoccur with increasing

granularity and detail; in certain cases things are being discussed at very

high level, which makes it difficult to extract the required resources and

operations to be included in the API. If the domain discussion at very high

level then the contract first design approach wouldn’t fit.

 If the approved API standards or disciplines are not available and

not formalized well. in such occassions it is not recommended to use the

contract first design approach, as it will create conflicts and unproductive

communication among the teams. First, make sure everyone things on the

standards on the same way and define the standards to a certain level.

 APIs in Microservices
Microservices is an emerging application design architecture.

Microservices are consisted of many different services and these services

communicate with each other using defined service contracts (not

necessarily in HTTP) and they expose the resources and operations to

the consumers (client applications) via APIs. In order to orchestrate the

service communication between the clients and the different services in

microservices API gateways are heavily used. In this model, there are two

different approaches 1) Client Coordinated design - this design let the

consumer manage the service orchestration, there is no unified approach

in API standards. Each service can have its own API standards and

consumers should be aware of them individually to separate services.

2) API Gateway pattern - API gateway is used to do the service orchestration

Chapter 7 praCtiCal Design anD Development

164

and unified API standards are implemented at API gateway, allowing

individual service development teams to have own standards, this also

allows to bring legacy services to the unified API standards.

 Client-Coordinated Design
Client-coordinated design is based on individual services that are directly

accessed by the client to complete a business flow. In this context, each

microservice exposes its own API to consumers.

Figure 7-2 depicts this.

Figure 7-2. Client-Coordinated Micro Service Design

The main advantage of this approach is, it allows consumers to

determine the business flow rather than a predefined flow from one single

party, this give flexibility to the consumers.

Small-scale micro services can use a client-coordinated design,

especially when teams are together and have approved standards.

API standards should be followed by each team to ensure a uniform

development, but this can easily be violated since there's no central

governance for the API.

Chapter 7 praCtiCal Design anD Development

165

There are common disagreements over this design approach

compared to the API gateway design, but this approach wins over the API

gateway approach pattern in the argument of with much governance and

single point of failure the API gateway introduces.

 API Gateway Pattern
The API gateway pattern introduces the API gateway as a centralized,

coordination layer between individual services and consumers. Also,

this practice helps to achieve additional benefits such as gateway-level

pre-authentication logic, caching, flow control and other cross cutting

concerns.

Figure 7-3 depicts this design.

Figure 7-3. API Gateway Implementation

Chapter 7 praCtiCal Design anD Development

166

The API gateway pattern issues a central point of communication

and standards, which allows each service to use their own API standards.

Having different API standards for each service allows flexibility in

development and opens the possibility of implementing different

protocols, especially in modernizing the legacy systems.

From a deployment point of view, API gateways add layered security

for the backend service, allowing the backend service to live outside the

public Internet.

There is a general concern, about having more domain specific logic

in the API gateways, the point is about, whether is it good or bad to have

business logic in the API gateway? With the increasing popularity of the API

gateways, the API gateway vendors overload them with features that can be

used beyond the gateway model. Since the term gateway is not a functional

requirement and serves the purpose of a reverse proxy; it is quite obvious

that including business logic in an API gateway is NOT a good design.

But again in certain cases utilizing the chosen tool/framework makes the

implementation easy and fast. Having business context in the API is known

as ‘Thick API gateways’, you can read more about Thick API gateways from

author’s blog: https://thuru.net/2018/04/22/overambitious-api-

gateways-security-at-api-gateway- with- azure-api-management/

 APIs for Enterprise Integration
APIs are commonly used in enterprise integration; the usage has

been followed from the web services with all the WS* standards. Now,

generally RESTful services are used in this context in order to deliver the

same functionality.

RESTful services and platforms are lightweight, and emerging modern

trends like self-hostable runtimes have made them more flexible so that

they can sit between many large systems making them the first choice in

enterprise integration.

Chapter 7 praCtiCal Design anD Development

https://thuru.net/2018/04/22/overambitious-api-gateways-security-at-api-gateway-­with-­azure-api-management/
https://thuru.net/2018/04/22/overambitious-api-gateways-security-at-api-gateway-­with-­azure-api-management/

167

Enterprise integration APIs often deal with old protocols and

messaging standards. Data translations from old to new protocols, and vice

versa.

Enterprise API integrations have their modern flavors too, for example:

A deep learning company develops an AI engine that can make intelligent

predictions using financial data. In order to make this work, the AI engine

should have integrations with different accounting systems. Building an

integration point for each different accounting platform will be complex

and time consuming. So an integration company would help them build a

standardized API integration for various accounting platforms.

In the enterprise world, integration is big business. In fact, all

enterprise-level application development has some sort of integration.

APIs help open the data flow between the systems. Persistence-based

messaging platforms like service buses are considered obsolete, and

HTTP-based RESTful services are replacing them.

 Summary
API design and related tools can help achieve development flexibility and

new models of team orientation. There are no hard and fast rules dictating

which design principle to practice in a particular situation. Each design

has its own pros and cons in any given scenario.

Creating a RESTful service in any modern language is simple and well

supported with tools and frameworks. But developing a standardized

API practice with well-structured implementation goes beyond the

technology platform. This book addresses that in a balanced way, with

the proper information to begin the development and also by providing

information about the API implementation and architecture. An

organized effort around these standards and implementations will yield a

good API design.

Chapter 7 praCtiCal Design anD Development

169© Thurupathan Vijayakumar 2018
T. Vijayakumar, Practical API Architecture and Development with Azure and AWS,
https://doi.org/10.1007/978-1-4842-3555-3

Index

A
Analytics, 23
App creation blade, new

function, 138
Application programming

interface (API), 1
architecture, 19–20

developer experience, 21
error handling, 22
integration, 21
performance, 21
security, 20
usage and telemetry, 21

attracting innovation and
disruption, 16

business orientation, 15
collateral developments, 14
data and operations flow, 5–6
development, Visual Studio

tool, 34
economy, 6–7

e-commerce, 9
gateway-level API keys, 108
key-based security, 107
management, 51
management tools

analytics, 23
catalog, 23

design, 22
gateway, 23

monetization, 16
programmable language

constructs, 2–4
public sector, 9

G2B, 10–11
G2C, 9–10
government, 11

RESTful services, 6
use case, 17
value chain

definition, 18
layers, 18

versioning techniques, 27
ASP.NET Core implementation

action methods, 40, 42
create product, 36
creation, 35
error codes, 37
error handling, 36
ErrorMessage, 37
ErrorService, 38–39
HTTP DELETE

action, 44–45
HTTP POST, 42
404 Not Found, 42, 44
ProductsController, 39–40

https://doi.org/10.1007/978-1-4842-3555-3

170

Authentication and authorization
security design

API keys, 106–110
Azure Active Directory V2

(see Azure Active
Directory V2)

custom JWT tokens, 120
OpenID and OAuth, 110–111
pre-authentication, 124–126

Authorizers, AWS API gateway
authentication flow, 130
creation, 127–128
Lambda Event Payload, 129
Lambda function, 127
policy document, 129–131

AWS API gateway
components, 94–95
configure methods

add header, 87
content handling, 85
GET method, 84, 86
integration request header

mapping, 88
request and response flow,

86–87
creation, 82–84
deployment API

Actions menu, 89–90
stage options, 90–92

usage plans, 92–94
AWS Beanstalk, 109
AWS Lambda

creating Lambda function, 151
setting up with API gateway, 156

Azure Active Directory V2
application registration, 113
consent screen, 116
JWT decoding tool, 117
JwtSecurityToken, 119
mechanism, 112
OpenIdConfiguration, 119
OpenID information, 115
public identity providers, 120
request URL, 114
setup for securing, 112
tokens, 118, 119
TokenValidationParameters, 119

Azure API management
API Blade, 60
backend service connection,

61–62
component structure, 81
developer experience

developer portal, 76–77
developer subscriptions

page, 80
logged in, 79
subscribe to product, 80
workflow, 78

endpoint configuration
authorization, 67
backend service URL, 65
headers, 65–66
HTTP Request, 67
query parameters, 65
Request URL, 67

JWT validation policy, 126
overview, 59–60

Index

171

permissions, 76
policy configuration, 68–70, 72
portal, 56–57
products, 72–74
steps, 58
workspace, 63

Azure functions
app creation blade, 136
app service plan, 137
consumption plan, 136
HTTP trigger authorization

level, 139–140
HTTP trigger creation, 138–139
proxies

creation blade, 145, 147
implementation, 148

integrate section, 142, 144
Azure logic app, HTTP request

trigger, 150

B
Backend service

connection, 61–62
Business domain models, 160

C
Catalog, 23
Consumer-commanded

endpoints, 26–27
Contract first design, 159, 161

challenge, 162
preparation, 161

CRUD endpoints, 25, 35
Custom JWT tokens, 120

D
Data and operations flow, 5–6
Domain Driven Development

(DDD), 160

E, F
Enterprise integration, 166–167
Error handling, 22, 31
Explicit parameters, 26

G
Gateway, 23

AWS API gateway (see AWS API
gateway)

Government to Business
(G2B), 10–11

Government to Citizens
(G2C), 9–10

Government to Government
(G2G), 11

H
HTTP status codes, 29–30
HTTP trigger authorization level

function keys, 140
host keys, 140

HTTP verbs, 28–29

Index

172

I, J, K
Information Technology

Promotion Agency (IPA), 10
Internet of Things (IoT), 6

L
Lambda function, 127

configuration options, 152,
154–155

designer, 152
invoke from visual studio,

155–156

M
Many-to-one mapping, 55
Microservices

API gateway pattern, 165–166
client coordinated design,

164–165
environment, 50

N
404 Not Found, 42, 44

O
Object oriented programming

(OOP), 2
One-to-many mapping, 54
One-to-none mapping, 55
One-to-one mappings, 53–54

OpenAPI Specification
(OAS), 34–35

OpenID and OAuth, 110–111

P
Package manager console

(PMC), 45
PATCH requests, 29
Programmable language

constructs, 2
Public cloud platforms

gateways, 51–53
many-to-one mappings, 55
one-to-many mappings, 54
one-to-none mappings, 55–56
one-to-one mappings, 53–54

PUT requests, 29

Q
Query string parameter, 34

R
Remote Procedure Call (RPC), 5
Request-based security

AWS API gateway
API keys, 102–103
quota limits, 104
rate limits, 103–104

Azure API management
IP restrictions, 101
quota limits, 100–101

Index

173

request rate limits, 99–100
subscriptions and

subscription keys, 98
RESTful semantics, 25
RFC 7807, 31

S
Security, 20

IP-based, 27
request-based security (see

Request-based security)
Serverless APIs

Azure functions, 135
Azure functions proxies, 144
Azure logic app, 149
Lambda (see AWS Lambda)

Serverless computing
Backend as a Service (BaaS), 133
Functions as a Service

(FaaS), 133
Simple Workflow Service

(SWF), 134
Service contract, 26
Service-oriented architecture

(SOA), 5
Software development kits

(SDKs), 4

Subscriptions and subscription
keys, 98

Swagger tool, 27
ConfigureServices method, 45
Microsoft.Extensions.

PlatformAbstractions, 45
PUT method, 49
Swashbuckle.AspNetCore, 45
UI, 46
XML documentation, 47–48

Swagger UI, 48

T
Team orientation, 49
Telemetry, 21
TokenValidationParameters, 119
TRex tool, 27

U
URI syntax, 33

V, W, X, Y, Z
Value chain, 18
Versioning standards, 34

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Practical Introduction to APIs
	APIs: A Practical Introduction
	Programmable Language Constructs
	Systems of Data & Operations Flow

	API Economy
	APIs in the Public Sector
	G2C: Government to Citizens
	G2B: Government to Business
	G2G: Government to Government

	Summary

	Chapter 2: API Strategy and Architecture
	API Strategy
	API Strategy Use Case

	API Value Chain
	API Architecture
	API Management
	Summary

	Chapter 3: API Development
	API Development Considerations
	Explicit Parameters
	Avoid Consumer-Commanded Endpoints
	Documentation
	Security
	Versioning

	API Development Standards
	HTTP Verbs
	HTTP Status Codes
	Error Handling
	URI Syntax
	Versioning

	Kick-Start API Development
	Implementation: ASP.NET Core
	Setting Up Swagger
	Run the API and Swagger

	Team Orientation in API Development
	Summary

	Chapter 4: API Gateways
	API Gateways in a Public Cloud
	Endpoint Mappings
	One-to-One Mapping
	One-to-Many Mapping
	Many-to-One Mapping
	One-to-None Mapping

	Azure API Management
	Creating an Azure API Management Service
	Connecting to the Backend Service
	Configuring API Endpoints
	Configuration Policies
	Products in Azure API Management
	Azure API Management Developer Experience
	Structure of the Azure API Management Components

	AWS API Gateway
	Creating an AWS API Gateway Service
	Configure Methods
	Deploy AWS API Gateway
	Creating API Usage Plans
	Structure of AWS API Gateway Components

	Summary

	Chapter 5: API Security
	Request-Based Security
	Azure API Management
	Subscriptions and Subscription Keys
	Request Rate Limits
	Quota Limits
	IP restrictions

	AWS API Gateway
	API Keys
	Rate Limits
	Quota Limits

	Authentication & Authorization
	API Security Design
	API Keys
	OpenID and OAuth
	Securing APIs with Azure Active Directory V2
	Issuing Custom JWT Tokens
	Pre-Authentication in Azure API Management

	Authorizers in AWS API Gateway

	Summary

	Chapter 6: Serverless APIs
	Serverless Computing
	Serverless APIs in Azure
	Azure Functions
	Creating an Azure Function App
	HTTP Trigger Function
	HTTP Trigger Function Authorization level
	Configuring the Function

	Azure Function Proxies
	Azure Logic Apps

	Serverless APIs in AWS
	AWS Lambda
	Creating an AWS Lambda Function
	Setting Up AWS Lambda with AWS API Gateway

	Summary

	Chapter 7: Practical Design and Development
	Contract-First Design
	Preparation
	Key Challenges
	When Not to Try It

	APIs in Microservices
	Client-Coordinated Design
	API Gateway Pattern

	APIs for Enterprise Integration
	Summary

	Index

