

MySQL Admin
Cookbook

99 great recipes for mastering MySQL configuration and
administration

Daniel Schneller

Udo Schwedt

 BIRMINGHAM - MUMBAI

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL Admin Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2010

Production Reference: 1080310

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-96-2

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Download at Wow! eBook

WWW.WOWEBOOK.COM

Credits

Authors
Daniel Schneller

Udo Schwedt

Reviewers
Kai Seidler

Marc Delisle

Acquisition Editor
Sarah Cullington

Development Editor
Reshma Sundaresan

Technical Editors
Pallavi Kachare

Bhupali Khule

Aaron Rosario

Copy Editor
Lakshmi Menon

Editorial Team Leader
Akshara Aware

Indexer
Rekha Nair

Project Team Leader
Lata Basantani

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Chris Smith

Graphics
Geetanjali Sawant

Production Coordinator
Melwyn Arun D'sa

Cover Work
Melwyn Arun D'sa

Download at Wow! eBook

WWW.WOWEBOOK.COM

About the Authors

Daniel Schneller works as a software developer, database administrator, and general
IT professional for an independent software vendor in the retail sector. After successfully
graduating from the University of Cooperative Education in Heidenheim, Germany with a
degree in Business Computer Science, he started his career as a professional software
developer, focused on the Microsoft technology stack. In 2002, he started focusing on
enterprise-level Java development and has since gained extensive knowledge and experience
implementing large scale systems based on Java EE and relational databases, especially
MySQL since version 4.0.

Currently, he is mostly involved with the ongoing development of framework-level
functionality, including customization and extension of an ORM-based persistence layer.
He is involved in different open source projects such as FindBugs, Eclipse, and Checkstyle,
and infrequently blogs about Java, MySQL, Windows, Linux, and other insanities at
http://www.danielschneller.com.

When I first was asked by Packt Publishing whether I would be interested in
writing a book about MySQL on Christmas Eve 2008 little did I know how much
work, stress, but also what a lot of fun I was headed for.

Now, that the book is finally done I would like to thank those people without
whom getting it done would have been impossible.

First of all, I'd like to thank Udo for agreeing to be my co-author. Without him,
this whole thing would have taken a lot longer and would have been not half as
useful as I believe it has turned out now.

I would also like to thank the team at Packt Publishing—most importantly
for noticing and reading my blog, consequently contacting me to get the
whole thing started—but also for taking care of schedules, providing support,
guidance and feedback, and keeping us on track the whole way.

Last, but by no means least, I want to thank Jenny—for encouraging me to
write a book in the first place, and then making sure I never ran out of tea,
cookies, or motivation on the countless evenings I spent sitting in front of the
keyboard instead of with her. I dedicate this book to her.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Udo Schwedt has over ten years of experience in the IT industry as a professional Java de-
veloper and software architect. He is head of the Java architecture team and deputy head of
the Java development department at the IT service provider for Germany's market leader in
the Do-It-Yourself sector.

He has been fascinated by computers since his childhood, and taught himself the basics of
programming during his school years. After graduating from school, he began his studies at
the RWTH Aachen, Germany, which he finished with a summa cum laude degree in computer
science, minoring in psychology with a focus on software ergonomics.

Udo started his career as a professional C, C++, and Java developer in a software company
that delivers leading solutions in the financial online transaction processing sector. In 2003,
he joined his current employer as a Java framework developer for a large-scale international
project, where he met Daniel. In the course of the project, he gained extensive experience in
using MySQL in a professional context.

For both Daniel and Udo, the common project involved the design and implementation of
a database infrastructure solution for a Java-based merchandise management software sys-
tem with tens of thousands of clients. The evaluation of different database systems and the
realization of the infrastructure made it necessary for them to delve into MySQL beyond the
typical utilization scenarios. The resulting decentralized multi-platform environment based on
more than 500 decentralized MySQL server instances with more than 5,500 replication
slaves bears challenges not covered by the standard MySQL documentation.

To the Packt Publishing team: Thank you for critiques, encouragement,
and organization.

To Daniel: Thank you so much for your confidence in me. I still feel honored
you asked me to co-author this book—you should know better by now!

To my parents: Thank you for supporting me from the very start and ever since.

To Katharina, Johannah, and Frida: Thank you for your support and all your
patience—I love you!

Download at Wow! eBook

WWW.WOWEBOOK.COM

About the Reviewers

Kai Seidler was born in Hamburg in 1970. He graduated from the Technical University
of Berlin with a Diplom Informatiker degree (Master of Science equivalent) in Computer
Science. In the 90s he created and managed Germany's biggest IRCnet server irc.fu-berlin.
de, and co-managed one of the world's largest anonymous FTP server ftp.cs.tu-berlin.de.
He professionally set up his first public web servers in 1993. From 1993 until 1998, he was
member of Projektgruppe Kulturraum Internet, a research project on net culture and network
organization. In 2002, he co-founded Apache Friends and created the multi-platform Apache
web server bundle XAMPP. Around 2005, XAMPP became the most popular Apache stack
worldwide. In 2006, his third book, Das XAMPP-Handbuch, was published by Addison Wesley.

Currently he's working as a Technology Evangelist for web-tier products at Sun Microsystems.

Marc Delisle is a member of the MySQL Developers Guild—which brings together
community developers—because of his involvement with phpMyAdmin. He started to
contribute to this popular MySQL web interface in December 1998, when he made the first
multi-language version. He has been actively involved with this software project since May
2001 as a developer and project administrator.

Marc has worked since 1980 at Cegep de Sherbrooke, Québec, Canada, as an application
programmer and network manager. He has also been teaching networking, security, and
PHP/MySQL application development. Marc lives in Sherbrooke with his wife and they enjoy
spending time with their four children.

Marc authored the first ever Packt Publishing book, Mastering phpMyAdmin for Effective
MySQL Management, and its revised editions. He also wrote Creating your MySQL
Database: Practical Design Tips and Techniques, again with Packt Publishing.

I would like to thank the fine team at Packt for their support in reviewing
this book.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Table of Contents
� 1
� 7

� 7
�

 14
� 15
� 19
�
 25
�
 28
� 41
� 44
� 48
� 50
�
 52

� 57
� 57
� 63
� 66
� 69
� 72
� 73
� 77
� 80
� 83

Download at Wow! eBook

WWW.WOWEBOOK.COM

ii

�

 86
� 91

� 91
�
 94
� 98
� 101
� 106
�
 111
�
 114
� 116
� 118
� 121
� 127
�

 135
� �

 141
� 144
� 148
� 150
� 151
� 153
�
 156
� 159
� 163

� 167
� 167
� 168
� 172
� 174
� 178
� 180
� 183
� 185
� 188

Download at Wow! eBook

WWW.WOWEBOOK.COM

iii

Table of Contents

� 192
� 197

�
 201
� 202
�
 205
� 209
� 213
� 217
� 218
� 220
� 223

� 225
� 226
� 226
� 230
� 234
� 236
� 238
� 240
�
 243
�
 247
� �

 256

� 259
� �

 263
� 266
� 268
� 272
� 277
� 281
� 285
� 290

Download at Wow! eBook

WWW.WOWEBOOK.COM

iv

�

 300

� 303
� 303
� �

 312
�
 313
� 315
� �

 327
� 331

� 335
� 335
� 336
� �

 341
� 342
� 343
�
 344
� 346
� 350

Download at Wow! eBook

WWW.WOWEBOOK.COM

Preface
MySQL is the most popular open-source database and is also known for its easy set up
feature. However, proper configuration beyond the default settings is still a challenge, along
with some other day-to-day maintenance tasks such as backup and restoring, performance
tuning, and server monitoring.

This book provides both step-by-step recipes and relevant background information on these
topics and more. It covers everything from basic to advanced aspects of MySQL administration
and configuration. All recipes are based on real-world experience and were derived from
proven solutions used in an enterprise environment.

What this book covers
Chapter 1, Replication: In this chapter, you will see how to set up MySQL replication, useful for
load balancing, online backups, and fail-over scenarios. Advanced replication scenarios using
the blackhole engine and streaming slave deployment are discussed beyond the basic topics.

Chapter 2, Indexing: You will be shown how to create, drop, and modify indexes, perhaps
the most important means of optimizing your MySQL servers' performance. Fulltext indexing,
clustered and non-clustered indexes are compared and presented with their respective
strengths and typical use cases. Moreover, you will learn how to identify duplicate indexes,
which can hinder your servers' performance.

Chapter 3, Tools: This chapter will get you acquainted with the MySQL Administrator and Query
Browser GUI Tools as well as the MySQL command-line client and how to use it in concert
with external scripts and tools. You will also see how to create custom diagrams for MySQL
Administrator and share connection profiles between multiple computers.

Chapter 4, Backing Up and Restoring MySQL Data: In this chapter, we introduce the basic
approaches to backing up your database and restoring data again. Advanced techniques like
on-the-fly compression, point in time recovery, avoiding extended lock situations, backup in
replication scenarios, and partial backup and restore are also covered.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Preface

2

Chapter 5, Managing Data: You will learn some tricks beyond the basic SQL commands,
which enable you to delete data in a highly efficient manner and insert data based on existing
database content, and how to import and export data to and from your database.

Chapter 6, Monitoring and Analyzing a MySQL Installation: We present approaches to
monitoring table space usage, and how to use database metadata to your advantage. Typical
performance bottlenecks and lock contention problems are discussed as well.

Chapter 7, Configuring MySQL: This chapter deals with MySQL configuration and how to best
leverage available settings to their full potential. Table space management, pool sizing, and
logging options are discussed along with platform-specific caveats and advanced installation
scenarios, such as multiple instances on one server.

Chapter 8, MySQL User Management: Management of MySQL user accounts is discussed in
detail throughout this chapter. Typical user roles with appropriate privileges and approaches
to restricting access sensibly are proposed. You will also learn how to regain access to your
database in case the administrative user credentials are lost.

Chapter 9, Managing Schemas: This chapter includes topics such as adding and removing
columns to and from tables and choosing a suitable storage engine and character set for
individual needs. Another recipe covers a technique to add a new primary key column to a
table already filled with data. Ways to manage and automate database schema evolution, as
part of a software life cycle are presented as well. And if you have always missed "ADD INDEX
IF NOT EXISTS", you will find a solution to this, too.

Appendix, Good to Know: In this final part of the book you can find several things that can turn
out useful in everyday situations, but did not fit the step-by-step recipe format naturally. Topics
range from choosing character sets to getting the most out of 32 bit address space limitations.

What you need for this book
This book was written using MySQL versions 5.0 and 5.1. Most recipes will work equally
well on either on of these versions. Older versions might work as well, but have not been
tested. You can download both versions of the MySQL server from http://dev.mysql.com.
You will find references to programs and tools not included in the MySQL server distribution.
These can be downloaded from their respective websites, named in the recipes. The "MySQL
GUI Tools"—MySQL Administrator and MySQL Query Browser—which are referenced multiple
times throughout the book—unfortunately have been declared End Of Life shortly before this
book was finished. Currently, there is no functionally equivalent successor to these tools.
"MySQL Workbench" is the new combined tool recommended on the MySQL website, but it
does not offer all features required to apply many of the recipes in this book. We recommend
you to download MySQL Administrator and MySQL Query Browser from the MySQL website's
archive area where they are still available. You will find them by just using the links printed in
this book.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Preface

3

Who this book is for
This book is for ambitious MySQL users as well as professional data center database
administrators. Beginners as well as experienced administrators will profit from this cookbook
and get fresh ideas to improve their MySQL environments. Detailed background information
will enable them to widen their MySQL horizon.

It does not cover SQL basics, how to install MySQL servers, or how to design a relational
database schema. Readers are expected to have a basic understanding of the SQL language
and database concepts in general.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Only use qualified statements and replicate-*-
table configuration options for intuitively predictable replication!"

A block of code is set as follows:

slave> create database sakila;
slave> use sakila;
slave> source /tmp/sakila_master.sql;
slave> CHANGE MASTER TO master_host='master.example.com', master_
port=3306, master_ user='repl', master_password='slavepass';
slave> START SLAVE;

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

slave> SHOW SLAVE STATUS\G
************************** 1. row ***************************
 ...
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 ...

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "You will see the familiar
messages about InnoDB filling up the data files and finally, the Ready for connections line".

Download at Wow! eBook

WWW.WOWEBOOK.COM

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7962_Code.zip to
directly download the example code.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the let us know link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Download at Wow! eBook

WWW.WOWEBOOK.COM

1
Replication

In this chapter, we will discuss:

f Setting up automatically updated slaves of a server based on a SQL dump

f Setting up automatically updated slaves of a selection of tables based on a SQL dump

f Setting up automatically updated slaves using data file copy

f Sharing read load across multiple machines

f Using replication to provide full-text indexing for InnoDB tables

f Estimating network and slave I/O load

f Limiting network and slave I/O load in heavy write scenarios using the blackhole
storage engine

f Setting up slaves via network streaming

f Skipping problematic queries

f Checking if servers are in sync

f Avoiding duplicate server IDs

f Setting up slaves to report custom information about themselves to the master

Introduction
Replication is an interesting feature of MySQL that can be used for a variety of purposes.
It can help to balance server load across multiple machines, ease backups, provide a
workaround for the lack of fulltext search capabilities in InnoDB, and much more.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

8

The basic idea behind replication is to reflect the contents of one database server (this
can include all databases, only some of them, or even just a few tables) to more than one
instance. Usually, those instances will be running on separate machines, even though this is
not technically necessary.

Traditionally, MySQL replication is based on the surprisingly simple idea of repeating the
execution of all statements issued that can modify data—not SELECT—against a single master
machine on other machines as well. Provided all secondary slave machines had identical data
contents when the replication process began, they should automatically remain in sync. This
is called Statement Based Replication (SBR).

With MySQL 5.1, Row Based Replication (RBR) was added as an alternative method for
replication, targeting some of the deficiencies SBR brings with it. While at first glance it may
seem superior (and more reliable), it is not a silver bullet—the pain points of RBR are simply
different from those of SBR.

Even though there are certain use cases for RBR, all recipes in this chapter will be using
Statement Based Replication.

While MySQL makes replication generally easy to use, it is still important to understand
what happens internally to be able to know the limitations and consequences of the actions
and decisions you will have to make. We assume you already have a basic understanding of
replication in general, but we will still go into a few important details.

Statement Based Replication
SBR is based on a simple but effective principle: if two or more machines have the same set
of data to begin with, they will remain identical if all of them execute the exact same SQL
statements in the same order.

Executing all statements manually on multiple machines would be extremely tedious and
impractical. SBR automates this process. In simple terms, it takes care of sending all the
SQL statements that change data on one server (the master) to any number of additional
instances (the slaves) over the network.

The slaves receiving this stream of modification statements execute them automatically,
thereby effectively reproducing the changes the master machine made to its data originally.
That way they will keep their local data files in sync with the master's.

One thing worth noting here is that the network connection between the master and its
slave(s) need not be permanent. In case the link between a slave and its master fails, the
slave will remember up to which point it had read the data last time and will continue from
there once the network becomes available again.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

9

In order to minimize the dependency on the network link, the slaves will retrieve the binary
logs (binlogs) from the master as quickly as they can, storing them on their local disk in
files called relay logs. This way, the connection, which might be some sort of dial-up link,
can be terminated much sooner while executing the statements from the local relay-log
asynchronously. The relay log is just a copy of the master's binlog.

The following image shows the overall architecture:

...

binlog

INSERT (1)
UPDATE (2)
DELETE (3)
UPDATE (4)

...

[mysqld]
"only do (1) +

(4)"

INSERT (1)
UPDATE (2)
DELETE (3)
UPDATE (4)

...

[mysqld]
"only do (2) +

(3)

The relay log is
written to disk as
statements
arrive. It is as big
as the master's
binlog.

The slaves can
be set up to
only apply a
subset of the
relay log.

INSERT (1)
UPDATE (2)
DELETE (3)
UPDATE (4)

...

[mysqld]
.....
......

The binlog
contains all
statements that
modify data on
the master.

The binlog is sent to
all slaves over the
network
individually.

Network Links to the master
may go down temporarily.
Affected slaves will fall behind,
but catch up automatically
when the connection is re-
established.

The over all amount
of data sent is the
binlog size times the
number of slaves.

Statement Based Replication

Master Server

Master DB

Files

INSERT (1)

UPDATE (2)

DELETE (3)

UPDATE (4)

NetWork

Slave Server 1

Slave Server 2

Slave Server n

relay-Log

relay-Log

relay-Log

my.cnf

my.cnf

my.cnf

Slave DB 1

Files

Slave DB 2

Files

Slave DB n

Files

Filtering
In the image you can see that each slave may have its individual configuration on whether it
executes all the statements coming in from the master, or just a selection of those. This can
be helpful when you have some slaves dedicated to special tasks, where they might not need
all the information from the master.

All of the binary logs have to be sent to each slave, even though it might then decide to
throw away most of them. Depending on the size of the binlogs, the number of slaves and
the bandwidth of the connections in between, this can be a heavy burden on the network,
especially if you are replicating via wide area networks.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

10

Even though the general idea of transferring SQL statements over the wire is rather
simple, there are lots of things that can go wrong, especially because MySQL offers some
configuration options that are quite counter-intuitive and lead to hard-to-find problems.

For us, this has become a best practice:

"Only use qualified statements and replicate-*-table configuration options for intuitively
predictable replication!"

What this means is that the only filtering rules that produce intuitive results are those based
on the replicate-do-table and replicate-ignore-table configuration options. This
includes those variants with wildcards, but specifically excludes the all-database options like
replicate-do-db and replicate-ignore-db. These directives are applied on the slave
side on all incoming relay logs.

The master-side binlog-do-* and binlog-ignore-* configuration directives influence
which statements are sent to the binlog and which are not. We strongly recommend against
using them, because apart from hard-to-predict results they will make the binlogs undesirable
for server backup and restore. They are often of limited use anyway as they do not allow
individual configurations per slave but apply to all of them.

For these reasons you will not find any use of these options in this book.

Setting up automatically updated slaves of
a server based on a SQL dump

In this recipe, we will show you how to prepare a dump file of a MySQL master server and use
it to set up one or more replication slaves. These will automatically be updated with changes
made on the master server over the network.

Getting ready
You will need a running MySQL master database server that will act as the replication master
and at least one more server to act as a replication slave. This needs to be a separate MySQL
instance with its own data directory and configuration. It can reside on the same machine
if you just want to try this out. In practice, a second machine is recommended because this
technique's very goal is to distribute data across multiple pieces of hardware, not place an
even higher burden on a single one.

For production systems you should pick a time to do this when there is a lighter load on the
master machine, often during the night when there are less users accessing the system.
Taking the SQL dump uses some extra resources, but unless your server is maxed out already,
the performance impact usually is not a serious problem. Exactly how long the dump will take
depends mostly on the amount of data and speed of the I/O subsystem.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

11

You will need an administrative operating system account on the master and the slave servers
to edit the MySQL server configuration files on both of them. Moreover, an administrative
MySQL database user is required to set up replication.

We will just replicate a single database called sakila in this example.

Replicating more than one database
In case you want to replicate more than one schema, just add their
names to the commands shown below. To replicate all of them, just
leave out any database name from the command line.

�

 Restart the master server if you need to modify the configuration.

4. Create a user account on the master that can be used by the slaves to connect:
master> grant replication slave on *.* to 'repl'@'%' identified by
'slavepass';

5. Using the mysqldump tool included in the default MySQL install, create the initial copy
to set up the slave(s):

 $ mysqldump -uUSER -pPASS --master-data --single-transaction
 sakila > sakila_master.sql

6. Transfer the sakila_master.sql dump file to each slave you want to set up, for
example, by using an external drive or network copy.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

12

�

 �

 Verify the slave is running with:

slave> SHOW SLAVE STATUS\G

************************** 1. row ***************************

 ...

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 ...

How it works...
Some of the instructions discussed in the previous section are to make sure that both master
and slave are configured with different server-id settings. This is of paramount importance
for a successful replication setup. If you fail to provide unique server-id values to all your
server instances, you might see strange replication errors that are hard to debug.

Moreover, the master must be configured to write binlogs—a record of all statements
manipulating data (this is what the slaves will receive).

Before taking a full content dump of the sakila demo database,
we create a user account for the slaves to use. This needs the
REPLICATION SLAVE privilege.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

13

Then a data dump is created with the mysqldump command line tool. Notice the provided
parameters --master-data and --single-transaction. The former is needed to have
mysqldump include information about the precise moment the dump was created in the
resulting output. The latter parameter is important when using InnoDB tables, because only
then will the dump be created based on a transactional snapshot of the data. Without it,
statements changing data while the tool was running could lead to an inconsistent dump.

The output of the command is redirected to the /tmp/sakila_master.sql file. As the
sakila database is not very big, you should not see any problems. However, if you apply this
recipe to larger databases, make sure you send the data to a volume with sufficient free disk
space—the SQL dump can become quite large. To save space here, you may optionally pipe
the output through gzip or bzip2 at the cost of a higher CPU load on both the master and
the slaves, because they will need to unpack the dump before they can load it, of course.

If you open the uncompressed dump file with an editor, you will see a line with a CHANGE
MASTER TO statement. This is what --master-data is for. Once the file is imported on a
slave, it will know at which point in time (well, rather at which binlog position) this dump was
taken. Everything that happened on the master after that needs to be replicated.

Finally, we configure that slave to use the credentials set up on the master before to connect
and then start the replication. Notice that the CHANGE MASTER TO statement used for that
does not include the information about the log positions or file names because that was
already taken from the dump file just read in.

From here on the slave will go ahead and record all SQL statements sent from the master,
store them in its relay logs, and then execute them against the local data set.

This recipe is very important because the following recipes are
based on this! So in case you have not fully understood the above
steps yet, we recommend you go through them again, before trying
out more complicated setups.

See also
f Avoiding duplicate server IDs

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

14

Setting up automatically updated slaves of
a selection of tables based on a SQL dump

Often you might not need to replicate everything, but only a subset of tables in a database.
MySQL allows exercising fine-grained control over what to replicate and what to ignore.
Unfortunately, the configuration settings are not as obvious as they might seem at first glance.

In this recipe, you will see how to replicate only a few select tables from a database.

Getting ready
The setup for this recipe is the same as for the previous one, Setting up automatically
updated slaves of a server based on a SQL dump. Only the configuration options on the
slave need to be changed. So instead of repeating everything here, we just present the
important differences.

How to do it...
�

 Go on with the steps of the previous recipe
up to the point where it tells you to edit the slave machine's configuration. Change the
configuration as follows instead in the [mysqld] section:
server-id=1001

replicate-wild-ignore-table=sakila.%

replicate-do-table=sakila.address

replicate-do-table=sakila.country

replicate-do-table=sakila.city

3. Continue with the rest of the instructions as in the Setting up automatically updated
slaves of a server based on a SQL dump recipe.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

15

How it works...
The SQL dump file taken on the master is limited to three tables: address, country, and
city. The slave's configuration also tells it to only execute statements coming from the
master that targets one of these three tables (replicate-do-table directives), while
overtly ignoring any other changes in the sakila database (replicate-wild-ignore-
table). Even though all other statements are still retrieved from the master and stored
temporarily in the relay log files on the slave, only those with modifications to one of the three
tables explicitly configured are actually run. The rest are discarded.

You can choose any subset of tables, but you need to make sure to take Foreign key
relationships between tables into account. In this example, the address table has a
reference to the city table via the city_id column, while city in turn has a relationship
with country. If you were to exclude either one of the latter and your storage engine on the
slave was InnoDB, replication would break because of Foreign key violations when trying to
insert an address, since its dependencies were not fulfilled.

MySQL does not help you in this respect; you must make sure to identify all tables and their
relationships manually before setting up the replication.

There's more...
In this example, we clearly specified three tables by their full names. There are more options
available, not only to include but also to exclude tables. See the MySQL online manual's
chapter 16.1.3.3 on Replication Slave Options and Variables for more information on these at
http://dev.mysql.com/doc/refman/5.1/en/replication-options-slave.html.

Setting up automatically updated slaves
using data file copy

Even though replication is designed to keep your data in sync, circumstances might require
you to set up slaves afresh. One such scenario might be severely changing the master data,
making replication too expensive. Using a SQL dump to re-initialize the slaves might be too
time-consuming, depending on the size of the data set and the power of the slave machines.

In cases where master and slave databases are the same size anyway (meaning, you do not
have filters in place to sync data only partially) and if you can afford a downtime on the master
database, there is another way of providing slaves with a fresh starting point: copying the
master's data files to the slave.

Beware that this approach will lose all data that was changed
on the slave alone. So make sure that this is what you want!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

16

Getting ready
To follow along with this recipe you will need privileges to shut down both master and slave
MySQL instances and access the data and log directories on both machines. Depending on
the size of your database you will have to judge which method of copying will be the best
between the machines. If both are part of a local area network, copying via a shared drive
or something like FTP will probably be the fastest way. You might, however, need to resort to
other means of data transfer like external hard disks or the like, when only limited bandwidth
is available.

Moreover, you will need administrative MySQL user accounts on both sides to execute the
necessary statements to control replication.

�

 Change the value of that setting to
a different name. In this example, we will use log-bin=new-master-bin. This will
cause the master MySQL server to start with a new sequence of binlogs upon its next
launch, making a convenient starting point for the replication.

� Shut down the master database.

�

 Stop the slave server.

8. You can restart the master once the original data and transaction log files have been
copied. Make sure it starts with a new sequence of binlogs called
new-master-bin.000001.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

17

� Write down
the names and sizes of InnoDB data and log files you copied to the slave. These will
have to be entered into the slave's configuration because, otherwise, InnoDB will not
start up. Also, pay attention to an autoextend option, which the last of the data files
might have attached. Make sure you carry over this option, should it be there on the
master. You can also take these values from the master's configuration file, of course.

�

 Make sure you delete the master.info file
and any relay-logs from the slave—those do not match the current state anymore and
would cause trouble when the slave is restarted.

�

 Re-initialize the replication on the slave.
This is rather easy because we altered the master's configuration to log any changes
that occurred after the snapshot copy was taken to a new series of binlog files. Fill in
the appropriate host name, user, and password values for your master:
slave> CHANGE MASTER TO MASTER_HOST='master', MASTER_USER='repl',
MASTER_PASSWORD='slavepass', MASTER_LOG_FILE='new-master-
bin.000001';

slave> START SLAVE;

As we want the slave to start reading the new-master-bin.000001 file from the
beginning, no MASTER_LOG_POS has to be specified.

� Verify whether the slave is running with:

slave> SHOW SLAVE STATUS\G

************************** 1. row ***************************

 ...

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 ...

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

18

How it works...
The principle of this recipe is very simple: replication needs a common starting point on
master and slave. What could be better than a 1:1 copy of the original master's data? As the
master is shut down during the process, no more writes can happen. Configuring it to start
with a new binlog file on its next start makes it trivial to point the slave to the right position
because it is right at the new file's beginning.

If you cannot change the master binlogs' file names, the process is slightly more complicated.
First you need to make sure nobody can modify any data for a short period of time. You do so
with a FLUSH TABLES WITH READ LOCK; statement. Then issue a SHOW MASTER STATUS;
and note the values. Now, without closing the client connection or releasing the lock, shut
down the master server. Only if the lock is kept while shutting down the master can you be
sure no write operations take place and invalidate the binlog position you just gathered.

Copy the data and transaction log files as described above. The remaining steps are the
same, except of course, when you issue the CHANGE MASTER TO on the slave. Here you
need to insert the MASTER_LOG_FILE and MASTER_LOG_POS you got from SHOW
MASTER STATUS.

There's more...
The steps described above require you to take down both master and slave databases, albeit
not necessarily at the same time. Nevertheless, this might not be an option if you are dealing
with a production system that cannot be shut down easily.

In these cases, you have some other options that are, however, not explained in detail here.

Conserving data file by using LVM snapshots
If your data and log files are stored on a logical volume managed by LVM, you can use its
snapshot feature to conserve the data files' state once you have got the SHOW MASTER
STATUS information. As soon as the snapshot has been taken, you can release the lock again
and proceed as described above, copying not the most current version but the snapshot files.
Be advised, however, that this approach might take a significant hit on the I/O performance of
you master!

Backing up data using Percona xtrabackup
At the time of writing, an open-source alternative to the commercially available innobackup
tool (available from http://www.innodb.com/products/hot-backup/) is under active
development. While being primarily a backup tool that allows backing up InnoDB databases
while the server is up and running, the documentation contains a (currently empty) section on
setting up a slave from a backup in replication. Experience tells that Percona—the company

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

19

behind xtrabackup—is very engaged in the MySQL ecosystem and might very well have
completed its set of instructions by the time you read this. To check on the current status of
the project go to https://launchpad.net/percona-xtrabackup.

Sharing read load across multiple machines
Often you have a very unequal distribution of read and write operations on a database.
Websites usually get many more visitors just browsing and reading contents than actually
contributing contents. This results in the database server being mainly busy reading
information instead of adding or modifying existing material.

Replication can be used to alleviate scalability issues when your site reaches a certain size
and a single machine might reach the limits of its performance reserves.

Unfortunately, MySQL does not offer this load-balancing functionality itself, so you will need to
take appropriate actions on the application level.

In this recipe, we will show you the general procedure to follow when sharing read accesses
between two slave machines while still aiming writes at the master. Beware that due to the
asynchronous nature of MySQL replication, your application must be able to handle slightly
out-of-date results because issuing an INSERT, UPDATE, or DELETE against the master will
not mean that you can read the modified data back immediately as the slave might take some
time to catch up. Usually, on a local network this should be a couple of seconds at most, but
nevertheless the application code must be ready for that.

To simplify the scheme, you should design your application to exclusively read from the slaves
and only use the master for modifications. This brings the additional benefit of being able
to keep the overall system up and running while switching to a read-only mode temporarily,
backing up the master server. This is not part of this recipe, however.

The example used in this recipe uses three database servers. The sample application is
written in Java, using the MySQL Connector/J JDBC database driver. Depending on what
application platform you are using, syntax and function names will differ, but the general
principle is language independent.

The source code shown later has been abbreviated to show only
the most relevant portions. You can find the complete file on the
book's website.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

20

Getting ready
Depending on your application infrastructure, you will need privileges to change its
database connectivity configuration and the source code. This is usually a task that requires
cooperation with application developers.

To follow along with this example you should be familiar with the Java language and its
basic constructs.

Moreover, you will need three MySQL servers—one configured as the master and two others as
slaves. They will be referred to as master, slave1, and slave2 in this example. Substitute your
concrete host names appropriately.

You will also need the Java Standard Edition development tools available from
http://java.sun.com, and the MySQL Connector/JDBC driver available from
http://dev.mysql.com. Download and install both if you do not already have them.

How to do it...
1. Download the file called MySQLBalancingDemo.java from the book's website. It

contains the following code:

 …

Connection conn = driver.connect("jdbc:mysql://master:3306,slave1:
3307,slave2:3308/sakila?user=testuser&password=testpass&roundRobin
LoadBalance=true", null);

conn.setReadOnly(false); // target the MASTER

rs = conn.createStatement().executeQuery(

 "SELECT @@server_id;");

rs.next();

System.out.println("Master: " + rs.getString(1));

conn.setReadOnly(true); // switch to one of the slaves

rs = conn.createStatement().executeQuery(

 "SELECT @@server_id;");

rs.next();

System.out.println("Slave: " + rs.getString(1));

conn.close();

 …

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

21

2. Compile the file using the javac compiler. Alternatively, an integrated development
environment like Eclipse or Netbeans can take care of this for you:
$ javac -cp mysql-connector-java-5.1.7-bin.jar MySQLBalancingDemo.
java

3. Run the sample application and see how it automatically distributes the read requests
between the two slaves:
$ java -cp .:mysql-connector-java-5.1.7-bin.jar MySQLBalancingDemo

Master: 1000

Slave: 13308

How it works…
You just compiled and ran a small program that demonstrates round-robin load balancing.

The first line of output is the master's server-ID setting, because the first connection
was not set to read only. The connection is then declared to be targeted at the slaves via
setReadOnly(true). The next query will then return the server ID of the particular slave
it was balanced to. You might need to run the demo a few times to see a different slave being
used because the algorithm that balances the load does not strictly toggle each time, but
might direct a few connections against the same slave.

There's more...
While the JDBC driver makes it relatively easy to use read load balancing across several
slaves, it only helps you take the first step on the way. You must take care that the application
knows which connection to use for write operations and which for read. It must also cope
with slaves and master possibly being slightly out of sync all the time. Concentrating that
this special logic in a class of its own, is advisable to limit the effect on the rest of
the application.

Working with connection pools
When working with connection pooling, be sure to initialize any connection you get to the
correct mode using the setReadOnly() method, to be sure you know what state it is in.
You might be handed a connection that was set to the wrong mode when it was put back
into the pool.

Working on other programming environments
In development environments not using Java, you might have to take care of managing the
cycling between slaves yourself. Independent of the actual language or environment you are
using, a good practice is to channel all database operations through a set of functions or
methods that centrally manage the balancing. You could provide functions that handle

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

22

INSERT, UPDATE, and DELETE operations, always connecting to the master and a SELECT
function going to the slaves for data reads.

In case you need to select something back that you just wrote and cannot allow for the
replication lag, you might also provide a read function querying the master machine. You
should use this sparingly, however, because it definitely counteracts the intention of relieving
the master from the read load.

Considering efficiency while adding slaves
Of course, the slaves have to perform write operations as well to keep up with the master. This
means their performance is not fully available for reads, limiting scalability.

So adding more slaves does not proportionally improve performance of the overall system.

Using replication to provide full-text
indexing for InnoDB tables

The InnoDB storage engine is the one most commonly used nowadays because it provides
more enterprise-level features than MyISAM and most other engines. However, InnoDB tables
do have a major drawback: they do not support full-text indexing. This can be a significant
obstacle when you have to design any sort of application that relies on atomic operations and
must store text data in a searchable manner.

While there are third-party products available to redress this shortcoming, there are times you
may need to refrain from using these and stick to the out-of-the-box functionality. If you are
willing to provide an additional server and make slight adjustments to your application code,
replication can help you provide a full-text index for InnoDB tables indirectly.

This recipe is similar to the one about Sharing read load across multiple machines in this
chapter. In contrast, only queries that are targeted at the full-text index need to be sent to
a slave machine. This will require slight changes to the application code.

Getting ready
To follow along with this recipe, you will need two MySQL servers available—a master and
a slave. For testing, these might reside on the same physical machine. In a production
environment we do, however, recommend two separate pieces of equipment.

They will be referred to as master and slave in this example. Substitute your concrete host
names appropriately.

You will need privileges to change the application source code. This is usually a task that
requires cooperation with the application developers.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

23

�
 On the master, identify the table that contains

the column(s) that you want to equip with a full-text index. In this example, we use the
following table definition from a fictional forum application of some sort:
�

 Modify your
application to access the slave when doing full-text queries. It is generally considered
a good practice to concentrate all database access to a dedicated module or class,
so that you can easily modify your application's interaction with the underlying data
store.

How it works...
In this replication setup, whenever you make changes to the master's posts table, those
will be replicated to the slave, but the target table uses a different storage engine than
the master. As SBR simply sends over SQL statements without any information about
the origin, the slave will execute the instructions blindly. While this can be a problem in
other circumstances because it makes the whole process somewhat fragile, it plays to our
advantage in this case.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

24

Upon UPDATE or INSERT to the posttext column the MyISAM engine will update the
full-text index appropriately. This enables the application to issue queries using the full-text
query syntax against the slave.

An important drawback you must take into account is that you
cannot JOIN tables between different MySQL servers!

A workaround is required when you have to, for example, join the posts with a user accounts
table via the posts.id column. To implement this you will need to issue two separate
queries. The first one using the full-text search on the slave will bring up all posts containing
the search terms. From the resulting rows you can then take the id column values and run a
second query against the master database, substituting the text search with an id lookup.

There's more...
MyISAM's full-text index has existed for several years, but has not been improved a great deal
over time. If you have many concurrent requests you will notice significant resource usage,
limiting scalability.

Over the past few years, several third-party vendors have stepped up with alternative solutions
to the problem of full-text search, offering more features and better performance.

One of those products, offering tight integration with MySQL and PHP, is Sphinx—an open-source
product available for free from http://www.sphinxsearch.com. If you find that MySQL's
built-in capabilities are either too slow or too limited in other respects to meet your application's
requirements, you should definitely have a look at it.

Setting up new slaves in this scenario
You should not simply use a regular SQL dump to initialize the slave, as it will contain a create
table statement that specifies InnoDB and does not include the full-text index. Of course,
you could change the table type after the import is complete. However, this can be time
consuming. Instead, we recommend you first create the target schema on the slave, making
sure the tables in question are created with ENGINE=MyISAM.

Then go ahead and import the data into the table. Only after that, add the full-text index.
This is typically much faster than having the index in place beforehand because MySQL must
then update it all the way through the bulk insert of rows. This is a very expensive operation
compared to the delayed index creation.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

25

See also
f Adding a full-text index in Chapter 2

Estimating network and slave I/O load
Especially when using replication over a wide-area network connection with limited bandwidth,
it is interesting to be able to predict the amount of data that needs to be transported between
master and slaves.

While MySQL does not use the most efficient strategy to deliver data, it is at least relatively
easy to calculate the requirements in advance.

This is less of a step-by-step recipe than an annotated walkthrough of the basic formula that
can be used to estimate the traffic you will have to be prepared for.

Getting ready
In order to follow along, you must have some key data points available because otherwise
there is not much to calculate. You will need:

f The number of slaves (to be) connected to the master.

f An idea about the average amount of binlogs written when using the master under
regular load. Knowing about peak times can be interesting as well.

f The bandwidth of the connection between master and slaves. This includes the speed
of the network interfaces on the master and, in general, the whole route between
them (possibly including Internet connections).

We assume that there are no other network-intensive applications running on the master or
slaves, so that practically all the speed your network card can provide is usable for MySQL.

In this example, we will keep matters simple, assuming the following:

Data point Value
Master's Connectivity Gigabit LAN interface (approx. 100MB/s)
Slaves' Connectivity 2MBit/s DSL line, of which 1MBit/s can be

assumed available for MySQL. 1MBit/s comes
down to approximately 100kb/s.

Average amount of binlogs created on master 175MB per hour, approx. 50kb/s.
Number of Slaves 5
Speed of the slowest link in the connection
between Master and Slaves.

Master is connected to the Internet via a
10MBit/s connection, approx. 1MB/s.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

26

�
 Check the master's network speed: Multiply the

number of slaves with the average amount of binlogs: 5x175MB/hour = 875MB/hour
or about 250kb/second. The gigabit connection can handle this easily.

� Check individual slaves' network speed: The 1MBit portion of
the DSL line is sufficient for an average amount of data of 50kb/second. Often binlog
production is not linear over time—there might be peaks, but there is still a reserve.

�

 Disk I/O load on each slave, caused by the replication, is
the amount of relay logs being written. This is equivalent to the amount of binlogs the
master produces. Provided the slave's I/O is not already saturated by other things, an
additional 175MB per hour should not pose a problem either.

How it works...
Basically, replication simply needs sufficient resources to copy the master's binlogs to the
slaves. This really all there is to it. Depending on the network route between them this can
be easily done (say most LANs), or can be tricky (as in cases with slow Internet connections).

In this example, we see there should be no problem on any part of the system, as there is
still room for a higher load on each resource. The most limiting factor in this scenario seems
to be the master's outgoing Internet connection. If you add more slaves to the scenario, each
new one will add another 50KB per second of outgoing bandwidth. Assuming replication can
use the full 1MB/s outgoing speed, which is not very realistic, that part of the route could
theoretically service 20 slaves at most. In reality, it will be more like 10 to 15.

There's more...
There are two more general considerations you might want to think about when planning
a replication setup.

Handling intermittent connectivity between master and slave
If the connection between master and slaves is only available for a limited period of time,
the slaves will start to lag behind while disconnected. The slaves will download new data
as quickly as possible when the connection is resumed and store it locally in the relay logs,
asynchronously executing the statements. So expect higher network load during these times.

You will also want to take that into account when there are multiple slaves trying to catch up
at the same time. Under such circumstances, the route between master and slaves might
become saturated more quickly.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

27

Enabling compression with the slave_compressed_protocol
option
Particularly useful for low bandwidth connections between master and slaves is the
compression feature for replication traffic. Provided it is switched on on both master and
slave machines, it can significantly reduce the amount of data that is actually transferred
over the network at the cost of increased CPU loads. The master will then send out the binlog
information in a compressed format.

In a simple comparison, measuring the network traffic while creating and loading the sakila
sample database, 3180kb of binlogs were created. However, with the compressed protocol
switched on, only about 700KB of data per slave were sent over the network.

To enable compression, add the following line to the [mysqld] section in the configuration
files on both master and slave:

slave_compressed_protocol=1

Then restart the servers to enable the feature. Verify whether it was switched on successfully
by issuing a SHOW VARIABLES LIKE 'slave_compressed%'; command on both master
and slaves.

You can achieve a similar effect with SSH compression. As we generally do not recommend
replicating over the Internet without encryption, that option might even be more appealing in
such scenarios as it does not require any configuration changes to MySQL.

Naturally, the level of compression heavily depends on the data you
are handling. If you store JPEG images in BLOB fields, for example,
those cannot be compressed much more than they already are!

See also
f Encrypting a MySQL server connection with SSH in Chapter 3

f Creating an encrypted MySQL console via SSH in Chapter 3

f Using a PuTTY template connection for SSH secured connections in
Chapter 3

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

28

Limiting network and slave I/O load in heavy
write scenarios using the blackhole
storage engine

If you have a large number of slaves and a rather busy master machine, the network load
can become significant, even when using compression. This is because all statements that
are written to the binlog are transferred to all the slaves. They put them in their relay logs and
asynchronously process them.

The main reason for the heavy network load is the filter on the slave paradigm that MySQL
employs. Everything is sent to every one of the slaves and each one decides which statements
to throw away and which to apply based on its particular configuration. In the worst case, you
have to transmit every single change to a database to replicate only a single table.

Getting ready
The following procedure is based on Linux. So in order to repeat it on Windows, you need to
adapt the path names and a little shell syntax accordingly.

To follow along, you will need a MySQL daemon with the blackhole storage engine enabled.
Verify this with the following command:

mysql> show variables like '%blackhole%';

Even though you only strictly need a blackhole-enabled MySQL server on the actual filter
instance, for this example we will be using only a single machine and just a single server
version, but with different configuration files and data directories.

In the following steps, we assume you have installed a copy of MySQL in a folder called
blacktest in your home directory. Modify accordingly if your setup differs.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

29

�

 Into each of those, copy the MySQL accounts database.
Ideally, you should take an empty one from a freshly downloaded distribution to make
sure you do not accidentally copy users you do not want.
~/blacktest$ cp -R data/mysql data.master

~/blacktest$ cp -R data/mysql data.slave

~/blacktest$ cp -R data/mysql data.black

3. Configure the master instance. To do so, create a configuration file called my.master
and make sure that it contains the following settings:
[client]

 port = 3307

socket = /home/ds/blacktest/master.sock

[mysqld_safe]

socket = /home/ds/blacktest/master.sock

[mysqld]

user = mysql

pid-file = /home/ds/blacktest/master.pid

socket = /home/ds/blacktest/master.sock

 port = 3307
basedir = /home/ds/blacktest

datadir = /home/ds/blacktest/data.master
tmpdir = /tmp

language = /home/ds/blacktest/share/mysql/english

bind-address = 127.0.0.1

server-id = 1

log-bin = /home/ds/blacktest/master-bin.log

Everything that is specific to the master instance has been highlighted—those values
are going to be different for filter and slave instances.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

30

4. Start the master daemon for the first time to make sure everything works so far. We
recommend a dedicated window for this daemon. For example:
~/blacktest$ xterm -T MASTER -e bin/mysqld \

> --defaults-file=my.master \

> --console &

This will start the daemon in the background and show its output in a new window:

The warning about the --user switch can be ignored for now. Should you not
get a message very similar to the one above (especially concerning the ready for
connections part) go back and find the error in your setup before going on. Usually,
the error messages issued by MySQL are rather verbose and bring you back on track
pretty soon.

5. Insert some test data to be able to verify the correct function of the filter later. To do so,
connect to the master instance just started and create some tables and data:
~/blacktest$ bin/mysql -uroot -S master.sock --prompt='master>'

master> CREATE DATABASE repdb;

master> USE repdb;

master> CREATE TABLE tblA (

 -> id INT(10) PRIMARY KEY NOT NULL,

 -> label VARCHAR(30)

 ->) ENGINE=InnoDB;

master> CREATE TABLE tblB (

 -> name VARCHAR(20) PRIMARY KEY NOT NULL,

 -> age INT(3)

 ->) ENGINE=InnoDB;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

31

�

 Create a user account on the master for the filter to connect with:
master> GRANT REPLICATION SLAVE

 -> ON *.*

 -> TO 'repblack'@'localhost'

 -> IDENTIFIED BY 'blackpass';

7. Configure the filter (blackhole) instance with a configuration file named my.black that
contains at least the following :
[client]

port = 3308

socket = /home/ds/blacktest/black.sock

[mysqld_safe]

socket = /home/ds/blacktest/black.sock

[mysqld]

log-slave-updates

skip-innodb

default-storage-engine=blackhole

user = mysql

pid-file = /home/ds/blacktest/black.pid

socket = /home/ds/blacktest/black.sock
port = 3308
basedir = /home/ds/blacktest

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

32

�

 Create a set of dump files from the master
to set up both the blackhole filter and an example slave. The details on why we need
two and in which ways they are different will be explained later. Use these commands
to create the files needed:
~/blacktest$ bin/mysqldump -S master.sock -uroot \

> --master-data \

> --single-transaction \

> --no-create-info \

> --ignore-table=repdb.tblA \

> repdb > master_data.sql

~/blacktest$ bin/mysqldump -S master.sock -uroot \

> --no-data \

> repdb > master_struct.sql

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

33

�

 Set up the replication between master and filter engine. To do so, we
need to know the exact position from where the filter will start replicating. Extract this
information from the previously taken data dump like this:

�

 Restart the filter engine to activate the new configuration:
~/blacktest$ bin/mysqladmin -uroot -S black.sock shutdown

~/blacktest$ xterm -T BLACK -e bin/mysqld \

> --defaults-file=my.black \

> --console &

14. Reconnect the client connected to the blackhole engine. To do this, just issue a
SELECT 1; command.

15. Execute the following command to hook up the filter to the master. Be sure to fill in the
values you wrote down a moment ago in the statement:
black> CHANGE MASTER TO

 -> master_host='localhost',

 -> master_port=3307,

 -> master_user='repblack',

 -> master_password='blackpass',

 -> master_log_file='master-bin.000001',

 -> master_log_pos=1074;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

34

16. Retrieve information required to set up the filter/slave portion. Write down the results
of the SHOW MASTER STATUS command, they will be needed later:
black> FLUSH LOGS;

black> SHOW MASTER STATUS;

+------------------+----------+---+---+

| File | Position | … | … |

+------------------+----------+---+---+

| black-bin.000003 | 98 | | |

+------------------+----------+---+---+

17. Start the slave thread on the filter engine and verify that everything is going well:
black> START SLAVE;

black> SHOW SLAVE STATUS \G

************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: localhost

 Master_User: repblack

 Master_Port: 3307

 Connect_Retry: 60

 Master_Log_File: master-bin.000001

 Read_Master_Log_Pos: 1074

 Relay_Log_File: black-relay.000003

 Relay_Log_Pos: 236

 Relay_Master_Log_File: master-bin.000001

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 ...

 Replicate_Do_Table: repdb.tblB

 Replicate_Ignore_Table: repdb.tblA

 ...

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 1074

 Relay_Log_Space: 236

 ...

 Seconds_Behind_Master: 0

At this point we have successfully established a replication connection between the
master database and the blackhole-based filter instance.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

35

� Check that nothing has yet been written to
the filter's binlogs. Because we issued a FLUSH LOGS command on the filter instance,
there should be nothing in the most recent binlog file. Verify this as follows:
~/blacktest$ bin/mysqlbinlog black-bin.000003

� Test the filter setup with some statements issued on the master:
master> UPDATE repdb.tblA

 -> SET label='modified label 3'

 -> WHERE id=3;

master> INSERT INTO repdb.tblB

 -> VALUES ('John', 39);

We would expect to see the INSERT in the binlog file of the filter instance, but not the
UPDATE statement, because it modifies tblA, which is to be ignored.

20. Verify that the rules work as expected by having another look at the filter's binlogs:
~/blacktest$ bin/mysqlbinlog black-bin.000003

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

36

This looks precisely as expected—the INSERT is present, the UPDATE is nowhere to
be seen.

� Set up the configuration of a slave using these settings:
[client]

port = 3309
socket = /home/ds/blacktest/slave.sock

[mysqld_safe]

socket = /home/ds/blacktest/slave.sock

[mysqld]

user = mysql

pid-file = /home/ds/blacktest/slave.pid
socket = /home/ds/blacktest/slave.sock
port = 3309

basedir = /home/ds/blacktest

datadir = /home/ds/blacktest/data.slave
tmpdir = /tmp

language = /home/ds/blacktest/share/mysql/english

bind-address = 127.0.0.1

server-id = 3

relay-log = /home/ds/blacktest/slave-relay.log

Notice that all occurrences of master have been replaced
with slave!

Again the server-id setting has been changed and the log-slave-updates,
skip-innodb, and default-storage-engine options that were part of the filter
instance's configuration are not included. Also, the log-bin parameter has been
removed because changes on the slave need not be recorded separately.

22. Start up the slave engine. You will see the familiar messages about InnoDB filling up
the data files and finally, the Ready for connections line:
~/blacktest$ xterm -T SLAVE -e bin/mysqld \

> --defaults-file=my.slave \

> --console &

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

37

� Then connect a client to the slave and create the database:
~/blacktest$ bin/mysql -uroot -S slave.sock --prompt='slave> '

slave> CREATE DATABASE repdb;

slave> USE repdb;

At this point, the slave is set up and has an empty repdb database.

24. Fill up the slave database with the initial snapshot of the master. We need to load two
files here. The details of why are explained further down in the How it works... section.
slave> source master_struct.sql;

...

slave> source master_data.sql;

...

25. Verify that you can find the data from the master on the slave now by doing a SELECT
* FROM first table repdb.tblA and then repdb.tblB.

�

 Connect the slave to the filter engine. Be sure to insert the correct
values for MASTER_LOG_FILE and MASTER_LOG_POS in the statement. Those are
the values you wrote down when you issued the SHOW MASTER STATUS command on
the filter server before starting the replication there:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

38

slave> CHANGE MASTER TO

 -> master_host='localhost',

 -> master_port=3308,

 -> master_user='repslave',

 -> master_password='slavepass',

 -> master_log_file='black-bin.000003',

 -> master_log_pos=98;

Query OK, 0 rows affected (0.01 sec)

� Start the slave and verify that it starts up correctly:
slave> START SLAVE

slave> SHOW SLAVE STATUS \G

************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 ...

 Relay_Master_Log_File: black-bin.000003

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 ...

 Seconds_Behind_Master: 0

29. As soon as the previous step is complete, the replication should already have updated
tblB on the slave and inserted the new ("John", 39) record. Verify it like this:
slave> SELECT * FROM repdb.tblB;

Apparently, the replication works. You can now try to modify some data on the master
and check if the results match on the slave. Anything you do to modify tblB should
be reflected on the slave. Remember to use fully qualified statements; otherwise
changes will not match the replication rules.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

39

How it works...
Though MySQL did not implement a filter on the master feature literally, another way of doing
similar things was provided. While MyISAM and InnoDB implement ways of storing data on
disk, another engine was created that is basically an empty shell. It just answers OK to all
INSERT, UPDATE, or DELETE requests coming from the SQL layer above. SELECT statements
always return an empty result set. This engine is suitably called the blackhole storage engine,
as everything you put into it just vanishes.

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Powerful Master,

Lots of writes

MySQL Server with

replication filter

configuration using

Blackhole engine.

Unfiltered regular

binlog

The arrow widths

are proportional to

the amount of

bandwidth needed

for the connection

Blackhole Engine Replication Filtering

Low bandwidth network

Blackhole Filter

High bandwidth network

Master

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

40

In the upper part you see the main master server. All modifying statements are written on the
master's binlog files and sent over the network to subscribed slaves. In this case, there is only
a single slave: the filter server in the middle. The thick arrow in between them represents the
large amount of data that is sent to it.

In the lower part of the picture, there are a number of slaves. In a regular setup, a thick
arrow would be drawn from the master to each of those—meaning that the same massive
amount of replication data would be sent over the network multiple times. In this picture,
the filter server is configured to ignore statements for certain tables. It is also configured to
write the statements received from a replication master to its own binlogs. This is different
from regular slaves because usually those do not write replicated statements to their binlogs
again. The filter server's binlogs are much smaller than those of the main master because lots
of statements have been left out. This would normally have taken place on each and every
regular slave.

The regular slaves are configured against the filter server. That means they only receive
the pre-filtered stream of statements that have made it into the filter's binlogs through the
replicate-ignore-* and replicate-do-* directives. This is represented by thin arrows
in the picture.

Because slaves can go offline for extended amounts of time, binlogs could easily mount up to
dozens of gigabytes in a few days. With the much smaller filtered binlogs you can more often
purge the large main master's binlogs as soon as you have made a full backup, in the end
freeing more space than is needed by the additional filter instance.

Other storage engines than InnoDB
Be advised that if you are using a different storage engine than InnoDB for your tables
(especially MyISAM), you will need to do a little more tweaking. This is because the InnoDB
example relies on MySQL's being very lenient concerning errors in many cases. We put
the skip-innodb option into the my.black config file. This means that InnoDB will not
be available at runtime. Because the master_struct.sql dump file contains CREATE
TABLE … ENGINE=InnoDB statements, MySQL falls back to the default storage engine that
we configured to be the blackhole engine.

If you are using MyISAM tables, there is no need for the server to automatically change the
table type because MyISAM is always available (MySQL stores its user information apart from
other things in MyISAM tables). So you would need to adapt the master_struct.sql dump
file before sourcing it into the filter server. I recommend using sed, like this:

~/blacktest$ sed -e 's/ENGINE=InnoDB/ENGINE=BLACKHOLE/g' \
> master_struct.sql > master_black.sql

This will replace all occurrences of the InnoDB engine with the blackhole engine and put
the result into a new file. Please keep the original file, too, as it will be needed for the
slave machines.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

41

Setting up slaves via network streaming
If you need to reset one or more slaves regularly, say every morning before business hours
begin, importing a SQL dump might take too much time, especially if the slaves are relatively
low-end machines without a sophisticated I/O subsystem.

In this recipe, we will present a way to set up a MySQL slave with minimal I/O load on the
hard drive and the network adapter of the slave. The example assumes a Linux-based slave
machine; however, you should be able to apply this to Windows as well. but you will need to
download some free tools most Linux distributions come with out of the box.

The general idea is to have a more powerful machine, which can be the master if resources
allow, to prepare a complete set of data files for the slaves and later stream them directly to
the slave's disk from a web server.

Getting ready
To try this out, you will need a master server with at least one slave. Additionally, a machine
with a web server installed is required. Depending on your setup, the master server might be
suitable for this task. In the example that follows, we will assume that the master server has
a web server running.

�

 Shut down the temporary server and compress its data.

� Transfer the archive to the slaves and unpack.

� Adapt the slaves' config files.

� Run the slaves and let them connect and catch up with the master.

How it works...
This recipe is based on the fact that you can quite easily copy MySQL's data files (including
InnoDB table space files) from one machine to another, as long as you copy them all. So, we
first create a ready-to-go set of slave data files on a relatively powerful machine and transfer
them to multiple slaves with weaker hardware. Usually, those files will be bigger than a simple
SQL dump file that is usually used for slave setups. But no parsing and processing is required
on the target system. This makes the whole thing mostly network and linear disk I/O bound.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

42

The idea behind this concept is to relieve the individual slaves from importing SQL files
themselves. As their hardware is rather slow and MySQL only supports single threaded
slave SQL execution, this can be very time consuming. Instead, we use the master's better
resources temporarily as a single power-slave and let it handle the process of importing. We
then provide any number of identical slaves with its data files. This will reduce the burden of
the other slaves to simply unpacking some files.

While this does not really save anything in terms of bytes that need to be written to each
slave's disk, the access pattern is much more sensible. The following table compares the disk
transfers for a regular SQL import from local disk and the proposed alternative for a 60MB
gzipped SQL file, which will lead to approximately 2GB of InnoDB table space files:

Regular SQL Import Prepared Data File Deployment
Linear write 60MB download to local disk Download 60MB, directly streamed to 2GB data

files, written linearly
Linear write 2GB initial creation of InnoDB
data files

n/a

Linear read 60MB SQL.gz, interleaved with
random write 2GB to data files

n/a

4GB total read/written randomly 2GB linear write

Importing a SQL file from the local hard disk means there are continual seeks between the
current position in the SQL text file and the server's data files. Moreover, as the database
schema may define lots of indexes, there is even more random disk write activity when
executing simple INSERT statements.

In contrast unpacking ready-made InnoDB table spaces (or MyISAM table files for that matter)
is basically just linear writing.

Temporary daemon
The SQL dump needs to be executed at least once. So, we set up a temporary MySQL
daemon with a stripped down configuration that is close to the actual slaves—meaning all the
parameters that affect the storage files must match the slaves to create compatible data files.

Every time you want to prepare such a new slave installation image, the temporary daemon
should be started with an empty data directory. While not strictly necessary, we prefer
to delete the table space and transaction log files every time because it allows for better
compression rates later.

The data files should be created close to the size that will be needed, maybe a little more
to prevent the need for them to grow. Nevertheless, specify the last data file to be auto-
extending. Otherwise the process of importing the SQL data may lead to filling the table space
prematurely, especially when used in an automated process that can be difficult to handle.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

43

Also, you should allow InnoDB to add larger chunks to the last data file if needed (default:
8MB). Extending the files is associated with some overhead, but using bigger chunks reduces
the impact on the I/O subsystem. You should be fine with 50MB or 100MB. The bigger this
is, the less often InnoDB will have to extend the file. See the manual section on InnoDB
configuration for more info.

Dumping master data
Once you have the temporary daemon running, use the mysqldump tool with the --master-
data and --single-transaction options to create a dump of the database(s) you need
to replicate. In order to save time and disk space, you may find it useful to pipe the output
directly through the mysql command-line client and feed it into the target temporary server.

Shutting down and compressing
You can now shut down the temporary server. Compress the data directory. Depending on how
you want to configure permissions, you may include or exclude the mysql schema. We usually
have the temporary server set up with as low permissions as possible and do not move the
mysql schema along.

For compression, you should not use the ZIP format. It contains a catalog of all files included
at its very end; so piping it through a decompression program on the fly will not work. Instead,
we use a gzipped tarball. This allows us to download and to pipe the data stream through
gunzip before directing it to disk.

Transferring to the slave and uncompressing
On the slave we suggest curl as a download tool. It is important that the tool you choose be
able to output the downloaded file directly to standard out. With curl that is quite simple—it
is its default behavior. It also handles files larger than 2GB, which some versions of wget
have problems with. The command line should look similar to this:

curl http://the.server/mysql_data.tgz | tar -C /the/target/datadir -xzf -

curl will download the file and pipe it to tar to decompress into the target data directory.

Do not miss the final - at the end of the command!

You will find that on a local area network, downloading and unpacking will be considerably
faster than having MySQL to first create the empty data file and then import the SQL, for the
reasons stated above.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

44

Adjusting slave configuration
When the data files have reached their destination on the slave, you may need to adjust the
slave settings. This especially depends on whether you copied fixed size data files (in which
case you can prepare the config file in advance) or used the autoextend option on the last
table space file. In that case, you could write a little script that takes a template my.cnf file
with your basic settings and replaces some placeholders for the data file-related settings via
sed. One of those is the size of the last InnoDB data file from the archive. It will become a
fixed size file on the slave. Another file will then be added at the first slave start.

Connecting to the master
One last thing that needs to be done is to read the master's current binlog file name and
position from the master.info file. This is required because once the slave server has been
started you will need to provide correct credentials for the replication user. You must also
explicitly tell the slave which master host to connect to. Unfortunately, when issuing a CHANGE
MASTER TO command on the slave, which includes a master host name, all information
about previous master binlogs—the corresponding offset—is discarded (see MySQL online
manual, chapter 12.6.2.1 CHANGE MASTER TO Syntax at http://dev.mysql.com/doc/
refman/5.1/en/change-master-to.html).

Therefore, you will need to tell the slave again where to begin replication.

One possible solution is to read the contents of the master.info file that was brought along
with the data files into a bash script array and inject the values into the statement:

arr = ($(cat master.info))
mysql -e "CHANGE MASTER TO master_host='the.master.server', master_
user='replication_user', master_password='the_password',
master_log_file='${arr[2]}', master_log_pos=${arr[3]}"

The format of the master.info file is described in the MySQL manual.

Starting the slave
As soon as you issue a START SLAVE statement, the slave will connect to the master and
begin to catch up with whatever has happened since the time when the dump was taken.

Skipping problematic queries
There are occasions where something goes wrong and a problem prevents one or more slave
servers from updating. The reasons for this can be several, but most often some sort of
discrepancy between the master's and the slave's data set will cause a statement to fail on
the slave that was executed properly on the master (otherwise it would not have made it to
the binlog).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

45

This is where the basic principle of assuming master and slave being equal becomes a little
too simple. It can lead to a potentially long series of statements executing on the slave, but
on a different set of data than the master has. Depending on how long this goes unnoticed,
the master and slave can drift out of sync unnoticed, until a statement cannot be executed
successfully on the slave—for example because a foreign key constraint fails on the slave.

Fortunately, not every problem stems from such a serious error, which can often only be
repaired by resetting the affected slaves to a known good state.

Often a slave stops the replication because a record to be inserted is already present,
resulting in key uniqueness violation error. This is especially likely when (accidentally or on
purpose) you are working on the master and the slaves, modifying data on both sides maybe
even to fix a replication problem.

In this recipe, we will show you how to skip one or more problematic queries—meaning
instructions replicated from the master that will not execute correctly on the slave machine.

Getting ready
We will demonstrate the skipping of problematic queries in a contrived error scenario. To try
this for yourself, you will need two MySQL servers set up as master and slave, being currently
in sync. As an example, we will use the sakila sample database to demonstrate a record
INSERT that fails on the slave because it was previously inserted manually by accident.

How to do it...
�

 On the slave, enter the following command to insert a new category:
slave> INSERT INTO category (name) VALUES ('Inserted On Slave');

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

46

In this case, the category_id column was automatically set because it is defined
as auto-incrementing. At this point, the master and the slave are already out of sync
because this record does not exist on the master.

� On the master, insert a new record as well:
master> INSERT INTO category (name) VALUES ('Inserted On Master');

You can see that the master also picked 17 as the category_id. It has been written to
the binlog and has by now probably been replicated to the slave.

� Have a look at the replication status on the slave:
slave> SHOW SLAVE STATUS \G

�

 Repair the damage by making sure the slave records are identical:
slave> UPDATE category SET name='Inserted On Master' WHERE
category_id=17;

�

 Start the slave SQL thread again and check the replication status:
slave> START SLAVE;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

47

slave> SHOW SLAVE STATUS \G

************************** 1. row ***************************

 ...

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 ...

 Seconds_Behind_Master: 0

You can see that the replication is up and running again.

How it works...
When the slave data was out of sync in such a way that a statement from the master would
fail (in this case because of a duplicate identity column value), the slave server stopped
executing any more SQL statements, even though in the background they were still read from
the master and stored in the relay logs. This is what the Slave_IO_State and Slave_IO_
Running columns from the output of SHOW SLAVE STATUS say.

MySQL does this to give you a chance to look at the problem and determine if you can repair
the situation somehow. In this very simple example, the solution is simple because we can
easily bring the slave's data back in sync with the master by modifying the record in question
to match the contents that were sent from the master and then skip the INSERT replicated
from the master using the SQL_SLAVE_SKIP_COUNTER global variable. This will skip exactly
one statement from the relay logs, when the slave is next told to start. In our case, this is the
problematic INSERT.

After that the replication is back in sync, as master and slave are now based on identical data
sets again, allowing the following statements to be replicated normally.

There's more...
Another solution in this particular case could have been to delete the record on the slave and
then restart the replication with START SLAVE. As the INSERT from the master has not been
executed yet, replication would continue as if nothing had happened.

However, under more realistic circumstances, when confronted with a situation like this, you
might not have a chance to delete the row on the slave due to foreign key constraints. Only
because we immediately took care of the problem and we were sure that in the meantime
no programs could have written to the slave, possibly creating new references to that record,
were we able to remove it.

Depending on your application architecture and how fast you noticed the problem, some
process might have been writing data to the slaves to tables that are designed for this
purpose, linking to the now present category_id 17 and effectively preventing you from
deleting it.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

48

While in this simple case, we would be sure that the replication setup is now back to normal
again, you often will not be able to tell for certain at which point in time a replication problem
originated. INSERT statements of duplicate keys will immediately cause an error to become
apparent. UPDATE or DELETE statements will often succeed in executing, but would have
different effects on the slave than on the master, when they were previously out of sync.

Problems like this can corrupt the data on your slaves silently for extended
periods of time. When you find out in the end, it is often too late to recover
without resorting to setting up the slave afresh.
When in doubt, we recommend to first use mk-table-checksum as
described in the Checking if servers are in sync recipe in this chapter,
or more generally to set up the slave from a well-known good state to be
completely sure!

Checking if servers are in sync
As MySQL cannot detect if two servers are in sync (that is they contain the same records and
tables), one would often like to verify that master and slave are still working on identical data
sets to be sure no corruption has occurred yet.

For this purpose, the excellent Maatkit suite of programs (see http://www.maatkit.org)
contains a handy tool called mk-table-checksum. It automatically calculates checksums
of tables on one or more servers, which can then be compared. Should the checksums differ,
then the table in question is not identical on the machines involved in the check.

The servers involved need not necessarily be a replication master and slaves, but can be
any set of servers you wish to compare. mk-table-checksum has an additional alternative
means of checking the special case in replication environments to see if a master and its
slaves are in sync. See the There's more... section at the end of this recipe for more details on
this feature.

Getting ready
Maatkit is written in Perl. While on most Unix-like systems this scripting language is already
installed by default or can be easily downloaded and set up, Windows users will not be so
lucky in general. If you are stuck with Windows, you might want to take a look at ActivePerl,
a mature Perl implementation for Windows.

Moreover, you are definitely going to need the Maatkit mk-table-checksum tool. You can
get it directly from http://www.maatkit.org. Also, download the mk-checksum-filter
companion tool and put it in the same directory as mk-table-checksum.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

49

In this example, we will compare two MySQL servers that differ in the sakila database's
country table located on machines called serverA and serverB.

You will need to have user accounts for both machines that have permission to connect and
execute statements remotely.

The command lines in this recipe might change with newer versions of Maatkit, as it is under
active development. Double-check with the online manual that the instructions printed here
are still current before trying them out.

How to do it...
1. On a command shell prompt, enter the following line, assuming mk-table-checksum

is in the current directory and executable:
 $./mk-table-checksum h=serverA,u=userA,p=passwordA
 h=serverB,u=userB,p=passwordB | ./mk-checksum-filter

2. Check the output of this command (formatted and abbreviated for printing):

Database Table Chunk Host Engine Count Checksum
sakila country 0 serverA InnoDB NULL 2771817858
sakila country 0 serverB InnoDB NULL 3823671353

Notice the last column: The checksums do not match—the tables are not identical.

How it works...
mk-table-checksum connects to all servers listed on the command line and calculates
checksums for all tables. Identical table contents result in identical checksums. So if the
checksums from two servers do not match for any given table, there must be a difference in
their contents. The mk-checksum-filter tool removes all lines from the output that do not
indicate a checksum mismatch.

It is important to know that the checksums are different if you employ
different versions of MySQL across servers. In this case, a different
checksum might just be the result of the different versions!

mk-table-checksum offers several algorithms for checksumming, each with different
speeds and different levels of resilience against certain kinds of data differences that might
cancel each other out, leading to identical checksums, but for different data. The Maatkit
online manual contains detailed and current information on this topic.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

50

There's more...
Due to the asynchronous nature of MySQL replication, executing the checksum statements
remotely from a single machine may not yield reliable results. This is because the master
database might already contain modifications that have not been executed by each slave yet.

To compensate, mk-table-checksum offers a special mode to check slaves and masters.
Instead of executing the calculations remotely, the statements to do so are written to the
master's binlog and then sent off to the slaves via the regular replication mechanism. This
ensures that each slave will calculate the checksum at the correct time with respect to the
transaction order. The results are then stored in a table on the slave that can be retrieved
with a second command remotely later on. To use this feature, you need a user with sufficient
privileges to create a table for this purpose on the slaves.

For more details, see the --replicate and --create-replicate-table options in the
Maatkit online manual.

Avoiding duplicate server IDs
A key configuration item in any replication setup is server IDs. They must be unique across all
participating master and slave machines. Unfortunately, there is no official way to verify this
reliably. Instead, when you introduce duplicates by mistake, strange behavior may surface.
Generally, this happens when cloning the machines from an image.

Most importantly, on the master server you will not see any indication of the problem. The
problem arises only on the slaves without clearly stating the root cause of the problem. See
the There's more... section of this recipe for more details.

Getting ready
The server-id setting does not carry any meaning in and of itself, but is only used to
internally distinguish servers from each other. Generally, administrators setting up new MySQL
servers enter sequential or random values for this field. This requires a list of server IDs
already issued, preferably including the host name. As with most things in life that need to be
done manually, maintaining this list is likely to become a burden and will be forgotten.

Instead, you can assign server IDs based on features of the individual machines that are
usually unique already, for example, the network interface's MAC address or the IP address,
which should remain reasonably fixed for any server machine as well.

IP addresses are usually shown in a dotted notation of four numbers between 0 and 255.
Because MySQL requires server-id to be specified as single decimal value, you need to
convert it first.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

51

�

 Convert the 4 bytes
of the address to hexadecimal. Mostly any calculator application can do this for you.
You enter each of the four numbers in decimal mode and then switch to hexadecimal
mode. Just replace each individual decimal value with its hexadecimal counterpart.
For the address above you will come up with: 0a.00.9f.16

3. Append the bytes (that is just remove the dots between them) and convert them back to
decimal by switching modes: 0a009f16

HEX
=167812886

DEC

4. Insert that final value as the server ID in the [mysqld] section of that server's
configuration file:

 [mysqld]
 server-id=167812886

How it works...
The IP address serves to uniquely identify a network interface (and therefore a machine)
on a network. We leverage this uniqueness by recycling the IP address as the server ID.
Most operating systems will issue a warning when an IP address conflict is detected, so this
indirectly points to a replication problem as well.

Of course, traditional IPv4 addresses (those usually noted in the
above notation) are only unique in their respective subnet. That
means you should not rely on this recipe alone for your server IDs
if master and slave machines are located in different locations
from a network topology point of view!

There's more...
The IP address is only one possible unique value you can use. Anything that you can fit in
the valid numeric range of the server-id setting can be used. Ideally that value should
never change over the lifetime of a server, much like a good Primary key, just not for a single
database record, but the server as a whole.

You could use any sort of serial number your hardware vendor already assigns to the machine,
if it is purely numeric and fits the valid range of 4 bytes. However, this ties you to the vendor's
idea of uniqueness, which you cannot verify reliably. Alternatively, the last 4 bytes of the
server's MAC address (those are 6 bytes long, starting with a vendor specific prefix) could be
used as well. However, beware that unless you exclusively use network adapter chip sets from
a single vendor, there remains a certain danger of duplicates.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

52

Recognizing symptoms of duplicate server IDs
Despite all care, errors can happen and duplicate server-ids can be issued. Unfortunately,
MySQL will not tell you explicitly when you have non-unique server-ids in your replication
setup. While on the master, you will not see any evidence in the log files that something is
wrong, slaves will show strange behavior and issue seemingly unrelated error messages to
their log files in short succession:

Of course, the names of machines, log files, and positions will vary, but the message of an
assumed shutdown of the master, followed by immediate retries and failing again is a clear
indication of a problem with replication server-ids.

Setting up slaves to report custom
information about themselves to the master

When you issue a SHOW SLAVE HOSTS command on a replication master server, you will get a
list of slaves connected, provided that they are set up correctly.

Unfortunately, by default they are not, so unless you specifically configure them to do so,
slaves will not register themselves with the master. In a default setup you might not see
any slave in the output of the above command or in the Replication Status pane in MySQL
Administrator at all, even though there might be several configured against this master.

In this recipe, we will show you how to configure a slave to tell its master some details that
might come in handy when troubleshooting

Please note that due to a bug in MySQL the output of the SHOW SLAVE HOSTS
command is not always reliable! Sometimes it will report hosts being available
when in fact they are currently not. The only way that seems to fix an erroneous
display is to stop and start the master server.
This effectively makes this feature unsuitable for the purpose of the actual
current health of the slaves. It, nevertheless, provides a way to gather some
inventory information on their location and some other details described below.
The bug report is tracked at
http://bugs.mysql.com/bug.php?id=13963.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

53

Getting ready
To follow along, you will need sufficient operating system privileges to modify the slave's
configuration file (my.cnf or my.ini depending on your operation system). To actually see
that status on the master you will need a MySQL user there as well.

�
 Shut down the slave.

� Open its configuration file in a text editor.

� Make sure the following line is present in the [mysqld] section:
report-host=slave_1701.example.com

� Save the configuration.

� Restart the slave.

6. On the master, issue this command to verify your change was successful:
mysql> show slave hosts \G

You might of course see many more slaves here, depending on how they are configured.

Should you ask yourself what the Rpl_recovery_rank
line in the output means, you may simply ignore it. It
seems it was introduced some years ago but never put to
active use.

How it works...
Usually, slaves do not report any details about themselves when they connect to the master.
By adding some options in their configuration you can, however, make them announce details
about themselves.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Replication

54

We strongly recommend setting up all your slaves to register with the master, especially
when you are dealing with many masters and slaves. This can be very helpful to keep on
top of things.

MySQL Administrator allows you to remember all slaves it has seen once and display a
warning on its Replication Status pane when a machine previously known does not register
later. This particular piece of information is not reliable. however; see the warning in this
recipe's introduction for more information.

There's more...
The general idea behind the report-host setting is to give an idea about how to reach the
slave machine via the network. As the slave might be located behind some sort of firewall or
NAT router, its IP address might not be very helpful. So, in general, it can be helpful to have
the slave report a fully qualified domain name that can be used to reach it, if applicable.

However, it is by no means mandatory to do so. If you do not intend to access the slave
remotely, you might just enter any other piece of information you like to see in the output of
the command mentioned in this recipe or the MySQL Administrator pane. As you can see in
the previous screenshot, I set up the slaves to report back a name suffixed with the server-ID
value. Doing so works around a bug in MySQL Administrator that knows how to remember
slaves it has seen before, but sometimes forgets their server-id.

Showing slaves currently unavailable is a feature of MySQL Administrator; the SHOW SLAVE
HOSTS command will not mention them at all. To leverage this you must click the Add Host to
Monitoring List button for each slave once it is connected. Otherwise, they will not appear at
all when they are not connected.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 1

55

Apart from the report-host configuration setting there are three more options you should
know about:

Setting Description
report-port Informs about the port that must be used to reach the slave on the

domain name reported by report-host. This can be sensible if port
forwarding has been set up.

report-user Report a username that can be used to connect to the slave. Not
recommended to use!

report-password Report a password that can be used to connect to the slave. Not
recommended to use!

For completeness, this is what the output of SHOW SLAVE HOSTS will look like if you go against
our advice and configure the slave to report a set of login credentials and the master has
been started with the show-slave-auth-info option:

While the report-port setting might be useful, we strongly suggest to
refrain from using the report-user and report-password options for
security reasons.
Even though the master server will only display these values when it is
started with the show-slave-auth-info option, it is still very risky to
send login credentials over the network in this manner. You should always
use more secure ways to exchange login information!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Download at Wow! eBook

WWW.WOWEBOOK.COM

2
Indexing

In this chapter, we will cover:

f Adding indexes to tables

f Adding a fulltext index

f Creating a normalized text search column

f Removing indexes from tables

f Estimating InnoDB index space requirements

f Using prefix primary keys

f Choosing InnoDB primary key columns

f Speeding up searches for (sub)domains

f Finding duplicate indexes

Introduction
One of the most important features of relational database management systems—MySQL
being no exception—is the use of indexes to allow rapid and efficient access to the enormous
amounts of data they keep safe for us. In this chapter, we will provide some useful recipes for
you to get the most out of your databases.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

58

Infinite storage, infinite expectations
We have got accustomed to nearly infinite storage space at our disposal—storing everything
from music to movies to high resolution medical imagery, detailed geographical information,
or just plain old business data. While we take it for granted that we hardly ever run out of
space, we also expect to be able to locate and retrieve every bit of information we save in an
instant. There are examples everywhere in our lives—business and personal:

f Your pocket music player's library can easily contain tens of thousands of songs and
yet can be browsed effortlessly by artist name or album title, or show you last week's
top 10 rock songs.

f Search engines provide thousands of results in milliseconds for any arbitrary search
term or combination.

f A line of business application can render your sales numbers charted and displayed
on a map, grouped by sales district in real-time.

These are a few simple examples, yet for each of them huge amounts of data must be
combed to quickly provide just the right subset to satisfy each request. Even with the
immense speed of modern hardware, this is not a trivial task to do and requires some
clever techniques.

Speed by redundancy
Indexes are based on the principle that searching in sorted data sets is way faster than
searching in unsorted collections of records. So when MySQL is told to create an index on one
or more columns, it copies these columns' contents and stores them in a sorted manner. The
remaining columns are replaced by a reference to the original table with the unsorted data.

This combines two benefits—providing fast retrieval while maintaining reasonably efficient
storage requirements. So, without wasting too much space this approach enables you to
create several of those indexes (or indices, both are correct) at a relatively low cost.

However, there is a drawback to this as well: while reading data, indexes allow for immense
speeds, especially in large databases; however, they do slow down writing operations. In the
course of INSERTs, UPDATEs, and DELETEs, all indexes need to be updated in addition to
the data table itself. This can place significant additional load on the server, slowing down
all operations.

For this reason, keeping the number of indexes as low as possible is paramount, especially for
the largest tables where they are most important. In this chapter, you'll find some recipes that
will help you to decide how to define indexes and show you some pitfalls to avoid.

Storage engine differences
We will not go into much detail here about the differences between the MyISAM and the
InnoDB storage engines offered by MySQL. However, regarding indexes there are some im-
portant differences to know between MySQL's two most important storage engines. They
influence some decisions you will have to make.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

59

MyISAM
In the figure below you can see a simplified schema of how indexes work with the MyISAM
storage engine. Their most important property can be summed up as "all indexes are created
equal". This means that there is no technical difference between the primary and
secondary keys.

Index 1
(Primary Key)

ordered by
ISBN column

Index 2
(IDX_TITLE)

ordered by
title column

number of row in the
data area

number of row in the
data area

... ...

8-456-7 (3)

7-234-5 (1)

(2)2-345-6

rowpointerisbn

... ...

Moby Dick (1)

Effective Java (2)

(3)Concurrency...

rowpointertitle

Index 3
(IDX_AUTHOR)

ordered by
author column

number of row in the
data area

... ...

Melville (1)

Goetz (3)

(2)Bloch

rowpointerauthor

BOOKS
(Data Table)

R
a
n
d
o
m

o
rd

e
r

(o
rd

e
r

o
f
in

s
e
rtio

n
)

author

Bloch

...

Melville

Goetz

title

Effective Java

8-456-7

7-234-5

... ...

isbn

Moby Dick

Concurrency...

2-345-6

Row pointers from each index's entries point to
the actual data record. The more indexes are
defined, the more expensive INSERT, UPDATE
and DELETE become, because in addition to
the actual data table, all the indexes need to
be amended with the new entries and their
row pointers.

Finding an author through
IDX_AUTHOR is quick, because it
is sorted by the person's name.
The book details are then found
with a second step, following the
row pointer to the correct data
record.

MyISAM Indexing Schematics

The diagram shows a single (theoretical) data table called books. It has three columns
named isbn, title, and author. This is a very simple schema, but it is sufficient for explanation
purposes. The exact definition can be found in the Adding indexes to tables recipe in this
chapter. For now, it is not important.

MyISAM tables store information in the order it is inserted. In the example, there are three
records representing a single book each. The ISBN number is declared as the primary key for
this table. As you can see, the records are not ordered in the table itself—the ISBN numbers
are out of what would be their lexical order. Let's assume they have been inserted by someone
in this order.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

60

Now, have a look at the first index—the PRIMARY KEY. The index is sorted by the isbn column.
Associated with each index entry is a row pointer that leads to the actual data record in the
books table. When looking up a specific ISBN number in the primary key index, the database
server follows the row pointer to retrieve the remaining data fields. The same holds true for
the other two indexes IDX_TITLE and IDX_AUTHOR, which are sorted by the respective fields
and also contain a row pointer each.

Looking up a book's details by any one of the three possible search criteria is a two-part
operation: first, find the index record, and then follow the row pointer to get the rest of the data.

With this technique you can insert data very quickly because the actual data records are
simply appended to the table. Only the relatively small index records need to be kept in order,
meaning much less data has to be shuffled around on the disk.

There are drawbacks to this approach as well. Even in cases where you only ever want to look
up data by a single search column, there will be two accesses to the storage subsystem—one
for the index, another for the data.

InnoDB
However, InnoDB is different. Its index system is a little more complicated, but it has
some advantages:

Secondary Index
(IDX_TITLE)

ordered by
title column

copy of primary
key value serves
as row pointer

... ...

Moby Dick (7-234-5)

Effective Java (2-345-6)

(8-456-7)Concurrency...

isbntitle

Secondary Index
(IDX_AUTHOR)

ordered by
author column

copy of primary
key value serves
as row pointer

... ...

Melville (7-234-5)

Goetz (8-456-7)

(2-345-6)Bloch

isbnauthor

BOOKS
(Data Table & Primary Key)

O
rd

e
re

d
b
y

P
rim

a
ry

K
e
y

author

Bloch

Melville

...

Goetz

... ...

8-456-7 Concurrency...

7-234-5 Moby Dick

Effective Java2-345-6

titleisbn

When querying for title and isbn
only, the query can be fulfilled by
looking at the IDX_TITLE index
alone, because the other
requested value - the isbn - is
contained in it. No second
access to the data area is
required. This is great for speed!

The secondary indexes use a copy
of the primary key value (isbn) from
the data area as a row pointer.
InnoDB does this automatically.
The longer the primary key, the
more space and resources the
secondary ones will require, as they
contain a copy of all the primary key
values. unique isbn

values are used
as primary keys

InnoDB tables are always stored in primary key order.
The primary key is called a "clustered" index, it is
clustered together with the rest of the data - no
pointers in between.
If there is no explicit primary key defined, InnoDB will
create a hidden numeric column for that purpose.

Inserts out of key order are more expensive in
InnoDB, because whole records need to be
rearranged on disk when values need to be
put between two existing rows.

InnoDB Indexing Schematics

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

61

Primary (clustered) indexes
Whereas in MyISAM all indexes are structured identically, InnoDB makes a distinction between
the primary key and additional secondary ones.

The primary index in InnoDB is a clustered index. This means that one or more columns
of each record make up a unique key that identifies this exact record. In contrast to other
indexes, a clustered index's main property is that it itself is part of the data instead of being
stored in a different location. Both data and index are clustered together.

An index is only serving its purpose if it is stored in a sorted fashion. As a result, whenever you
insert data or modify the key column(s), it needs to be put in the correct location according to
the sort order. For a clustered index, the whole record with all its data has to be relocated.

That is why bulk data insertion into InnoDB tables is best performed in correct primary key
order to minimize the amount of disk I/O needed to keep the records in index order. Moreover,
the clustered index should be defined so that it is hardly ever changed for existing rows, as
that too would mean relocating full records to different sectors on the disk.

Of course, there are significant advantages to this approach. One of the most important
aspects of a clustered key is that it actually is a part of the data. This means that when
accessing data through a primary key lookup, there is no need for a two-part operation as
with MyISAM indexes. The location of the index is at the same time the location of the data
itself—there is no need for following a row pointer to get the rest of the column data, saving
an expensive disk access.

Looking up a book by ISBN in our example table simply means locating it quickly, as it is
stored in order, and then reading the complete record in one go.

Secondary indexes
Consider if you were to search for a book by title to find out the ISBN number. An index on
the name column is required to prevent the database from scanning through the whole
(ISBN-sorted) table. In contrast to MyISAM, the InnoDB storage engine creates secondary
indexes differently.

Instead of record pointers, it uses a copy of the whole primary key for each record to establish
the connection to the actual data contents.

In the previous figure, have a look at the IDX_TITLE index. Instead of a simple pointer to the
corresponding record in the data table, you can see the ISBN number duplicated as well. This
is because the isbn column is the primary key of the books table. The same goes for the other
indexes in the figure—they all contain the book ISBN number as well. You do not need to (and
should not) specify this yourself when creating and indexing on InnoDB tables, it all happens
automatically under the covers.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

62

Lookups by secondary index are similar to MyISAM index lookups. In the first step, the index
record that matches your search term is located. Then secondly, the remaining data is
retrieved from the data table by means of another access—this time by primary key.

As you might have figured, the second access is optional, depending on what information you
request in your query. Consider a query looking for the ISBN numbers of all known issues of
Moby Dick:

SELECT isbn FROM books WHERE title LIKE 'Moby Dick%';

Issued against a presumably large library database, it will most certainly result in an index
lookup on the IDX_TITLE key. Once the index records are found, there is no need for another
lookup to the actual data pages on disk because the ISBN number is already present in the
index. Even though you cannot see the column in the index definition, MySQL will skip the
second seek saving valuable I/O operations.

But there is a drawback to this as well. MyISAM's row pointers are comparatively small. The
primary key of an InnoDB table can be much bigger—the longer the key, the more the data
that is stored redundantly.

In the end, it can often be quite difficult to decide on the optimal balance between increased
space requirements and maintenance costs on index updates. But do not worry; we are going
to provide help on that in this chapter as well.

General requirements for the recipes in this chapter
All the recipes in this chapter revolve around changing the database schema. In order to add
indexes or remove them, you will need access to a user account that has an effective INDEX
privilege or the ALTER privilege on the tables you are going to modify.

While the INDEX privilege allows for use of the CREATE INDEX command, ALTER is required
for the ALTER TABLE ADD INDEX syntax. The MySQL manual states that the former is mapped
to the latter automatically. However, an important difference exists: CREATE INDEX can only
be used to add a single index at a time, while ALTER TABLE ADD INDEX can be used to add
more than one index to a table in a single go.

This is especially relevant for InnoDB tables because up to MySQL version 5.1 every change
to the definition of a table internally performs a copy of the whole table. While for small
databases this might not be of any concern, it quickly becomes infeasible for large tables due
to the high load copying may put on the server. With more recent versions this might have
changed, but make sure to consult your version's manual.

In the recipes throughout this chapter, we will consistently use the ALTER TABLE ADD INDEX
syntax to modify tables, assuming you have the appropriate privileges. If you do not, you will
have to rewrite the statements to use the CREATE INDEX syntax.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

63

Adding indexes to tables
Over time requirements for a software product usually change and affect the underlying
database as well. Often the need for new types of queries arises, which makes it necessary to
add one or more new indexes to perform these new queries fast enough.

In this recipe, we will add two new indexes to an existing table called books in the library
schema. One will cover the author column, the other the title column. The schema and
table can be created like this:

 mysql> CREATE DATABASE library;
 mysql> USE library;
 mysql> CREATE TABLE books (

 isbn char(13) NOT NULL,
 author varchar(64) default NULL,
 title varchar(64) NOT NULL,
 PRIMARY KEY (isbn)
) ENGINE=InnoDB;

Getting ready
Connect to the database server with your administrative account.

How to do it...
1. Change the default database to library:

USE library;

2. Create both indexes in one go using the following command:
ALTER TABLE books ADD INDEX IDX_author(author), ADD INDEX IDX_
title(title);

How it works...
The ALTER table statement shown above is almost self-explanatory. The books table is
altered to be indexed with individual indexes on the author and the title columns. Each
index is given an easily recognizable name: IDX_author and IDX_title for the author
and title columns respectively.

Index names are helpful when you later decide to remove an index from a table. Instead of
listing all the columns again, you can just refer to the index name.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

64

Index names
It is very common to name indexes with some sort of prefix like IDX_ and
then append the column name(s) the index spans.
This is not strictly necessary and you might want to establish a different
naming scheme. Whatever you choose, make sure you follow your scheme
and assign names consistent with it for all your indexes.

There's more...
There are some more details worth knowing about when creating indexes on any given table.

Using MySQL Query Browser to generate the SQL statements
Setting up indexes can be done either through a command line as shown earlier or using an
arguably more comfortable graphical tool like MySQL Query Browser. Especially when dealing
with more complex table setups, the graphical presentation can provide additional clarity. Before
applying any changes to your database, the product will display and allow you to copy or save the
full SQL statement(s) that are equivalent to the changes you made in the graphical editor.

This is very convenient because this way you can be sure not to make any mistakes
concerning statement syntax, table, or column names. We usually make changes using
MySQL Query Browser on a development or testing machine just to grab the SQL statements
and put them into SQL update script files for later execution, for example, as a part of our
software update routine. The following figure shows what the changes made in this example
look like. Note that the generated statements contain all table and column names in backtick
quotes. This is generally not required as long as those identifiers do not collide with MySQL
keywords—something you should avoid anyway. Also, the statements will be fully qualified,
which means the database name is put before the table name. This is also not strictly
required if you set the default database to the right schema beforehand.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

65

Prefix indexes
In the example above, we created an index with default settings. This will create an index that
is usually "just right". You may, however, have special requirements or possess knowledge
about the table data that cannot be derived from the schema definition alone, making a
custom index a better choice than the default one.

The detail most often changed in an index definition is the length of the index fields. MySQL
provides support for so-called prefix indexes. As the database does not know about the nature
of the contents that are going to be stored in any particular column apart from the data type,
it has no choice but to take the safe route and consider the full length of the column in its
sorted index copy.

For long columns in large tables, it can be a waste of space to copy the complete column
values to the index, which in turn can have negative impact on performance just because
there's more data involved.

You can aid the database to work more efficiently with your domain knowledge. In the books
example table the title can be up to 64 characters long. However, it is very unlikely that there
will be a lot of books whose titles start alike and only differ in the last few characters. So,
having the index cover the maximum length is probably not necessary for quick lookups. By
changing the index creation statement to include a prefix length (say 20 characters) for the
column to be indexed, you can tell MySQL to only copy the first 20 characters of the title to
the index:

ALTER TABLE books ADD INDEX IDX_title(title(20));

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

66

As a result, the index will use less space—in terms of both disk usage and memory when used
for queries. As long as the book title differs within the first 20 characters, this index will be
more efficient than one covering the full column.

Even when there is a certain number of titles that are identical within this 20 character prefix,
the index will still be useful. This is because as long as MySQL can rule out all but a few
records, having to look at the actual table data for the final decision as to which rows fulfill the
query conditions is still significantly faster than having to scan the whole table with all books.

Unfortunately, there is no easy-to-use formula to determine the ideal prefix length because it
heavily depends on the actual data content. This is why by default the whole column is indexed.

Prefix primary keys
Most documentation on indexing in some way or another covers the topic of prefix indexes
for text type columns, using only a portion at the beginning of column contents instead of the
whole values for the actual index.

However, often this topic is presented in a way that might suggest this only works for
secondary keys; but that is not true. You can also use a prefix primary key, as long as the most
important requirement of a primary key is not violated: the uniqueness of each key value must
be guaranteed.

See also
f Estimating InnoDB index space requirements

f Removing indexes from tables

Adding a fulltext index
Indexes are an important means of making sure a database performs well and responds
quickly when queried. However, they can only live up to their full potential when applied to
well-structured data. Unfortunately, not all information we would like to query can be made
to fit into regular relational database tables and columns.

A prime example of this is free text. It does not follow any well-defined structure and does not
lend itself to the principle by which regular indexes work. For example, a fulltext index allows
querying for search terms no matter where in the indexed column they occur and not only at
the beginning of the column as would be the case with normal indexes.

Fulltext indexes require you to use a special syntax to express your queries. Querying with
the LIKE keyword will not be accelerated by a fulltext index. In this recipe you will learn how
to create a fulltext index on an existing database column. For the purpose of this example,
we assume a fictional forum database with a posts table that in turn has a content column
storing the actual text of a forum entry.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

67

InnoDB tables do not support fulltext indexing. This feature is only
available for tables using the MyISAM storage engine.

Getting ready
Connect to the database using your administrative account.

How to do it...
1. Change the default database to forum:

USE forum;

2. Create the fulltext index using the following command:
ALTER TABLE posts ADD FULLTEXT INDEX IDX_content(content);

How it works...
While regular indexes create ordered copies of the relevant columns to enable quick lookups,
fulltext indexes are a more complicated matter.

Dropping and recreating fulltext indexes for bulk data imports
When (first) inserting bulk data into a table, it is faster to first drop an existing
fulltext index and then later recreate it. This will speed up the data insertion
significantly because keeping the fulltext index up to date during data insert is
an expensive operation.

There's more...
Here are some details that are important to know when including fulltext indexing in
your applications.

Please be aware that changes to any of the parameters that follow require a
rebuild of any fulltext index that was created before the change!
See the MySQL online manual at http://dev.mysql.com/doc/
refman/5.1/en/fulltext-fine-tuning.html for more details.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

68

Case sensitivity
Fulltext index queries are usually run in a case-insensitive way. If you need case-sensitive
fulltext search, you will have to change the collation of the affected underlying columns to
a binary variant.

Word length
When a fulltext index is created, only words within a configurable range of lengths are
considered. This helps to prevent acronyms and abbreviations being included in the index. You
can configure the acceptable length range using the ft_min_word_len and ft_max_word_
len variables. The default value for the minimum length is 4 characters.

Stopwords
In every language, there are many words that are usually not wanted in fulltext search
matching. These so called stopwords might be "is, a, be, there, because, done" among others.
They appear so frequently in most texts that searching for them is hardly useful. To conserve
resources, these stopwords are ignored when building a fulltext index. MySQL uses a default
stopword list that defines what is to be ignored, which contains a list of about 550 English
stopwords. You can change this list of stopwords with the ft_stopword_file variable. It
takes a filename with a plain text file containing the stopwords you would like to use. Disabling
stopwords can be achieved by setting this variable to an empty string.

Ignoring frequent words
Frequent words will be ignored: if a search term is present in more than half of the rows
searched, it will be considered a stopword and effectively ignored. This is useful especially
in large tables; otherwise you would get half of the table as query hits, which can hardly be
considered useful.

When experimenting with fulltext search, make sure you have a reasonably
large dataset to play with. Otherwise you will easily hit the 50 percent mark
described above and not get any query results. This can be confusing and will
make you think you did something wrong, while in fact everything is perfectly
in order.

Query modes
Apart from the default human query mode you can use a boolean query mode, which enables
special search-engine-like operators to be used—for example, the plus and minus signs to
include or exclude words in the search.

This would allow you to use query terms such as '+apple -macintosh' to find all records
containing the word apple, but not the word macintosh.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

69

For all the possible operators, have a look at the MySQL online manual at
http://dev.mysql.com/doc/refman/5.1/en/fulltext-boolean.html

Sphinx
MySQL's built-in fulltext search is only available for MyISAM tables. In particular, InnoDB is
not supported. If you cannot or do not want to use MyISAM, have a look at Sphinx—an open
source, free fulltext search engine that was designed to integrate nicely with MySQL. See
http://sphinxsearch.com/ for more information.

See also
f Removing indexes from tables

Creating a normalized text search column
Usually, regular and fulltext indexing as supported by MySQL are sufficient for most use cases.
There are, however, situations where they are not perfectly usable:

f InnoDB tables cannot use fulltext indexes. At the time of writing there were no signs
of this changing in the foreseeable future.

f There are different ways to spell the search terms

Especially in non-English speaking countries, a problem often arises that does not surface as
often in American or British environments. Words in the English language consist of the letters
from A to Z without diacritics. From a software development perspective this is a welcome
simplification because it allows for simpler implementations.

One problem you are often faced with German, for example, is different ways to spell the
same word, making it complicated to formulate suitable search terms.

Consider the German words "Dübel" (dowel) and "Mörtel" (mortar). In a merchandise man-
agement database you might find several variants of similar products, but each could be
spelled in different ways:

productID name stock
12352323 DÜBEL GROß 22 76
23982942 "Flacher-Einser" Mörtel 23
29885897 DÜBEL GROSS 4 44
83767742 Duebel Groß 68 31

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

70

As an end user of the corresponding application searching for those becomes cumbersome
because to find exactly what you are looking for you might have to attempt several searches.

In this recipe, we will present an idea that needs some support on the application level but
will allow you to use simple regular indexes to quickly search and find relevant records in
situations like the above.

To implement the ideas presented in this recipe, modifications to the
software accessing the database as well as the table definition will be
necessary. We advise that this is a process that usually entails a higher
complexity and increased testing efforts than simply adding an index.

Getting ready
To implement the ideas presented here, you will need to connect to the database server with
your administrative account for the schema modifications. Because apart from the database
modifications application program code changes will be necessary as well, you should contact
an application developer.

In the example, we are going to assume a table definition as follows:

 CREATE TABLE products (
 productID int(11) NOT NULL,
 name char(30) default NULL,
 stock int(11) default NULL,
 PRIMARY KEY (productID)

) ENGINE=InnoDB

How to do it...
1. Connect to the database server using your administrative account and make test

the default schema:
use test;

2. Add a new column norm_name to the products table:
mysql> ALTER TABLE products ADD COLUMN norm_name CHAR(90) AFTER

name;

The column needs to be at least as long as your original column. Depending on the
character mapping rules you are going to implement, the projected values might take
up more space.

3. Define an index on the new column. Make sure it is not set to UNIQUE:
mysql> ALTER TABLE products ADD INDEX IDX_norm_name (norm_name);

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

71

4. Optionally, consider dropping an existing index on the original column. Also, consider
modifying other indexes currently containing the original column to include the new
one instead.

Implement the replacement algorithm depending on your language. For German
language substitutions, the following substitutions could be used. This is just an
excerpt from the Transformers.java class you can find on the book's website.

 private static String[] replacements = {

 "ä", "ae", "null", "0", ":", "",

 "ö", "oe", "eins", "1", ":", "",

 "ü", "ue", "zwei", "2", ".", "",

 "ß", "ss", /* ... */ "-", "",

 " ", "", "neun", "9", ",", "",

 // ... further replacements...

 };

5. Modify your application code to use the new mapping function and issue queries
against the new norm_name column where previously the original name column was
used. Depending on how you decide to expose the search features to your end users,
you might want to make searching the new or the old column an option.

6. Modify your application code to update the new column parallel to the original
one. Depending on the application scenario, you might decide to only update the
normalized search column periodically instead.

7. Before handing out a new version of your software containing the new code, make
sure the normalized search column gets populated with the correct values.

8. Optionally, declare the new column NOT NULL, after it has been initially filled.

How it works...
By implementing the mapping algorithm, we make the application think about the different
ways to spell things, not the end user. Instead of creating all possible variants, which could
become a large set of permutations depending on the length and content of the original
input, we project the search terms to a normalized form for both the original data and later
for queries issued against it. As both use the same mapping functions, only a single—index
supported—query against MySQL is needed. The application of course usually never reveals
these internals. The person in front of the computer will just be pleased to find the desired
records easily.

The mapping rules from input to search terms depend on the language and application-
specific needs. For German words, they are rather short—only the umlaut characters need to
be transformed to a normalized form. Other languages might require more complex rules.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

72

In the example code earlier, we also transform the input to lowercase and remove several
special characters like dashes and colons, and also the whitespace. For the sample data set
of products we used, this is the result of the transformation:

productID Name name_nrm stock
12352323 DÜBEL GROß 22 duebelgross22 76
23982942 "Flacher-Einser" Mörtel flacher1ermoertel 23
29885897 DÜBEL GROSS 4 duebelgross4 44
83767742 Duebel Groß 68 duebelgross68 31

Now instead of querying the original data column, we ask the database to search for the
transformed representation of the search terms in the additional norm_name (normalized)
column. For this it can use regular indexes and provide results quickly and efficiently.

Note that the Transformer.java code available from the book's website is nowhere near
production quality but only serves for demonstration purposes. It does not, for example, contain
any error checking or exception handling and the mapping algorithm is very simple, too.

There is more...
If you do not care about international specialties but still want to improve user experience by
allowing for less strict searches, you might want to have a look at the SOUNDEX() function.
It is designed to work for English language words only and allows you to query for results that
sound like the search terms.

However, note that the results of using it may not be what you expect—opinions on the
Internet range from extreme enthusiasm to complete disappointment. You can find its
documentation at http://dev.mysql.com/doc/refman/5.1/en/string-functions.
html#function_soundex.

Removing indexes from tables
Once-useful indexes may become obsolete as requirements change with the evolving
database. In this chapter, we will show you how to get rid of the IDX_author index created in
the Adding indexes to tables recipe.

Getting ready
Connect to the database server with your administrative account.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

73

How to do it...
1. Change the default database to library:

USE library;

2. Drop the IDX_author index using the following command:
ALTER TABLE books DROP INDEX IDX_author;

How it works...
Using the ALTER TABLE statement, we tell the database that we want to remove (DROP) the
index named IDX_author from the books table.

There's more...
As with the creation of new indexes, you can drop multiple indexes at once using the ALTER
TABLE statement by simply adding more DROP INDEX clauses, separated by comma. If you
were to delete both indexes defined in Adding indexes to tables, you could use this statement:

ALTER TABLE books DROP INDEX IDX_author, DROP INDEX IDX_title;

See also
f Adding indexes to tables

Estimating InnoDB index space
requirements

While indexes might very well be the single most important key in database performance
tuning, they come at the price of redundancy.

There are two main disadvantages tightly connected to redundant data storage:

f The danger of inconsistencies between the redundant copies of data that should be
at all times identical.

f Increased storage and memory consumption because the same data is
physically duplicated.

Fortunately, the former is a non-issue with indexes. As the database server takes care of
keeping data and indexes consistent without human intervention, you cannot get into a situ-
ation where two columns that should contain equal data at all times are out of sync due to
programming errors or the like. This is usually a problem when violating normalization rules.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

74

In contrast to that, there is no way to prevent the latter disadvantage. We need to store
multiple copies if we want different sort orders for quick lookups. What we can do, however,
is to attempt to minimize the negative effect by trying to limit the amount of duplicated
information as far as possible.

The employees database is an open source test database available for
free. It contains examples for many MySQL features including large tables,
foreign key constraints, views, and more. It can be found along with some
documentation at http://dev.mysql.com/doc/employee/en/
employee.html.

In the example below, we assume the existence of the employees test database with an
employees table defined as follows:

 CREATE TABLE employees (
 emp_no int(11) NOT NULL,
 birth_date date NOT NULL,
 first_name varchar(14) NOT NULL,
 last_name varchar(16) NOT NULL,
 gender enum('M','F') NOT NULL,
 hire_date date NOT NULL,
 PRIMARY KEY (emp_no)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

We will add an index each to the last_name and the first_name columns and try to
predict the necessary space.

Please note that the results will never be exact. The storage requirements—
especially of text-value table columns (VARCHAR, TEXT, CHAR, and so
on)—can be difficult to determine because there are multiple factors that
influence the calculation. Apart from differences between storage engines,
an important aspect is the character set used. For details refer to the
online manual for your server version: http://dev.mysql.com/doc/
refman/5.1/en/storage-requirements.html.

Moreover, it is not possible to find out the exact size even for existing indexes
because MySQL's SHOW TABLE STATUS command only gives approximate
results for InnoDB tables.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

75

Getting ready...
Connect to the database server with your administrative account.

How to do it...
1. Find out the size of one primary key entry.

To do so, look at the primary key definition in the table structure. Add the sizes of all
primary key columns as documented in the MySQL Online Manual. In the example,
the INT column takes 4 bytes. Write this number down.

2. Determine the size of each column to be included in the new indexes and add them
up per index. In the example, both first_name and last_name are VARCHAR
columns—this means their lengths are not fixed as with the INT type. For simplicity, we
will assume completely filled columns, meaning 14 bytes for first_name and 16
bytes for the last_name column.

3. For each index, add the lengths of all relevant columns and the size of the primary
key. In our example, this gives the following results:

Index Column size Primary Key
Size

Index Record
Size

IDX_FIRST_NAME 14 4 18
IDX_LAST_NAME 16 4 20

The rightmost column contains the pure data size of a single index record including
the implicit primary key.

4. Multiply the size per index record with the number of rows in the table:

Index Rows Index record
size

Est. index size

IDX_FIRST_NAME 300024 18 5400432
IDX_LAST_NAME 300024 20 6000480

The rightmost column contains the estimated size of the index, based on the current
number of records, and the overhead taken by InnoDB to internally organize and store
the data.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

76

How it works
In the previous steps, we simply added up the sizes of all columns that will form a secondary
index entry. This includes all columns of the secondary index itself and also those of the
primary key because, as explained in the chapter introduction, InnoDB implicitly adds those to
every index.

Internally, the server of course needs a little more than just the raw column contents—all sorts
of management overhead (such as column widths, information on which columns can be null,
as well as some constant overhead) add to the required space. Calculating these in detail
is complicated and error-prone because they rely on many parameters and implementation
details can change between MySQL versions. This is not required, however, because our aim
is a ballpark number. As table contents often change quickly, exact numbers would not be
valid for long.

You can see this in our example—the values are too low. In reality, you will need to experiment
with these values. You are usually going to be on the safe side when you multiply your results
with a factor of 1.5 to 2.5.

You will find that depending on the lengths of the columns indexed and those that make up
the primary key, the accuracy of the estimates can vary.

There's more...
Predicting space requirements is not an exact science. The following items are intended to
give some more hints on what you might want to think about.

Considering actual data lengths in your estimate
When adding an index to an existing column, you can try to use the average length of the
column values:

SELECT AVG(LENGTH(first_name)) AS avg_first, AVG(LENGTH(last_name)) AS
avg_last FROM employees;

For the sample data the results are:

avg_first avg_last
6.2157 7.1539

Round this up to the next integer (7/8). Note that especially for short columns like this, the
estimates can be much less reliable because relative to internal database overhead data size
is less significant. This is why in the recipe earlier we went with declared maximum length of
the VARCHAR columns instead.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

77

Minding character sets
For columns storing text information—such as CHAR and VARCHAR, VARBINARY, and
TEXT—the storage requirements depend on the character set used for the text inside.
For most English-speaking countries, this is something like the Latin-1 character set, which
uses a single byte per character of text. However, in international environments, this encoding
is hardly sufficient. To accommodate German text, for example, you need some special
characters—not to mention Chinese, Japanese, or other non-Latin languages.

MySQL supports different character sets on a per column basis. However, often you will define
a default character set for a database including all its tables and their columns.

When estimating index (and data) sizes for Unicode-aware columns (MySQL supports
UTF-8 and UCS2 character sets for this purpose), you need to take into account that those
may require more than a single byte per character. The very popular UTF-8 encoding uses
between 1 and 4 (even though 4 are only used in very special cases) bytes per character.
UCS2 has a constant size of 2 bytes per character. For details on how UTF-8 works,
see http://en.wikipedia.org/wiki/UTF-8.

Using prefix primary keys
In this example we will add indexes to two tables that are almost identical. The only difference
will be the definition of their primary keys. You will see the difference in space consumption
for secondary indexes between a regular full column primary key and a prefix primary key.
The sample table structure and data are designed to demonstrate the effect very evidently.
In real-world scenarios the effect will most certainly be less severe.

Getting ready...
Connect to the database server with your administrative account.

How to do it...
1. Download the sample script for this chapter from the book's website and save

it to your local disk. In the example below, we will assume it is stored in /tmp/
idxsizeestimate_sample.sql.

2. Create a new database and make it the default database:
CREATE DATABASE pktests;

USE pktests;

3. Import the sample data from the downloaded file. When done, you will be presented
with some statistics about the two tables loaded. Note that both tables have an Index
Length of 0.
SOURCE /tmp/idxsizeestimate_sample.sql;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

78

4. Now with the sample tables present, add an index to each of them:
ALTER TABLE LongCharKey ADD INDEX IDX_PAY_10(Payload(10));

ALTER TABLE LongCharKey10 ADD INDEX IDX_PAY_10(Payload(10));

5. Display the data and index sizes of the tables now:
SHOW TABLE STATUS LIKE 'LongCharKey%';

6. Add another index to each table to make the difference even more evident:
ALTER TABLE LongCharKey ADD INDEX IDX2_PAY_10(Payload(10));

ALTER TABLE LongCharKey10 ADD INDEX IDX2_PAY_10(Payload(10));

7. Display the data and index sizes of the tables again and compare with the previous
values:
SHOW TABLE STATUS LIKE 'LongCharKey%';

Name Rows Data Length Index Length Index/Data Ratio
LongCharKey 50045 30392320 28868608 94.99%
LongCharKey10 50045 29949952 3178496 10.61%

With the second index added, the difference in index length becomes even clearer.

How it works...
Executing the downloaded script will set up two tables with the following structures:

 CREATE TABLE `LongCharKey` (
 `LongChar` char(255) NOT NULL,
 `Payload` char(255) DEFAULT NULL,
 PRIMARY KEY (`LongChar`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

 CREATE TABLE `LongCharKey10` (
 `LongChar` char(255) NOT NULL,
 `Payload` char(255) DEFAULT NULL,
 PRIMARY KEY (`LongChar`(10))

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

The two tables are almost identical, except for the primary key definition. They are pre-filled
with 50,000 records of sample data.

The tables are populated with exactly the same 50,000 records of pseudo-random data. The
Payload column is filled with sequences of 255 random letters each. The LongChar column
is filled with a sequential number in the first 10 characters and then filled up to use all
remaining 245 character with the same sort of random data.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

79

SELECT LEFT(LongChar,20), LEFT(Payload, 20) from LongCharKey LIMIT 5;

LEFT(LongChar,20) LEFT(Payload, 20)
0000000000KEAFAYVEJD RHSKMEJITOVBPOVAGOGM
0000000001WSSGKGMIJR VARLGOYEONSLEJVTVYRP
0000000002RMNCFBJSTL OVWGTTSHEQHJHTHMFEXV
0000000003SAQVOQSINQ AHDYUXTAEWRSHCLJYSMW
0000000004ALHYUDSRBH DPLPXJVERYHUOYGGUFOS

While the LongKeyChar table simply marks the whole LongChar column as a primary key with
its entire 255 characters length, the LongCharKey10 table limits the primary key to the first
10 characters of that column. This is perfectly fine for this table, because the test data was
crafted to be unique in this range.

Neither one of the two tables has any secondary indexes defined. Looking at some relevant
table data shows they are equally big (some columns left out for brevity):

SHOW TABLE STATUS LIKE 'LongCharKey%';

Name Rows Data Length Index Length

LongCharKey 50045 30392320 0

LongCharKey10 50045 29949952 0

With each index added, the Index Length for the first table will increase significantly, while for
the second one its growth is much slower.

In case of the LongCharKey table, each secondary index record will carry around with it a
complete copy of the LongChar column because it is the primary key without limitation.
Assuming a single byte character encoding, this means every secondary index record is blown
up in size by 255 bytes on top of the 10 bytes needed for the actual index entry. This means a
whole kilobyte is spent just for the primary key reference for every 4 records!

In contrast to that, the primary key definition of the LongCharKey10 table only includes the
leading 10 characters of the LongChar column, making the secondary index entry 245 bytes
shorter and thereby explaining the much slower growth upon adding further indexes.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

80

Choosing InnoDB primary key columns
In the chapter introduction we promised to shed some light on how to choose your InnoDB
primary key columns sensibly. Be advised that choosing good primary key columns is not
an exact science—there are multiple aspects that influence this decision. Depending on
your needs and preconditions you will want to prioritize them differently from one table to
the next. Consider the following as general advice rather than hard rules that must be
obeyed unconditionally.

Getting ready
In order to make reasonable decisions on primary key columns, it is important to have a
very clear understanding of what the data looks like in the table at hand. If you already have
existing data that is to be stored in an InnoDB table—for example in MyISAM format—it can be
helpful to compare it with the criteria below.

If you are planning a new schema, you might have to guess about some characteristics of the
future data. As is often the case, the quality of your choices is directly proportional to how
good those guesses are.

This recipe is less strict step-by-step instructions that must be followed from top to bottom
and should be considered a list of properties a good primary key should have, even though
you might decide some of them do not apply to your actual environment. As a rule of thumb,
however, a column that fulfills all or most of the attributes described below is most probably
a sensible choice for a primary key. See the How it works... section for details on the
individual items.

How to do it...
1. Identify unique attributes: This is an absolute (technical) requirement for primary

keys in general. Any data attribute that is not strictly guaranteed to be free of
duplicates cannot be used alone as a primary key.

2. Identify immutable attributes: While not absolutely necessary, a good primary key is
never changed once it has been assigned. For all intents and purposes, you should
avoid columns that have even a small chance of being changed for existing records.

3. Use reasonably short keys: This is the "softest" criterion of all. In general, longer keys
have negative impacts on overall database performance—the longer the worse. Also,
consider a prefix primary key. See Using prefix primary keys earlier in this chapter for
more information.

4. Prefer single-column keys: Even though nothing prevents you from choosing
a composite primary key (a combination of columns that together form the unique-
ness), this can easily become a hassle to work with, especially when handling
foreign keys.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

81

5. Consider the clustered index nature of the primary key: As InnoDB's primary key is
also clustered, you should take this special nature into account as well. It can speed
up read access a lot, if you often have to query for key ranges, because disk seek
times will be minimized.

How it works...
In the following sections, we will try to shed some light on what each step of the recipe is
concerned with in a little more detail.

Uniqueness
An absolute requirement for primary keys is their uniqueness. Every record in your table
will have to have a distinct value for primary keys. Otherwise, neither MySQL nor any other
database product for that matter could be sure about whether it was operating on exactly
the right rows when executing your queries.

Usually, most entities you might want to store in a relational database have some sort of
unique characteristics that might be a suitable Primary key. If they do not, you can always
assign a so-called surrogate key for each record. Often this is some sort of unique numeric
value, either generated by an application working on top of the database or MySQL itself using
an AUTO_INCREMENT column.

Immutability
Primary key columns should generally be (virtually) immutable, that is, under no circumstances
should you have to modify their values, once they are inserted into the database.

In our books example, the ISBN number cannot be changed once a book has been published.
The same would apply for a car's chassis number.

Technically, of course, they can be changed after their creation. However, this will be very
difficult to perform in practice, once the original value has been used to establish foreign key
relationships between tables. In these cases, you will often have to revert to complicated and
even unsafe methods (risking data inconsistencies) to perform the changes.

Moreover, as the primary key is stored as a clustered key in InnoDB, changing its value will
require the whole record—including all columns—to be moved to its new location on disk,
causing additional disk I/O.

Note that sometimes columns that may at first seem constant over time really are not. For
example, consider a person's social security number. It is designed to be unique and can
never change or be reassigned to a different human being. Consequentially, it would seem
like a good choice for primary key in a table of people.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

82

But consider that in most cases data will be entered into the database manually—be it
through forms, text file imports, among others. In some form or another, someone will have
typed it in through a keyboard.

Manual input is by definition an error prone process. So you might end up with a person's
record that has two digits transposed in their primary key social security number without
immediately knowing it. Gradually, this wrong value will spread through your database—it will
be used in foreign key relationships, forming complex data structures. When you later find out
about the error—for example, because another person who really owns that number needs to
be inserted—then you are facing a real problem.

Unless you are absolutely and positively sure a value can never change once it has been
assigned to a record, you should consider adding a new column to your table and use a
surrogate key, for example, an auto-incrementing number.

Key length
There are several reasons for keys being as short as possible. InnoDB basically only uses one
single large heap of memory—the buffer pool—for its caching purposes. It is used for both row
and index data, which are stored as memory cached copies of individual pages straight from
the tablespace data files. The shorter each key value is, the more of them fit into a single
data page (the default size is 16 KB). For an index with 16 bytes per index value, a single
page will contain about a thousand index entries. For an index with only 8 bytes per entry,
twice as many values can be cached in the same amount of space. So to utilize the effects
of memory-based caching, smaller indexes are better.

For the data record as a whole there might not be much of a difference between 8 or 16 bytes
compared with the overall record length. But remember (or refer to the chapter introduction
if you don't) that the primary key length is added to each secondary index's length again. For
example, a secondary index on an 8 byte field will actually be 16 bytes long if the primary key
also has 8 bytes per entry. A 16 KB data page would provide space for roughly 1,000 index
entries in this scenario. If the primary key is 16 bytes long, it would only be sufficient for about
680 entries, reducing the effectiveness of cache memory.

Single column keys
Depending on the data you intend to store in an InnoDB table, you might consider using a
composite primary key. This means that no single column's value alone uniquely identifies a
single record but only the combination of several independent columns allows uniqueness.
From a technical point of view, this is perfectly feasible and might even be a good choice from
a semantic point of view.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

83

However, you should very carefully weigh the alternatives because composite keys can quickly
become a burden. The more secondary tables define foreign key relationships with a table
using a composite primary key, the more complicated your queries will become because
whenever you join the two, you have to define a join condition on at least four columns. For
more complex queries with multiple joins, this quickly becomes very hard to maintain and
therefore, carries a great risk of errors that might be hard to find.

In addition, you also have to consider the increased size of each key entry and that the sizes
of all the participating columns must be added.

As general advice, you should definitely consider using a surrogate key when you cannot find
any candidate that fulfills the other criteria just discussed.

Clustered Index
As data is physically stored on disk in the order of the clustered key, similar key values end up
in neighboring locations. This makes clustered indexes very efficient for queries that retrieve
ranges of records by this key. If, for example, the clustered key is a timestamp of some sort,
retrieving all records within a contiguous timespan is likely to require relatively little physical
disk I/O because ideally all requested result rows are stored in the same data page, therefore
only needing a single read operation (which might even be cached). Even if multiple pages
had to be read, this will only require a sequential read operation, which leverages linear disk
read performance best.

Unfortunately, InnoDB does not allow a non-primary key to be clustered—other DBMS do—so
you have to weigh the alternatives and maybe live with a compromise when deciding on the
primary key for your InnoDB tables.

Speeding up searches for (sub)domains
In a column with domain e-mail addresses, searching for all addresses of a given domain is a
non-trivial task performance-wise. Given the following table structure, the only way to find all
addresses @gmail.com is to use a LIKE query with a wildcard:

SELECT * FROM clients WHERE email LIKE '%@gmail.com';

Of course, storing the address and domain parts in separate columns would solve this
particular problem. But as soon as you were asked for a quick way to find all clients with an
e-mail address from a British provider, you would be out of luck again, resorting to:

SELECT * FROM clients WHERE maildomain LIKE '%.co.uk';

Both queries would cause a full table scan because no index can support the wildcard at the
beginning of the search term.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

84

In this recipe, you will be given a simple but effective approach to enable the use of indexes
for both of the problems just presented. Notice that you will need to make minor adjustments
to the queries sent against the database. This might involve some code adjustments in
your application.

Getting ready
To implement the ideas presented here, you will need to connect to the database server
with your administrative account for the schema modifications. Apart from the database
modifications, application program code changes will be necessary as well and you should
contact an application developer.

How to do it...
1. Identify which column is currently used to store domain-related data. In the example,

we will be using the maildomain column of the clients table.

2. Update this column and reverse the contents of the field like this:
UPDATE clients SET maildomain=REVERSE(maildomain);

3. If not already set up, add an index to the column:
ALTER TABLE clients ADD INDEX IDXR_MAILDOMAIN(maildomain);

4. Change all queries in your application as follows:

Before:

SELECT name, maildomain FROM clients WHERE maildomain LIKE
 '%.co.uk';

After:

SELECT name, REVERSE(maildomain) AS maildomain FROM clients WHERE
 maildomain LIKE REVERSE('%.co.uk');

The point here is to reverse the search condition as well as the column in the column
list. SELECT statements using the star placeholder instead of column names need to
be rewritten to reverse the maildomain column.

How it works...
Indexes are designed to speed up queries by sorting the relevant column contents, which
makes finding records with a given search prefix easy.

Searching for all people whose name starts with an "S", for example, is supported by this
technique. The more characters you provide the more specific the search gets, again
supported ideally by an index.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

85

Domain names are a different story, however, because those belonging together do not share
a common prefix but suffix. There is no immediate way of telling MySQL to create an index
supporting this kind of data.

The first idea that comes to mind to work around this would be to use a query along the
lines of:

 SELECT * FROM clients
 WHERE REVERSE(maildomain) LIKE 'ku.oc.%';

Unfortunately, MySQL—in contrast to other DBMS—can neither use indexes in conjunction with
functions like REVERSE() nor create an index based on a function in the first place. Instead,
it resorts to full-table scans to find the results as soon as it encounters a function call applied
to a column in a query's WHERE clause. In this case, the REVERSE() function is applied to the
maildomain column.

With a minor adjustment to the way data is stored, this limitation can be alleviated, however:
store the data backwards in the first place!

When inserting new data into the table, we reverse it first:

 INSERT INTO clients (maildomain, …)
 VALUES (REVERSE('example.co.uk'), …);

When retrieving data later, we just need to reapply the same function to get back at the
original data:

 SELECT REVERSE(maildomain) FROM clients
 WHERE maildomain LIKE REVERSE('%.co.uk');

As now the query condition does not contain a function call on a column anymore, MySQL is
happy to use an index on the maildomain column to speed up the search.

It might seem odd at first that now even with two calls to the REVERSE() function this query
can in fact use an index.

The key point is that MySQL does not have to apply the function on any
column data but only on the constant condition (the '%.co.uk' string)
and later—when the rows have already been fetched—on the already retrieved
reverse column content of maildomain. Both of these are not a problem for
index use.

The query is really executed in two phases. In the first phase, MySQL will have a look at the
condition and check if it can replace any function call with constants. So, when we write;

 SELECT REVERSE(maildomain) FROM clients
 WHERE maildomain LIKE REVERSE('%.co.uk');

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

86

after the first phase, internally the query looks like this:

 SELECT REVERSE(maildomain) FROM clients
 WHERE maildomain LIKE 'ku.oc.%';

In this query, there is no function call left in the condition. So the index on the maildomain
column can be used, speeding up the execution as desired.

There's more...
If your application typically issues queries that need to retrieve contiguous ranges of
domains—as in the preceding example—you might consider using the reversed domain name
as primary (and therefore clustered) key.

The advantage would be that the related records would be stored closely together on disk, in
the same or adjacent data pages.

However, updating an existing table on its primary key column can be both
very time consuming, as all data rows need to be physically rearranged, and
sometimes complicated to do when foreign key constraints are in place.

See also
f Choosing InnoDB primary key columns

Finding duplicate indexes
Over time database schemata are subject to changes such as index additions and deletions.
It is not uncommon to end up with multiple indexes that are equivalent in terms of query
execution but might be defined with different names or even different columns.

This duplication of indexes has negative consequences for your database:

f Increased size: The more the indexes, the bigger the database.

f Lower performance: Each index has to be updated on modifications of the respective
table, wasting precious I/O and CPU resources.

f Increased schema complexity: Schema maintenance and understanding of the
tables and relationships gets more complicated.

For those reasons, you should be concerned about superfluous indexes.

In this recipe, we will present a way to quickly find out which indexes can be dropped from a
table as they are functionally equivalent (if not necessarily formally identical) to another one.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

87

Getting ready
In order to run the program presented here, you will need a Java Runtime Environment (JRE or
just Java) installed. You can download it for free from http://www.java.com.

Download the Index Analyzer for MySQL from the book's website.

You will also need login credentials with administrative privileges for the server and the
database you want to analyze.

How to do it...
1. Launch the downloaded application by double-clicking its icon. The connection

window will appear.

2. Enter the connection data for your MySQL server and specify the database to check.
If you like, you can store these settings for later use.

3. Hit the Connect button. The analysis will begin. Stand by—this might take a minute or
two, depending on the number of tables, columns, and indexes in that database.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Indexing

88

4. When the analysis is complete, review the proposed changes the tool makes. Apart
from the tree-like display, you can use the Generate SQL button to copy ALTER
TABLE statements to either the clipboard or a file that will apply the changes
suggested to the database.

Make sure you do not just blindly execute the proposed statements
against your database!
You must always carefully review anything that an automated tool
suggests you do to your data. No program can replace your professional
judgment about whether or not an index is obsolete or required for
some specific reason beyond the computer's understanding.

How it works
The Index Analyzer for MySQL tool connects to your database and retrieves information
about the indexes defined in the database you specified. It then checks for indexes that are
redundant compared with one or more of the others. It will detect the following situations:

f Two indexes are completely identical.

f One index is a prefix of a second longer one. As MySQL can use the second one for
the same queries (ignoring the superfluous columns) the shorter index is redundant.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 2

89

An index on an InnoDB table is defined so that it ends with the primary key column(s). As
MySQL internally appends the primary key columns, they should be removed from the explicit
definition. The tree display's root node is the database you selected, followed by the tables
with redundant indexes. For each table, one or more detail nodes describe the analysis
results in terms of which index is made obsolete by which other.

Each node also contains a rough estimate on how much space could be saved by dropping the
redundant index. Note that this is just a ballpark figure to get an idea. In the example earlier,
the actual savings are lower according to the statistics MySQL offers via the SHOW TABLE
STATUS command:

Table / Index Index Size before Estimated Savings Actual Savings
dept_emp / emp_no 10MB 5.5MB 4.5MB
dept_manager /
emp_no

32k 384 bytes 16k

Salaries / emp_no 34.6MB 59.7MB 35MB
Titles / emp_no 11MB 13.5MB 11MB

All tables were defined with an extra index on the emp_no column, which was made obsolete
by the primary key. Note that the difference between estimated and actual savings is most
significant. This is because MySQL estimates are based on multiples of the data page size—16
KB—while the Index Analyzer application uses average column lengths.

There's more...
Apart from the Index Analyzer for MySQL available from this book's website, there are other
tools available for the same purpose as well. If you do not want to, or cannot, install a Java
Runtime Environment, you might be more content with Maatkit's mk-duplicate-key-checker. It
is a free command-line tool based on Perl and can be used on a variety of platforms as well.
You can get it from http://www.maatkit.org including the full documentation.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Download at Wow! eBook

WWW.WOWEBOOK.COM

3
Tools

In this chapter, we will discuss about:

f Transferring connection settings between different machines using a network share

f Sorting MySQL GUI Tools' stored connections

f Automatically creating stored connections

f Adding custom graphs to MySQL Administrator

f Displaying query results page by page and with scrolling, using the mysql
command-line client

f Extracting information from verbose output using the mysql command-line client

f Specifying a default pager

f Using a custom prompt to distinguish connections

f Encrypting a MySQL server connection with SSH

f Creating an encrypted MySQL console via SSH

f Using a PuTTY template connection for SSH secured connections

Introduction
Everyone expects a DBA to keep database servers running smoothly day in and day out,
handing out data to maybe thousands of clients or even more simultaneously, quickly
and reliably.

Apart from a solid knowledge about the inner workings of the server(s) you manage, what's
as important are the tools at your disposal. They enable you to inspect and tune the server's
running parameters, configuration options, and so on.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

92

While there is a plethora of utilities and tools, both free and commercial—each of them with its
respective strengths and weaknesses—the official tools available directly and (mostly) for free
from the MySQL website are often underestimated or even overlooked.

While they may not be the most polished and may certainly have their quirks, they should,
nevertheless, not escape your attention because either on their own or sometimes amended
by some other (free) software, they are capable of helping you a great deal with your everyday
MySQL administration tasks.

Tools used in this recipe
In this chapter, we will look at the MySQL command-line client mysql, which is available
for free with the server, and the MySQL GUI Toolkit parts MySQL Query Browser and
MySQL Administrator.

The command-line client lies at the heart of many scripts and other command-line tools.
This is because it is quite flexible and lends itself to automation by its very nature as a purely
text-based tool. It can generally be used on all platforms supported by MySQL. However, the
respective underlying operating system and the shell used play an important role in what you
can do with mysql.

Most Linux distributions and other Unix-like systems—this includes Apple's Mac OS X—by
default come with rich support for scripting and automation. On Microsoft Windows, the story
has become better over the years. However, some funny things that you get for free with Linux
and the like will just not work. In some cases, such lack of functionality can be alleviated with
the installation of some additional packages. In other cases, Windows users, unfortunately,
are simply out of luck due to restrictions posed by the operating system's very core.

Nevertheless, wherever possible we will give advice on how to work around such problems
should the need arise in any of the following recipes.

MySQL GUI Tools have become a respectable set of tools over the past couple of years.
Although sometimes they still have issues with stability, they have reached a level of maturity
where they can be recommended for everyday use without hesitation. In this chapter, you
will find some recipes that revolve around MySQL Administrator and MySQL Query Browser to
make using them an even more pleasant experience. You can get them from the MySQL home
page at http://dev.mysql.com/downloads/gui-tools.

This chapter is not a manual to these tools in general. In fact, some experience with them is
recommended to take full advantage of the recipes presented here. To follow along, you need
to have the GUI Tools installed on your machine.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

93

Platform differences
MySQL GUI Tools are available for major operating system platforms. The recipes regarding
them presented in this book should work equally well on Windows, Linux, and Mac OS X.
However, there are some differences between these platforms, for instance, where the
preferences files are stored or what the user interface looks like. Whenever necessary,
aspects that need different handling depending on the underlying platform will be
discussed separatwely.

MySQL GUI Tools config file locations
One major difference between operating systems is the location of the MySQL GUI Tools'
configuration files. Some recipes manipulate those directly; so instead of describing time and
again where to find them on each operating system, please have a look at the following list
whenever you need to locate one of them.

In Mac OS X, the preferences files are stored in the Library/Application Support folder
of the user's home directory shown as follows:

In Linux, the settings are stored in a hidden directory .mysqlgui inside the user's
home directory.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

94

In Windows, the settings are stored in the %APPDATA%/MySQL folder located in the user's
profile. The next screenshot shows Windows 7, but with XP it is just the same.

Transferring connection settings between
different machines using a network share

MySQL Administrator and MySQL Query Browser allow storing connection profiles for hosts
that you regularly use. These are stored locally as part of the user profile you are logged in
with. Unless you only ever work from a single machine with a single user account, you would
usually have to recreate and maintain each and every machine's list of stored connections
manually, which is neither a fun nor a productive task.

This recipe will show you how to store connection profile settings in a way that allows them to
be used from multiple user accounts and even multiple machines.

The next steps will demonstrate how to share connection settings between Ubuntu Linux and
a Windows 7 machine using a network share.

You can apply this to any combination of machines with any supported operating system.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

95

Getting ready
Make sure you have some sort of a shared medium ready with write permissions. This could
be a directory on the local machine accessible by several user accounts, a USB pen-drive to
carry around with you, a web server, or a network share accessible by anyone you want to
share the connections with.

See the chapter introduction for a guide on where to find the stored connection file on
each platform.

How to do it...
1. Set up one or more connections in MySQL Administrator on the Linux machine. The

screenshots in this example were taken on a machine with two connection profiles
called Development Server A and QA Server.

2. Close MySQL Administrator and also MySQL Query Browser (if running).

3. Navigate to ~/.mysqlgui and copy the file called mysqlx_user_connections.
xml to the network share.

4. On Windows 7 open an explorer window and enter %appdata%\MySQL in the
address bar. Click Enter to open the folder.

5. Open another Explorer window and point it to the network share.

6. Drag mysqlx_user_connections.xml from the network to the local directory,
making a copy.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

96

7. Start MySQL Administrator or Query Browser and find the connections defined on the
Linux machine also present in Windows 7.

How it works...
MySQL GUI Tools store information about the connections you enter and store using their
graphical user interface in an XML file. As there are no other places to consider (such as the
registry or binary files), it is rather easy to copy them around and use them in different places.

All the settings—including host names, user account names, and even the notes you can bind
to a stored connection—are saved to this XML file. It is used by both MySQL Administrator and
MySQL Query Browser, so you need not do anything to share a common set of connections
between the two on the same machine. Passwords can optionally be stored and are put into
this file too, if you choose so. However, storing passwords is generally not recommended
because they are not securely encrypted.

Ideally, the tools would optionally allow you to specify which file to use so you could just point
them all at the common location like the network drive employed in the previous section.
While this would work great in theory, there would be all kinds of unwanted consequences.
For example, what would you do if two people on different machines tried to modify and save
the same stored connection?

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

97

Because of this, it is necessary to provide each machine (or user account to be precise
because the %appdata% portion of the path named in the previous steps takes you into a
subdirectory of the user's profile) with its own copy of the file to work with. This is what you just
did by copying the file from one machine to the network drive and from there on to the second
machine. To MySQL GUI Tools it makes no difference whether they created the file themselves
or got spoonfed by a different instance, even on a different piece of hardware.

There's more...
For simple setups and with a limited number of people sharing connection settings, this very
basic approach works quite well. However, maybe you'd like some more pointers on where to
go from here.

Dealing with changes
As we already discussed, each workstation machine gets its own copy of the connections XML
file. While this is a technical necessity, it brings along the problem of concurrent changes to
connection profiles on different machines.

As soon as at least two people modify different local copies of the file, they will have to agree
on who is to copy his or her new version to the network drive. Only one of them can do so
because the second one would overwrite their colleague's edits.

For small teams, the simplest approach could be to agree on a dedicated PC on which
the changes are made. All other machines only update their local copy of the file from the
network, but never push them back.

Alternatively, you can name a single user who makes all of the changes and puts them on the
shared medium.

For larger teams, you may consider using a version control system like Subversion or CVS. This
can be especially practical for larger organizations already having a repository in place that
could be put to good use here. The local XML file could be a working copy checked out from
the repository. Whenever someone changes it, he or she would check it into the repository
for others to fetch. In case of conflicting changes, you would be notified by the version control
software and would have to merge both changes into a new combined version.

If you do this, you might consider using some kind of XML formatting tool because MySQL
GUI Tools tend to write out the file with platform-specific line endings, making it a little more
cumbersome compared to the files originating from Windows and Unix-like platforms.

For Windows you might want to check out a program called firstobject XML Editor freely
available at http://www.firstobject.com, which has a formatting feature.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

98

Sorting MySQL GUI Tools' stored connections
MySQL Administrator and MySQL Query Browser both include a connection editor that allows
you to manage your stored connection profiles. While this offers a comfortable way to create
new or edit existing profiles including a lot of settings and even comments, this editor provides
no way to sort your profiles. Especially, if you work with a lot of stored settings, you will want
to maintain a certain tidiness to quickly find specific profiles from the drop-down list in the
Connections dialog.

This recipe will show you how to sort connection profile settings by Connection Name,
assuming Mac OS X as the platform.

For Linux and Windows, the instructions are mostly identical. However,
you will have to replace the path names with the appropriate values for
your system. Instead of the terminal application, Windows users use
Start | Run | cmd.exe to launch a command interpreter. Also, note
that the cp command is called copy on Windows, so make sure you
change that too!

Getting ready
To try this you will need several stored connection profiles. You can create those in
either MySQL Administrator or MySQL Query Browser as they both share the same set
of connections. In this example, there are five connections that appear unsorted in the
connection editor:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

99

You will need an XSLT processor installed. Most Linux distributions and Mac OS X come
preinstalled with a command called xsltproc. Windows users can download a binary
version of this tool for their platform from http://www.xmlsoft.org/XSLT.

How to do it...
1. Save the following code to a file called sortconnections.xsl and place

it in your home directory. You can download this file from the book's website
(www.packtpub.com) too.
<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output omit-xml-declaration="yes" indent="yes"/>

 <xsl:strip-space elements="*"/>

 <xsl:template match="node()|@*">

 <xsl:copy>

 <xsl:apply-templates select="node()|@*"/>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="user_connections">

 <xsl:copy>

 <xsl:apply-templates select="@*"/>

 <xsl:apply-templates select="*[name()!='user_connection']"/>

 <xsl:apply-templates select="user_connection">

 <xsl:sort select="connection_name"/>

 </xsl:apply-templates>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

2. Close MySQL Administrator and also MySQL Query Browser (if running).

3. Open Terminal.app.

4. Enter the following commands. The first cd command will take you to your home
directory in case you have configured a different default.
$ cd ~/Library/Application\ Support/MySQL/
$ cp mysqlx_user_connections.xml mysqlx_user_connections.xml.
unsorted
$ xsltproc ~/sortconnections.xsl mysqlx_user_connections.xml.
unsorted > mysqlx_user_connections.xml

5. Close the terminal.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

100

6. Start MySQL Administrator or MySQL Query Browser and find the connections sorted
in the connection editor.

How it works...
MySQL GUI Tools store information about the connections that you enter using their graphical
user interface in an XML file. Each connection is represented by an XML element called
<user_connection>. The order of these elements in the file determines in which order the
GUI will display them.

As there is no way to rearrange the connection profiles using the user interface we sort the
underlying data file.

Because the data file is locked by the GUI Tools while they are running, it
is important to quit them before beginning the procedure. Otherwise your
changes might get lost, because next time you close the GUI Tools, the file
gets rewritten in the order that the running instance knew!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

101

Using a simple XSL stylesheet and a suitable processing tool (xsltproc), the unsorted XML
is read and transformed into a new version with the <user_connection> elements sorted
by their <connection_name> sub-element. To make sure nothing goes wrong, we first
make a backup copy of the original file and save it as mysqlx_user_connections.xml.
unsorted.

Finally, the xsltproc command applies the sortconnections.xsl stylesheet, and the
resulting output is stored back into mysqlx_user_connections.xml where it will be found
the next time a MySQL GUI Tool starts.

There's more...
Sorting by name is just one way of organizing your connection templates and probably, the
one most often used. However, XSL stylesheets are a very versatile and powerful means to ma-
nipulate XML files such as the connection profiles store. There are lots of resources on the Web
and in printed form that can teach you how to filter, group, and rearrange XML data. For a good
tutorial on XSL transformations, for example, go to http://www.w3schools.com/xsl/.

Here are some more pointers as to what you might do to make stored connections
more useful:

f Instead of sorting by connection name, you might sort by hostname. This can be use-
ful if you manage a large number of machines following a naming convention that
allows for sensible sorting.

f A combination of sort criteria might prove useful if you store several profiles for a
single server. You might sort by host first and then by database or username.

Even in cases where the predefined fields are insufficient, there is a way to define almost ar-
bitrary sort criteria by leveraging the otherwise seldom-used Notes field in the query editor.
For example, in a scenario where you have to manage hosts in different locations (cities,
countries, subsidiaries, and so on) you could store the city name in the Notes field and use
this as a sorting criterion.

Automatically creating stored connections
Although managing a handful of connections is no problem with the built-in connection
managers in MySQL GUI Tools, creating a larger series of them tends to become tedious.
For example, when managing a shared database server there might be several hundred
databases—one or even more for each customer. In a different scenario you may have
numerous servers, for each of which you might want a separate stored connection entry
to allow easy access.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

102

This recipe presents a way to automatically generate new connection entries based on a
simple CSV (comma-separated-value) file using a short shell script. This very simple format
allows for a wide range of data sources. For example, you might already have a spreadsheet
with all of the important information or extract it from some sort of database.

Refer to the MySQL GUI Tools config file locations section in the chapter introduction to check
where you can find the connection storage XML file for each operating system.

Getting ready
To try this you should know your way around with a command line. There is no need for you
to be experienced with advanced shell scripting, but you should be familiar with navigation
around the file system and some basic commands. Moreover, you will need a file containing
the basic information about each connection profile you would like to include in your MySQL
GUI Tools stored connections. The steps outlined in this recipe require a bash shell. This is
default in many Linux distributions and Mac OS X 10.3 and later.

In Windows, you can either install the Cygwin toolkit from http://www.cygwin.com that
provides a bash shell and sed tool, or modify the script to match the batch file syntax. The
sed command can be downloaded as a.native Windows executable as part of the Unix utilities
from http://unxutils.sourceforge.net/. We definitely recommend you have a look at
Cygwin, unless you are really experienced with Windows batch scripting.

Connections will be generated from a CSV file, which should contain one line per new
connection. Each line will contain the connection information in a fixed order separated by
commas like this:

Title,Username,Hostname,Port,Schema,Notes,Password

All fields are optional. However, the number of commas
per line must be obeyed, even when nothing more
follows in the same line!

Everything that you don't include in this file must either be entered manually each time you
choose this connection profile, or be a fixed value that all connections have in common. The
following file contains several valid sample lines to demonstrate the idea. The example below
assumes that you start with an empty list of connection profiles and add these sample entries
directly from this file called connections.csv:

LocalDev,root,localhost,3310,dev_db,Version 1.5,rootpw
Web01,smith,web01.example.com,3306,cmsweb,,,
Austria,guest,10.22.109.12,3306,mz011,Staging DB,

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

103

In order to create connections with a password taken from the CSV file, you must make sure
that the template connection you are going to create in the following section is configured
to use Plain Text password storage setting. If you do not want to store passwords in the
connection profiles for security reasons, you can set this option to any of the other available
settings, but make sure that you do not provide any passwords in the CSV file because they
would not work.

The example in the next section assumes plain text password storage for demonstration purposes.

How to do it...
1. Open MySQL Administrator or MySQL Query Browser, and go to the Connection

Editor.

2. Create a new connection with this data:

Field Content
Connection Name p_0

Username p_1

Password p_6

Hostname p_2

Schema p_4

Notes p_5

3. Close MySQL Administrator and MySQL Query Browser (if running).

4. Open the connection profiles XML file with a text editor and search for p_0. You will
most likely find it close to the end of the file.

5. Replace the port number 3306 with p_3. This is necessary because you cannot enter
non-numeric characters in the GUI.

6. Save the <user_connection> element surrounding your template profile including
the </user_connection> line at the end to a new file called oneconnection.
template. This file should look like this:
<user_connection>

 <connection_name>p_0</connection_name>

 <username>p_1</username>

 <hostname>p_2/hostname>

 <port>p_3</port>

 <schema>p_4</schema>

 <advanced_options>

 </advanced_options>

 <storage_path></storage_path>

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

104

 <notes>p_5</notes>

 <connection_type>0</connection_type>

 <storage_type>1</storage_type>

 <password_storage_type>6</password_storage_type>

 <password>p_6</password>

</user_connection>

7. Create a script file named mkuserconn.sh with the following contents:
#!/bin/bash

IFS=,

TMPFILE=$(mktemp ~/mkuserconn.XXXXXXXXXX) || exit 1

while read p[0] p[1] p[2] p[3] p[4] p[5] p[6] ; do

 s=""

 for ((i=0; i<${#p[*]}; i++)); do

 s=$s"s/p_${i}/${p[${i}]}/g;"

 done

 newentry=$(sed -e "${s}" oneconnection.template)

 echo "${newentry}" >> ${TMPFILE}

done < ${2}

echo "</user_connections>" >> ${TMPFILE}

sed -e "/<\/user_connections>/ {

 r ${TMPFILE}

 d

}" ${1}

8. Make the file executable with:
$ chmod u+x mkuserconn.sh

9. Invoke the script like this:
$./mkuserconn.sh mysqlx_user_connections.xml connections.csv

10. The output will be sent to stdout to give you a chance to verify that everything goes
as planned. Once you are content, redirect it to a new file with the redirect operator >
like this:
$./mkuserconn.sh mysqlx_user_connections.xml connections.csv >
mysqlx_user_connections_new.xml

11. Replace the original mysqlx_user_connections.xml file with the newly created
mysqlx_user_connections_new.xml once you are content, saving a backup of
the previous version:
$ cp mysqlx_user_connections.xml mysqlx_user_connections.xml.bak
$ cp mysqlx_user_connections_new.xml mysqlx_user_connections.xml

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

105

12. Open MySQL Administrator or MySQL Query Browser and find the newly created
connections ready to go:

How it works...
MySQL GUI Tools store information about the connections you enter and store using their
graphical user interface in an XML file. Each connection is represented by an XML element
called <user_connection>.

The script presented takes one such entry as a template to create new ones, replacing the
p_0, p_1, p_2, and other similar placeholders with values from the connections.csv file.

First the script creates a file in your home directory (~) where the new connection data is
stored temporarily. It then reads the fields from a file passed in as the second parameter and
stores them in an array called p. The order of the fields in the file corresponds to the index in
the array. In the loop body (the loop reads the CSV file one line at a time), the sed command-
line is assembled, consisting of replace commands that fill in the information from the CSV file
at the appropriate places in oneconnection.template.

When the command has been built, it is executed, and the output is stored in the temporary
file created earlier.

This is repeated until all lines of the CSV file have been read, effectively creating a new
<user_connection>...</user_connection> element for each line in your input file.

Finally, when the temporary file contains all new connection profiles, it is merged into the first file
specified as a command-line parameter, which is your mysqlx_user_connections.xml file
or a copy thereof, right before the end of the file.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

106

When you open one of the GUI tools again, you will find the newly created connections based
on the template you set up before. You can, of course, remove the p_0 connection at any
time, once you copied it to the oneconnection.template file.

Be sure to try this on a copy of your connections XML file first to make sure
everything is correct! A single typo in the script file might corrupt the file
beyond repair. This is why we designed the script to output to the console by
default to prevent accidental overwrites.

There's more...
The script presented in this recipe is very basic to make it easier to understand, and you can
use basic tools that are easy to get and install almost anywhere.

Of course, you could rewrite it in Perl or any other programming language, adding more
features, some help texts, and so on.

Some ideas you may want to pursue could be inserting new connections in some specific
order, modifying existing connections with the same name instead of creating duplicate
entries, or editing the connection storage XML file in place.

Adding custom graphs to MySQL
Administrator

MySQL Administrator is one of the graphical tools that MySQL provides to manage its
database servers. Apart from other things like server daemon control and a log file viewer,
this tool includes visual controls to display the current load and other "vital signs" of the
database server.

Even though the out-of-the-box configuration already contains some useful diagrams, it
becomes even more useful with some custom-designed graphs. It might not be suitable
to replace a fully featured monitoring solution, but it is definitely helpful to gain a quick
impression about what stress a server is currently under, how many users are connected, and
so on.

MySQL Administrator provides a graphical editor to introduce new pages, groups, and graphs.
Even though I would rather use the term tab (which is what it comes down to in the GUI), we
will stick to page here because that's what MySQL calls it.

When you open up MySQL Administrator and head to the Health section, you will see some
default pages: Status Variables, Connection Health, Memory Health, and Server Variables.
Depending on the version of your tools, there may be one more Monitoring & Advisory
Service; however, it just contains an advertisement for a commercial monitoring solution.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

107

In this recipe, we are going to add a new page called Stats and set it up to display information
about the number of requests the server has to handle currently, split up by SELECT, INSERT,
UPDATE, and DELETE statements as well as a bar diagram that shows the ratio of InnoDB
read/write operations.

MySQL GUI Tools are not always available for all platforms in the latest version. Usually,
Windows is updated more frequently. This sometimes results in minor differences like slight
changes in menu item names and the like, depending on which operating system you use.
For example, at the time of writing the most current Windows version was 5.0r17 while for
Mac and Linux it was 5.0r12. While on Windows, the context menu mentioned in this recipe
is labeled Add Page..., the Mac version calls the same command New Page. However, you
should not have any problems moving along.

Getting ready
To try this you need MySQL Administrator installed. Furthermore, you will need login
credentials to a MySQL server instance, preferably a busy one to watch some real data. Of
course, a locally installed instance will do just as well. Please note that you need sufficient
privileges to issue SHOW STATUS commands.

One word of advice before we begin: even though it has gotten much better at this, when
modifying the graphs MySQL Administrator will sometimes just crash and take everything you
did so far with it. It only saves your modifications to disk when you leave the program.

It is highly recommended to quit the application and restart every once
in a while when you have got something working—the way you would like
to keep it, to prevent losing your freshly made customizations!

In case you experience repeated crashes, you might want to consider editing the graph
definition manually. Refer to the How it works… section for further information.

How to do it...
1. Start MySQL Administrator and connect to the server.

2. Activate the Health section and go to the Connection Health page.

3. Right-click on the page and choose New Page from the context menu.

4. Enter Stats in the newly opened dialog. If asked for it, specify a descriptive text
like Statistical breakdown of different query types.

5. Make sure the new Stats page is displayed and then right-click on it. Choose
New Group.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

108

6. Enter DML Statements in the naming box that will appear.

7. Right-click the (empty) DML Statements group. Choose New Graph from the menu.

8. Fill up the settings as shown in the following table. Fields not listed should be
left empty:

Field Content
Display Title Not Checked
Graph Type Line Graph
Value Formula ^[com_select]

Value Unit Count
Value Caption SELECT

Min Value 0

Max Value 100

Auto Extend Checked

9. Click OK (Mac) / Apply (Windows).

10. Repeat this step for the value formulas ^[com_insert], ^[com_update],
^[com_delete], and their appropriate value captions.

11. Right-click on the page and create another group called InnoDB.

12. Inside this group add a new graph with these settings:

Field Content
Title InnoDB R/W Ratio

Display Title Checked
Graph Type Bar Graph
Value Formula ([innodb_pages_read]/

([innodb_pages_
read]+[innodb_pages_
written]))*100

Value Unit Percentage
Value Caption Reads

Min Value 0

Max Value 100

Max Caption Total

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

109

Do not forget to restart MySQL Administrator to make
your changes permanent.

After filling up each field appropriately, as discussed, the final output should look like the
following screenshot:

How it works...
All graphs are based on status variables provided by the MySQL server. The MySQL online
manual contains an extensive list of these at http://dev.mysql.com/doc/refman/5.1/
en/server-status-variables.html, documenting the meaning of each variable. The
value formulas allow mathematical operations using these values that will then be displayed
in bar graphs or line graphs. Which type of diagram you choose depends on the type of
information you would like to visualize.

Bear in mind that depending on which version of MySQL you use, the exact set of variables
you can use does vary. Refer to the online manual to make sure your graph definitions match
your server version.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

110

The examples in this recipe provide a quick overview of what the server is currently working
on based on the command counters for the individual data manipulation statements. More
sophisticated stats can be built using some of the lower-level status variables like those
starting with Handler_. They provide information that may allow you to identify performance
problems or bad indexing.

MySQL Administrator stores your custom diagrams in an XML file. The name and location of that
file are operating system dependent. In Windows and Linux, it is called mysqladmin_health.
xml. In Windows, it is located in the same folder as mysqlx_user_connections.xml. In
Linux and Mac OS X, there is a subfolder named administrator. Moreover, the Mac version
uses a different filename: mysqladmin_custom_health.xml.

Fortunately, the contents are identical, so copying a file from one system to the other just
requires you to adapt its name and place appropriately.

In certain cases you might want to edit the graph definitions manually. For example, there is
no way to change the graph type from Line to Bar or vice versa once you have created it in the
GUI. By directly editing the XML definition you gain a lot more flexibility.

Caution:
Make sure to keep a backup copy of your edits before you start MySQL
Administrator and try your changes. If you make a mistake that prevents
MySQL Administrator from reading and applying the file, it will overwrite it
with defaults on exit!

There's more...
While generally most recipes are agnostic to the exact version of MySQL you are running,
this one has a caveat: MySQL has a known issue that leads to different behavior in
different versions.

From version 5.0 on, the effect is that you cannot query the counters, for example, the
number of temporary tables, without modifying it as you go. In versions prior to 5.0, the SHOW
STATUS commands (the foundation for many of the values MySQL Administrator can display)
could be executed without modifying them. Their results were sent to the client immediately.
Starting with 5.0, a temporary table with the results is created automatically and its contents
are sent to the client. Unfortunately, this temporary table itself is counted in the statistics.

Even though this new technique allows accessing this statistical data in stored procedures,
it increases noise in measuring. As a simple workaround, some formulas can be modified to
compensate, for example by subtracting the value that an idle server would display. This of
course is not viable for all types of calculations. Also, consider that there might be multiple
simultaneous connections that execute the same queries. You cannot reliably compensate
for this.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

111

In the end you will have to keep this in mind when interpreting the stats you see.

For more details, we suggest you read the discussion that is part of the bug report available at
http://bugs.mysql.com/bug.php?id=10210.

Displaying query results page by page and
with scrolling using the MySQL command-line
client

The mysql program is part of every MySQL installation. It is a powerful tool, even though
some of its functionality is only available on non-Windows platforms. It may not be graphically
pleasing, but can be used as a versatile client to the database server both interactively and in
scripted scenarios.

When using the MySQL command-line client mysql, you are certainly familiar with outputs
like the following screenshot:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

112

It only shows two rows of data, but you have almost no chance of getting the information you
wanted. When you have larger result sets, it gets even worse because then vertical scrolling
might even prevent you from reading the column titles (depending on how large your console's
buffer is). Fortunately, there is a way to process the output of any MySQL command before
sending it to the screen.

This recipe will show you how to view a result that is too large to fit on one screen in a way that
allows both vertical and horizontal navigation as well as some other operations.

The next example assumes that you have an instance of the MySQL server running on your
local machine. Of course, you can connect to any other host as well.

Getting ready
To try this you will need the mysql command-line client on Mac OS X, Linux, or any other
Unix-like platform.

Unfortunately, for Windows users there is no way to apply this recipe
because the client cannot provide the necessary functionality in
Windows as it is based on some underlying functions that are not
available in Microsoft's operating system!

You will also need the less pager utility. This is available on Mac OS X and virtually every
Linux distribution, so you should not have any problems here. For simplicity, the example
assumes that you have privileges to SELECT from the mysql system database. This is not
required, however, as any SELECT will do.

How to do it...
1. Run the mysql command-line client:

 $ mysql

2. Enter the following commands at the mysql prompt:
 mysql> pager less -SFX

 mysql> SELECT * FROM mysql.user;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

113

3. You will get an output similar to this:

In this view you can scroll horizontally and vertically using your cursor keys. Hitting the
q key will bring you back to the command prompt.

4. Optionally, to unset the pager type this:

 mysql> nopager

How it works...
The pager command allows you to specify an arbitrary program, which is executed whenever
you would normally see the result of a subsequent command. This includes results
from SELECT statements as well as any other output, for example, from SHOW ENGINE
INNODB STATUS.

The program receives exactly the same output that would otherwise be printed to the console.

In this example, the query result is handed over to the less utility, a common tool to display
information that would usually be too large to fit on a single screen. less allows free
navigation using the cursor keys, which is what you just tried. It also knows a command called
q that we used earlier and that exits the program, effectively taking you back to the MySQL
command prompt.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

114

The -SFX parameters passed to less in this example specify some options that are
recommended for use with mysql.

Parameter Description
-S Causes lines longer than the screen width to be chopped

rather than wrapped around. This keeps the table format of the
SELECT output intact and allows to navigate horizontally using
the cursor keys.

-F In case the result of a command fits on screen without the need
for any scrolling, less automatically terminates, effectively
saving you from typing "q" to get ready for the next command.

-X Instructs less to skip some initialization that would otherwise
potentially lead to undesirable screen layout problems.

less offers a large number of other parameters you may pass to further customize its
behavior. For a complete list, refer to the manual page available from a command shell:

$ man less

Extracting information from verbose output
using the MySQL command-line client

Output from MySQL commands can be rather verbose. For example, the SHOW ENGINE
INNODB STATUS command usually produces enough text to cause your typical terminal
window to scroll.

Often you are not interested in everything the output contains, but only want to know about
a particular detail that easily gets lost in the overall amount of text.

This recipe will show you how to easily extract information from such output using a search
term. In particular, we will extract the BUFFER POOL AND MEMORY section from the InnoDB
status output.

Getting ready
To try this, you will need the mysql command-line client on Mac OS X, Linux, or any other
Unix-like platform.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

115

Unfortunately, for Windows users there is no way to apply this recipe
because the client cannot provide the necessary functionality in Windows
as it is based on some underlying functions that are not available in
Microsoft's operating system!

Furthermore, you will need the grep text search utility. This is available on Mac OS X and
virtually every Linux distribution by default, so you should not have any problems here.

How to do it...
1. Open a connection to the MySQL server using the mysql command-line client.

2. Set the pager to the following command:
 mysql> pager grep -A 12 -e "BUFFER POOL AND MEMORY"

3. Request the InnoDB status using the following command:
 mysql> SHOW ENGINE INNODB STATUS\G

4. Instead of the complete InnoDB status output, you will only see the 12 lines following
the BUFFER POOL AND MEMORY heading:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

116

How it works...
The pager command allows you to specify an arbitrary program, which is executed whenever
you would normally see the result of a subsequent command. This includes results from
SELECT statements as well as any other output, for example from the SHOW ENGINE INNODB
STATUS command.

The program is handed the exact same output that would otherwise be printed to the console.
In this example, the query result is handed to the grep utility—a common tool to search for
keywords or phrases in text content. It offers a wide range of parameters and configuration
options. In this example, the -A (number of lines to be displayed after the one that contained
the search term) and -e (specifies the search term) options are used to first look for a line
that contains the text BUFFER POOL AND MEMORY and outputs this and the 12 lines
following it.

The exact number of lines to be used depends on the output you are filtering. In this example,
the length of the relevant section is 12 (you will have to adapt this to a value suitable for your
particular use case). Keeping a note at hand with the correct number of lines for your most
commonly used commands is recommended.

There's more...
grep is not limited to searching for fixed text fragments. It supports case-sensitive and
case-insensitive modes, matching lines that do or specifically don't contain the search term,
and much more. Apart from simple search terms, you can also specify to search using regular
expressions, which makes it extremely flexible and powerful. You should have a look at the
grep manual pages for more detailed information.

Over time you will find yourself using the same filters repeatedly. Consider putting these into
small individual shell scripts that can also be used as a pager, saving you the trouble of
typing potentially long and complex commands over and over again.

Specifying a default pager
In the Displaying query results page by page and with scrolling using the mysql command-line
client and Extracting information from verbose output using the mysql command-line client
recipes, we presented a way to have the mysql command-line client send its output through
an external program to have it formatted before displaying.

Depending on what kind of processing you need, the client's pager command provides a
useful way of specifying the external command to use. However, this choice is lost once you
exit the client. Next time you want to use it, you are back with the standard output handling
(which is to simply write the data to your console).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

117

This recipe will show you how to configure mysql to use an external command of your choice
as the default on startup and whenever you issue the pager command without parameters to
revert to the default setting.

The next example assumes you have an instance of the MySQL server running on your local
machine. You can also connect to any other host.

Getting ready
To try this you will need the mysql command-line client on Mac OS X, Linux, or any other
Unix-like platform.

Unfortunately, for Windows users there is no way to apply this recipe
because the client cannot provide the necessary functionality in Windows
as it is based on some underlying functions that are not available in
Microsoft's operating system!

In this example, we are going to use the well-known less pager utility that comes
pre-installed in Mac OS X and virtually every Linux distribution, and set it up as the default
pager, effectively making all mysql output navigable if it is larger than your terminal.

How to do it...
1. From your home directory, open the .my.cnf file in a text editor. Note that this is a

hidden file (because of the leading dot (.) in the filename). If it does not yet exist,
create an empty file with that name. Make sure you include the leading dot in the
filename.

2. Look for a section called [mysql]. If it is not there, add it by inserting the following
line at the end of the file:
[mysql]

3. Below that line (and before any other section) insert this:
pager=less -SFX

4. Save the file.

Each new instance of the command-line client you start from now on will default to the
less -SFX pager. You can still use the pager command to specify a different command
to process output inside mysql.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

118

How it works...
When the mysql client starts, it looks for options in a file called .my.cnf in your home
directory. Inside this file it reads the [client] and [mysql] sections. By placing a pager
setting in there we configured a pager different from the default.

Make sure you put the pager setting in the [mysql] section, and not in
the [client] section!
While the mysql command-line client would work with the new setting,
other client tools (such as mysqladmin) would also try to read it and might
abort because they do not know what to do with it. [mysql], however, is
solely read by the command-line client.

There's more...
The example uses the .my.cnf option file in your home directory to specify the default pager.
In a multi-user environment this makes perfect sense, since everyone can configure their
client with individual settings.

But there are several locations mysql looks in for its configuration that might come in
handy if you want to share parts of your configuration among several user accounts. They
are explained in detail in section 4.2.3.3. Using Option Files in the MySQL online manual at
http://dev.mysql.com/doc/refman/5.1/en/option-files.html.

Using a custom prompt to distinguish
connections

In many situations, the mysql command-line client program is the first choice when
connecting to MySQL servers. With its default mysql> prompt, it sets itself apart from the
local command shell's prompt so you know where you are at a glance.

But when you need to connect to more than one server at a time (or maybe just keep multiple
connections to the same one open), this simple prompt is not enough to quickly tell the
sessions apart.

In this recipe, we will change the default prompt to include useful session-related information.
It will be configured to show the host you are connected to, the username used to log in, and
the current default database.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

119

Getting ready
To try this you will need the mysql command-line client and login credentials to at least
one MySQL server. Ideally, you can access more than one machine to see the effect of all
settings presented.

In Windows, there is no .my.cnf but a my.ini file. Moreover, it is
not usually located in your user profile—or home—directory, but in the
Windows folder or the folder your MySQL installation resides in. If you
are unsure, use the my.ini in the Windows directory or create one
there if it does not exist yet!

How to do it...
1. Open the .my.cnf file in a text editor. It is located in your home directory. If it does

not yet exist, create an empty file with that name. Make sure you include the leading
dot in the filename.

2. Look for a section called [mysql]. If it is not yet there, add it by inserting the
following line:
[mysql]

3. Below that line (and before any other section) insert this:
prompt=\\h/\\u:[\\d]>_

4. Save the file.

5. Open at least two connections with different credentials and/or to different hosts. In
each connection you can now see the host you are connected to, followed by your
username and the name of the current default database

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

120

How it works...
Basically the way this recipe works is the same as described in the Specifying a default pager
recipe. The difference is just the parameter you set (prompt). Please read the description
there to get a deeper insight into the preference file mechanism.

The value we set for prompt consists of several tokens, each of which gets replaced with a
value specific to the current connection:

Token Replacement
\\h The name of the host you are connected to
\\u Your username
\\d The name of the current default database
_ A space character

For the machine used to write this book, the prompt in this example is expanded as follows:

Database

\\h/\\u:[\\d]>_
Host User Space

Database

yavin-mac/ds:[mysql]
Host User Space

There's more...
See the There's more... section of the Specifying a default pager recipe for more information
on the parameters file.

Apart from the tokens used in this example, there are several more that allow you to further
tailor the prompt to your needs. You can find a comprehensive list for your MySQL version in
the server's online manual section 4.5.1.2. mysql Commands at http://dev.mysql.com/
doc/refman/5.1/en/mysql-commands.html.

Configuring a prompt that really suits all your needs is often a matter of trial and error and
can take some time before you are really satisfied. To speed up this process use the prompt
command inside mysql to change the prompt for only the current session interactively.
Once you are done you can put it into the option file to automatically use it the next time the
client starts.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

121

See also
f Specifying a default pager

Encrypting a MySQL server connection
with SSH

When connecting to MySQL server over the Internet, you should be aware that any
communications between your client and the host machine are transferred without any
encryption. This applies to both the login credentials and the actual database contents
you send to or receive from the server. While the MySQL authentication schema provides
some measure of protection for your password (it is not sent in the clear, but using a
challenge/response type mechanism), it is not as secure as if you were using a real
cryptographic encryption.

Though in a controlled environment like a corporate local area network this may not be much
of an issue, sending database contents through a public network is a different thing.

Theoretically, MySQL allows SSL secured connections between the server and its clients, if
both are built to support it. Unfortunately, the default MySQL packages available for download
from the mysql.com website are not encryption enabled. To get that, you would have to
compile the server from the source code and include the necessary encryption options.
This is tedious and requires a rather substantial amount of knowledge and the appropriate
tool chain.

This recipe will show you how to establish an encrypted connection to a standard MySQL
server with any client program such as the command-line client or MySQL GUI Tools, and so
on. In the next example, we will encrypt a connection from MySQL Administrator to a default
MySQL server.

Getting ready
For this recipe to work, the MySQL server's operating system has to support a secure shell
(SSH) connection. Most Linux distributions include out-of-the-box support for this. Mac OS X
10.5 "Leopard" also supports encrypted SSH connections without third-party products. Earlier
versions must be amended with appropriate software packages.

Windows users also need to install the SSH server themselves. There are several commercial
offerings, but for the purpose of this recipe, the SSH server available with the Cygwin package
is completely sufficient.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

122

Make sure you have set up SSH correctly before you proceed. In Mac OS X, go to the System
Preferences and open the Sharing pane (as seen in the following screenshot). Enable
Remote Login and make sure you select the appropriate user accounts:

In Linux, you usually do not have to do anything.

In Windows, follow the setup instructions for the SSH server of your choice (for example, from
http://www.cygwin.com or http://www.freesshd.com/).

Please note that you will need a set of username and password for the
MySQL server as well as for the operating system it runs on. This is
because the SSH will check before allowing you to try to connect to the
database server!

While in Linux and Mac OS X all necessary client tools are again bundled with the operating
system, Windows users need to acquire an SSH client program and install it on the machine
where they want to run their MySQL client. The Cygwin package includes an SSH client, but
there is a better alternative: The excellent free PuTTY SSH client. It is available on the Web
at http://www.chiark.greenend.org.uk/~sgtatham/putty (alternatively just enter
putty into a search engine of your choice). We will use it in this and the following recipes.

In the next example, we are going to log in to a MySQL server on Mac OS X through a secure
channel established via SSH from a Windows machine.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

123

How to do it...
1. In Linux and Mac OS X, open a command-line shell. In Windows, launch PuTTY.

2. In Linux and Mac OS X, enter the following command. Replace OSUSER with the
operating system account name. Replace HOST with the SSH server hostname:

 $ ssh -L3316:127.0.0.1:3306 OSUSER@HOST

Notice that there is no mention of a MySQL username or
password yet! This is purely to log on to the SSH server.

In Windows, set up a connection with PuTTY making sure you have the following
settings on the Connection/SSH/Tunnels page:

Make sure you hit the Add button once you have entered the
Source port and Destination; otherwise the tunnel settings
will not be activated!

3. For Linux and Mac OS X, hit the Enter key; for Windows click the Open button.

4. Log in to the server using your operating system password.

5. When asked to confirm the remote host's identity, accept the key presented to you.
This will only happen upon the first connection.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

124

6. Once the connection has been established, launch MySQL Administrator.

7. Set up a connection like this:

Please note that the server host is localhost, even though
you are about to connect remotely. Also, make sure that the port
number is set to 3316. The username and password are those
for the MySQL server this time.

8. Click on OK to connect.

9. To disconnect later, first close MySQL Administrator then the SSH client program.

How it works...
The SSH server (or daemon as it is often called) and client toolset provide a versatile and
powerful way of tunneling network connections through the secure link they establish with
one another. This feature enables encrypted data transfers for applications that are not
able to do so themselves, like in our case the default MySQL server and client builds.

To make the encryption process transparent to the tunneled application (MySQL), the SSH
client accepts incoming connections on a configurable TCP port on its behalf. Any connection
that is established with this port gets its data encrypted and sent to the SSH daemon. The
daemon then decrypts the data and relays the original information to the original target (the
MySQL server).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

125

Server Machine

public IP address
10.10.0.1/24

MySQL
Server

Listens on
127.0.0.1:3306

Listens on
127.0.0.1:3306

Client Machine

public IP address
10.10.20.2/24

MySQL
Client

Connects to
127.0.0.1:3316

Forwards to 10.10.0.1:22

Listens on
127.0.0.1:3316

S
S

H
C

lie
n
t

Untrusted Network

regular,
unencrypted
MySQL
traffic

To the server
traffic appears
to be coming
from the local
host.

SSH tunnel encapsulates MySQL data
securely and transparently. Both client
and server connect to their respective
local hosts, SSH handles the rest.

Listens on 10.10.0.1:22

Forwards to
127.0.0.1:3306

S
S

H
S

e
rv

e
r

SSH Tunnelling Schematics

Let's have a look at the command line we used on the client machine (this is on the right side
in the preceding image). The parameters in PuTTY are identical:

$ ssh -L3316:127.0.0.1:3306 OSUSER@HOST

ssh is the name of the client program. The -L3316 parameter tells it to open port 3316 on
the local machine (hence the -L).

Following that, the address and port of the target MySQL server are set. This is a little difficult
to understand at first because 127.0.0.1 is the standard address of the localhost. The
key to understand this is that the part after the colon is an address from the perspective of
the SSH remote server machine. In the example, the MySQL server is running on the Mac.
The SSH server is also running there, so from its point of view the database is reachable via
127.0.0.1 on the default port 3306 (on the left side in the earlier image).

Finally, OSUSER@HOST tells the client which host to connect to and which user account to
log in with.

Once the secure channel is established MySQL Administrator can connect to port 3316 on
its local (Windows) machine. ssh transparently forwards the connection to the HOST machine
which in turn connects to the database on port 3306. In the illustration (refer to the previous
figure), this is the dashed line inside the tunnel depicted in gray.

You can also tell ssh to listen to connections on the regular port 3306, as long as there is no
other process, such as a local MySQL server, using it already.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

126

In the next screenshot, notice the information in the uppermost box Connected to MySQL
Server Instance. As far as MySQL Administrator is concerned, it does not know about the
HOST machine; from its point of view it is connected to localhost, port 3316. This is normal
behavior in this scenario.

There's more...
By now you must have already understood from the description earlier that you need not
necessarily have the SSH daemon installed on the same machine as the target MySQL
server. In fact in many production scenarios, you will have a single SSH gateway server
from which you can reach your MySQL servers. You can then connect to this gateway server
with one or more SSH clients and have it relay MySQL communications to the respective
database servers.

Often hosting providers will not allow you to log in to your MySQL server directly for security
reasons. They do, however, usually equip you with a set of SSH user credentials for managing
the server. Usually, you get to a command shell when you log in using PuTTY or a similar client
program. With this recipe you will no longer be confined to using the mysql command-line
client for your database management needs, but simply run your tool of choice (for example,
MySQL Query Browser) locally and just tunnel it through SSH.

If you want to attach to different MySQL hosts from the same client, be sure to specify an
individual local port number (for example: 3316, 3317, 3318) for each connection, as the host
name will be localhost for all of them.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

127

Creating an encrypted MySQL console via SSH
Often you connect to a remote machine using SSH just to launch the mysql command-line
client as soon as you are logged in. Especially, on dedicated database machines it would be
easier to get the mysql prompt right after you established the SSH connection.

In this recipe, we will set up a dedicated user account on the server machine that
automatically launches the mysql command-line client and connects you to the MySQL
server once you log in using SSH. When you leave the mysql client, you will automatically be
disconnected from SSH as well.

Important: The procedure presented in this recipe may pose a security risk!
Effectively, users have got shell access with this!
Therefore, apply this recipe only in tightly controlled environments with
trustworthy and well-known users!
Never use it to allow arbitrary access to your servers!

mysql provides the system command on Unix-like operating systems. This command
allows you to run operating system level commands in the context of the currently logged in
user. Even though in the example we utilized a restricted user account that does not have
any special rights, it can still access world-readable files (like /etc/passwd) and execute
programs as if it were logged onto the server machine locally!

Getting ready
For this recipe to work, the MySQL server's operating system has to support an SSH
connection. Most Linux distributions include out-of-the-box support for this. Mac OS X
Leopard also supports encrypted SSH connections without third-party products.

While in Mac OS X and Linux, the ssh client is provided out of the box, Windows users will
need the free PuTTY SSH client from the Web or the Cygwin bundled ssh client.

You will need the necessary privileges to create a new operating system user on the SSH
server machine. This need not necessarily be the same machine as the database server.
Moreover, you will need a valid user account on the MySQL server.

In the next example, we will use an Ubuntu Linux machine, which is both the SSH and the
database server. We assume root access on that machine. To connect to the server we will
use PuTTY on Windows.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

128

Setting up this scenario using a Windows SSH server depends on the SSH server you choose
to install. While it would be technically possible to achieve this with the Cygwin SSH server,
it would be rather cumbersome to do so, due to the way Cygwin integrates with the Windows
user account system. Because of this, we will concentrate on Unix-like servers in this recipe
and only use Windows as a client.

How to do it...
1. Open a command shell. Create a new user group on the Linux machine using the

following command:
sudo addgroup mysqlshellusers

2. Create a new directory and set the permissions using these commands:
sudo mkdir /usr/local/bin/mysqlshells

sudo chmod u=rwx,g=rx,o= /usr/local/bin/mysqlshells sudo

chgrp mysqlshellusers /usr/local/bin/mysqlshells

3. Create a new file on the SSH server with the following content. Save it as /usr/
local/bin/mysqlshells/mysqladmin.sh:

#!/bin/bash

echo -----------------------------

echo Connecting to MySQL...

echo -----------------------------

 /usr/bin/mysql -uroot -p

4. Set the permissions on the new file as follows:
sudo chmod u=rx,g=rx,o= /usr/local/bin/mysqlshells/mysqladmin.sh
sudo chgrp mysqlshellusers /usr/local/bin/mysqlshells/mysqladmin.
sh

5. Create a new user account using this command:
sudo useradd -d /tmp -g mysqlshellusers -s /usr/local/bin/
mysqlshells/mysqladmin.sh mysqladmin

6. Set a password for the new user using this command:
sudo passwd myadmin

7. On the client machine launch PuTTY. Connect to the SSH server. Use mysqladmin as
the username and supply the password that you set in step 5.

8. Once you have logged into the host machine, enter the MySQL password for the
database root account:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

129

How it works...
When you log in to an SSH server, the program that it will look up is set as the user's login
shell. Usually, this is a command-line shell like bash or zsh that lets you to interact with the
server's operating system, launch programs, and so on. It need not be a general purpose
command-line interpreter, however, it is perfectly fine to specify any executable command or
script. On some Linux systems, for example Mandriva, you need to add the path of this special
shell in /etc/shells.

When we created the new mysqladmin user account, we used the useradd command's -s
parameter to tell it that we wanted /usr/local/bin/mysqlshells/mysqladmin.sh as
our login shell, which we had just created and placed there.

Upon login, the SSH server opened and ran this script, effectively starting our mysql
command-line client with the -u root and -p parameters. This is why you were asked for
the second password. For security reasons we did not put the password into the script file,
even though that would have been possible and only required us to enter one instead of two
passwords to log in. In a tightly controlled environment this might be a viable solution, but it is
definitely not recommended.

The rest of the commands discussed earlier create a new user group called
mysqlshellusers and restrict access to the /usr/local/bin/mysqlshells directory to
the members of this group to prevent unauthorized users from even viewing the scripts.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

130

There's more...
Of course, you are not limited to a single user account or just one script. You can create
as many specialized scripts as you like and assign them to different user accounts. In the
previous example, the script logged on to the MySQL server as root, which is necessary
for some administrative tasks. You should, however, generally use an account with more
restricted privileges.

To prevent you from having to enter two passwords each time you log in, you might want to
look into SSH public/private key pairs that can be used to log in to SSH instead of a password
without compromising security.

Using a PuTTY template connection for SSH
secured connections

In the previous recipe, we used SSH to tunnel MySQL connections through insecure networks
like the Internet and prevented the data and login information from traveling in clear text.
While for a single server such connections can quite easily be set up manually, it quickly gets
tedious and inflexible once you have more than just a few servers to regularly connect to. In
Mac OS X and Linux, it is very easy to create a little shell script that uses variables for all of
the relevant options you need to pass to the ssh client tool.

PuTTY users in Windows might find themselves in a situation where they would like to do the
same, but unfortunately PuTTY does not provide command-line options for everything that
can be configured through the GUI. For example, you might want to specify your favorite
terminal font or have production systems use a different terminal background color than
internal test machines.

You might be tempted to create individual connection profiles in PuTTY (if you prefer Windows)
for every MySQL server you have to manage or multiply the corresponding registry entries
where PuTTY stores its connection profiles.

Both these approaches work fine up to the point where you need to change a setting that is
common to all of your profiles. In that case, you would need to load, modify, and save each
and every connection the change is applied to.

This recipe will show you how to establish encrypted connections to MySQL servers through
SSH tunnels that are set up using a connection template. As an example, this template will
include a red signal color background for the terminal window to easily visually distinguish
production systems from test machines.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

131

Important: The procedure presented in this recipe may pose a security risk!
Please make sure you understand the implications by reading the information
box in the Creating an encrypted MySQL console via SSH recipe!

Getting ready
For this recipe to work, the MySQL server's operating system has to support an SSH
connection. Most Linux distributions include out-of-the-box support for this. Mac OS X Leopard
also supports encrypted SSH connections without third-party products.

Windows users need to install the SSH server themselves. There are several commercial
offerings, but for the purpose of this recipe the SSH server available with the Cygwin package
is completely sufficient.

While in Mac OS X and Linux, the ssh client is provided out of the box, Windows users will
need the free PuTTY SSH client from the Web.

How to do it...
1. Open Notepad and save the following code as MySQLTunnel_PROD.cmd:

@echo off

echo Production System Hostname:

set /p hst=

echo Connecting to %hst%

putty.exe -L 3316:127.0.0.1:3306 -ssh -load "TMPL_PROD" %hst%

2. Launch PuTTY.

3. Choose the Window/Appearance panel from the left-hand tree.

4. Select Default Background from the list and set the RGB value to 120,0,0.

5. Choose the Connection/Data panel from the left-hand tree.

6. Enter the remote operating system username in the Auto-login username field. In the
example this is ds.

7. Save the connection from the Session panel under the name TMPL_PROD.

8. Close PuTTY.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Tools

132

9. Double-click on the MySQLTunnel_PROD.cmd file. You will be prompted with a
window where you can enter the SSH server's hostname. In this example we've
entered yavin-mac:

10 PuTTY will be automatically launched and will connect to the host you entered,
applying both settings from the batch file (the tunnel setup) as well as from the
TMPL_PROD session (background color, username):

11. Launch your MySQL client program (for example: MySQL Administrator) and point it to
localhost port 3316 to connect through the tunnel.

How it works...
Instead of creating a single connection for every server you need to connect to, we created
a template that contains all settings common to a group of connections (for example, one
for production systems and a different one for internal test machines).

Using only one set of placeholder settings allows for easy changes later on. If you copied the
initial settings for every new host, you would have to edit each copy separately.

A batch file prompts to enter the hostname to connect to, and stores it in a variable called
hst. The batch then launches the PuTTY executable passing both the name of the prepared
template session and some additional command-line parameters (the tunnel setup and
the content of the hst variable), effectively merging both template and manually
specified settings.

If you now need to change a configuration setting (for example, you'd like to enable session
logging to a text file), you just need to edit the corresponding template session in PuTTY once
and have the new settings applied to every subsequent connection that is established via the
batch file.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 3

133

There's more...
In the example, only a limited number of settings are stored in the template session. You can
customize this further, for example, by using a key pair for authentication without the need to
enter a password upon each connection.

You can also introduce more variables in the batch file and hand them to one or more of
PuTTY's other command-line options. Refer to the online documentation to find out which
options can be set directly from the command line.

If your servers are set up using a naming scheme, you might reduce the amount of typing
even further. Just have the user enter only the variable portion of the hostname and build the
complete hostname in the batch file like so:

@echo off
echo Subsidiary no:
set /p subsno=
set hst=SUBS_%subsno%.example.com

echo Connecting to %hst%
putty.exe -ssh -load "TMPL_PROD" %hst%

Here the hostname is built from a prefix SUBS_ which is then appended by a fictional
subsidiary number and complete with a domain suffix .example.com. Adapt this to your
environment appropriately.

By either duplicating the batch file or adding some sort of menu to it, you can also use
different template sessions depending on which set of preferences you would like for any
given connection.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Download at Wow! eBook

WWW.WOWEBOOK.COM

4
Backing Up and

Restoring MySQL Data

This chapter will cover the basic tasks necessary to back up your MySQL data efficiently, and
the steps to restore this data if necessary. We will discuss the following recipes:

f Using MySQL Administrator GUI Tool as a frontend for backups

f Copying all data files to a backup location

f Creating a SQL dump of all databases

f Creating a SQL dump of specific databases

f Creating a SQL dump of specific tables

f Compressing SQL dumps on-the-fly

f Rotating and purging binary logs

f Using replication to perform backups without hurting a production
system's performance

f Restoring data from a dump to a previously backed-up state

f Performing a point-in-time recovery using the binary logs

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

136

Introduction
Although MySQL has a reputation for robustness and data loss is a problem you will not likely
encounter, it is best to be prepared for when your data gets corrupted or lost. Experience
shows that it will eventually happen and probably when you least expect it.

The first thing you should make sure of is that you have a backup at hand. In this chapter, we
will show you different ways of saving your data elsewhere. But having a backup alone is not
enough, as even the most complete backup is basically useless if you are not able to restore
your data from it. This chapter also covers different ways of restoring the data in the database
using an existing backup.

You should, however, be aware that a backup strategy does not only consist of the technical
details on how to back up and how to restore your data. You should also consider backup
aspects like backup frequency, how many generations have to be kept available, suitable
backup media, and constructional conditions. Is one backup per week sufficient? Or is once
a day a better choice? Will you need a tape drive, or will a USB hard disk do? Is it required to
store backup media in a separate fire compartment? All these questions will be answered
differently depending on your application's criticality, so there are no best practice proposals.

The only thing that we strongly encourage you to do in all cases is to repeatedly and
continuously test your restore process! A restore process that was tested some years ago
might not work today for different reasons. One common problem with restore processes is
that the documentation is outdated or not available to the people that are responsible for
restoring the database ("not available" also includes "they do not know where to find it").
Another standard issue is that there are no precise responsibility definitions—the people
you think are responsible for restoring the database may neither know of the responsibility
nor how to do it. And the fact that the restore process worked perfectly within the given
parameters last year is no guarantee that this is the case today as well (data growth often
being the reason for such a difference). Restoring an almost empty database took a matter
of minutes back then, but restoring the current multi-terabyte database takes more than 24
hours, which is not acceptable if the backup-restore concept states a maximum recovery time
of six hours.

So, as with a fire alarm, you should try and test it on a regular basis to make sure the whole
process still works as expected, and hope that you will never need it.

While definition of a full backup-recovery strategy is beyond the scope of this chapter, we will
provide you with the basic technical means of saving and restoring your database.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

137

Using MySQL Administrator GUI Tool
as a frontend for backups

Getting ready
To follow the steps in this recipe, you will need an account that has sufficient permissions to
perform a backup (you will need SELECT and LOCK TABLES privileges). We will assume a user
named backup_usr (refer to Chapter 8, Defining a specific user for backup).

You should also make sure that there is no write access to your database. This is to prevent
locking issues. For further explanation please refer to the There's more... section.

And finally, you will need sufficient space on one of your drives to store the backup file.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the

backup_usr account.

2. Select the entry Backup either from the list on the left or from the View menu.

3. Click on the New Project button.

4. Enter the project name MySQL Backup 1 in the Project Name field.

5. Successively select each schema from the Schemata list and click on the > button.
Exclude the information_schema (you will be warned if you accidentally try to add
this to the list).

6. Select the Advanced Options tab.

7. Choose Online with binlog pos as the backup execution method.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

138

8. Enable the Complete backup option and click on the Save Project button.

9. Click on the Execute Backup Now button,and select a location for the backup file
in the next dialogue.

10. The backup will begin and a progress indicator will be displayed, as seen in the
next screenshot:

How it works...
This recipe is a pretty straightforward way of creating a backup. With steps 1 and 2 we open
the backup interface of MySQL Administrator. Steps 3 and 4 are used to create a new backup
project named MySQL Backup 1; this name can be changed freely to your liking.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

139

In step 5, you select all databases that will be included in your backup. If you wish not to back
up all databases, but only a selected schema, you can also restrict your selection to certain
databases. But please be aware that in case of cross-database dependencies you have to
select all relevant databases as well, otherwise this might lead to problems later when trying
to restore the data. Also, note that all MySQL accounts and their respective privileges are
stored in the mysql schema. If you choose not to include this in your backup, you will have to
restore the accounts and privileges by other means.

Steps 6 through 8 define the exact method for backing up your data. With step 7, you change
the default method from InnoDB Online Backup to Online with binlog pos. We advise to
use this method because its performance is identical to the default method, but includes an
additional information about the current binlog position that is extremely useful in case of a
restore. The Complete backup option selected in step 8 makes sure you can use the same
backup project later without any changes even if new tables were added since the project's
creation. If you do not plan on using the backup project again, you can simply skip step 8.

Step 9 is again pretty straightforward: after selecting the target for the backup file, the backup
is started.

There's more…
In addition to the steps described in this recipe, MySQL Administrator features several options
regarding the backup. The following sections will discuss some of these options as well as the
limitations of this backup approach.

Scheduling backups
As backups are something you typically need on a regular basis, MySQL Administrator also
provides you with a scheduling option. Under the Schedule tab, you can enable scheduled
backups. After entering the target directory and the base name of the backup files, you can
choose between daily, weekly, and monthly backup. Saving your project using the
Save Project button will install a scheduling entry task in your operating system (either a
cron job on Unix-based systems or a Scheduled Task on Windows—you will need to provide
the respective operating system credentials for this).

Understanding and handling limitations of using MySQL
Administrator for backups
The approach of using MySQL Administrator as a graphical tool makes it very easy to perform
backups, either manually or scheduled. For many purposes, this is completely sufficient. But
for larger installations, you will probably need some more flexibility, for example with respect
to the scheduling options or the targeted MySQL instances. If you have multiple MySQL server
processes running on one server, MySQL Administrator provides no out-of-the-box solutions
to create backups for all of them, as it mainly targets single instance installations. Also, an
option to perform backups at sub-daily intervals (for example every 6 hours) is not covered by
MySQL Administrator.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

140

Due to these limitations, we recommend to write and schedule your own scripts for
installations that deal with mission-critical data, and to simultaneously establish a monitor
for these scripts, so the responsible administrators are informed if the backup is not
created properly.

Regardless of whether MySQL Administrator is used or not, use of a desktop computer to
backup your data is generally not recommended. Desktop machines are typically not set
up to run continuously, so you can't rely on uninterrupted backups. Separate machines are
also more prone to security issues, as they are often easily physically accessible by different
people, which makes data theft easier. In many installations, desktop computers and
database servers are also located on different networks. This possibly facilitates attacks on
the networking layer, and might even be a legal problem when dealing with personal data.

Exploring additional backup options
We will discuss a few additional options in the Advanced Options tab of MySQL Administrator
that might be useful for some situations.

First of all, the Add DROP Statements option is enabled by default. This causes MySQL
Administrator to include DROP TABLE IF EXISTS statements in the dump. This typically
makes sense because it helps removing all existing data from a table before restoring it. So
after restoring the data, the table contains exactly the same data as it did at the time the
dump was created. It also makes sure that the restore process will not run into problems if the
table's structure has changed between dump creation and restoration. So you will mostly want
to leave this option enabled. But if you plan to use the dump to import additional data into an
existing database, you should disable this option.

The No CREATEs option prevents MySQL Administrator from producing CREATE DATABASE
statements in the dump. According to the documentation, this is intended for situations in
which you want to import a dump into a different database. Unfortunately, this will not work,
as the dump still contains a USE statement that will target the restore to the original database
name and cause an error if this database does not exist. Hence, this option is basically
useless and can be left disabled.

The other options provided in the Advanced Options tab of the Backup section of MySQL
Administrator are not relevant for typical use. For more details, refer to the mysqldump
manual available at: http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html.

See also
f Defining a specific user for backup

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

141

Copying all data files to a backup location
The most straightforward way to back up the data of your database is to simply copy the files
in which the data is stored to another location. In many cases, this is one of the most effective
ways to perform a backup. This recipe will describe the steps required to successfully use
this approach.

Getting ready
For the copy-all backup, you have to shut down your database. For this you have to make
sure that all connections to your database are closed. Furthermore, you have to identify the
directories in which MySQL stores its data files, the InnoDB table space, and the configuration
file. In the following steps, we will assume the following directories and files: C:\Program
Files\MySQL\MySQL Server 5.1\my.ini for MySQL configuration, C:\MySQL\Data\
as the MySQL data directory (where MyISAM data and the transaction logs are stored), and
C:\MySQL\InnoDB\ for the InnoDB table space.

And finally, you need sufficient space on a drive to copy the data files to. In this example, we
will assume a directory D:\MySQLBackup as the target directory for the backup.

How to do it...
1. Shut down your database instance (for example using MySQL Administrator).

2. Create the target directories.

3. Copy the full content of the data directory C:\MySQL\Data\ to the destination
directory D:\MySQLBackup\Data.

4. Copy the full content of the InnoDB data directory C:\MySQL\InnoDB\ to the
destination directory D:\MySQLBackup\InnoDB\.

5. Copy the MySQL configuration file C:\Program Files\MySQL\MySQL Server
5.1\my.ini to the destination directory D:\MySQLBackup\.

6. Start the MySQL Server instance again.

How it works...
This recipe basically consists of copying the important MySQL files from one location to the
other. It is important to understand why step 1 (shutting down the database) is necessary,
without this step you risk an inconsistent or (even worse) unusable backup. If any changes
are made to the tables while you copy them, you will have an undefined state in some of the
files at the moment they are ready to be copied to the backup location. While MySQL is able to
recover even from such inconsistent backups more often than not, it is best not to rely on this
because your primary goal is to have a reliable backup.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

142

When MySQL is stopped, it leaves a defined state in all of the files, which will not change
during the backup process. This is why a file-based backup will be consistent and sufficient
to restore the saved state if necessary.

You may have noticed that the binary logs are not saved in this particular recipe. This is
because of the fact that the binary logs are not necessary to restore a MySQL instance from
scratch. If they are missing when the database is restarted after a restore, a new binary log
(together with an index file) is created automatically.

It should be noted that if you chose to write your transaction logs to a different location
outside of the data directory (using the innodb_log_group_home_dir option), you will
have to save this directory to the backup location as well, as the log position marked therein
is linked to the InnoDB data files. While InnoDB usually has no problems to recover from this
situation after a restore, it is advised to save the transaction logs as well.

The configuration file saved in step 5 is not vital, but it is very helpful when trying to restore
data from a backup to have the original configuration at hand. Especially for InnoDB
databases, the configuration of the InnoDB table space has to be reproduced identically to
prevent non-recoverable errors after restore.

There's more…
In the following sections, we will discuss restrictions of the recipe, an advanced variation
of the backup method using LVM snapshots, and a few hints on how to restore data
from a backup.

Understanding the restrictions of the file-based backup method
The backup method described in the above recipe typically delivers very good performance
and excellent duration predictability (especially on a restore). On the downside, the approach
of backing up binary files makes it more vulnerable to data corruption problems (beside
the fact that the database server needs to be restarted). If a binary file gets corrupted (for
example a table that is not accessed on a regular basis), you will not necessarily notice with
this kind of backup. By the time the file gets used and the error shows up, all your backup
generations might already contain a corrupted version of the file, basically leaving you without
a usable backup for the data stored within the respective file.

This is why we recommend complementing the file-based backup with a dump-based backup
as described in the following recipe. This forces MySQL to fully read every table so data
corruption is more likely to be discovered. To make use of this fact, the backup should be
monitored, as errors during backup might indicate data corruption and should be reported for
further evaluation.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

143

This dump might be produced less often, but with a frequency that performs a dump before
the retained backup generations of the file-based backups get overwritten again in the next
cycle. For example, if you perform a daily file-based backup and keep seven generations of
these, we recommend performing an additional dump-based backup once a week.

Backing up using LVM snapshots
The major disadvantage of the copy-all approach is that a database shutdown is required. In
many situations this is not a feasible option. To avoid this restriction, it is sometimes advisable
to create a snapshot of the file system (typically an LVM snapshot using the Linux Logical
Volume Manager). We advise you to use this approach with caution because a snapshot does
not guarantee that the state the files were in when the snapshot was created is a consistent
state from which MySQL can recover. Even if we assume that in most cases MySQL can
recover from such a backup state, a backup that is only likely to be suitable for a restore
is not sufficient—you have to be absolutely positive about that!

To be sure about the state of the tables at the time the snapshot is done, you have to flush
all open changes to the disk. This can be done using a FLUSH TABLES WITH READ LOCK
command right before the snapshot. Note, however, that in case of long-running transactions
this might lead to significant delays for SQL statements that try to write to the database in
parallel, basically causing similar problems as with a database that was shut down.

After the backup is completed, you have to unlock the tables again by executing an
UNLOCK TABLES command. Note that if you close the connection that was used for the
FLUSH TABLES WITH READ LOCK command, the tables are unlocked as well. By closing
the connection, you do not need the UNLOCK TABLES statement, but this also means the
connection has to stay open during the whole backup process!

Furthermore, several tests proved that the write performance of LVM snapshots is abysmal
(see for example http://www.nikhef.nl/~dennisvd/lvmcrap.html or
http://www.mysqlperformanceblog.com/2009/02/05/disaster-lvm-
performance-in-snapshot-mode/). If there is relevant traffic on the database while
the LVM snapshot gets copied to the backup destination, your database will probably suffer
from significant performance degradation. A possible remedy to this might be to perform the
backup on a specific backup slave as described in one of the following recipes.

Restoring data from a file-based backup
The restore process for a file-based backup is pretty straightforward: stop the database, and
copy the directories back to their original location. After starting the database again, your data
is reset to the state it was in when the backup was performed. Easy as that!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

144

See also
f Using replication to perform backups without hurting a production system's

performance.
f Defining a specific user for backup

Creating a SQL dump of all databases
In the previous recipe the file-based backup method was presented. As was already
mentioned there, this approach requires some caveats. Thus we recommend to perform
additional dump-based backups, which store the content of your database as SQL files that
can easily be read and are less subject to (unrecoverable) data corruption. This recipe shows
you how to create such a dump-based backup.

Getting ready
To follow the steps in this recipe, you will need a user that has sufficient permissions to
perform a backup (most importantly the SELECT and LOCK TABLES privileges). We will
assume a user named backup_usr (see Defining a specific user for backup in Chapter 8).

As before, you need an additional destination directory with sufficient free space to hold the
backup. We will use the directory D:\MySQLBackup\ as the target directory.

How to do it...
Execute the following command from the command line:

C:\>mysqldump -u backup_usr -p"B4ckM3Up!" --all-databases > "D:\
MySQLBackup\MySQLDumpAllDatabases.sql"

How it works...
While it might seem somewhat awkward to call a single command a recipe, the details
involved in this command justify this decision. The command-line statement consists
of two basic parts: the mysqldump command itself and the output redirection clause
 (> D:\...\MySQLDumpAllDatabases.sql), which writes the resulting dump file to the
given file. If you take a closer look at the mysqldump command, you will notice the options
-u and -p that are used to pass the user credentials to use for performing the backup. The
next option is --all-databases, which tells mysqldump to write the data of all databases
(including the mysql schema) to the dump.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

145

Now what happens on execution of this command? First of all, the default option --opt is
applied in addition to the given parameters. It is active if no other option is listed explicitly, and it
enables several sensible settings, most notably the --lock-tables option that locks all tables
(using the LOCK TABLE … READ LOCAL semantics) before they are dumped. This prevents
concurrent modification to the tables while data is being dumped (which could result in a dump
file with inconsistent data across tables). Afterwards, one database after the other is processed.
For each database, the structure and data of each of the tables (in alphabetical order) are read
and written to the output file in as SQL CREATE TABLE and INSERT statements. The resulting
file is a valid SQL file that can be executed on an empty MySQL installation to restore its data.

It should be noted that the performance of creating a backup using mysqldump is typically
not as good as creating a file-based backup (as discussed in the previous recipe). Here is a
comparison of the time needed for backing up the employees example database:

File Based mysqldump

35

0

5

10

15

20

25

30

S
e
c
o
n
d
s

There's more...

The default behavior of mysqldump is to lock all tables of each database before they are
dumped. This has the goal of preventing inconsistencies inside the dump when concurrent
modifications take place during the dump. Unfortunately, this works only within certain limits
and might also have a negative impact on the database operations. The following sections
discuss these caveats.

Please note that all additional options to mysqldump mentioned
next have to be placed before the –-all-databases clause
(you will encounter errors otherwise).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

146

Preventing locking issues by using InnoDB storage engine
The locking mechanism used by mysqldump tries to prevent concurrent data modifications
during the dump. This obviously can cause significant delays due to table locks when an
application tries to concurrently write to the locked tables. Depending on the size of the
database and the correlated duration of the dump, this could pose a problem. If this is the
case, you should consider using the InnoDB storage engine instead of MyISAM tables (which
we recommend anyway for most applications), as InnoDB allows dumping a consistent
snapshot of the database basically without any potentially long-lasting locks. Another
alternative is to use a separate replication slave as the backup source (as described in the
Using replication to perform backups without hurting a production system's performance
recipe), which allows for backups without negative consequences for the master
database server.

Creating consistent dumps of InnoDB tables
If you deal mainly with InnoDB tables (or other tables using a different transactional storage
engine), you should add the --single-transaction option to the previous mysqldump
command. This option creates a consistent snapshot of all InnoDB tables, which is then
written to the dump. But please note that this option ensures integrity only for transactional
tables! For MyISAM tables, this option increases the risk of dumping inconsistent data across
tables, as --single-transaction disables the --lock-tables and --lock-all-
tables option.

One should also be aware that the InnoDB snapshots are not able to cope with concurrent
statements that alter the table structure (such as ALTER TABLE, DROP TABLE, TRUNCATE
TABLE or RENAME TABLE). You should make sure that these statements are not executed
during a dump.

Preventing dump inconsistency across databases
The default --lock-tables option causes mysqldump to lock all tables for each schema
(database) separately. In case of dependencies across schemata, this might lead to
inconsistent data again. Think of an entry that gets changed in schema A. The corresponding
entry in schema B—which holds a reference to the first entry—is updated only after the dump
of the second schema is finished. If mysqldump dumps schema B first, then schema A,
you will have an orphan entry in schema A.

To prevent this problem, you could pass the --lock-all-tables option to mysqldump,
which results in locks across all databases. As a downside, this approach produces longer
lasting locks than the default method, so you should use it only if needed.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

147

Including binary log position in the dump
If your database has binlogging enabled, then you should use an additional option for the
mysqldump command: --master-data=2. It includes the log position of your database
server in your dump file. This is extremely useful when trying to perform a
point-in-time recovery using the dump and additional binary log files (as described in a
following recipe). This option works only if binlogging is enabled.

Please note that this option implicitly enables --lock-all-tables (unless used in
conjunction with –-single-transaction, which disables both table lock options).

Performing consistent dumps for binary data
When using binary data in columns of type BINARY, VARBINARY, BLOB (in all sizes), or BIT,
you should additionally include the --hex-blob option for mysqldump to ensure all data is
dumped correctly. Otherwise you might encounter problems with messed up data. The reason
for this problem is the conversion of special bytes sequences like line breaks that takes place
when exporting and importing data. The --hex-blob option circumvents this conversion for
binary columns.

Reducing performance impacts by using multiple disks
When creating a dump, your computer has to perform both read and write operations in
parallel—the database is read, and the dump is written. If both operations access the same
disk, it results in a high load on the disk and many head movements, which in turn reduces
the performance. If you have multiple physical disks available (a logical drive or partition on
the same physical disk will not help), you can increase dump performance considerably by
targeting the dump to a different disk than the disk that holds your database data.

See also
f Defining a specific user for backup
f Using replication to perform backups without hurting a production

system's performance

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

148

Creating a SQL dump of specific databases
This recipe shows you how to select specific databases for backup. This might be useful for
example to separate the backup processes for different databases if these have different
(or even worse contradictory) backup policies.

Getting ready
As this is only a slight adaption of the previous recipe, the preconditions are almost identical:
again, you have to have a MySQL user account (here: backup_usr) with sufficient privileges
to perform a database dump, and a target directory (here: D:\MySQLBackup\).

Additionally, you have to be sure that the database(s) you want to dump have no data
dependencies on databases that will not be part of the dump. This could result in a dump that
is not self-contained and might cause data inconsistencies in case of a restore.

Throughout this recipe, we will assume that you want to dump the content of the two
databases employees and suppliers.

How to do it...
Execute the following command from the command line:

C:\>mysqldump -u backup_usr -p"B4ckM3Up!" --databases employees suppliers
> "D:\MySQLBackup\MySQLDump_Employees_Suppliers.sql"

How it works...
The command is basically identical to the mysqldump command presented in the previous
recipe. The only difference is that the --all-databases clause is replaced by the
--databases option. This option is followed by a database (or a list of databases, separated
by blanks) that should be included in the resulting dump.

The additional options mentioned in the previous recipe are applicable for the
--databases variant as well. You have to make sure, however, that the --databases
option is the last option to mysqldump.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

149

There's more...
An advantage of dumping databases separately is that a database can be restored without
affecting other databases. Although a full restore of all databases takes a little more work,
in most situations this is outweighed by the additional flexibility of having separate dumps.
Another advantage is that the dump files are typically less clumsy and are easier to handle
because of their reduced size.

Considering the side effects of automated backup
For automated backups, the idea of backing up each database to its own dump file has a
side effect that should be considered: a typical simple script that basically contains one
mysqldump command for each database has to be adapted every time a database is added
or deleted. In a dynamic environment where the schema catalogue is subject to constant
changes, you should consider writing a script that reads the available databases (for example
using SHOW DATABASES) and iterates over the resulting list to dump each database.

Increasing performance by dumping in parallel
To leverage current computers with multi-core processors, one approach to reduce the time
needed for backing up a database is to parallelize the work. If you start several processes
concurrently, you might be able to achieve faster backups. However, the degree of success
largely depends on the available resources. If the data throughputs of your drives are the
limiting factor, you will not be able to significantly speed up your backup, but in the case of
fast disks (or multiple disks, as noted in the previous recipe) concurrency might help you save
some time. Try concurrently backing up each database to separate disks (if applicable) for
maximum performance.

If you happen to use a Linux server for your MySQL, you might also want to have a look
at mk-parallel-dump from Maatkit that helps you to dump table sets in parallel
(see http://www.maatkit.org/doc/mk-parallel-dump.html). Unfortunately,
this is not yet available for Windows users. Also, note that the website explicitly states that
mk-parallel-dump is not a backup program, so you might want to use a different backup
strategy besides mk-parallel-dump (just to be sure).

See also
f Defining a specific user for backup

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

150

Creating a SQL dump of specific tables
This recipe will show you how to dump only a portion of a database by selecting specific tables
to include in the dump, which comes in handy if you have specific backup requirements for
special tables (for example higher backup frequency) that differ from the backup rules for the
rest of the database.

Getting ready
Again, this recipe is very similar to the previous one. We will need a suitable MySQL user
account (backup_usr), and a target directory with sufficient space (D:\MySQLBackup\).

As we restrict the dump to specific tables, you should additionally check that the tables to
include in this dump have no dependencies on other tables or databases that will not be
included in the resulting dump.

For the following instruction we assume that the table departments from the schema
employees should be written to the dump.

How to do it...
Execute the following command from the command line:

C:\>mysqldump -u backup_usr -p"B4ckM3Up!" employees departments > "D:\
MySQLBackup\MySQLDump_Departments.sql"

How it works...
The above command works just as explained in the previous recipe, with the only difference
being that no specific option (like --all-databases or --databases) is given to pass
the desired source databases to mysqldump. In this case, mysqldump reads the first "real"
parameter (that is: starting without a dash) as the source database, followed by a list of tables
to dump (separated by spaces). In the above example, this list consists of only one table, but
others could be passed as well.

There's more...
While this approach is sometimes very nice to produce backups that are restricted to the
relevant tables only, we recommend you not to use this for automated backups. The reason
for this recommendation is that data models are typically subject to a certain extent of
evolution. If, for example, a new table is introduced, and this table is referenced by a table
contained in the backup, you should include the new table in the backup as well. For this,
the mysqldump command has to be changed right after the table structures were applied.
Experience shows that such dependencies between data structures and scripts relying on a

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

151

specific structure are typically ignored or overlooked, leaving you with a backup that contains
only a part of the required data. This is why we recommend dumping the schema (or all
schemata) as a whole to prevent problems arising from subsequent data model evolution.

See also
f Defining a specific user for backup

Compressing SQL dumps on-the-fly
When the data stored in your database grows over time, the backups get bigger as well. You
often will want to reduce the space required for your backups to reduce the disk (or tape)
storage requirements. If you create a backup using mysqldump, you can reduce the size of
your backups considerably. The following recipe will show you how to achieve this.

Getting ready
In addition to the prerequisites listed in the previous three recipes (a suitable MySQL
account and a target directory), we also need an installed version of gzip
(see http://www.gzip.org/#exe), which is a widely used open source compression utility.

In this recipe, we will produce a dump of all databases and compress it before it is written to
the disk.

How to do it...
Execute the following command from the command line:

C:\>mysqldump -u backup_usr -p"B4ckM3Up!" --all-databases | gzip --fast >
"D:\MySQLBackup\MySQLDumpAllDatabases.sql.gz"

How it works...
The only difference in the above command line in comparison to the previous recipes (beside
the slightly changed target file name to reflect the compressed content) lies within
the | gzip --fast portion. This redirects the output of the mysqldump command to the
gzip program, which compresses data on-the-fly. The compressed data stream is then written
to the given file, resulting in a significantly reduced size.

There's more…
While the recipe itself is not too complicated, there are some aspects to consider, which are
discussed in the following sections.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

152

Achieving better compression ratio
As a ballpark figure for the compression ratio for typical databases, the compressed dump
will probably be reduced to one-third of its uncompressed size. To achieve better compression
at the expense of reduced performance and higher CPU load, you could also leave out the
--fast option of gzip, resulting in a compressed file that will take less than 25% of the
original size. If the size of the backup is an extremely critical issue for you, you might even
try the --best option as a replacement for --fast, but be warned that this might lead to a
dramatic increase in execution times with mostly minimal improvements in size; this is why we
recommend not using this option.

Considering performance factors
With the additional compression part added to the above command, you would intuitively
expect that this necessarily has a negative impact on the dump performance. Surprisingly,
this is not always the case, as the reduced size of the resulting file also decreases the amount
of data written to your disk. This reduction in disk I/O might make up for the additional
compression work or even cause a performance improvement! You should check whether the
compression has any performance impact with your configuration.

A rule of thumb: the slower the target disk, and the faster your processors, the better it is for
compression. And if you want to take system load into account as well: If you experience high
I/O load on your target disk and low CPU load, it is well possible that the performance impact
of on-the-fly compression is not too significant.

Considering data robustness and tool availability
With the on-the-fly compression approach, the resulting dump files cannot be read without
uncompressing them, which is why you need to have the gzip tool at hand for the restore
process as well.

Moreover, due to the fact that the compressed files have a compressed binary format, they
are much more susceptible to faults caused by data corruption. If data corruption occurs, it is
typically more difficult to extract valid data, and the amount of data that is irrevocably lost is
typically a good deal bigger.

If a partial data loss occurs for a standard dump (SQL) file, you will still be able to restore large
portions of the data because you are able to read the file, extract the intact data, and maybe
even correct the errors.

However, in case of a partial data loss on the compressed file the uncompress command will
simply fail, basically leaving you without a usable backup since manual corrections to the
compressed file are almost impossible. You should keep this in mind when deciding on the
best solution to perform a backup.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

153

Achieving better compression with alternative tools
As an alternative to gzip, you could also try similar compression utilities like bzip2
(http://www.bzip.org/downloads.html), p7zip (for Linux, http://p7zip.
sourceforge.net/), or 7-Zip (for Windows, http://www.7-zip.org/), which claim to
provide a better compression than gzip.

See also
f Defining a specific user for backup

Rotating and purging binary logs
If you have binary logging enabled, the binlog files contain all changes made to your
database over time. These are required for replication, but they can also be used for restoring
data after a crash. This is why we strongly encourage you to enable binary logging even if you
do not use replication. If you still have access to the binlogs produced between your last
backup and the moment the disaster occurred, you can basically recover everything without
losing any data at all.

To be able to do so, the binary logs should regularly be saved to a different location (best on
a different drive or tape media). Moreover, you will need to remove binlog files that are no
longer needed to prevent the disk from getting full. To be able to copy the relevant files, this
recipe will show you how to make sure no concurrent access is active when backing up
the data.

Getting ready
We assume that you have a regular backup process in place, which produces a daily backup
based on a MySQL dump. Your application requires that in case of a disaster you must be
able to recover all data older than half an hour before the crash. To achieve this, you will have
to save the binary logs at least every 30 minutes to a location that will not be affected by a
possible crash on your database server.

In addition, let's assume that you will not need any binlogs older than 7 days for replication.
This in turn means that any replication slave with a data set older than 7 days will not be able
to re-enter replication again to catch up with the master (but this typically makes no sense
anyway). Thus, all binlogs older than 7 days can be deleted.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

154

You will again need an appropriate MySQL user account (backup_usr) and a place to
copy the binlogs to. The recipe assumes a Windows system and a target directory at
D:\MySQLBackup\binlogs\. The log-bin parameter of the MySQL configuration is
assumed to have the value C:/MySQL/Binlogs/bluebox.

The recipe is applicable to Windows systems. Please refer to
the There's more... section for a Linux/Unix variant.

How to do it...
Establish a scheduled task to perform the following commands at least every 30 minutes in
the context of the directory C:\MySQL\Binlogs\:

copy bluebox.index idx.tmp
mysql -u backup_usr -p"B4ckM3Up!" -e "FLUSH LOGS;
 PURGE BINARY LOGS BEFORE TIMESTAMPADD(DAY, -7, NOW());"
FOR /F %i in (idx.tmp) DO xcopy /D %i D:\MySQLBackup\binlogs\
DEL idx.tmp

How it works...
Let's take a look at each step of this recipe.

The line copy bluebox.index idx.tmp makes a (temporary) copy of the index file that
contains the index list of all binlog files, which is needed for future reference.

The next line executes the MySQL commands FLUSH LOGS and PURGE BINARY LOGS
BEFORE TIMESTAMPADD(DAY, -7, NOW()) on the database. FLUSH LOGS causes
MySQL to close and reopen all log files and to create a new binlog file with an incremented
counter. This has the effect that write access to the previous binlog is finished, so we can
safely back it up to another location without risking access conflicts.

The PURGE BINARY LOGS BEFORE TIMESTAMPADD(DAY, -7, NOW()) command
causes MySQL to delete all binlog files older than 7 days, which makes sure that the
binlog directory does not fill up over time.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

155

The loop command FOR /F %i in (idx.tmp) DO uses the old index file that we copied
in the first command to iterate over all binlog files. The xcopy /D %i D:\MySQLBackup\
binlogs\ command copies each binlog file to the backup target location. As the index file
was copied before we executed the PURGE BINARY LOGS command, the list of files copied
does not include the current binlog file, which is still actively accessed and possibly changed
by MySQL. So we can be pretty sure no write access to the files in this list occurs. The /D
option of the xcopy command is very useful to prevent the same files from being copied over
and over again. This option tells xcopy to copy files only if the source file is newer than an
existing target file, so unchanged files that are already present at the target directory will not
be copied again.

The final command then simply cleans up the temporary file, which we created in the first
step, so we leave the place nice and clean.

There's more...
In this section, we will discuss some potential risks and a variant of the recipe for
Linux systems.

Rotating and purging binary logs on Linux systems

Due to syntax differences in the command-line interface, the above recipe is applicable
to Windows systems only. To perform the same task for Linux systems, use the following
approach (we assume /var/mysql_backup/binlogs as the target directory and /var/
log/mysql as the log-bin parameter):

Establish a cron job to perform the following commands at least every 30 minutes:

#!/bin/bash
cd /var/log/mysql
cp bluebox.index idx.tmp
mysql -u backup_usr -p"B4ckM3Up!" -e "FLUSH LOGS; PURGE BINARY LOGS
BEFORE TIMESTAMPADD(DAY, -7, NOW());"
cat idx.tmp | while read line; do
 cp -u $line backup/
done
rm idx.tmp

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

156

When comparing the script to the equivalent Windows version, you will notice some
differences (we will not discuss the first two lines here, but concentrate on the actual
operations). First of all, the Windows copy command is replaced by the Linux statement cp.
The loop command is different as well: cat idx.tmp | while read line; do replaces
the Windows command FOR /F %i in (idx.tmp) DO. It also iterates over all binlog
files as listed in the old index file that we copied with the first cp command. The /D option of
Windows' xcopy is reflected by the -u option of cp, which only copies files if they are new, or
if the corresponding file at the target directory is older than the file to be copied.

Considering risks of data loss
The whole mechanism of copying the binlog files from one place to the other makes little
sense if the two directories are located on the same physical disk, because in the case of a
disk failure data in both places would be lost. You should at least have two separate physical
disks to store these directories on. Depending on your requirements, you could also consider
copying to another host to cover the risk of fire or other disasters, which could damage all
internal physical disks of your machine.

Ensuring sufficient disk space
You will have to make sure, of course, that some kind of backup and deletion mechanism is
established at the target directory as well to prevent this disk running out of space. In a typical
scenario, an archiving tool might scan this directory once a day, save the files to a tape archive,
and delete the archived files.

See also
f Defining a specific user for backup

Using replication to perform backups
without hurting a production system's
performance

A backup always produces a significant load on the server the data is read from. In addition,
depending on the way the backup is performed and the storage engine used for your data,
locking situations can occur, which might cause major problems for your applications. A
method to circumvent both of these problems is to back up the data from a replication
client instead of the server. This recipe will show you how to achieve that.

Please note that we do not consider replication itself as a backup technique! Although this is
a sensible approach to deal with possible failures and to reduce downtimes, it is no proper
replacement for creating regular backups.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

157

Getting ready
To be able to follow this recipe, you will of course need a MySQL instance that acts as a
replication client. Without a working replication set up, this recipe is not helpful.

In addition, you need a MySQL account with appropriate privileges (we assume the previously
used backup_usr here). And of course, you will need sufficient space in the target directory
to save the backup to. We will assume the data directory of the slave instance is
C:\MySQLSlave\Data\, and the backup target directory is D:\MySQLBackup\.

In this recipe, we will refer to the previous recipes to back up data either using the
mysqldump tool or by copying the data files—both approaches work with this technique.

How to do it...
1. On the replication client, execute the following statement on the command-line to

stop replication processing:
C:\>mysql -u backup_usr -p"B4ckM3Up!" -e"STOP SLAVE SQL_THREAD"

2. Perform your backup, either using mysqldump or by copying the data files, as
presented in the previous recipes.

3. If the backup in step 2 was performed using mysqldump, copy the replication files to
the backup target directory as well by performing the following commands (you can
skip this if you copied the data files in step 2):
C:\>copy /Y C:\MySQLSlave\Data*.info D:\MySQLBackup\ C:

\>copy /Y C:\MySQLSlave\Data*relay-bin.* D:\MySQLBackup\

4. Execute the following command to start replication processing again: C:\>mysql
-u backup_usr -p"B4ckM3Up!" -e"START SLAVE SQL_THREAD"

How it works...
The recipe basically consists of three parts: by performing the operations described in step 1,
replication is disabled; in steps 2 and 3, the backup itself is performed; in step 4, replication
is enabled again.

Let us have a look at the backup part first. In step 2, the backup of the data stored in the
slave database is done as shown in the previous recipes. The addition of step 3 is necessary
to also back up the replication state of the slave. In detail, this copies the relay log files
([host]-relay-bin.index and [hostname]-relay-bin.00x), the relay-log.info
and the master.info files. These files are necessary to recover the slave from a crash
because without these files, it is very hard to establish a working replication mechanism
with the master. If your intention is to perform a backup only for restoring the master, these
files are not absolutely necessary, but we strongly suggest including these files in the backup
as well.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

158

That's about it concerning the backup itself. Now what is the motivation for steps 1 and 4?
The deactivation of the slave replication in step 1 is necessary to prevent inconsistencies
during the backup. As discussed before, both the copy approach and the mysqldump backup
have restrictions concerning data consistencies for non-transactional tables (like MyISAM)
when concurrent updates occur while the data is read. You can tackle this problem for
example using locking options. But for a master-slave constellation, this could (in a worst-case
scenario) cause the replication to break! By stopping the SQL slave thread, the binlog data
is still read from the master, but it is no longer processed. This prevents any concurrent data
modifications and the data remains in a consistent state throughout the backup process.
After the backup is done, step 4 activates replication again, and the slave will start to process
the remaining changes from the master up to the point where master and slave reach a
synchronous state.

In this scenario, all backup operations (together with the possible performance degradation
they might provoke) are performed on the client. By this, a backup is produced, but the
replication master is not affected with respect to performance issues. Note, however, that the
client is out of sync with the master throughout the backup, and (depending on the way the
backup is produced) locking issues might occur as well. This is the reason why this scenario
is not intended for use with clients that are actively accessed by applications (for example
for load balancing reasons). You are also not safe when creating the backup on a slave that
is used as a hot standby for a fail-over scenario, and which is not actively accessed by any
application: if the master crashes while the backup is running on the slave, the system is not
ready for fail-over. The backup had to disable replication first, so your hot standby slave has a
data set different from the master. Only if the replication is activated again, and the backlog
is processed, can a fail-over safely take place. Whether this is acceptable has to be decided
individually, but to completely separate your application from the backup, you should consider
establishing a slave dedicated to backup only.

See also
f Defining a specific user for backup
f Copying all data files to a backup location

f Creating a SQL dump of all databases

f Creating a SQL dump of specific databases

f Creating a SQL dump of specific tables

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

159

Restoring data from a dump to a previously
backed-up state

In the previous recipes, we dealt with creating a backup of the existing data and configuration.
The sole reason for this is to be able to restore the data again if required. This recipe will show
you how to restore the data created using a dump. The recipe is suitable both for full dumps
and for dumps that contain only the data of specific databases.

Getting ready
To follow the steps in this recipe, you will need a running MySQL instance and a MySQL user
account that has the privileges necessary to restore all data. In a default MySQL configuration
the root user can be used, but throughout this recipe we use the admin4mysql account with
password As,ysp4M (see Defining a specific user for administrative tasks in Chapter 8). The
MySQL installation should have sufficient space available to store the data from the dump,
and no application connections should be active throughout the restore. And (of course) you
need the dump to restore the data from. In this recipe, we assume the dump is stored in
D:\MySQLBackup\MySQLDumpAllDatabases.sql.

How to do it...
1. Connect the mysql command-line client to your MySQL instance using the

admin4mysql account:
C:\>mysql -u admin4mysql -p"As,ysp4M"

2. Restore the data from the dump by executing the following SQL command:
mysql>source D:\MySQLBackup\MySQLDumpAllDatabases.sql

How it works...
Again, this is a pretty straightforward recipe: connect to the database (step 1) and restore the
data from the dump (step 2).

The use of the mysql command-line client is not absolutely necessary, but please note that
you will not be able to issue the source command from any other SQL client. This is because
it is not a regular SQL statement, but a key word recognized by the mysql command-line
client itself. You could of course use another SQL client to read in the whole dump file and
execute its commands sequentially (for example using the Open Script... menu entry of
MySQL Query Browser), but the source command is specific to mysql.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

160

If the dump you want to restore contains only specific tables (as described in Creating a SQL
dump of specific tables), use the following statement to select the target database to restore
the tables into:

mysql>use employees;

You need to do so because otherwise the tables get inserted to the current default database;
the dump itself contains no information about the database the dump stems from.

Please note that after performing the above steps, the content of your database is not
necessarily absolutely identical to the state of the database the backup was created from.
All databases that were already present before the dump are restored, but any that are not
covered by the content of the dump are left unchanged. If your dump for example contains
data for the foo database only and the database you read the dump into has a database bar
(which was, for example, created after the dump was produced), the database bar will be left
unchanged. To be sure you recover to an identical state, you have to:

1. Perform a full backup (using the --all-databases option of mysqldump).

2. Make sure that the target database is completely empty when restoring.

There's more…
In the following sections, we will discuss some advanced aspects of restoring data, such as
working with compressed dumps and avoiding typical performance problems.

Restoring compressed dumps
When restoring a database from a compressed dump (for example, as created according
to the Compressing SQL dumps on-the-fly recipe), the dump needs to be decompressed
before restoring it to the database. You could either decompress the file on the disk and
subsequently use the preceding recipe without any changes, or decompress on-the-fly and
restore the data in one step:

C:\> gzip --decompress --stdout D:\MysqlBackup\DumpAllDBs.sql.gz | mysql
-u admin4mysql -p"As,ysp4M"

The --decompress option tells gzip to revert the compression (obviously), while --stdout
makes sure that the compressed file itself is left unchanged, but the decompressed data
is written to the stdout device. The pipe symbol | redirects the output from stdout to
the mysql command, which then receives the decompressed content of the dump file and
executes the statements contained therein.

If you used a different compression tool like bzip2 or 7zip when
creating the dump, you have to adapt the above command
accordingly to use the respective tool here as well

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

161

Temporarily disabling binlogs to save time and space
If binlogging is enabled on the MySQL instance you restore, all statements from the dump
are not only executed against your database, but also written to the binlogs. This has the
advantage that replication slaves perform the restore as well, but sometimes this is not
necessary (or wanted). For example, if you want to keep the clients unchanged for reference
in case the restore fails, or if you do not use binlogging for replication but only for better
restore options, you might want to temporarily disable binlogging when processing the dump.
This might save you a significant amount of disk space (depending on the size of the dump)
and is also better for performance because the write access to the binlogs is omitted. To
temporarily disable binlogging, you have to prepend the following command in step 2:

mysql> SET sql_log_bin=0;

mysql> source D:\...

This command disables binlogging for the current connection only. So as soon as the
connection is terminated, the binlogs will again contain all changes made to your database.

Please note that for this statement your user will require SUPER privileges. This privilege is not
usually required to perform a restore, but as restoring data is typically a task for the database
administrator, it is safe to assume that an account with this privilege is available to the person
in charge.

Increasing recovery performance by using parallel restore
As parallelization is an approach to increase backup speed, it can be used for better
performance for restoration as well. With multiple concurrent restore processes, your data
might be reinstalled faster. However, whether this is successful or not again depends on the
resources available. If the speed of your restore is limited mainly by the drive throughput, the
benefit will be basically non-existent. If you have fast (or multiple) disks, however, you might
see major advantages. Concurrently restoring each database separately could then be the
way to maximize performance.

For Linux servers, mk-parallel-restore from Maatkit is available, which supports
restoring data in parallel (see http://www.maatkit.org/doc/mk-parallel-restore.
html). However, a Windows version is not available.

Restoring tables excluding potentially very large tables
When dealing with large data sets, you sometimes encounter performance problems that
require manual intervention. One real-world example of performance problems is a restore
of massive tables, which might cause severe performance degradations.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

162

Imagine a table with half a billion records (for example containing log data). While restoring
such a table, you will notice a dramatic decrease of insert performance throughout the
process. The first few percent of the data will be written to the table rather quickly. But as
the restore continues, the write rate will gradually decrease (mostly due to internal index
maintenance).

In the case of a disaster recovery, you have the choice between restoring all data (but at
the price of extended downtime until the large tables are restored completely as well) and a
partial restore, deliberately skipping the restore of the data from the large table, but with the
advantage of a faster restore. The decision has to be made on an application level, but with
the example of log data, it is often feasible to simply exclude the log data from the restore for
the sake of a faster recovery.

Let us assume we have a very large dump file that contains the data you actually want
to recover (D:\MySQLBackup\MySQLDump.sql) along with a very large table (here:
op_detail). To be able to cope with the data contained in this potentially mammoth file,
you will need access to the grep command (for Windows users: see http://unxutils.
sourceforge.net for an implementation of the common GNU tools).

The following command will restore the data from the dump excluding the data from the
op_detail table:

C:\>grep --invert-match "^INSERT INTO .op_detail. VALUES .*"

D:\MySQLBackup\MySQLDump.sql | mysql -u admin4mysql -p"As,ysp4M"

This command uses grep to filter all lines including an INSERT INTO 'op_detail' at
the start of the line, leaving all other lines untouched. All other lines are piped to the mysql
command-line client that imports the remaining dump.

Please note that if data has references to entries in the excluded table, the import of the
dump will not fail. In this case, you would end up with data inconsistencies that might cause
errors much later, so make sure to exclude only tables that are not referenced by foreign keys.
Otherwise, you have to search for possible foreign key constraint violations manually. (Some
ideas on how to achieve this are presented for example at http://dev.mysql.com/doc/
refman/5.1/en/innodb-foreign-key-constraints.html).

See also
f Defining a specific user for administrative tasks
f Creating a SQL dump of all databases

f Creating a SQL dump of specific databases

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

163

Performing a point-in-time recovery using
the binary logs

The previous recipes dealt with how to recover data from a backup. After recovery, the data
should be in the same condition as it was when the backup was created. Unfortunately, the
data that was changed after backup creation is not restored.

To restore the data to the point in time before the recovery, you can use the binlog files that
were created between backup and recovery. As mentioned in the Rotating and purge binary
logs recipe, we suggest enabling binary logging even if you do not have a replication scenario,
as this gives you extended options in backup.

In this recipe, we will discuss how to use the binary logs to restore data up to the latest
possible point in time before the data was lost.

Getting ready
To be able to restore the remaining data using the binary logging information, we definitely
need the binary log files. If all data from your server is lost (for example in case of a fire), the
binlogs are hopefully available from a tape or any other media that is not affected by the
data loss. If only your database data is corrupt, you often have the binary logs still present on
your server's disk.

If the binary logs are still present, you should copy the binary log files to a different position
before you start recovering from a dump! This way you have all binary log files available in
exactly the state from the point in time before the recovery.

We assume the binary logs (either as a copy of the binlog files from your server disk, or as
recovered from backup media) to be stored under C:\tmp\binlogs\.

To read the changes stored in the binary logs into the database, you need an appropriate
MySQL user again (here: admin4mysql with password As,ysp4M).

And most importantly, you need the position at which recovery from the binary log files
should start. The dump your database was restored from should have been created using
the --master-data option (see the There's more… section of the Creating an SQL dump of
all databases recipe), otherwise this information is not easily available. You could then try to
manually identify the correct starting position (for example by checking the timestamps for file
creation or last change or inspecting the files using the mysqlbinlog tool). But if you plan
on using the binary logs for recovery, you should definitely use the --master-data option to
create a dump.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Backing Up and Restoring MySQL Data

164

Find out about the log position by using the more command to display the first few lines of the
dump. Look for a line like the following:

CHANGE MASTER TO MASTER_LOG_FILE='myhost.000005', MASTER_LOG_POS=201;

In this line, note the values noted after MASTER_LOG_FILE and MASTER_LOG_POS for future
reference. We, furthermore, assume that you have binary log files through myhost.000008
available for recovery. Throughout the following recipe, we will use the above noted values.
You have to replace them with your respective values accordingly.

How to do it...
1. Recover the data from the dump according to the previous recipes.

2. Execute the following command from the command line in the context of directory
C:\tmp\binlogs\ (change directory accordingly):
C:\>mysqlbinlog --start-position=201 myhost.000005 myhost.000006
myhost.000007 myhost.000008 | mysql -u admin4mysql -p"As,ysp4M"

How it works...
The command executed in step 2 reads the given binary logs, translates the changes
stored therein into SQL commands and passes these to the MySQL database. The
--start-position option tells mysqlbinlog to begin reading the first given file (here:
myhost.000005) at position 201, which starts the recovery process at exactly the point
where the dump was created. After this, the next files (000006 through 000008) are read
completely into the database.

There's more…
The following sections address partial restores by introducing means to extend the recipe
either to restore specific databases, or to restore data only up to a certain point in time.

Restoring only a specific database
If you have to recover only the data of a specific database but want to leave all other
databases unchanged, you must not import the full content of the binary log files because
these might contain changes of other databases as well. In this case, add the option
--database=dbname to mysqlbinlog. This restricts the SQL statements passed to the
MySQL instance to the given database.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 4

165

Determining the exact location of a failure and restoring up to
that point
You sometimes have the problem where data loss is not necessarily caused by a server error,
but by malicious SQL statements. If, for example, an accidental DROP statement deleted all
of your data, then you will have to recover your database as well. In this situation, completely
reprocessing the binary logs is a bad idea because this would also execute the DROP
statement again, leaving you with a broken database again. In these cases, you will have
to manually inspect the binary logs to find out about the specific statements that caused
the problem.

To inspect the binary log files, you can create a SQL file from them with a simple
mysqlbinlog myhost.00000x > binlog.sql command. You can then open the
resulting binlog.sql file in an editor and scan through the commands. If your binary log
files are too large to be opened with an editor, you could make use of the split tool
(consider using the --line-bytes option; see http://unxutils.sourceforge.net
for a Windows implementation) to break these files into smaller chunks.

As soon as you have found the first command that you do not want to include in the
recovery process any more, note the number of the line before it, for example # at 1174.
This denotes the end position at which processing should stop. To exclude any command
henceforth from the binary log recovery, add a --stop-position=1174 option to the
mysqlbinlog command. This will apply to the last given file (in the above example:
myhost.000008) and suppresses processing of all commands following the given binary log
position. This should prevent repeating the same errors again, which lead to the problems in
the first place.

See also
f Defining a specific user for backup

Download at Wow! eBook

WWW.WOWEBOOK.COM

Download at Wow! eBook

WWW.WOWEBOOK.COM

5
Managing Data

This chapter presents some proven approaches to managing your data beyond the basic SQL
operations like INSERT or DELETE (which we assume the reader to be familiar with). The first
few recipes will discuss ways of exporting data from and importing data into the database
using different file formats. This covers the following topics:

f Exporting data to a simple CSV file

f Exporting data to a custom file format

f Using stored procedures to export repeatedly

f Importing data from a simple CSV file

f Importing data from custom file formats

f Inserting new data and updating data if it already exists

f Inserting data based on existing database content

f Deleting all data from large tables

f Deleting all but a fragment of a large table's data

f Deleting data incrementally from large tables

Introduction
The basic set of SQL data manipulation commands (SELECT, INSERT, UPDATE, and DELETE)
is a well understood means to handle the data stored in your database, and its concepts and
basic usage are not difficult to learn. There are situations, however, that require more detailed
knowledge about these commands' subtleties. This holds especially true when large amount
of data need to be taken care of—you have to know what you are doing, otherwise you might
run into serious performance problems.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

168

Also, the task of exporting specifically formatted data from or importing external data into your
database is a common challenge that can be quite tricky to address.

We are going to address these issues in the following recipes and we will also introduce
ways of manipulating data in the database while taking the present contents of the database
into account.

We will show solutions to real-world challenges when confronted with data manipulation
tasks. It actually took us a while to figure out how to tackle these real-world problems the
most efficient way when first faced with them. Because these strategies are not too obvious,
a collection of tested methods for these topics might be useful.

Exporting data to a simple CSV file
While databases are a great tool to store and manage your data, you sometimes need
to extract some of the data from your database to use it in another tool (a spreadsheet
application being the most prominent example for this). In this recipe, we will show you how
to utilize the respective MySQL commands for exporting data from a given table into a file that
can easily be imported by other programs.

Getting ready
To step through this recipe, you will need a running MySQL database server and a working
installation of a SQL client (like MySQL Query Browser or the mysql command line tool). You
will also need to identify a suitable export target, which has to meet the following requirements:

f The MySQL server process must have write access to the target file

f The target file must not exist

The export target file is located on the machine that runs your MySQL
server, not on the client side!

If you do not have file access to the MySQL server, you could instead use
export functions of MySQL clients like MySQL Query Browser.

In addition, a user with FILE privilege is needed (we will use an account named
sample_install for the following steps; see also Chapter 8 Creating an installation user).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

169

Finally, we need some data to export. Throughout this recipe, we will assume that the data to
export is stored in a table named table1 inside the database sample. As export target, we
will use the file C:/target.csv (MySQL accepts slashes instead of backslashes in Windows
path expressions). This is a file on the machine that runs the MySQL server instance, so in this
example MySQL is assumed to be running on a Windows machine. To access the results from
the client, you have to have access to the file (for example, using a file share or executing the
MySQL client on the same machine as the server).

How to do it...
1. Connect to the database using the sample_install account.

2. Issue the following SQL command:

mysql> SELECT * FROM sample.table1 INTO OUTFILE 'C:/target.csv'
FIELDS ENCLOSED BY '"' TERMINATED BY ';' ESCAPED BY '"' LINES
TERMINATED BY '\r\n';

Please note that when using a backslash instead of a slash in the target file's path, you have
to use C:\\target.csv (double backslash for escaping) instead.

If you do not give a path, but only a file name, the target file will
be placed in the data directory of the currently selected schema
of your MySQL server.

How it works...
In the previous SQL statement, a file C:/target.csv was created, which contains the
content of the table sample.table1. The file contains a separate line for each row of
the table, and each line is terminated by a sequence of a carriage return and a line feed
character. This line ending was defined by the LINES TERMINATED BY '\r\n' portion
of the command.

Each line contains the values of each column of the row. The values are separated by
semicolons, as stated in the TERMINATED BY ';' clause. Every value is enclosed by a
double quotation mark ("), which results from the FIELDS ENCLOSED BY '"' option.

When writing the data to the target file, no character conversion takes place; the data
is exported using the binary character set. This should be kept in mind especially when
importing tables with different character sets for some of its values.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

170

You might wonder why we chose the semicolon instead of a comma as the
field separator. This is simply because of a greatly improved Microsoft Excel
compatibility (you can simply open the resulting files), without the need to
import external data from the files. But you can, however, open these files in a
different spreadsheet program (like OpenOffice.org Calc) as well. If you think
the usage of semicolons is in contradiction to the notion of a CSV file, think of
it as a Character Separated File.

The use of double quotes to enclose single values prevents problems when field values
contain semicolons (or generally the field separator character). These are not recognized as
field separators if they are enclosed in double quotes.

There's more...
While the previous SELECT … INTO OUTFILE statement will work well in most cases, there
are some circumstances in which you still might encounter problems. The following topics will
show you how to handle some of those.

Handling errors if the target file already exists
If you try to execute the SELECT … INTO OUTFILE statement twice, an error File 'C:/
target.csv' already exists occurs. This is due to a security feature in MySQL that
makes sure that you cannot overwrite existing files using the SELECT … INTO OUTFILE
statement. This makes perfect sense if you think about the consequences. If this were not the
case, you could overwrite the MySQL data files using a simple SELECT because MySQL server
needs write access to its data directories. As a result, you have to choose different target files
for each export (or remove old files in advance).

Unfortunately, it is not possible to use a non-constant file name (like a variable) in the SELECT
… INTO OUTFILE export statement. If you wish to use different file names, for example, with
a time stamp as part of the file name, you have to construct the statement inside a variable
value before executing it:

mysql> SET @selInOutfileCmd := concat("SELECT * FROM sample.table1 INTO
OUTFILE 'C:/target-", DATE_FORMAT(now(),'%Y-%m-%d_%H%i%s'), ".csv' FIELDS
ENCLOSED BY '\"' TERMINATED BY ';' ESCAPED BY '\"' LINES TERMINATED BY
'\r\n';");

mysql> PREPARE statement FROM @selInOutfileCmd;

mysql> EXECUTE statement;

The first SET statement constructs a string, which contains a SELECT statement. While it is
not allowed to use variables for statements directly, you can construct a string that contains
a statement and use variables for this. With the next two lines, you prepare a statement from
the string and execute it.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

171

Handling NULL values
Without further handling, NULL values in the data you export using the previous statement
would show up as "N in the resulting file. This combination is not recognized, for example, by
Microsoft Excel, which breaks the file (for typical usage). To prevent this, you need to replace
NULL entries by appropriate values. Assuming that the table sample.table1 consists of a
numeric column a and a character column b, you should use the following statement:

mysql> SELECT IFNULL(a, 0), IFNULL(b, "NULL") FROM sample.table1 INTO
OUTFILE 'C:/target.csv' FIELDS ENCLOSED BY '"' TERMINATED BY ';' ESCAPED
BY '"' LINES TERMINATED BY '\r\n';

The downside to this approach is that you have to list all fields in which a NULL value
might occur.

Handling line breaks
If you try to export values that contain the same character combination used for line
termination in the SELECT … INTO OUTFILE statement, MySQL will try to escape the
character combination with the characters defined by the ESCAPED BY clause. However,
this will not always work the way it is intended. You will typically define \r\n as the line
separators. With this constellation, values that contain a simple line break \n will not cause
problems, as they are exported without any conversion and can be imported to Microsoft Excel
flawlessly. If your values happen to contain a combination of carriage return and line feed, the
\r\n characters will be prepended with an escape character ("\r\n), but still the target file
cannot be imported correctly. Therefore, you need to convert the full line breaks to simple
line breaks:

mysql> SELECT a, REPLACE(b, '\r\n', '\n') FROM sample.table1 INTO OUTFILE
'C:/target.csv' FIELDS ENCLOSED BY '"' TERMINATED BY ';' ESCAPED BY '"'
LINES TERMINATED BY '\r\n';

With this statement, you will export only line breaks \n, which are typically accepted for import
by other programs.

Including headers
For better understanding, you might want to include headers in your target file. You can do so
by using a UNION construct:

mysql> (SELECT 'Column a', 'Column b') UNION ALL (SELECT * FROM sample.
table1 INTO OUTFILE 'C:/target.csv' FIELDS ENCLOSED BY '"' TERMINATED BY
';' ESCAPED BY '"' LINES TERMINATED BY '\r\n');

The resulting file will contain an additional first line with the given headers from the first
SELECT clause.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

172

Exporting data to a custom file format
You sometimes have the task to export data in a special format in order to fulfill the
requirements of the recipient of the data. In this recipe, we will show you one way to
export data in a format that is beyond the possibilities of the SELECT … INTO OUTFILE
format options.

In the following recipe, we will show you how to create an export file in a hypothetical format.
This includes the name of the file, a time stamp, a short description of the file's content, and
the number of data rows contained in the file in the first four lines. The data portion starts
with a header line with names for all columns followed by the actual data rows. Every data row
should start with a prefix consisting of the hash character (#), the line number, a colon, and
a space. This prefix is followed by the data items separated by pipe (|) characters. Each line
should end with a dollar sign ($) (and the line break, of course).

This format is used as an example, but the steps involved can be adapted to more complex file
formats if necessary.

Getting ready
As in the previous recipe, we will need an account with appropriate permissions (FILE),
a SQL client, and a file name for the target file. Again, we will assume an account named
sample_install and we will export data from table sample.table2 (which consists of
three columns c1, c2, and c3) to a file C:/target.txt in the format mentioned previously.
We also propose to create a file customExport.sql for the SQL commands using an editor to
store the SQL commands.

How to do it...
1. Create a new script named customExport.sql and add the following statements

to it:
SET @filename := 'Filename: C:/target.txt';
SET @description := 'Description: This is a test export from
sample.table2 with columns c1, c2, and c3';
SELECT NOW() INTO @timestamp;
SELECT COUNT(*) FROM sample.table2 INTO @rowcount;
SET @rows := CONCAT('Row count: ', @rowcount);
SET @header := '#Row Nr: Column c1 | Column c2 | Column c3 $';
SET @counter := 0;
SELECT @filename
 UNION SELECT @description
 UNION SELECT @timestamp
 UNION SELECT @rows
 UNION SELECT @header

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

173

 UNION SELECT CONCAT('#',
 @counter := @counter + 1,
 ': ',
 CONCAT_WS(' | ', c1, c2, c3),
 ' $')
 FROM sample.table2
 INTO OUTFILE 'C:/target.txt';

2. Connect to the database using the sample_install account.

3. Execute the SQL statements from customExport.sql (as an alternative to copying
the statements to your SQL client, you could also execute the statements in the file
using mysql's source command)

4. The target file will look as follows:
Filename: C:/target.txt
Description: This is a test export from sample.table2 with columns
c1, c2, and c3
2009-06-14 13:25:05
Row count: 3
#Row Nr: Column c1 | Column c2 | Column c3 $
#1: 209 | Some text in my test data | Some more text $
#2: 308 | Next test text for testing | Text to test $
#3: 406 | The quick brown fox jumps | Really? $

How it works...

Although this solution takes some commands, they are divided into a preparation part
(the first seven commands that define the user variables) and the actual export command.
Of course, you could minimize the number of statements by omitting the user variables,
but the resulting statement would be somewhat bulky.

The preparation part simply defines some user variables for later reference. The final SELECT
command consists of a UNION construct, which basically concatenates the rows that are
required for the file header. The actual data from the table is prepared by the following
SELECT clause:

SELECT CONCAT('#', @counter := @counter + 1, ': ', CONCAT_WS(' | ',
c1, c2, c3), ' $') FROM sample.table2

The CONCAT statement concatenates its parameters; so let us have a look at the statement's
parts. The clause '#', @counter := @counter + 1, ': ' forms the required line
number portion of the rows. The variable @counter gets incremented for every row, which
produces the intended line number. The following CONCAT_WS will also concatenate the given
values, but the first parameter is used as a separator character (_WS stands for with separator).
For every row, this will result in a string with the values of columns (c1, c2, and c3) separated by
the pipe character. With a closing dollar sign as the final parameter, the first CONCAT is closed.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

174

While this approach allows for the creation of rather complex file formats, it is not suitable
for every situation. For advanced requirements, we encourage the use of other programming
techniques beyond the SQL commands (for example, reading and processing the data using a
scripting language). This holds especially true when the target file has to be in XML format.

For advanced formatting capabilities, consider exporting your data in XML
format (using mysqldump --xml) and processing the resulting file using
an XSLT processor!

There's more...
Please note that using parentheses on the UNION to clarify the separation of the different
SELECT statements might lead to unexpected problems: the INTO OUTFILE clause has to
be attached to the last SELECT statement of a UNION construct. A statement like SELECT
(…) UNION (SELECT …) INTO OUTFILE … will not work, while SELECT (…) UNION
(SELECT … INTO OUTFILE) does. While this might not seem too intuitive, it is a well
documented behavior and not a bug.

Using stored procedures to export
repeatedly

In some situations, you will need data exports on a regular basis, for example, to provide an
external system with data for daily reports. One possibility is to define a scheduled task (for
Windows) or a cron job (for Unix/Linux systems) to execute an appropriate export SQL script
every day. The drawback of this is that if you need to change the internal data structures of
your database, it is not sufficient to change only the database content, but you also have to
adapt the export SQL script definition of your export job simultaneously.

To resolve this problem, you could define a stored procedure. This procedure defines a stable
interface by which the external job can trigger the export. The definition of the actual steps
necessary to perform the export is encapsulated by the stored procedure that is inside the
database. Thus, all the necessary changes in case of structural changes are restricted to the
database itself.

In this recipe, we will show you an example of how this works by defining a stored procedure
that performs the same export task as in the previous recipe.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

175

Stored procedures are only available since MySQL version 5.0. Earlier
versions do not support this feature.

Getting ready
To step through this recipe, you basically need the same prerequisites as in the previous
recipe Exporting data to a custom file format. In addition, you need a user account that has
the CREATE ROUTINE privilege to define a stored procedure. Finally, you have to make
sure that the account used for the external job has the EXECUTE privilege. We will use
the sample_install and sample_guest accounts here, assuming that they have the
appropriate privileges.

How to do it...
1. Create a stored procedure by connecting to MySQL (using mysql and the

sample_install account) and entering the following statements:
mysql> delimiter //

mysql> CREATE PROCEDURE sample.export_table2() READS SQL DATA

 -> BEGIN

 -> SET @filename := 'Filename: C:/target.txt';

 -> SET @description := 'Description: This is a test export
 from sample.table2 with columns c1, c2, and c3';

 -> SELECT NOW() INTO @timestamp;

 -> SELECT COUNT(*) FROM sample.table2 INTO @rowcount;

 -> SET @rows := CONCAT('Row count: ', @rowcount);

 -> SET @header := '#Row Nr: Column c1 | Column c2 | Column
 c3 $';

 -> SET @counter := 0;

 -> SELECT @filename

 -> UNION SELECT @description

 -> UNION SELECT @timestamp

 -> UNION SELECT @rows

 -> UNION SELECT @header

 -> UNION SELECT CONCAT('#',

 -> @counter := @counter + 1,

 -> ': ',

 -> CONCAT_WS(' | ', c1, c2, c3),

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

176

 -> ' $')

 -> FROM sample.table2

 -> INTO OUTFILE 'C:/target.txt';

 -> END //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql>

2. Call the stored procedure by executing the following command using the sample_
guest account:
mysql> CALL sample.export_table2();

Query OK, 0 rows affected (0.01 sec)

How it works...
The steps discussed in the aforementioned section are pretty straightforward. In step 1, we
create a stored procedure that consists of the very same commands as presented in the
previous recipe Exporting data to a custom file format. In step 2, this newly created procedure
is called from a different account.

The first and last command of step 1 is the delimiter // statement, which is necessary
to define a stored procedure with more than one statement. It orders the mysql client
not to interpret the semicolon as the end of a command, but to consider // as the end
of a statement. With this we can use semicolons inside the procedure body, which would
otherwise have caused mysql to send the (yet unfinished) command to the server, thus
causing a syntax error. Because of the changed delimiter, we have to close the procedure
definition by END // (instead of END;). Also, as we do not want to keep the changed delimiter
longer than necessary, we revert this to the original form (semicolon) in the next line with
the closing delimiter ; statement. The READS SQL DATA portion of the CREATE TABLE
command is only instructive and has no implications for the way the procedure is executed.

One advantage of this approach is that Step 2 can be repeated often without having to enter
rather complex export statements again and again.

Another benefit is that the changes made to the database structure can be hidden from the
user of the procedure. If, for example, column c1 needs to be renamed to foo, you simply
need to adapt the stored procedure accordingly by replacing the CONCAT_WS portion by
CONCAT_WS(' | ', foo, c2, c3).

Finally, this solution makes it possible to provide the ability to export data to a file without
having to grant the FILE privilege to the respective account. Granting the FILE privilege to
normal users is widely considered a security issue, as this privilege allows access to the host
file system from the context of the MySQL database server process. Using the aforementioned

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

177

stored procedure, the account that calls the routine does not need to have the FILE privilege
attached, as the statements are executed in the security context of the creator of the routine
(in our example: sample_install).

When defining a stored procedure in MySQL, the procedure is by default
executed with the privileges of the definer of the procedure. If you want
to apply the privileges of the invoker instead, you have to add a SQL
SECURITY INVOKER clause to the CREATE PROCEDURE statement.
The default value is SQL SECURITY DEFINER.

With this arrangement, sample_guest is able to export data to files (using predefined stored
procedures), but is not allowed to execute SELECT … INTO OUTFILE statements on its own.

There's more...
The code example from the recipe exports data to a predefined file. Anyone who calls the
routine has to make sure that the target file C:/target.txt does not exist. In some
situations, this restriction is not acceptable. Using parameters, it is possible to pass the name
of the target file as a parameter. Because the file name in the INTO OUTFILE clause has
to be a literal value, we have to use the approach mentioned previously of constructing the
command in a string value, preparing a statement from this, and executing it:

mysql> delimiter //

mysql> CREATE PROCEDURE sample.export_table2_FileAsParam(IN file
CHAR(255)) READS SQL DATA

 -> BEGIN

 -> SET @filename := CONCAT('Filename: ', @file);

 -> SET @description := 'Description: This is a test export from
 sample.table2 with columns c1, c2, and c3';

 -> SELECT NOW() INTO @timestamp;

 -> SELECT COUNT(*) FROM sample.table2 INTO @rowcount;

 -> SET @rows := CONCAT('Row count: ', @rowcount);

 -> SET @header := '#Row Nr: Column c1 | Column c2 | Column c3 $';

 -> SET @command = CONCAT("SELECT @filename

 "> UNION SELECT @description

 "> UNION SELECT @timestamp

 "> UNION SELECT @rows

 "> UNION SELECT @header

 "> UNION SELECT CONCAT('#',

 "> @counter := @counter + 1,

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

178

 "> ': ',

 "> CONCAT_WS(' | ', c1, c2, c3),

 "> ' $')

 "> FROM sample.table2

 "> INTO OUTFILE '", file, "';");

 -> SET @counter := 0;

 -> PREPARE statement FROM @command;

 -> EXECUTE statement;

 -> END //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

This routine allows passing the file name when calling it:

mysql> call sample.export_table2_FileAsParam("C:/data.out");

Query OK, 0 rows affected (0.00 sec)

Importing data from a simple CSV file
A common task when working with databases is to import data from different sources.
Unfortunately, this data will typically not be provided as a convenient set of well-formed SQL
statements that you can simply run against your database. Therefore, here you will have to
deal with data in a different format.

As a common denominator, character-separated values (CSV) are still a prevalent way of
exchanging data. In this chapter, we will show you how to import data stored in CSV files. As a
typical example, we will use the file format Microsoft Excel produces when storing files using
the *.CSV file type.

This recipe is the counterpart of the Exporting data to a simple CSV file recipe in this chapter.

Getting ready
To step through this recipe, we will definitely need a file to import (here: C:/source.csv)
and a table to import the data into (here: sample.table1). The source file and target table
have to have a matching format concerning the number of columns and the type of data
stored in them. Furthermore, an account with INSERT and FILE privileges is required; we will
assume an account sample_install in this recipe.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

179

The source file has to be located on the machine that runs your MySQL
server, not on the client side!

How to do it...
1. Connect to the database using the sample_install account.

2. Issue the following SQL command:
mysql> LOAD DATA INFILE 'C:/source.csv' INTO TABLE sample.table1
FIELDS ENCLOSED BY '"' TERMINATED BY ';' ESCAPED BY '"' LINES
TERMINATED BY '\r\n';

Query OK, 20 rows affected (0.06 sec)

Records: 20 Deleted: 0 Skipped: 0 Warnings: 0

How it works...
The LOAD DATA INFILE command works analogous to the SELECT … INTO OUTFILE
command discussed in the previous recipes, but as a means for importing data rather than
exporting. The format options available for both commands are identical, so you can typically
import data exported by a SELECT … INTO OUTFILE statement using a LOAD DATA
INFILE command with the same format options.

As most files consist of lines terminated by a sequence of a carriage return and a line feed
character, we use the LINES TERMINATED BY '\r\n' option. The choice of the semicolon
character—as a separator for different fields of every line (TERMINATED BY ';')—is mainly
due to the fact that Excel uses this format. If you happen to receive CSV files that, for example,
use a comma instead, you have to adjust this accordingly.

The term FIELDS ENCLOSED BY '"' tells the import to look for double quotes at the
start of every field imported. If there is one, the field is considered to end at the next double
quote. To be able to have double quotes inside a field value, we define an escape character
(ESCAPED BY '"'). With this constellation, a sequence of two double quotes is not treated
as the end of the field, but as a double-quote character as part of the value.

There's more...
The data is read from the file using the default character set of the database. If the file uses a
different character encoding, you can specify this by adding a CHARACTER SET clause after
the table definition (LOAD DATA INFILE … INTO TABLE sample.table1 CHARACTER
SET utf8;). Please note that the character sets ucs2, utf16, and utf32 are not supported
(as of MySQL version 5.1.35).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

180

See also
f Exporting data to a simple CSV file

Importing data from custom file formats
In the previous recipe Importing data from a simple CSV file, we discussed a way of importing
data from a nicely formatted file. Unfortunately, you sometimes have to deal with far less
convenient data sources. In this recipe, we will present some more advanced topics of
importing data from files with a less strict structure.

Obviously, it is not possible to present a universal recipe for every file format imaginable, so
we will use an example that covers some of the common problems one has to tackle when
importing data from custom files. For this, we will refer to the same hypothetical format as in
Export data to a custom file format, which defines four initial lines (containing name of the
file, a time stamp, a description, and the number of rows), a header line with the name of the
columns, and subsequently the rows with the actual data to import. Each data row starts with
a hash character (#), the line number, a colon, and a space. The data values that follow the
row number are separated by a pipe (|) character and the row closes with a dollar sign ($).

Getting ready
Again, the account used in the recipe needs the FILE privilege (besides the INSERT
permission for the table the data should be imported into). With a SQL client, a file with
the appropriate format, and a table as the import target, we are ready to go. As in previous
recipes, we use sample_install as the account name, C:/source.txt as the source file,
and sample.table2 (consisting of three columns c1, c2, and c3) as the target table. We
assume the source file to have the following content:

Filename: C:/source.txt
Description: This is a file for test import to sample.table2, columns
c1, c2, and c3
2009-06-14 13:25:05
Row count: 3
#Row Nr: Column c1 | Column c2 | Column c3 $
#1: 209 | Some text in my test data | Some more text $
#2: 308 | Next test text for testing | Text to test $
#3: 406 | "A water | pipe" | Really? $

How to do it...
1. Connect your favorite client (for example, the mysql command-line client) to your

MySQL server using the sample_install account.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

181

2. Execute the following SQL command:
mysql> LOAD DATA INFILE "C:/source.txt"

 -> INTO TABLE sample.table2

 -> FIELDS TERMINATED BY ' | '

 -> OPTIONALLY ENCLOSED BY '"'

 -> LINES STARTING BY ':'

 -> TERMINATED BY '\r\n'

 -> IGNORE 5 LINES

 -> SET c3=TRIM(TRAILING ' $' FROM c3);

Query OK, 3 rows affected (0.05 sec)

Records: 3 Deleted: 0 Skipped: 0 Warnings: 0

How it works...
Let us dissect the above statement by having a look at the source file: first of all, we want
to import data from the file C:\source.txt into the table sample.table2, which is
represented by the first two lines (LOAD DATA INFILE … INTO TABLE …).

At the top of the file, we have five lines (the initial four lines with information about the file plus
the header) that should not be imported into the target table. To achieve this, the IGNORE 5
lines option is added.

The remaining lines are prefixed with a hash character, the row number, and a colon. This part
of every line has to be ignored, which is what the LINES STARTING BY ':' option does: it
tells MySQL to ignore the first colon of the line and any character before it. By doing this, the
row number prefix is skipped.

After the prefix, the lines contain the actual values, separated by pipe characters. The FIELDS
TERMINATED BY ' | ' option tells MySQL how to identify a field separator. With the
additional setting OPTIONALLY ENCLOSED BY '"', the value itself might contain this field
separator sequence—if the whole value is enclosed by double quotes (this is the case in the
last row of the sample file).

At this point, there is only one problem left: the lines end with a dollar sign, which is not
part of the last value. An intuitive approach would be to include this character in the line
termination sequence, which means to use $\r\n as a line ending (instead of \r\n).
Unfortunately, this definition of a line end does not work as expected for our example, as it
would break the interpretation of the first five lines, which are not terminated the same way.
As a result, the first six lines would be considered as one single line by the import because
only the sixth line actually ends with a character sequence of $\r\n. To be able to explicitly
exclude the header lines from the import, we have to rely on the "traditional" line ending
defined by the [LINES] TERMINATED BY '\r\n' option.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

182

Hence, the options for defining the field separators, and the beginning and termination of
a line do not allow us to get rid of the closing dollar sign. Thus it is considered part of the
last value, which is assigned to column c3. To finally get rid of this postfix, the SET clause
of the LOAD DATA INFILE command comes in handy, which allows to clearly define
the values that are assigned to the columns in the target table. The closing option SET
c3=TRIM(TRAILING ' $' FROM c3); defines a way to strip the unwanted postfix from
the last field.

If we put it all together, the import works as intended:

There's more...
As with exporting data, it is recommended to consider using an external programming
language to import more complex data structures into MySQL. While it is possible to import
rather sophisticated file formats using MySQL commands as well, it is often far more efficient
to have a full-blown programming language at hand to solve the task of parsing input files.
This is most notably the case when it comes to XML files.

For importing data from XML files, consider using an XSLT processor
to produce corresponding SQL commands!

See also
f Importing data from a simple CSV file

f Exporting data to a custom file format

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

183

Inserting new data and updating data if it
already exists

Manipulating data in a database is part of everyday work and the basic SQL means of
INSERT, UPDATE, and DELETE make this a pretty straightforward, almost trivial task—but
is this always true?

When considering data manipulation, most of the time we think of a situation where we
know the content of the database. With this information, it is usually pretty easy to find
a way of changing the data the way you intend to. But what if you have to change data in
circumstances where you do not know the actual database content beforehand?

You might answer: "Well, then look at your data before changing it!" Unfortunately, you do
not always have this option. Think of distributed installations of any software that includes
a database. If you have to design an update option for this software (and the respective
databases), you might easily come to a situation where you simply do not know about the
actual database content.

One example of a problem arising in these cases is the question of whether to insert or to
update data: "Does the data in question already (partially) exist?" Let us assume a database
table config that stores configuration settings. It holds key-value pairs, with name being
the name (and thus the key) of the setting and value its value. This table exists in different
database installations, one for every branch office of your company. Your task is to create an
update package to set a uniform upper limit of 25% for the price discount that is allowed in
your sales software. If no such limit has been defined yet, there is no respective entry in the
config table, and you have to insert a new record. If the limit, however, has been set before
(for example by the local manager), the entry does already exist, in which case you have to
update it to hold the new value.

While the update of a potentially existing entry does not pose a problem, an INSERT
statement that violates uniqueness constraints will simply cause an error. This is, however,
typically not acceptable in an automated update procedure. The following recipe will show you
how to solve this problem with only one SQL command.

Getting ready
Besides a running MySQL server, a SQL client, and an account with appropriate user rights
(INSERT, UPDATE), we need a table to update. In the earlier example, we assumed a table
named sample.config with two character columns name and value. The name column
is defined as the primary key:

CREATE TABLE sample.config (
 name VARCHAR(64) PRIMARY KEY,
 value VARCHAR(64));

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

184

How to do it...
1. Connect to your database using your SQL client

2. Execute the following command:
mysql> INSERT INTO sample.config VALUES ("maxPriceDiscount",
"25%") ON DUPLICATE KEY UPDATE value='25%';

Query OK, 1 row affected (0.05 sec)

How it works...
This command is easily explained because it simply does what it says: it inserts a new row in
the table using the given values, as long as this does not cause a duplicate entry in either the
primary key or another unique index. If a duplicate record exists, the existing row is updated
according to the clauses defined after ON DUPLICATE KEY UPDATE.

While it is sometimes tedious to enter some of the data and columns two times (once for the
INSERT and a second time for the UPDATE), this statement allows for a lot of flexibility when it
comes to the manipulation of potentially existing data.

Please note that when executing the above statement, the result differs slightly with respect
to the number of affected rows, depending on the actual data present in the database: When
the record does not exist yet, it is inserted, which results in one affected row. But if the record
is updated rather than inserted, it reports two affected rows instead, even if only one row
gets updated.

There's more...
The INSERT INTO … ON DUPLICATE UPDATE construct does not work when there is
no UNIQUE or PRIMARY KEY defined on the target table. If you have to provide the same
semantics without having appropriate key definitions in place, it is recommended to use the
techniques discussed in the next recipe.

See also
f Inserting data based on existing database content

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

185

Inserting data based on existing database
content

In the previous recipe Inserting new data and updating data if it already exists, we discussed
a method to either insert or update records depending on whether the records already exist in
the database. A similar problem arises when you need to insert data to your database, but the
data to insert depends on the data in your database.

As an example, consider a situation in which you need to insert a record with a certain
message into a table logMsgs, but the message itself should be different depending on the
current system language that is stored in a configuration table (config).

It is fairly easy to achieve a similar behavior for an UPDATE statement because this supports a
WHERE clause that can be used to only perform an update if a certain precondition is met:

UPDATE logMsgs SET message=
 CONCAT('Last update: ', NOW()) WHERE EXISTS
 (SELECT value FROM config WHERE
 name='lang' AND value = 'en');
UPDATE logMsgs SET message=
 CONCAT('Letztes Update: ', NOW()) WHERE EXISTS
 (SELECT value FROM config WHERE
 name='lang' AND value = 'de');
UPDATE logMsgs SET message=
 CONCAT('Actualisation derniere: ', NOW()) WHERE EXISTS
 (SELECT value FROM config WHERE
 name='lang' AND value = 'fr');

Unfortunately, this approach is not applicable to INSERT commands, as these do not support
a WHERE clause. Despite this missing option, the following recipe describes a method to make
INSERT statements execute only if an appropriate precondition in the database is met.

Getting ready
As before, we assume a database, a SQL client (mysql), and a MySQL user with sufficient
privileges (INSERT and SELECT in this case). Additionally, we need a table to insert data
into (here: logMsgs) and a configuration table config (please refer to the previous recipe
for details).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

186

How to do it...
1. Connect to your database using your SQL client.

2. Execute the following SQL commands:
mysql> INSERT INTO sample.logMsgs(message)

 -> SELECT CONCAT('Last update: ', NOW())

 -> FROM sample.config WHERE name='lang' AND value='en';

Query OK, 0 rows affected (0.00 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> INSERT INTO sample.logMsgs(message)

 -> SELECT CONCAT('Letztes Update: ', NOW())

 -> FROM sample.config WHERE name='lang' AND value='de';

Query OK, 1 row affected (0.05 sec)

Records: 1 Duplicates: 0 Warnings: 0

mysql> INSERT INTO sample.logMsgs(message)

 -> SELECT CONCAT('Dernière actualisation: ', NOW())

 -> FROM sample.config WHERE name='lang' AND value='fr';

Query OK, 0 rows affected (0.00 sec)

Records: 0 Duplicates: 0 Warnings: 0

How it works...
Our goal is to have an INSERT statement take into account the present language stored in
the database. The trick to do so is to use a SELECT statement as input for the INSERT. The
SELECT command provides a WHERE clause, so you can use a condition that only matches
for the respective language. One restriction of this solution is that you can only insert one
record at a time, so the size of scripts might grow considerably if you have to insert lots of
data and/or have to cover many alternatives.

There's more...
If you have more than just a few values to insert, it is more convenient to have the data in one
place rather than distributed over several individual INSERT statements. In this case, it might
make sense to consolidate the data by putting it inside a temporary table; the final INSERT
statement uses this temporary table to select the appropriate data rows for insertion into the
target table. The downside of this approach is that the user needs the CREATE TEMPORARY
TABLES privilege, but it typically compensates with much cleaner scripts:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

187

After creating the temporary table with the first statement, we insert data into the table with
the following INSERT statement. The next statement inserts the appropriate data into the
target table sample.logMsgs by selecting the appropriate data from the temporary data
that matches the language entry from the config table. The temporary table is then removed
again. The final SELECT statement is solely for checking the results of the operation.

See also
f Inserting new data and updating data if it already exists

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

188

Deleting all data from large tables
Almost everyone who works with databases experiences the constant growth of the data
stored in their database and it is typically well beyond the initial estimates. Because of that
you often end up with rather large data sets. Another common observation is that in most
databases, there are some tables that have a special tendency to grow especially big.

If a table's size reaches a virtual threshold (which is hard to define, as it depends heavily
on the access patterns and the data structures), it gets harder and harder to maintain and
performance degradation might occur. From a certain point on, it is even difficult to get rid
of data in the table again, as the sheer number of records makes deletion a pretty expensive
task. This particularly holds true for storage engines with Multi-Version Concurrency Control
(MVCC): if you order the database to delete data from the table, it must not be deleted right
away because you might still roll back the deletion. So even while the deletion was initiated,
a concurrent query on the table still has to be able to see all the records (depending on the
transaction isolation level). To achieve this, the storage engine will only mark the records as
deleted, but the actual deletion takes place after the operation is committed and all other
transactions that access this table are closed as well.

If you have to deal with large data sets, the most difficult task is to operate on the production
system while other processes concurrently work on the data. In these circumstances, you have
to keep the duration of your maintenance operations as low as possible in order to minimize
the impact on the running system. As the deletion of data from a large table (typically starting
at several millions of rows) might take quite some time, the following recipe shows a way of
minimizing the duration of this operation in order to reduce side effects (like locking effects
or performance degradation).

Getting ready
Besides a user account with appropriate privileges (DELETE), you need a sufficiently large
table to delete data from.

For this recipe, we will use the employees database, which is an example
database available from MySQL: http://dev.mysql.com/doc/
employee/en/employee.html.

This database provides some tables with sensible data and some pretty
large tables, the largest having more than 2.8 million records.

We assume that the Employees database was installed with an InnoDB storage engine
enabled. To delete all rows of the largest table employees.salaries in a quick way, please
read on.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

189

How to do it...
1. Connect to your database.

2. Enter the following SQL command:
mysql> TRUNCATE TABLE employees.salaries;

Query OK, 0 rows affected (0.16 sec)

How it works...
The TRUNCATE TABLE command is a rather fast way of deleting all data from a table. For
tables that are not referenced by Foreign key constraints (more on that later), the command
basically drops the table temporarily and recreates the table with the same structure as
before. This operation has basically a constant time characteristic—the amount of data stored
inside the table does not have any effect in the time needed for the TRUNCATE command.

Before MySQL 5.0.3, the TRUNCATE TABLE statement for InnoDB tables
was always equivalent to a DELETE statement, regardless of whether Foreign
key constraints exist or not. To take advantage of the speed improvements,
you have to use MySQL 5.0.3 or later.

In comparison to a classical DELETE FROM employees.salaries; operation, the
reduction in time needed is striking:

Operation Time needed
TRUNCATE TABLE 0.16 sec
DELETE 1 min 31.55 sec

TRUNCATE TABLE DELETE

100

0

20

40

60

80

T
im

e
in

s
e
c
o
n
d
s

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

190

The TRUNCATE TABLE command takes only a fraction of the time needed for the DELETE.
However, there are some caveats.

First of all, the TRUNCATE command will only have the speed advantage on InnoDB tables
if the table is not referenced by any Foreign key constraints. But if the table is referenced
by Foreign keys, the TRUNCATE TABLE command is equivalent to executing a DELETE
statement with no WHERE clause, also eliminating all speed differences:

mysql> CREATE TABLE employees.salaries_referencer (

 -> emp_no INT,

 -> from_date DATE,

 -> CONSTRAINT salaries_fk

 -> FOREIGN KEY (emp_no, from_date)

 -> REFERENCES salaries (emp_no, from_date)

 -> ON DELETE RESTRICT);

Query OK, 0 rows affected (0.08 sec)

mysql> TRUNCATE TABLE employees.salaries;

Query OK, 0 rows affected (1 min 33.44 sec)

Operation Time needed
TRUNCATE TABLE (with foreign key ref) 1 min 33.44 sec
DELETE 1 min 32.96 sec

TRUNCATE TABLE

(w/ FK references)

DELETE

100

0

20

40

60

80

T
im

e
in

s
e
c
o
n
d
s

Furthermore, the TRUNCATE statement requires the DROP privilege (before MySQL 5.1.16,
it only requires the DELETE permission), which forbids use of this command for some users.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

191

And finally, TRUNCATE is not a transaction-safe command. If you execute a TRUNCATE
statement, you will not be able to perform a rollback on this operation any more, and any
open operation from the current transaction gets automatically committed as well. This
is a characteristic that disqualifies this statement for situations in which the possibility of
performing a rollback is mandatory; you will have to stick with the (much slower) DELETE in
these cases.

There's more...
As we have seen, TRUNCATE TABLE only has performance advantages if there is no Foreign
key reference to the table that is to be deleted. Here we will discuss how to use the speed
improvements even in case of existing references.

Temporarily disabling Foreign key constraints
To make use of the increased speed of TRUNCATE TABLE although the target table is ref-
erenced via Foreign keys, you could temporarily remove the Foreign key constraints, use the
TRUNCATE TABLE command, and reestablish the references afterwards. Using the above
example of a table salaries_referencer that references salaries, you could use the
following sequence:

mysql> ALTER TABLE employees.salaries_referencer

 -> DROP FOREIGN KEY salaries_fk;

Query OK, 0 rows affected (0.19 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> TRUNCATE TABLE employees.salaries;

Query OK, 0 rows affected (0.44 sec)

mysql> ALTER TABLE employees.salaries_referencer

 -> ADD CONSTRAINT salaries_fk

 -> FOREIGN KEY (emp_no, from_date)

 -> REFERENCES salaries (emp_no, from_date)

 -> ON DELETE RESTRICT;

Query OK, 0 rows affected (0.14 sec)

Records: 0 Duplicates: 0 Warnings: 0

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

192

With this sequence, you temporarily disable the Foreign key constraints to have TRUNCATE
TABLE use the faster deletion method. Beware, however, that this method might also
lead to problems when the deletion of the table produces "loose ends". If the referencing
table salaries.referencer holds records that referenced the now empty target table
salaries, the creation of the Foreign key constraints will fail:

Also, keep in mind that this situation might also occur because of concurrent processes,
which are able (for the duration of the disabled constraints) to insert data into the tables that
violate the intended referential integrity.

As an alternative, you might be tempted to temporarily disable the Foreign key checks by
setting foreign_key_checks to zero. While this works regarding the TRUNCATE TABLE
performance, it is strongly discouraged to use this option because the Foreign key integrity is
not revalidated when the Foreign key checks are enabled again. So you risk inconsistent data
with respect to the referential integrity.

Deleting all but a fragment of a large
table's data

In the previous recipe Deleting all data from large tables, we discussed a method of quickly
removing all data from large tables while avoiding performance hits. But experience shows
that you often must not delete all data, but have to retain some records and delete the rest.
The TRUNCATE TABLE command does not allow any additional clauses to define which
records to delete and which not; it always deletes all entries.

The intuitive solution to this would be to use a normal DELETE command with a WHERE clause
that only matches the records to delete. For large tables, this might prove quite an expensive
operation (in terms of duration). In this recipe, we will show you how to quickly remove most of
the data from large tables while preserving some of the records.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

193

Getting ready
We again need a MySQL server up and running and a SQL client (like mysql). For this recipe,
we also need a user account with SELECT, INSERT, DELETE, DROP, and CREATE privileges
for the target database (we will use the sample_install user throughout this section). We
will furthermore use the Employees sample database in an InnoDB context. This database
was introduced in the previous recipe and is available for free on the MySQL website. We will
use the largest table salaries (with more than 2.8 million records) as the table to delete
from. In our example, we will delete all records having a from_date before the threshold of
'2002-01-01 00:00:00.0'.

How to do it...
1. Connect to the database using a SQL client and the sample_install account.

2. Execute the following commands:
mysql> use employees;

Database changed

mysql> CREATE TABLE salaries_part

 -> SELECT * FROM salaries

 -> WHERE from_date >= "2002-01-01 00:00:00.0";

Query OK, 140930 rows affected (11.47 sec) Re-

cords: 140930 Duplicates: 0 Warnings: 0

mysql> TRUNCATE TABLE salaries;

Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO salaries SELECT * from salaries_part;

Query OK, 140930 rows affected (4.63 sec)

Records: 140930 Duplicates: 0 Warnings: 0

mysql> DROP TABLE salaries_part;

Query OK, 0 rows affected (0.06 sec)

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

194

How it works...
For speeding up the deletion of most of the data from a large table, we utilize the speed
advantage of the TRUNCATE TABLE statement over a DELETE command. In detail, the steps
are as follows:

The initial USE statement is for convenience only, so we do not have to give the employees
prefix for every table.

With the next statement (CREATE TABLE … SELECT * FROM …), we simply copy the data
that should not be removed to a newly created table salaries_part.

Be careful to avoid errors when inverting conditions: to delete all entries
before time X, you have to copy all records values later or equal to X! If
you copy only records later than X, all records exactly at time X would get
deleted as well

This table temporarily holds the data while we delete all data from the large salaries
table using TRUNCATE in the next step. Afterwards, we simply copy the partial data from the
salaries_part table back into the original (now emptied) salaries table. With the final
step, we scrap the salaries_part table again, as it is not needed any more.

You could also create salaries_part as a TEMPORARY table. In
this case, you could also skip the final DROP statement. This method is
discouraged because it might lead to data loss in case of an error. Think
of an error that occurs right after all data was deleted from the original
salaries table, but before the data from the temporary table is
restored. If the connection is closed, the data from the temporary table
is lost. A non-temporary table does not entail this risk.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

195

There's more...
We will not try to conceal that this approach has some caveats as well. First of all, the user
who performs this operation needs some additional privileges like CREATE and DROP, which
renders it unusable for many users with only basic permissions.

You should also keep in mind that the use of either CREATE TABLE or TRUNCATE causes
an automatic commit of any transaction currently active, which basically means that this
approach does not provide any transaction safety.

If concurrent database access is possible during the process of deletion, an additional
problem comes up. In the period of time between the TRUNCATE and completion of the
INSERT INTO … SELECT FROM … statements, the salaries table is empty for any
other transaction. You have to make sure that this will not cause any problem. You should
use the DELETE approach otherwise, as this will not produce intermediate states in which
the database table is completely empty.

And finally, the performance benefit of this approach for InnoDB greatly depends on the
speed of the TRUNCATE TABLE statement. However, if there are tables that reference the
target table with a Foreign key, the TRUNCATE will be equivalent to a DELETE statement, thus
destroying all performance improvements. A solution to this problem is to temporarily remove
the Foreign key references. Please refer to the Temporarily disabling Foreign key constraints
section of the previous recipe for a description of how to achieve this.

Performance considerations
A comparison between the method presented in this recipe and the use of an ordinary
DELETE statement shows that the advantages depend on the amount of data that is not
deleted. The more data is copied to the provisional table, the longer the operation takes. The
DELETE statement, however, behaves conversely: it gets faster if more data is deleted. From
a certain threshold on, the normal deletion will even be faster than the Copy-and-Truncate
approach. As a rule of thumb for InnoDB tables, if you delete two thirds of the data or more,
you can use the Copy-and-Truncate method; otherwise, a simple DELETE might prove faster.
This differs slightly for other storage engines: for MyISAM, the Copy-and-Truncate method
typically works faster if more than half of the data is deleted. So when considering a partial
deletion of data from large tables, you should take a second to think about which approach
fits better for your particular circumstances.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

196

The following two diagrams compare the times needed to partially delete data either using
a simple DELETE statement or the Copy-and-Truncate solution for different numbers of rows
that are left after the operation. The table originally contains about 2.8 million rows. The first
figure shows the comparison for the InnoDB storage engine:

21 141 265 644 905 1386

80

0

10

20

30

40

50

60

70

Records Kept x 1000

S
e
c
o
n
d
s

Copy and TRUNCATE

DELETE (InnoDB)

For MyISAM, the Copy-and-Truncate mechanism is faster even for larger numbers of
remaining rows:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

197

Deleting all data incrementally from
large tables

In the previous recipe Deleting all but a fragment of a large table's data, we discussed
a method to quickly remove all but a small remainder of records from a large table. The
downside of the approach presented there is the fact that during the process of deletion,
the table temporarily appears completely empty to an observer. Unfortunately, this is often
not acceptable, especially if your database is used in an environment with many parallel
processes concurrently accessing the database, particularly the large table discussed here.

On the other hand, the alternative of simply using a DELETE statement is sometimes not
acceptable either. A DELETE statement temporarily creates locks on the entries that are
deleted. As a result, for the duration of the deletion, a major part of the table gets locked,
thus preventing concurrent access to the table by other processes. This typically leads to
timeout situations and other errors, as in the following example:

SQL client 1 SQL client 2
DELETE FROM employees.salaries
WHERE emp_no < 485000;

INSERT INTO salaries VALUES(10001,
0, "2010-01-01", "2099-12-31");

=> ERROR 1205 (HY000): Lock wait
timeout exceeded; try restarting
transaction

=> Query OK, 2702167 rows affected
(1 min 11.85 sec)

The following recipe shows an approach to deleting data from large tables without blocking
access to the table's data for too long, so the deletion can happily be performed despite
concurrent tasks simultaneously accessing the very same table.

Getting ready
As the recipe uses a stored procedure, we again need a user account with the CREATE
ROUTINE privilege as well as the DELETE permission for the target database. Throughout
the following steps, we will again assume sample_install as the user. The example table
for deletion is salaries from the employees sample database (see previous recipes)
once more. In our example, we will delete all entries from the table with an employee number
emp_no below 485000.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

198

How to do it...
1. Connect to the database using the sample_install account.

2. Enter the following SQL statements:
mysql> delimiter //
mysql> CREATE PROCEDURE employees.delete_incrementally()
 -> MODIFIES SQL DATA
 -> BEGIN
 -> REPEAT
 -> DELETE FROM employees.salaries
 -> WHERE emp_no < 485000
 -> LIMIT 20000;
 -> UNTIL ROW_COUNT() = 0 END REPEAT;
 -> END //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL employees.delete_incrementally();
Query OK, 0 rows affected, 137 warnings (3 min 58.09 sec)

How it works...
The above steps simply create a stored procedure named delete_incrementally(),
which can be used to delete certain records from the table salaries.

The DELIMITER statements at start and end of the script are necessary to define a stored
procedure, as the statements would otherwise be executed right away. The procedure
definition itself is pretty straightforward and basically consists of a REPEAT … UNTIL loop
that deletes data from the salaries table according to the given condition (WHERE emp_no
< 485000). The special part of this DELETE statement is the LIMIT clause, which defines
that no more than 20,000 rows should be deleted. This statement is executed by the loop as
long as there are any records left to delete. As soon as the number of records affected by the
DELETE statement (which can be retrieved using the ROW_COUNT() function) is zero, the
loop ends.

The trick used by this approach is to distribute the period of time needed to delete the data
from one block to multiple intervals.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 5

199

In sum, the incremental deletion in steps of 20,000 actually is
considerably slower than a single DELETE statement, but it is much
more cooperative when it comes to concurrent write access to the
same data.

The benefit lies within the fact that every single partial DELETE statement does not run very
long, which drastically reduces the period of time in which locks are held for parts of the table.
This basically eliminates the locking problems between deletion and other processes:

SQL client 1 SQL client 2
CALL delete_incrementally();

INSERT INTO salaries VALUES(10001,
0, "2010-01-01", "2099-12-31");

=> Query OK, 1 row affected (0.67
sec)

UPDATE salaries

SET salary=salary+300

WHERE emp_no < "490000";

Query OK, 2669890 rows affected
(59.63 sec)

Rows matched: 2669890 Changed:
2669890 Warnings: 0

=> Query OK, 2702167 rows affected
(1 min 11.85 sec)

As you can see, even while the deletion still runs, the parallel modifications to the database
work concurrently without lock wait timeout errors or similar problems.

There's more...
While typically the incremental deletion is slower than one single delete operation, this can
change under heavy load for InnoDB tables: parallel transactions work on a snapshot of
the current data at the point in time when the transaction starts. This feature is provided by
InnoDB's Multi-Version Concurrency Control (MVCC).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Data

200

With many transactions and large amounts of data, the difference between the snapshots and
the deleted data has to be maintained by MySQL. This housekeeping data is kept until the last
transaction that was opened before the deletion was completed is closed. The administration
of this delta might have negative impact on the overall MySQL performance. With incremental
deletion, this delta data typically does not grow as big as with a long running delete statement,
which often reduces the performance hit.

Under heavy load, the incremental deletion approach might actually
cause a gain in overall performance.

See also
f Deleting all but a fragment of a large table's data

f Deleting all data from large tables

Download at Wow! eBook

WWW.WOWEBOOK.COM

6
Monitoring and

Analyzing a MySQL
Installation

In this chapter, we will discuss some recommendations on how to monitor your MySQL install-
ation and how to analyze possible problems. In detail, the following topics will be covered:

f Checking free InnoDB tablespace

f Establishing alerting mechanisms for low remaining tablespace by using triggers

f Estimating tablespace requirements

f Identifying and changing MySQL variables

f Assessing the overall table count

f Finding the biggest tables

f Finding all columns with a certain name and/or type

f Finding all tables referencing each other

Introduction
Even if MySQL is easy to set up and requires relatively little maintenance once it is up
and running, there are situations in which it is necessary to check certain aspects of
MySQL—either to identify and solve certain problems (for example performance problems),
or preferably, to prevent trouble in the first place. This chapter will introduce some techniques
that might prove useful for maintaining your database, so you have some tools at hand to
ensure continuous, problem-free operation of your MySQL installation.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

202

Checking free InnoDB tablespace
One of the most common problems for database administrators is to deal with the constant
data growth most databases will display. You have to keep an eye on the remaining space
available to avoid the situation where no space is left to add new data. An out-of-space
scenario typically leads to a de facto breakdown of your database.

The default storage engine of MySQL is MyISAM, which stores its data in plain files. For each
table, a separate file is created. The file's size is adapted according to the data stored in it.
If more data is written to the table, the file gets bigger. In case of data reduction, the freed
space can be reclaimed by using the OPTIMIZE TABLE command, which results in a smaller
file size. This way, it is a straightforward task to check how much space is left for further data
growth: you just have to take a look at the space left on the drive your data (your MyISAM
data, specifically) is stored in.

For the alternative storage engine InnoDB, this question is not so easy to answer. The
following recipe will show you how to retrieve this information.

Getting ready
For this recipe, we will need a MySQL user who has SELECT access to all schemata in
the MySQL installation. We assume the admin4mysql account is used throughout the
following steps.

How to do it...
1. Connect to the database using the admin4mysql account.

2. Enter the following SQL statement:
SELECT DATA_FREE/(1024*1024) AS FREE_MB, TABLE_SCHEMA, TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES WHERE ENGINE="InnoDB";

3. Read the remaining free tablespace (in MBytes) from the results:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

203

How it works...
The statement entered in step 2 simply reads the DATA_FREE column from the table
INFORMATION_SCHEMA.TABLES and displays it in a convenient way (including a downscaling
to show MBytes instead of bytes). For each table in each schema, the remaining free
tablespace is shown (in MByte).

As you have noticed, most tables in the above example show the identical value of 134
MBytes. This is due to the fact that all these tables are stored in a shared MySQL tablespace
(as defined by the innodb_data_home_dir variable). For most InnoDB installations, this will
be the typical setup: all data is stored in a common tablespace, thus all tables will show the
identical value for remaining tablespace.

In our example, however, the first table shows a different value. This is because this table was
created in a table-specific tablespace, which can be achieved by using the innodb_file_
per_table parameter in the MySQL configuration. All tables that are created with this setting
are created in separate files. The files are extended in size as needed, but are not shrunk
automatically if data is deleted from the table.

The value retrieved by the above recipe shows the size available with the current file sizes
(both for shared and file-per-table tablespace). If autoextending tablespaces are used,
the remaining space on the file system has to be added to this value to calculate the true
available space.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

204

Remaining autoextend space = Free tablespace + Remaining file
system space

Autoextending tablespace is in place when the innodb_file_per_table setting is used or
if the innodb_data_home_dir definition includes an autoextend suffix.

Note that for innodb_data_home_dir the default value
ibdata1:10M:autoextend is used, which means automatic
extension is in place!

In these cases, the free tablespace value discussed above is not the only relevant value;
you should additionally establish a monitoring for the available space on the disk device the
tablespace files are stored on.

Please note that for both autoextend and innodb_file_per_table
the tablespace will be extended as needed, but once the space is allocated
for InnoDB use, it will not be released automatically if less storage is needed.
With innodb_file_per_table, unused tablespace can be released by
executing an OPTIMIZE TABLE command, resulting in smaller
tablespace files.

There's more...
The above approach will only work for MySQL version 5.1.28 or higher, as these versions expose
the remaining InnoDB tablespace in the DATA_FREE column of INFORMATION_SCHEMA.
TABLES. To retrieve the data from versions before that, you will have to take a look at the
TABLE_COMMENT column:

Note that the values are given in KB, not in bytes as in the DATA_FREE column.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

205

An alternative way to retrieve this information without explicitly accessing INFORMATION_
SCHEMA is to use the SHOW TABLE STATUS command, which shows the status (including the
comment) for each table in the currently selected schema.

See also
f Defining an alternative user for administrative tasks

Establishing alerting mechanisms for low
remaining tablespace by using triggers

In the previous recipe, we introduced a way to read the remaining InnoDB tablespace. While it
is important to have this information at hand, in a professional setting you will have to make
sure that your database will not run out of tablespace. To avoid having to manually check the
remaining tablespace on a regular basis (you have better things to do, especially on weekends
and on vacation, right?), an automatic monitoring mechanism is needed.

It is not in the scope of this book to describe how to establish a working monitoring and
alerting infrastructure. On most platforms you will have means to monitor for certain
conditions and/or alert people or groups responsible for a particular issue. Typical examples
for alerting solutions are third-party products like Nagios, Insight Manager, or OpenView, or
even the good old e-mail. Alerts can be triggered for example by trigger files, certain system
log entries, SNMP, or specific clients.

In this recipe, we will show you how to establish a monitoring mechanism for remaining
InnoDB tablespace that can easily be adapted to use the alerting mechanism of your choice.

Note that this recipe is targeted at installations with a fixed InnoDB
tablespace size. Scenarios that rely on the autoextend feature of
InnoDB have to take the available file system space into account as well.

Getting ready
First of all, you will have to come up with a threshold value for your free tablespace; if the
available free tablespace drops below this threshold, an alert will be raised.

20 percent is a sensible starting point for a tablespace alert, but this value
should be adapted according to your needs. Data fluctuation and response
time for alerts have to be taken into account.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

206

Throughout this recipe, we will assume a fixed size InnoDB tablespace of 10 GB and a
threshold value of 2 GB.

We will additionally need a MySQL user with administrative privileges; for the following
example, we will use the admin4mysql account again.

And finally, you will have to give a directory on your server's file system into
which to write the trigger file that is not used by other applications (we will
assume C:/temp/MySQLMonitoring/ in the following steps).

The recipe makes use of MySQL's scheduler feature, so it requires MySQL
version 5.1 or greater.

How to do it...
1. Connect to your MySQL database

2. Enter the following commands to create a stored procedure to check for
low tablespace:
mysql> delimiter //

mysql> CREATE PROCEDURE mysql.check_innodb_ts()

 -> BEGIN

 -> SELECT MIN(DATA_FREE) FROM INFORMATION_SCHEMA.TABLES

 -> WHERE ENGINE="InnoDB" INTO @free;

 -> SET @threshold := 2*1024*1024*1024;

 -> SET @fileprefix := "C:/log/innodb_free_ts_alert_";

 -> SELECT DATE_FORMAT(NOW(), "%Y_%m_%d_%H%i%s")

 -> INTO @timestamp_suffix;

 -> SELECT CONCAT(@fileprefix, @timestamp_suffix)

 -> INTO @filename;

 -> SELECT CONCAT(

 -> "Free InnoDB table space (",

 -> @free,

 -> ") is below warning threshold (",

 -> @threshold,

 -> ").") INTO @warning;

 -> SELECT CONCAT(

 -> "SELECT @warning INTO OUTFILE '",

 -> @filename,

 -> "';") INTO @command;

 -> IF @free < @threshold THEN

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

207

 -> PREPARE statement FROM @command;

 -> EXECUTE statement;

 -> END IF;

 -> END //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

3. Use the following commands to schedule the tablespace check:
mysql> CREATE EVENT mysql.check_innodb_ts_event

 -> ON SCHEDULE EVERY 15 MINUTE

 -> DO CALL mysql.check_innodb_ts();

Query OK, 0 rows affected (0.00 sec)

4. Configure your platform-specific monitoring/alerting mechanism to scan for files
named innodb_free_ts_alert_* in the C:/log/ directory—if a file exists, an
alert should be raised.

How it works...
In step 2, a stored procedure named mysql.check_innodb_ts() is created, which
checks the remaining InnoDB tablespace against a threshold value (here: 2 GB, given as an
arithmetic expression: 2 * 1024 * 1024 * 1024). If the space is below the threshold
value, a file with a given name prefix and the timestamp as a name suffix is written to the
C:/log/ directory. The file contains an alert message that states the actual as well as the
threshold value.

Step 3 creates a scheduled event (named mysql.check_innodb_ts_event), which
causes the stored procedure defined in step 2 to be executed automatically every 15 minutes
(the MySQL scheduler has to be enabled, see There's more below). You should adapt this
interval according to your needs, but keep in mind that longer intervals will increase the
probability that a sudden peak in data growth might fill up your database before your alert
fires. On the other hand, a shorter interval will be at the cost of an increased server load
induced by the monitoring mechanism. You will have to balance these aspects to find the best
solution for your environment.

Step 4 should be considered a placeholder for the respective steps required to produce an
alert in your specific environment. If your monitoring tool is not able to check for the existence
of files with a specific file pattern (C:\log\innodb_free_ts_alert_* in our example), you
might have to introduce an intermediate layer that checks for the trigger files created by the
MySQL event scheduler on a regular basis. An example for a Windows environment could be
to define a scheduled task that executes a command-line script along the lines of:

IF EXIST "C:\log\innodb_free_ts_alert_*" (alert.exe "Table space
low!")

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

208

For Unix-like systems, a bash script like the following run by a cron job would have a
similar effect:

files=$(ls /log/innodb_free_ts_alert_* 2> /dev/null)
if [$files]; then /etc/bin/alert "Table space low!"; fi

For these examples, alert.exe and /etc/bin/alert have to be replaced by the tools of
your choice to raise an alert.

There's more...
For the sake of brevity, some prerequisites and further options for improvement were not fully
discussed in the above recipe. The following sections will show you how to make sure the
prerequisites are given and how to ease future changes in configuration.

Enabling the MySQL scheduler
The scheduled event from step 3 relies on a running MySQL scheduler.

The scheduler feature has been available since version
5.1, so the recipe does not fully work with MySQL 5.0 or
lower.

As the scheduler is not enabled by default even in MySQL 5.1, you should make sure that your
configuration contains the setting event_scheduler=ON in the [mysqld] section of your
MySQL configuration file. Alternatively, you can enable the scheduler using the SET GLOBAL
event_scheduler = ON; command.

If you happen to work with a version of MySQL that does not support the scheduler or if for
any reason you cannot enable the MySQL scheduler in your installation, you should consider
establishing a scheduled task (for Windows) or a cron job (for Unix/Linux), which executes
the CALL mysql.check_innodb_ts(); command using the -e option of the mysql
command-line client.

Improving configuration
As the stored procedure defined in step 2 contains some hard-coded values (most importantly
threshold and fileprefix), it is hard to adapt those values to changed needs, for example
if the threshold should be changed. Thus you could consider reading the specific values
from a configuration table using the SELECT … INTO @variable notation. To change a
configuration value, the stored procedure can be left unchanged; you only need to update the
values in your configuration table.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

209

See also

f Defining an alternative user for administrative tasks (Chapter 8 MySQL
User Management)

Estimating tablespace requirements
When planning a database installation, one problem that comes up pretty soon is how much
drive space should be reserved for the data. This is an important aspect to consider in terms
of reliability because if the reserved space is too small, your database might grind to a halt
if no space is left to store additional data. On the other hand, today's cost pressure will often
not allow for demands that are not based on a traceable method of demand estimation. The
following recipe will present an approach that allows for a realistic estimate of the storage
requirements of your database.

Getting ready
For the following recipe, you will need to have some information at hand:

f The table structure of your database

f An estimate of the maximum number of records for each table (take data growth
into account)

f Representative sample records for each table (the more, the better)

Choosing sample values for variable length columns carefully:
When thinking about sample records for your tables, think about
reasonable values for columns with data types of variable
length (like VARCHAR or BLOB. The length of the values should
match the average size of the expected values of the productive
database. If you cannot give a valid estimate, we propose to use
sample values half as long as the maximum.
For international operations, take Unicode encoding of VARCHAR
values into account. If you have to deal with character sets like
for example Cyrillic, Chinese, Japanese, Arabic, or Hebrew, use
sample values for these as well, as these characters will require
more space than an ASCII character.

The table structure of your database should already be present, which means all tables
should be created, but not necessarily filled with data.

Furthermore, you will need an account with read and write privileges to the schema for which
you want to calculate the space requirements estimate.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

210

For the following recipe, we will assume the sample_stduser account is used. Furthermore,
we will use a database sample with two tables—table1 and table2—created using the
following statements:

CREATE TABLE `table1` (
 `id` LONG,
 `name` varchar(255) DEFAULT NULL,
 INDEX `idx_name` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE `table2` (
 `name` char(16) NOT NULL,
 `description` varchar(128) NOT NULL,
 PRIMARY KEY (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

We will assume that table1 will have a maximum row count of one million, and table2 will
hold at most 20,000 records.

How to do it...
1. Connect to your database using the sample_stduser account.

2. Insert as much sample data into your tables as possible:
INSERT INTO table1 values

(1,"John Doe"),
(2,"Mickey Mouse"),
(3,"Дмитрий Анатольевич Медведев"),
(4,"Jane Doe"),
(5,"Jeffrey \"The Dude\" Lebowksi"),
(6,"Walter Sobchak"),
(7,"Donny Kerabatsos"),
(8,"Neo"),
(9,"Trinity"),
(10,"Morpheus");

INSERT INTO table2 values

("Bit", "Smallest piece of binary logic: either 0 or 1"),
("Byte", "Consists of eight bits"),
("Nibble", "Half a byte, consists of four bits"),
("kB", "Kilobyte; either 1,000 or 1,024 bytes"),
("KiB", "Kibibyte; correct IEC term for 1,024 bytes"),
("MB", "Megabyte; either 1,000,000 or 1,048,576 bytes"),
("MiB", "Mebibyte; correct IEC term for 1,024 KiB");

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

211

3. Calculate the tablespace requirements for each table by using the following statements:
mysql> SELECT 1000000 * (DATA_LENGTH + INDEX_LENGTH) /
 -> (SELECT COUNT(*) FROM sample.table1) / (1024*1024)
 -> AS REQUIRED_SPACE_MB
 -> FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA="sample" AND
 -> TABLE_NAME="table1";

mysql> SELECT 20000 * (DATA_LENGTH + INDEX_LENGTH) /

 -> (SELECT COUNT(*) FROM sample.table2) / (1024*1024)

 -> AS REQUIRED_SPACE_MB

 -> FROM INFORMATION_SCHEMA.TABLES

 -> WHERE TABLE_SCHEMA="sample" AND

 -> TABLE_NAME="table2";

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

212

How it works...
The statements in step 3 use the metadata available in INFORMATION_SCHEMA.TABLES to
calculate the space requirements for the table. We retrieve the current space required for the
current data and index information, and divide it by the number of records currently stored in
the table, which gives the average size of a single record. We simply multiply this value with
the target number of records in the table. For better readability, the value is scaled down
to MBytes.

Note that for a low number of sample records, these estimates are typically
way too high. The more records are present in the tables, the more accurate
the results are.

The following diagram shows how the sample data row count affects the results of
the calculations:

10000 100 200 300 400 500 600 700 800 900

6500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

No. of sample records

S
iz

e

Estimated size of table1

As you can see, the initial estimate was way too conservative. For low numbers of sample
records, the estimated table size was extremely high. The more sample data is present,
the lower (and more precise) the estimates get.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

213

There's more...
The reason for the inexact figures produced when too little sample data is used is due to the
fact that storage space for data and index information is reserved in pages (a page consists of
16 KB). So for the first row, 32 KB of storage is reserved (one page for data, one page for the
index). Based on this, one million rows of this size would require roughly 32 GB of storage. But
the next row will fit into the very same page that was already reserved as well, thus reducing
the calculated estimate for the space requirements by 50 percent. This is why with very small
sets of sample data, a realistic estimate of how much space is going to be required for a large
row count is hardly possible. The advantage is that this effect protects you against estimates
that are too low.

Note that simply multiplying the AVG_ROW_LENGTH value by the number of
rows is not sufficient because this does not take the storage requirements
for the index information into account. In some cases, the indexes are bigger
than the actual data!

See also
f Creating a basic user

Identifying and changing MySQL variables
The behavior of MySQL installations can be widely configured using variables. You will
probably have come across some of these variables, as they are defined in your MySQL
configuration file (my.ini). But there are many variables that you will probably not know of
because they have sensible default values and are rarely modified.

The typical way to adapt MySQL variables is to edit the MySQL configuration and restart your
database server. But if you want to know whether a setting in your MySQL configuration was in
fact accepted or if you want to know which setting is in place in the currently running MySQL
instance without having to resort to the MySQL startup configuration, this recipe will show you
how to do this.

We will also show you how to change certain settings during server runtime, which allows
performing certain changes without the need for a MySQL restart.

Getting ready
All we need is any MySQL client (like the mysql command-line client) and a MySQL user
account. To read a variable setting, any user that allows you to connect to the server is sufficient.
If you want to change the value of a MySQL system variable, you will need the SUPER privilege.
For the following example, we will assume an administration account named admin4mysql.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

214

How to do it...
1. Connect to your MySQL database with the SQL client of your choice using the

admin4mysql account.

2. Show all variables by entering the following command (you will have to scroll through
the results to see all values):
mysql> SHOW VARIABLES;

3. To display the value of a certain variable, execute the following statement:
mysql> SHOW VARIABLES LIKE "version";

4. To display a group of variables with a common name, you can also use SQL wildcard
characters:
mysql> SHOW VARIABLES LIKE "version%";

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

215

5. To modify a variable for your connection only, use the SET command:
mysql> SET auto_increment_increment=2;

Query OK, 0 rows affected (0.00 sec)

6. To globally modify a variable, use set SET GLOBAL statement:
mysql> SET GLOBAL auto_increment_increment=3;

Query OK, 0 rows affected (0.00 sec)

How it works...
Steps 2 through 4 show different ways to retrieve variable settings, which is pretty straight-
forward. Step 5 changes a server variable to a new value (in the above example, we modify
auto_increment_increment to a value of 2). This setting takes effect immediately, but it
only affects your own connection. Any other connection will use the previous value! And as
soon as you drop your connection and reconnect to the server, the variable is reset to the old
value again.

Step 6 shows you how to apply a change not only to your current connection. With the SET
GLOBAL syntax, the setting is applied to other connections as well. However, note that not all
changes are applied to other connections immediately: some changes will only affect new
connections. The reason for this is that there are basically three kinds of MySQL variables:

1. Variables that apply to your connection (called session variables).
2. Variables that are defined globally and affect all connections alike (global variables).
3. Variables that exist both globally and for your current session, and which can be

changed independently for each context.

If a variable that is solely defined globally is changed, then the change will affect all
connections, both existing and new ones. For variables that are both session and global
variables (auto_increment_increment is an example for this), any change will only
affect new connections. The variable values for connections that already exist will be left
unchanged. This behavior is due to the fact that on connection creation the value from the
global variable is copied to the session variable. Any change to the global variable will not
affect the session variable afterwards.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

216

Note that all changes made using the SET GLOBAL command will be
lost on the next MySQL startup! To make permanent changes to the
MySQL configuration, you will have to edit the startup configuration
(typically the my.ini file) as well.

There's more...
The following sections will introduce some additional options, which can be used to
specifically read information from the MySQL variables.

Displaying more than one named variable at a time
You can also display the values for more than one named variable in one statement using the
following syntax:

mysql> SHOW VARIABLES

 -> WHERE variable_name IN ("wait_timeout", "autocommit")

 -> OR variable_name LIKE "version%";

Displaying global settings
If you have changed any of the settings of your connection and you want to find out about the
global setting of this variable, use the SHOW GLOBAL statement:

mysql> SHOW GLOBAL VARIABLES like "auto_increment_increment";

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

217

See also

f Defining an alternative user for administrative tasks (Chapter 8. MySQL
User Management)

Assessing the overall table count
In some MySQL installations, you will have a lot of databases (of schemata) in place. To keep
track of the databases, it sometimes comes in handy to get an overview of the tables that
reside in each schema. The following recipe will show you how to achieve this.

Getting ready
You will need a MySQL account to reproduce the following recipe. To get an overview of all
databases of your installations, you need at least SELECT privileges on all databases, which
is why we assume the administrative user account named admin4mysql is used. The above
mentioned methods will work for more restricted accounts as well, but will produce results
only for the databases accessible to the user.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

218

How to do it...
1. Connect to your MySQL database using the admin4mysql account.

2. Execute the following command:
mysql> SELECT TABLE_SCHEMA, COUNT(*) AS TABLE_COUNT

 -> from INFORMATION_SCHEMA.TABLES

 -> GROUP BY TABLE_SCHEMA WITH ROLLUP;

How it works...
The result from step 2 displays an overview of the databases that are present in our
installation and the number of tables defined for each database. The last line shows the
overall table count of all databases.

See also
f Defining an alternative user for administrative tasks

Finding the biggest tables
On the quest for performance during the daily struggle against uncontrolled data growth, the
biggest tables are often the most promising candidates for optimization. This recipe shows
you how to get an overview of the largest tables in your installation.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

219

Getting ready
You will only need an appropriate MySQL user account to perform the steps of this recipe.
To retrieve the information for all databases, an administrative user like admin4mysql
(which we will use here) is best. To get an overview of the tables in your database, a user
with access only to the respective database can be used as well.

How to do it...
1. Connect to your MySQL database using the admin4mysql account.

2. Perform the following SQL statement:
mysql> SELECT TABLE_SCHEMA,

 -> TABLE_NAME,

 -> (INDEX_LENGTH+DATA_LENGTH)/(1024*1024) AS SIZE_MB,

 -> TABLE_ROWS

 -> FROM INFORMATION_SCHEMA.TABLES

 -> WHERE TABLE_SCHEMA NOT IN("mysql", "information_schema")

 -> ORDER BY SIZE_MB DESC;

How it works...
The above statement simply makes use of the table metadata available from the table
INFORMATION_SCHEMA.TABLES and displays it in a readable way. It is sorted by the size of
the table (according to the storage reserved by this table). If the number of records is more of
interest to you, you could of course adapt the above statement accordingly:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

220

SELECT TABLE_SCHEMA,
 TABLE_NAME,
 TABLE_ROWS,
 (INDEX_LENGTH+DATA_LENGTH)/(1024*1024) AS SIZE_MB
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA NOT IN("mysql", "information_schema")
 ORDER BY TABLE_ROWS DESC;

In both cases, the WHERE TABLE_SCHEMA NOT IN("mysql", "information_
schema") clause helps to filter out any results from the mysql and information_schema
schemata, which are typically not in the focus of interest.

See also
f Defining an alternative user for administrative tasks

Finding all columns with a certain name
and/or type

In large databases, it often makes sense to agree on some kind of data modeling standards
to avoid unnecessary effort. For example, you decide to standardize that all columns
containing a name should be of type VARCHAR(64). If, however, the situation comes up that
the standard type for name columns should be changed to, say, VARCHAR(128) to allow for
very long names, the question arises how many columns or tables have to be adapted—for
large installations, this is not a trivial question to answer. This recipe will show you how to
retrieve this information.

Getting ready
You will need a MySQL user with SELECT rights for the databases that are to be checked for
matching columns. We will use the sample_guest user here.

And, of course, you will have to know what data type and column name you are looking for. In the
following steps, we will be looking for name columns and columns of data type VARCHAR(64).

How to do it...
1. Connect to your MySQL database using the sample_guest user.

2. Execute the following query to find all name columns:
mysql> SELECT TABLE_SCHEMA,

 -> TABLE_NAME,
 -> COLUMN_NAME,

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

221

 -> DATA_TYPE,
 -> CHARACTER_MAXIMUM_LENGTH AS SIZE
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE COLUMN_NAME="name" AND
 -> TABLE_SCHEMA NOT IN ("mysql", "information_schema");

3. To find all columns with data type VARCHAR(64), execute this command:
mysql> SELECT TABLE_SCHEMA,
 -> TABLE_NAME,
 -> COLUMN_NAME,
 -> DATA_TYPE,
 -> CHARACTER_MAXIMUM_LENGTH AS SIZE
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE DATA_TYPE="VARCHAR" AND
 -> CHARACTER_MAXIMUM_LENGTH=64 AND
 -> TABLE_SCHEMA NOT IN ("mysql", "information_schema");

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

222

How it works...
The preceding statements simply make use of the information available in the
INFORMATION_SCHEMA.COLUMNS metadata table. It helps you identify columns
with certain attributes. The mysql and information_schema schemata are filtered
out using the WHERE TABLE_SCHEMA NOT IN("mysql", "information_schema")
clause to display only results of interest.

There's more...
If the data type you are looking for is a numeric data type, you will have to adapt the queries to
take the NUMERIC_PRECISION and NUMERIC_SCALE attributes into account:

You can also narrow down the results to columns with a specific precision or scale:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 6

223

See also
f Creating a read-only account

Finding all tables referencing each other
For both manual data modifications and changes to the table structure, it is important to
know whether the referential integrity of the database is affected. For complex data models,
it is often the case that the details about which table references are in place are not known.
This recipe helps you to make the dependencies between tables visible.

Getting ready
Again, we only need a user who has the privileges to access the database in question
(SELECT privileges are sufficient). We will use an account named employees_guest
account here, which has SELECT privileges for the employees database.

How to do it...
1. Connect to your MySQL database using the sample_guest user.

2. To display all tables referencing the employees table, execute the following statement:
mysql> SELECT TABLE_NAME,
 -> CONSTRAINT_NAME,
 -> UPDATE_RULE AS "UPDATE",
 -> DELETE_RULE AS "DELETE"
 -> FROM INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS
 -> WHERE REFERENCED_TABLE_NAME="employees";

Download at Wow! eBook

WWW.WOWEBOOK.COM

Monitoring and Analyzing MySQL Installation

224

3. Use the following query to retrieve information about the tables referenced by the
salaries table:
mysql> SELECT REFERENCED_TABLE_NAME,
 -> CONSTRAINT_NAME,
 -> UPDATE_RULE AS "UPDATE",
 -> DELETE_RULE AS "DELETE"
 -> FROM INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS
 -> WHERE TABLE_NAME="salaries";

How it works...
This recipe uses the information available in the REFERENTIAL_CONSTRAINTS metadata
table in the INFORMATION_SCHEMA schema. The information retrieved in step 2 means that
updating information in the employees table might become difficult, as it is referenced by four
other tables, and an ON UPDATE RESTRICT policy is in place. Deletion of data, however, will
be easy, as the deletion rules for all four dependencies are marked as ON DELETE CASCADE.
Because of this, you should be even more careful, however, not to delete the wrong data.

Especially, the information delivered by step 2 is often very important to get an overview of
the dependencies of large data models that evolved over a longer period of time and with
many people involved.

See also
f Creating a read-only account

Download at Wow! eBook

WWW.WOWEBOOK.COM

7
Configuring MySQL

In this chapter, we will shed some light on MySQL configuration settings. There is an abund-
ance of dials and knobs available for both the MySQL server and the different storage
engines underneath it. Covering them all would by far exceed the limitations of any book, so
we will just go for a selection of some of the most important ones:

f Setting up a fixed InnoDB tablespace

f Setting up an auto-extending InnoDB tablespace

f Storing InnoDB data in one file per table

f Decreasing InnoDB tablespace

f Enabling and configuring binary logging

f Configuring the InnoDB redo log

f Understanding and configuring important MySQL and InnoDB timeout options

f Adjusting table and database name letter case handling for better
platform independence

f Installing MySQL as a Windows service with custom options

f Running multiple MySQL server instances in parallel on a Linux server

f Preventing invalid date values from being stored in DATE or DATETIME columns

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

226

Introduction
Installing a MySQL server is one thing that is fairly easy to do. Setting up the vast amount
of configuration options available can be far more challenging, as there is no one-fits-all
combination of settings. MySQL comes with some presets that can serve as a starting point
for different server sizes. They are called my-large.cnf, my-huge.cnf, my-medium.cnf,
and my-innodb-heavy-4G.cnf. On Ubuntu Linux they can be found in compressed form
in the /usr/share/doc/mysql-server-5.0/examples directory. On Windows, the
same examples exist but have file names ending in .ini and are located in the MySQL
program directory.

In this chapter, we will delve into a selection of the most relevant configuration options,
focusing on important InnoDB settings, as this is the storage engine most relevant to
enterprise applications.

Please refer to the appendix for a description of how to set up the
innodb_buffer_pool_size setting and make the best use of
the available memory.

Setting up a fixed InnoDB tablespace
When using the InnoDB storage engine of MySQL, the data is typically not stored in a
per-database or per-table directory structure, but in several dedicated files, which collectively
contain the so-called tablespace. By default (when installing MySQL using the configuration
wizard) InnoDB is configured to have one small file to store data in, and this file grows as
needed. While this is a very flexible and economical configuration to start with, this approach
also has some drawbacks: there is no reserved space for your data, so you have to rely on free
disk space every time your data grows. Also, if your database grows bigger, the file will grow
to a size which makes it hard to handle—a dozen files of 1 GB each are typically easier
to manage than one clumsy 12 GB file.

Large data files might, for example, cause problems if you try to put those files
into an archive for backup or data transmission purposes. Even if the 2 GB
limit is not present any more for the current file systems, many compression
programs still have problems dealing with large files.

And finally, the constant adaptation of the file in InnoDB's default configuration size will cause
a (small, but existent) performance hit if your database grows.

The following recipe will show you how to define a fixed tablespace for your InnoDB
installation, by which you can avoid these drawbacks of the InnoDB default configuration.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

227

Getting ready
To install a fixed tablespace, you will have to reflect about some aspects: how much
tablespace should be reserved for your database, and how to size the single data files which
in sum constitute the tablespace.

Note that once your database completely allocates your tablespace, you will
run into table full errors (error code 1114) when trying to add new data to
your database.

Additionally, you have to make sure that your current InnoDB tablespace is completely empty.
Ideally, you should set up the tablespace of a freshly installed MySQL instance, in which case
this prerequisite is given.

To check whether any InnoDB tables exist in your database, execute the
following statement and delete the given tables until the result is empty:
SELECT TABLE_SCHEMA, TABLE_NAME FROM information_
schema.tables WHERE engine="InnoDB";

If your database already contains data stored in InnoDB tables that you
do not want to lose, you will have to create a backup of your database
and recover the data from it when you are done with the recipe. Please
refer to the chapter Backing Up and Restoring MySQL Data for further
information on this.

And finally, you have to make sure that the InnoDB data directory (as defined by the innodb_
data_home_dir variable) features sufficient free disk space to store the InnoDB data files.

For the following example, we will use a fixed tablespace with a size of 500 MB and a maximal
file size of 200 MB.

How to do it...
1. Open the MySQL configuration file (my.ini or my.cnf) in a text editor.

2. Identify the line starting with innodb_data_file_path in the [mysqld] section.
If no such line exists, add the line to the file.

3. Change the line innodb_data_file_path to read as follows:
innodb_data_file_path=ibdata1:200M;ibdata2:200M;ibdata3:100M

4. Save the changed configuration file.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

228

5. Shut down your database instance (if running).

6. Delete previous InnoDB data files (typically called ibdata1, ibdata2, and so on)
from the directory defined by the innodb_data_home_dir variable.

7. Delete previous InnoDB logfiles (named ib_logfile0, ib_logfile1, so on) from
the directory defined by the innodb_log_group_home_dir variable.

If innodb_log_group_home_dir is not configured
explicitly, it defaults to the datadir directory.

8. Start your database.

9. Wait for all data and log files to be created.

Depending on the size of your tablespace and the speed of your disk
system, creation of InnoDB data files can take a significant amount
of time (several minutes is not an uncommon time for larger install-
ations). During this initialization sequence, MySQL is started but it
will not accept any requests.

How it works...
Steps 1 through 4—and particularly 3—cover the actual change to be made to the MySQL
configuration, which is necessary to adapt the InnoDB tablespace settings. The value of
the innodb_data_file_path variable consists of a list of data file definitions that are
separated by semicolons. Each data file definition is constructed of a file name and a file
size with a colon as a separator. The size can be expressed as a plain numeric value, which
defines the size of the data file in bytes. If the numeric value has a K, M, or G postfix, the
number is interpreted as Kilobytes, Megabytes, or Gigabytes respectively. The list length is not
limited to the three entries of our example; if you want to split a large tablespace into relatively
small files, the list can easily contain dozens of data file definitions.

If your tablespace consists of more than 10 files, we propose naming the
first nine files ibdata01 through ibdata09 (instead of ibdata1 and so
forth; note the zero), so that the files are listed in a more consistent order
when they are displayed in your file browser or command line interface.

Step 5 is prerequisite to the steps following after it, as deletion of vital InnoDB files while the
system is still running is obviously not a good idea. In step 6, old data files are deleted to prevent
collision with the new files. If InnoDB detects an existing file whose size differs from the size
defined in the innodb_data_file_path variable, it will not initialize successfully. Hence, this
step ensures that new, properly saved files can be created during the next MySQL start.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

229

Note that deletion of the InnoDB data files is only sufficient if all InnoDB
tables were deleted previously (as discussed in the Getting ready section).

Alternatively, you could delete all *.frm files for InnoDB tables from the MySQL data directory,
but we do not encourage this approach (clean deletion using DROP TABLE statements should
be preferred over manual intervention in MySQL data directories whenever possible).

Step 7 is necessary to prevent InnoDB errors after the data files are created, as the InnoDB
engine refuses to start if the log files are older than the tablespace files. With steps 8 and 9,
the new settings take effect.

When starting the database for the first time after changes being
made to the InnoDB tablespace configuration, take a look at the
MySQL error log to make sure the settings were accepted and no
errors have occurred.

The MySQL error log after the first start with the new settings will look similar to this:

InnoDB: The first specified data file E:\MySQL\InnoDBTest\ibdata1 did
not exist:
InnoDB: a new database to be created!
091115 21:35:56 InnoDB: Setting file E:\MySQL\InnoDBTest\ibdata1 size
to 200 MB
InnoDB: Database physically writes the file full: wait...
InnoDB: Progress in MB: 100 200
...
InnoDB: Progress in MB: 100
091115 21:36:19 InnoDB: Log file .\ib_logfile0 did not exist: new to
be created
InnoDB: Setting log file .\ib_logfile0 size to 24 MB
InnoDB: Database physically writes the file full: wait...
...
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
091115 21:36:22 InnoDB: Started; log sequence number 0 0
091115 21:36:22 [Note] C:\Program Files\MySQL\MySQL Server 5.1\bin\
mysqld: ready for connections.
Version: '5.1.31-community-log' socket: '' port: 3306 MySQL
Community Server (GPL)

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

230

There's more...
If you already use a fixed tablespace, and you want to increase the available space, you
can simply append additional files to your fixed tablespace by adding additional data file
definitions to the current innodb_data_file_path variable setting. If you simply append
additional files, you do not have to empty your tablespace first, but you can change the
configuration and simply restart your database. Nevertheless, as with all changes to the
configuration, we strongly encourage creating a backup of your database first.

See also
f Backing Up and Restoring MySQL Data

f Estimating tablespace requirements

Setting up an auto-extending InnoDB
tablespace

The previous recipe demonstrates how to define a tablespace with a certain fixed size. While
this provides maximum control and predictability, you have to block disk space based on the
estimate of the maximum size required in the foreseeable future. As long as you store less
data in your database than the reserved tablespace allows for, this basically means some disk
space is wasted. This especially holds true if your setting does not allow for a separate file
system exclusively for your MySQL instance, because then other applications compete for disk
space as well. In these cases, a dynamic tablespace that starts with little space and grows as
needed could be an alternative. The following recipe will show you how to achieve this.

Getting ready
When defining an auto-extending tablespace, you should first have an idea about the
minimum tablespace requirements of your database, which will set the initial size of the
tablespace. Furthermore, you have to decide whether you want to split your initial tablespace
into files of a certain maximum size (for better file handling).

If the above settings are identical to the current settings and you only want to make your
tablespace grow automatically if necessary, you will be able to keep your data. Otherwise, you
have to empty your current InnoDB tablespace completely (please refer to the previous recipe
Setting up a fixed InnoDB tablespace for details).

As with all major configuration changes to your database, we strongly advise you to create a
backup of your data first. If you have to empty your tablespace, you can use this backup to
recover your data after the changes are completed. Again, please refer to the chapter Backing
Up and Restoring MySQL Data for further information on this.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

231

And as before, you have to make sure that there is enough disk space available in the
innodb_data_home_dir directory—not only for the initial database size, but also for the
anticipated growth of your database.

The recipe also requires you to shut down your database temporarily; so you have to make sure
all clients are disconnected while performing the required steps to prevent conflicting access.

As the recipe demands changes to your MySQL configuration file (my.cnf or my.ini), you
need write access to this file.

For the following example, we will use an auto-extending tablespace with an initial size of 100
MB and a file size of 50 MB.

How to do it...
1. Open the MySQL configuration file (my.ini or my.cnf) in a text editor.

2. Identify the line starting with innodb_data_file_path in the [mysqld] section.
If no such line exists, add the line to the file.

3. Change the line innodb_data_file_path to read as follows:
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note that no file definition except the last one must
have the:autoextend option; you will run into errors
otherwise.

4. Save the changed configuration file.

5. Shut down your database instance (if running).

6. Delete previous InnoDB data files (typically called ibdata1, ibdata2, and so on)
from the directory defined by the innodb_data_home_dir variable.

7. Delete previous InnoDB logfiles (named ib_logfile0, ib_logfile1, and so on)
from the directory defined by the innodb_log_group_home_dir variable.

If innodb_log_group_home_dir is not configured
explicitly, it defaults to the datadir directory.

8. Start your database.

9. Wait for all data and log files to be created.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

232

Depending on the size of your tablespace and the speed of your disk system,
creation of InnoDB data files can take a significant amount of time (several
minutes is not an uncommon time for larger installations). During this
initialization sequence, MySQL is started but will not accept any requests.

When starting the database for the first time after changes being made to the
InnoDB tablespace configuration, take a look at the MySQL error log to make
sure the settings were accepted and no errors have occurred.

How it works...
The above steps are basically identical to the steps of the previous recipe Setting up a fixed
InnoDB tablespace, the only difference being the definition of the innodb_data_file_path
variable. In this recipe, we create two files of 50 MB size, the last one having an additional
:autoextend property.

If the innodb_data_file_path variable is not set explicitly, it defaults to
the value ibdata1:10M:autoextend.

As data gets inserted into the database, parts of the tablespace will be allocated. As soon
as the 100 MB of initial tablespace is not sufficient any more, the file ibdata2 will become
larger to match the additional tablespace requirements.

Note that the :autoextend option causes the tablespace files to be
extended automatically, but they are not automatically reduced in size again
if the space requirements decrease. Please refer to the Decreasing InnoDB
tablespace recipe for instructions on how to free unused tablespace.

There's more...
The recipe only covers the basic aspects of auto-extending tablespaces; the following sections
provide insight into some more advanced topics.

Making an existing tablespace auto-extensible
If you already have a database with live data in place and you want to change your current
fixed configuration to use the auto-extension feature, you can simply add the :autoextend
option to the last file definition.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

233

Let us assume a current configuration like the following:

innodb_data_file_path=ibdata1:50M;ibdata2:50M

The respective configuration with auto-extension will look like this:

innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

In this case, do not empty the InnoDB tablespace first, you can simply change the con-
figuration file and restart your database, and you should be fine. As with all configuration
changes, however, we strongly recommend to back up your database before editing these
settings even in this case.

Controlling the steps of tablespace extension
The amount by which the size of the auto-extending tablespace file is increased is controlled
by the innodb_autoextend_increment variable. The value of this variable defines the
number of Megabytes by which the tablespace is enlarged. By default, 8 MB are added to
the file if the current tablespace is no longer sufficient.

Limiting the size of an auto-extending tablespace
If you want to use an auto-extending tablespace, but also want to limit the maximum size your
tablespace will grow to, you can add a maximum size for the auto-extended tablespace file
by using the :autoextend:max:[size] option. The [size] portion is a placeholder for
a size definition using the same notation as the size description for the tablespace file itself,
which means a numeric value and an optional K, M, or G modifier (for sizes in Kilo-, Mega-, and
Gigabytes). As an example, if you want to have a tiny initial tablespace of 10 MB, which is ex-
tended as needed, but with an upper limit of 2 GB, you would enter the following line to your
MySQL configuration file:

innodb_data_file_path=ibdata1:10M:autoextend:max:2G

Note that if the maximum size is reached, you will run into errors when trying
to add new data to your database.

Adding a new auto-extending data file
Imagine an auto-extending tablespace with an auto-extended file, which grew so large over time
that you want to prevent the file from growing further and want to append a new auto-extending
data file to the tablespace. You can do so using the following steps:

1. Shut down your database instance.

2. Look up the exact size of the auto-extended InnoDB data file (the last file in your
current configuration).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

234

3. Put the exact size as the tablespace file size definition into the in-
nodb_data_file_path configuration (number of bytes without any K,
M, or G modifier), and add a new auto-extending data file.

4. Restart your database.

As an example, if your current configuration reads ibdata1:10M:autoextend and
the ibdata1 file has an actual size of 44,040,192 bytes, change configuration to
innodb_data_file_path=ibdata1:44040192;ibdata2:10M:autoextend:max:2G.

See also
f Backing Up and Restoring MySQL Data
f Estimating tablespace requirements

f Setting up a fixed InnoDB tablespace

f Decreasing InnoDB tablespace

Storing InnoDB data in one file per table
In the previous recipes, we presented a way to define a common tablespace in which the
InnoDB storage engine stores all data for InnoDB tables. While this has some advantages
(for example, dynamic reuse of free space across tables), this approach is completely
different from the MyISAM technique that stores the data for each table in a separate file.
 The following recipe will show you how to configure InnoDB to store data in separates files,
one for each table.

Getting ready
The following steps include a database downtime, so you have to prepare a maintenance
window for your database that allows you to complete the steps without interfering with clients
still accessing the database.

How to do it...
1. Create a SQL dump of your entire database.

2. Shut down your database.

3. Open the MySQL configuration file (my.ini or my.cnf) in a text editor.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

235

4. Add the following line to the [mysqld] section:
innodb_file_per_table

5. Save the changed configuration file.

6. Start your database instance.

7. Recover all data from the SQL dump created in step 1.

How it works...
This recipe is pretty straightforward: create a backup, add the innodb_file_per_table
option to the [mysqld] configuration, and recover data from the backup (please refer to the
chapter Backing Up and Restoring MySQL Data for details). But why the recovery?

After the restart of the database in step 6, you will not notice any changes to the database.
At this point, all data is still stored in the InnoDB tablespace. This is because the file per table
setting only applies to newly created tables! Step 7 takes care of this: during recovery, every
table is dropped and created again (this time in a separate file) before the original data
is inserted.

The innodb_file_per_table setting allows you to use the operating system's means to
map tables to different physical disks or to back up and recover certain tables on the file level.

However, note that with this approach, each table has its own auto-extending
tablespace—extension yes, but no reduction!

If you delete data from a table, the file size will not reduce automatically. As each table
uses its own tablespace, this means that the space that gets freed by deleting from one
table cannot be reused by another table, as is the case for the "classical" shared InnoDB
tablespace. There is a way to free unused space again: please refer to the following recipe
Decreasing InnoDB tablespace for instructions on how to do this.

See also
f Backing Up and Restoring MySQL Data

f Decreasing InnoDB tablespace

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

236

Decreasing InnoDB tablespace
The previous recipes enable you to define a tablespace; and for the autoextend and
innodb_file_per_table approaches, the tablespace will grow until you run out of disk
space (or you hit a file size boundary set by your operating system). The opposite direction,
however, does not work as easily: InnoDB lacks an automatic shrink option if you happen to
delete data from your database. The following recipe will introduce ways to reduce the size
of your InnoDB tablespace if your storage requirements decrease.

Getting ready
As the following recipe involves creation of a backup dump of your database, you have to
reserve enough disk space to temporarily store the dump file. Furthermore, if you want to
establish a shared tablespace with a reduced size, you have to decide about the size of the
tablespace and how to split it into separate files. For a fixed size tablespace, you additionally
have to calculate the space requirements of your current data (please refer to the Estimating
tablespace requirements recipe in Chapter 6 for details) to decide about the new size of the
fixed tablespace.

The recipe also requires you to shut down your database temporarily, so you have to make
sure you have a maintenance interval in which the database is not accessed by any clients.

How to do it...
1. Create a full backup of your database (for further instructions please see the Backing

Up and Restoring MySQL Data chapter).

2. Drop all databases (except for the mysql and information_schema databases).

3. Shut down your database.

4. Open the MySQL configuration file (my.ini or my.cnf) using a text editor.

5. Configure the InnoDB tablespace according to your new reduced space requirements
(please refer to the previous recipes for further details).

6. Save the changed configuration file.

7. Delete the old InnoDB data files (typically called ibdata1, ibdata2, and so on)
from the directory defined by the innodb_data_home_dir variable.

8. Delete previous InnoDB logfiles (named ib_logfile0, ib_logfile1, and so on)
from the directory defined by the innodb_log_group_home_dir variable.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

237

If innodb_log_group_home_dir is not configured
explicitly, it defaults to the datadir directory.

9. Start your database instance.

10. Wait for all data and log files to be created.

11. Recover all data from the SQL dump created in step 1.

How it works...
This recipe is basically a slight modification of the previous recipes to set up a shared
tablespace. The additional steps are backing up your database and subsequently dropping all
databases initially, and the recovery from the backup as the final step.This ensures that data
directory entries for all InnoDB tables are removed flawlessly, and (in the case of the file per
table option) all storage files are removed. The shared tablespace is created when starting the
MySQL instance after the configuration changes. If the innodb_file_per_table option is
used, the table files are created during the data recovery. In case of an auto-extending shared
tablespace, the restoration of the data might cause the tablespace to increase in size, but
only to the size actually needed by the current data.

As this approach might require a significant downtime for any client, we propose performing
a tablespace reduction only if absolutely necessary—with thorough planning of your storage
requirements, your disk structure, and your tablespace sizing, you hopefully will not need to
resize your tablespace on a regular basis.

There's more...
If you use the innodb_file_per_table feature and you want to reduce the size of the
separate files to the currently needed size, you have an alternative that does not include the
full dump, deletion, and recovery procedure:

To free unused tablespace with innodb_file_per_table in place, you
can execute an empty ALTER TABLE statement:
ALTER TABLE example_table ENGINE=InnoDB;

You have to execute this command for each InnoDB table whose storage file you want to
resize. However, note that this temporarily creates a copy of the whole table and locks the
table during the process.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

238

Due to potential locking conflicts, try to avoid freeing unused tablespace
(using the ALTER TABLE command) with large and/or heavily used tables
in a running system.

See also
f Backing Up and Restoring MySQL Data
f Estimating tablespace requirement

f Setting up a fixed InnoDB tablespace

f Setting up an auto-extending InnoDB tablespace

f Storing InnoDB data in one file per table

Enabling and configuring binary logging
Binary logging (or binlogging for short), describes a feature of MySQL that will write a
transcript of all statements issued that actually modified or could have modified data. This
includes UPDATE, INSERT, and DELETE statements, regardless of whether they actually
matched any rows on the server, as well as data definition language statements (CREATE
TABLE, DROP TABLE, and the like).

This protocol is written in a special format that contains metadata about transactions, server
settings, and more, which makes it suitable as a basis for both replication, backups, and even
change auditing, with the former two being the most important ones.

Generally, we do not recommend running MySQL without binlogging, as the
performance penalty is very low—the MySQL manual speaks of a speed
degradation of about 1%—and the benefits clearly outweigh this.

You can find detailed information about the binary log in section 5.2.4 The Binary Log of the
online manual at http://dev.mysql.com/doc/refman/5.1/en/binary-log.html.

In this recipe, we will show you how to make sure your MySQL servers are configured to write
binary logs in the first place and also keep them maintainable in terms of file sizes.

Getting ready
As the binary log setup is a part of the server configuration, you will need an operating
system user account and sufficient rights to modify the server's configuration file. Moreover,
it is recommended to have sufficient rights to restart the MySQL service because binlogging
cannot be reconfigured on the fly.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

239

How to do it...
1. Open the MySQL configuration file, typically my.cnf or my.ini (on Windows).

2. Locate the [mysqld] section in the file.

3. Add the following settings or edit them if they are already present. Adapt the path
after log_bin and fill in a path valid on your server. Substitute your server's machine
name for HOSTNAME:

log_bin=/var/log/mysql/HOSTNAME-bin
expire_logs_days=10

max_binlog_size=200M

4. Save the file.

5. Restart the MySQL service.

6. Check the directory you specified for log-bin. You should see a file called HOST-
NAME-bin.000001 there and a corresponding HOSTNAME-bin.index file.

How it works...
The first parameter log_bin tells the server which directory is intended to store the binary
logs. This should be a storage volume with sufficient space and ideally on a different physical
disk than the data directory for better performance. The amount of disk space required
depends on the amount of write access to your databases.

All databases of one server share the same binlog files, meaning you have to
consider this in your space estimation.

The expire_logs_days setting is meant to prevent excessive disk space usage by older
binlogs. A setting of 10 means that any binary log file older than 10 days will be deleted the
next time a new binary log is started. You can use the PURGE BINARY LOGS command to
force a new binary log to be started manually.

max_binlog_size is meant to keep the binlog files manageable by automatically splitting
and rotating them once they exceed the configured size threshold. Please note that each file
might in fact become slightly larger than the configured limit because transactions are always
written as a whole. This means that when a binlog file has almost reached its size limit and
a large transaction is then committed, it will still be written to that file, pushing it past the
configured threshold.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

240

There's more...
Binary logs are very important for point-in-time backup and recovery. Make sure you configure
the expire_logs_days to a value that is large enough to span the time between two full
backups. Otherwise there would be a chance that you cannot do a complete disaster recovery
when the binlogs have already been deleted before you have taken the next full backup. To
completely switch off the automatic deletion of old binlog files, set the expire_logs_days
parameter to 0 or remove it from the configuration file.

Even though it is possible, it is not recommended to delete older binlogs manually from the
file system. Depending on the server version you are using, MySQL might fail to start when its
index file and the binlogs actually present do not match.

To prevent problems of this kind, we recommend always using the PURGE
BINARY LOGS command. For details on its options, see the MySQL online
manual at http://dev.mysql.com/doc/refman/5.1/en/
purge-binary-logs.html.

Configuring the InnoDB redo log
In order to prevent the transactional nature of InnoDB from completely thwarting its
performance, it implements what is called the redo log.

In this recipe, we will present the relevant settings to (re-)configure a database server's
redo log.

Getting ready
As the redo log setup is a part of the server configuration, you will need an operating system
user account and sufficient rights to modify the server's configuration file. You will also need
rights to restart the MySQL service because the redo log cannot be reconfigured on the fly.

Moreover, an administrative MySQL user account is required to prepare the server for the
shutdown, necessary as part of the procedure.

Caution:
As this recipe will modify the configuration of parameters critical to data
integrity, you should make a backup copy of the configuration file before
editing it!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

241

How to do it...
1. Connect to the server using your administrative account.

2. Issue the following command:
mysql> SET GLOBAL innodb_fast_shutdown=0;

Query OK, 0 rows affected (0.00 sec)

3. Verify the setting like this:
mysql> SHOW VARIABLES LIKE 'innodb_fast_shutdown';

4. Log off from MySQL and stop the MySQL server.

5. Locate the MySQL configuration file, usually called my.cnf or my.ini (on Windows)
and open it in a text editor.

6. Locate the following parameters in the [mysqld] section (you values will vary,
of course):
[mysqld]

...

innodb_log_group_home_dir=/var/lib/mysql/redolog

innodb_log_file_size=32M

innodb_log_buffer_size=64M

innodb_log_files_in_group=2

...

7. Edit the above configuration settings to their new values. If you require help on how to
find suitable values, see the There's more... section of this recipe.

8. Save the configuration file.

9. Navigate to the directory configured for innodb_log_group_home_dir. If there is
no such setting in your configuration file, navigate to MySQL's data directory that is
then taken as the default.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

242

10. Move the files whose names start with ib_logfile to a backup location. Do not
copy them; they must be removed from their original location.

11. Restart the MySQL server.

12. Verify that new files are created as you configured them:
$ ls -l /var/lib/mysqld/redolog

If you do not see the new files appear and the server does not start up correctly, check the
MySQL error log for messages. Usually, the only thing that can go wrong here is that you
either mistyped the directory name or did not actually remove the previous ib_logfile files.

To restore everything back to the original configuration, restore your configuration file from the
backup and restore the ib_logfile files you moved out to the backup to their original location.

What just happened...
By setting innodb_fast_shutdown to 0, you told the server to finish writing any pending
changes to the disk before actually exiting. This makes sure there are no remaining
transactions in the current redo logs that could get lost when these files are replaced.

After that you could change the configuration to new values, possibly using a different number
of files and different sizes.

Then, before restarting, you could move the old redo log files out of the way. This is important
because otherwise MySQL would complain about a mismatch between the settings file and
the actual situation on disk. When it comes up finding no redo log files, it will create new ones
with the settings just configured.

There's more...
Often when talking about transactions, the word rollback comes up. It means that if something
goes wrong in the middle of a possibly complex data manipulation operation and it has to be
aborted, the database server will safely restore everything back to the state it was in when that
operation began, not leaving any data only partially deleted or modified.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

243

The opposite term—rollforward or redoing—is less commonly used. It means that whenever
the complex operation mentioned earlier completes successfully, you are guaranteed that
nothing short of actual hardware failure could lead to these changes being lost again.
This might appear obvious because one would expect the database server not to report
anything as successful unless it was actually completely done. However, if that were so, write
operations would become painfully slow, as the underlying I/O subsystem (generally meaning
hard disks) is very often the bottleneck component.

To evade this potential performance problem, most transactional databases, InnoDB being
no different, uses the concept of a transaction—or redo—log that allows it to more efficiently
handle write operations without risking data integrity. The redo log works as a sort of scratch
pad, containing information on what remains to be done to the data files. With its help, the
server can optimize disk access to improve performance.

The ideal size for the redo log depends on the size and number of transactions the server has
to process. Generally speaking, the log should be large enough to store any single transaction
plus about 10 percent. As a rule of thumb, the total log size (the number of log files times their
individual size) need not exceed about 50% of the InnoDB buffer pool size.

For more information on redo logs and how to determine a sensible size setting, visit
http://mysqldump.azundris.com/archives/78-Configuring-InnoDB-An-
InnoDB-tutorial.html for a detailed description of InnoDB log configuration.

Understanding and configuring important
MySQL and InnoDB timeout options

MySQL's configuration file can contain a variety of different timeout settings, each responsible
for a specific kind of operation or connection. In this recipe, we present a selection of these
timeout settings and a suggested value to go along with each. The How it works... section has
details on each value presented.

In general, the values suggested here should be appropriate for both MySQL
versions 5.0 and 5.1. However, please note that any of these options may
well vary for your environment, depending on what the requirements are; so
please do not simply use these values verbatim.

Getting ready
To apply timeout configuration settings, you will need access to the MySQL configuration
file—typically my.cnf or my.ini (on Windows)—and the rights to restart the server to have
any changes made to the configuration take effect.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

244

How to do it...
1. Locate the MySQL configuration file and open it in a text editor.

2. In the [mysqld] section, set up the following values. Some of the options may
already be present; others will likely have to be added. Make sure each option only
appears once.
[mysqld]

... in-

nodb_rollback_on_timeout

innodb_lock_wait_timeout=50

interactive_timeout=1200

wait_timeout=28800

net_read_timeout=30

net_write_timeout=120

...

3. Save the file.

4. Restart the MySQL server.

How it works...
By setting the values as described in the above section, you tell MySQL to use different values
than the defaults for the options mentioned. The new settings take effect with the server restart.

Setting values for innodb_rollback_on_timeout / innodb_lock_wait_
timeout
These two settings are probably the most important as regards the locking behavior in any
MySQL setup. Starting with version 5.0.13, MySQL changed the rollback behavior in case
a timeout occurred because a transaction could not acquire a lock for a row. This usually
happens when another transaction is still working on that row, and this is to be expected
in normal database operations. The database server rolls back the entire transaction in
this case. Applications should be designed to respond to such conditions by retrying the
entire transaction.

Prior to 5.0.13, this was the default behavior, maintaining the rule that a transaction either
succeeds or fails and is rolled back completely as an atomic entity. In 5.0.13 and newer
versions, the default was modified to roll back only the very last statement of the failing
transaction instead, keeping the transaction open. While there is a reason behind that change
(for long transactions, it can be faster to just retry the very last statement than wait for the
rollback and try again from the start), it requires special precautions taken on the application

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

245

level to be able to handle this very MySQL-specific scenario.

Setting the innodb_rollback_on_timeout option in the configuration
file restores the more standard way of rolling back the whole transaction in
case of a lock wait timeout. We strongly recommend enabling this option
unless you are perfectly sure your application is aware of the MySQL-specific
behavior configured as the default.

innodb_lock_wait_timeout defines the number of seconds a transaction will wait to
acquire a necessary lock when a second transaction is working concurrently on the same
records. The default value is 50 seconds and if the lock could not be acquired by then, a
timeout error will occur and the transaction will be rolled back. Depending on how long the
transactions in your setup typically take, this value often needs to be adjusted. If you regularly
have bulk data operations that affect a lot of rows, you will want to increase this value. If on
the other hand your system normally uses very short transactions, reducing this value may
help you find out about problems with lock contention earlier.

Setting values for interactive_timeout / wait_timeout
interactive_timeout defines how long an interactive client connection can be idle
before the server closes it automatically. 'Idle' in this context refers to the time between two
statements being executed with no activity in between.

We recommend reducing this from the default value of 28,800 seconds (8 hours) to a much
lower value like 1,200 seconds (20 minutes). This allows the server to close idle connections
and conserve some resources.

The counterpart variable for non-interactive sessions, such as those from an application
server's connection pool, is called wait_timeout and has the same semantics. Depending
on your application, you might want to leave this setting on a higher value as most connection
pools can be configured to release connections automatically depending on current
load conditions.

Setting values for net_read_timeout / net_write_timeout
The protocol MySQL uses to handle communication between server and clients is rather
limited in design, allowing only one operation to be carried out at a time. A side effect of this is
that once a data transfer in either direction has started, there is no way for it to be interrupted
in a controlled manner.

The net_read_timeout controls how long a piece of information can be sent from the client
to the server, before the connection is aborted. This is usually not a problem—the default
setting is 30 seconds. Under no regular circumstances will a communication in that direction
take so long.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

246

The net_write_timeout is more problematic because for large result sets, the default
value of 60 seconds might be too short. This is especially true for clients that fetch the result
in streaming mode, potentially performing time-consuming operations on each row retrieved,
thereby making the overall operation take longer than the timeout.

The exact value required for your setup depends on how clients fetch data and work with it; so
you will need to experiment and find a suitable value.

One caveat to consider with net_write_timeout is that it may lead to seemingly random
failures of mysqldump like this:

mysqldump: Error 2013: Lost connection to MySQL server during query
when dumping table `tablename` at row: 935578

This can happen if the following conditions apply:

f net_write_timeout is set to a low value

f max_allowed_packet is set to a large value

Depending on the speed of the network over which mysqldump has connected and the size of
the rows being dumped, it may be necessary to increase net_write_timeout much higher,
at least to as long as it takes to transmit max_allowed_packet bytes over the network and
write it to the output.

mysqldump is a regular client program and subject to the net_write_timeout
setting. When the server sends rows to be dumped to mysqldump in chunks of up
to max_allowed_packet bytes, depending on the network connection in between,
this might take longer than net_write_timeout allows, making the server cut the
connection even though nothing is really wrong. Increasing net_write_timeout
for the mysqldump tool's session would remedy this, but unfortunately as of the
time of writing there is no such setting for mysqldump. A workaround, if you encounter
this problem, is to temporarily increase the global server net_write_timeout value:

$ mysql -uroot -e "SELECT @@GLOBAL.net_write_timeout AS oldvalue;
 SET GLOBAL net_write_timeout=600;"

$ mysqldump ...
$ mysql -e "SET GLOBAL net_write_timeout=oldvalue;"

The first command will display the current value for net_write_timeout and then set it
to 10 minutes. After that the mysqldump can take place. Finally, the old value is reset (just
make sure you fill in the correct old value).

See MySQL Bug #46103 at http://bugs.mysql.com/bug.php?id=46103 for
more details.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

247

Adjusting table and database name letter
case handling for better platform
independence

MySQL is available for a variety of platforms—the major ones being Windows and Linux. Even
though data files are compatible and can be transferred between platforms, and configuration
mostly follows the same general principles, there is an important caveat to know about how
different operating systems handle file names.

In this recipe, we will show you how to set up MySQL in a way such that it is much less likely to
run into problems when moving data files between platforms. Because MySQL databases and
tables correlate to file system objects (directories and files), differences in how the operating
system (or rather the file system) handles file and directory names can lead to undesired
effects, especially when working in heterogenous environments.

We generally recommend setting up all your MySQL servers as described in
this recipe to prevent any problems.

Getting ready
You will need an operating system user account and sufficient rights to modify the server's
configuration file. You will also need rights to restart the MySQL service because the name
handling cannot be reconfigured on the fly.

Please note that for best results this setting should be applied before you
start creating databases and tables on that server.

How to do it...
1. Make sure MySQL is not running.

2. Locate the MySQL configuration file, usually called my.cnf or my.ini (on Windows)
and open it in a text editor.

3. Locate the following parameter in the [mysqld] section. If it is not there, add it,
otherwise edit it to match the value shown here:
[mysqld]

...

lower_case_table_names = 1

...

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

248

4. Save the configuration file.

5. Restart the MySQL server.

How it works...
MySQL table and database names are mapped to file system names. Most Unix-like platform
file systems are case sensitive, meaning that the two files TableA and tablea are different
from each other. On Windows, these two names will refer to the very same file.

Setting the lower_case_table_names configuration to 1 tells MySQL to always convert
any database or table names to lowercase letters, both when creating and using them in SQL
statements. This will ensure that no matter what casing any SQL statements use, it will always
affect the same tables.

This is especially useful in replication scenarios where you replicate between master and
slave machines using different operating systems.

Manually configuring this setting is highly recommended because depending
on which platform MySQL is run on, the default setting will vary!

The only downside of setting up MySQL in this way is that the output of SHOW TABLES or
SHOW DATABASES commands do not preserve the casing in which databases or tables were
created, but this is merely a cosmetic issue.

See also...
f MySQL online manual on identifier case sensitivity, the relevant options and con-

sequences, section 8.2.2 at http://dev.mysql.com/doc/refman/5.1/en/
identifier-case-sensitivity.html.

Installing MySQL as a Windows service with
custom options

While for development purposes it can be very handy to have MySQL run as a console
application on Windows, for regular operations a background service is the option to go for.
It has the advantage of starting up and shutting down automatically with Windows without
the need for a user to log in to the machine.

In this recipe, we will show you how to install MySQL as a Windows service manually from the
ZIP distribution available from the MySQL homepage and specify a custom configuration file.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

249

Getting started
Naturally, this is a Windows-only recipe. You will need a Windows user account with
administrative privileges to register a new Windows service. Moreover, we assume you
have already downloaded the MySQL distribution called "Without installer (unzip in C:\)".

Make sure you choose the release matching your operating system
(32 or 64 bit). In this recipe we will be using MySQL 5.1 from
http://dev.mysql.com/downloads/mysql/5.1.html.

Be advised that security software on your computer might interfere with the
installation of a Windows service, as some malicious software may try to
hook into the system that way. If you encounter problems, you may have to
disable anti-virus programs and other security products for the duration of
the process. Do not forget to re-enable them when you are finished with the
MySQL service setup!

How to do it...
1. Unpack the downloaded ZIP file. Put the contents in c:\mysql\5.1.xx\service

(replacing xx with the actual release number you are using).

2. On a command prompt (cmd.exe) enter the following commands to install the
service. Make sure to enter the full path, instead of changing the working directory
with the cd command:
c:\> c:\mysql\5.1.xx\service\bin\mysqld.exe --install MySQL51
--defaults-file=c:\mysql\5.1.xx\service\my.ini

3. Edit the my.ini configuration file specified in the command above to meet your
requirements.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

250

4. Start the service and verify its status using these commands:
c:\> sc start MySQL51

c:\> sc query MySQL51

You should see STATE: 4 RUNNING in the status output of the second command.

How it works...
The MySQL server binary executable file mysqld.exe contains the necessary functionality
to register itself with Windows as a background service. There are two options you should
provide: --install and --defaults-file. The first one will specify the name of the new
service to be created, MySQL51 in this case. The latter is used to define which configuration
file the service will read its settings from.

Note that after the --install parameter, only a single parameter may
follow. While this could be any parameter the MySQL server accepts, using the
--default-file gives you the greatest flexibility, as you can put all other
required settings there.

There's more...
Apart from being able to run without a user having to log in to the server machine, services
can define dependencies; so, for example, you could make sure your application server only
gets started when the database is ready. For details on how to do this, refer to Microsoft
Knowledge Base article #193888 at http://support.microsoft.com/kb/193888.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

251

As services do not have access to a console or the graphical user interface in general, any
problems encountered while starting the service will not tell you anything about the cause.
On Windows, MySQL will report problems to the system event log, viewable from the control
panel, and to the MySQL error log file, usually located in the data directory with a name
composed from the machine name and a .err extension.

Should your service fail to start, inspect that log file to get an idea of what is wrong. To make
sure your configuration file is OK, we recommend you to start the MySQL daemon once from
the command line like this:

c:\> c:\mysql\5.1.xx\service\bin\mysqld.exe --defaults-file=c:\
mysql\5.1.xx\service\my.ini --console

This will allow you to see any potential problems right away before installing the service.

Running multiple MySQL server instances in
parallel on a Linux server

On most Linux setups, MySQL comes as a readymade installation package, making it easy to
get started. It is, however, a little more complicated to run multiple instances in parallel, often
a setup handy for development. This is because in contrast to Windows, MySQL is usually not
installed in a self-contained directory, but most Linux distribution packages spread it across
the appropriate system folders for programs, configuration files, and so on. You can, however,
also install MySQL in its own directory, for example, if you need to use a version not available
as a prepared package for your Linux distribution. While this gives you the greatest flexibility,
as a downside you will have to take care of wiring up your MySQL server with the operating
system manually. For example, you will need to hook up the startup and shutdown scripts with
the appropriate facilities of your distribution.

In more recent distributions, you can make use of a tool called mysqld_multi, a solution
that lets you set up multiple instances of MySQL daemons with varying configurations. In this
recipe, we will show you how to set up two parallel MySQL servers, listening on different TCP
ports and using separate data directories for their respective databases.

Getting ready
This recipe is based on an Ubuntu Linux machine with the 8.04 LTS version. mysqld_multi
comes with the MySQL packages for that operating system. If you are using other distributions,
you need to make sure you have mysqld_multi installed to be able to follow along. Refer
to your distribution's package repositories for information on which packages you need to install.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

252

You will also need an operating system user with sufficient privileges to edit the MySQL
configuration file—typically /etc/mysql/my.cnf on Ubuntu—and restart services. As
for AppArmor or SELinux, we assume these have been disabled before you start to simplify
the process.

How to do it...
1. Locate and open the my.cnf configuration file in a text editor.

2. Create the following two sections in the file:
mysqld_multi test, instance 1

[mysqld1]

server-id=10001 socket=/var/run/

mysqld/mysqld1.sock port=23306 pid-

file=/var/run/mysqld/mysqld1.pid

datadir=/var/lib/mysql1 log_bin=/var/

log/mysql1/mysql1-bin.log

mysqld_multi test, instance 2

[mysqld2]

server-id=10002 socket=/var/run/

mysqld/mysqld2.sock port=33306 pid-

file=/var/run/mysqld/mysqld2.pid

datadir=/var/lib/mysql2 log_bin=/var/

log/mysql2/mysql2-bin.log

3. Save the configuration file.

4. Issue the following command to verify the two sections are found by mysqld_multi:
$ sudo mysqld_multi report

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

253

5. Initialize the data directories:
$ sudo mysql_install_db --user=mysql --datadir=/var/lib/mysql1

$ sudo mysql_install_db --user=mysql --datadir=/var/lib/mysql2

6. Start both instances and verify they have been started:
$ sudo mysqld_multi start 1

$ sudo mysqld_multi report

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

254

7. Connect to both instances and verify their settings:
$ mysql -S /var/run/mysqld/mysql1.sock

mysql> SHOW VARIABLES LIKE 'server_id';

$ mysql -S /var/run/mysqld/mysql2.sock

mysql> SHOW VARIABLES LIKE 'server_id';

How it works...
mysqld_multi uses a single configuration file for all MySQL server instances, but inside that
file each instance has its individual [mysqld] section with its specific options. mysqld_multi
then takes care of launching the MySQL executable with the correct options to use the options
from its corresponding section.

The sections are distinguished by a positive number directly appended to the word mysqld
in the section header. You can specify all the usual MySQL configuration file options in these
sections, just as you would for a single instance. Make sure, however, to specify the minimum
set of options as in the recipe steps previously stated, as these are required to be unique for
every single instance.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

255

There's more...
Some special preparation might be needed, depending on the particular operating system you
are using.

Turning off AppArmor / SELinux for Linux distributions
If your system uses the AppArmor or SELinux security features, you will need to make sure
these are either turned off while you try this out, or configured (for permanent use once your
configuration has been finished) to allow access to the newly defined directories and files.
See the documentation for your respective Linux distribution for more details on how
to do this.

Windows
On Windows, running multiple server instances is usually more straightforward. MySQL is
normally installed in a separate, self-contained folder. To run two or more independent server
instances, you only need to install a Windows service for each of them and point them to an
individual configuration file. For information on how to set up MySQL as a Windows service
and how to specify which settings file to use, see the relevant recipe in this chapter.

Considering the alternative MySQL Sandbox project
As an alternative to mysqld_multi you might want to have a look at MySQL Sandbox, which
offers a different approach to hosting multiple independent MySQL installations on a single
operating system. While mysqld_multi manages multiple configurations in a single file,
MySQL Sandbox aims at completely separating MySQL installations from each other, easily
allowing even several MySQL releases to run side by side. For more details, visit the project's
website at http://mysqlsandbox.net.

See also
f Installing MySQL as a Windows service with custom options
f Ubuntu Linux Wiki on AppArmor at https://wiki.ubuntu.com/AppArmor

f Fedora Wiki on SELinux http://fedoraproject.org/wiki/SELinux

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

256

Preventing invalid date values from being
stored in DATE or DATETIME columns

In this recipe, we will show you how to configure MySQL in a way such that invalid dates
are rejected when a client attempts to store them in a DATE or DATETIME column using
a combination of flags for the SQL mode setting.

See the There's more... section of this recipe for some more detailed information on the
server mode setting in general and on how to use it on a per-session basis.

Getting ready
The configuration options shown in this recipe can be applied to individual sessions or as
server-wide defaults. For production systems, we recommend specifying them in the MySQL
configuration file. You will need the necessary operating system level privileges to edit it, and
then restart the service to activate the settings.

The final step in the recipe is the attempt to insert some invalid dates. You can safely skip this
step. If you want to try it, you will need a table set up like this in the test database:

CREATE TABLE table_a (
 test_date DATE NOT NULL
);

How to do it...
1. Locate the MySQL configuration file, typically my.cnf or my.ini (on Windows), and

open it in a text editor.

2. In the [mysqld] section make sure the following line is present, adding it
if needed:
[mysqld]

... sql-

mode=STRICT_ALL_TABLES,NO_ZERO_DATE,NO_ZERO_IN_DATE ...

3. Save the file.

4. Restart the MySQL server.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 7

257

5. Verify whether the setting was applied using this statement from a MySQL client:
mysql> SELECT @@GLOBAL.sql_mode;

6. Optionally try to insert some false values:
mysql> INSERT INTO table_a VALUES ('2009-02-31');

mysql> INSERT INTO table_a VALUES ('2009-00-31');

mysql> INSERT INTO table_a VALUES ('0000-00-00');

Getting ready
Setting the SQL mode to STRICT_ALL_TABLES will enable validation on all tables
(as opposed to only those in transactional storage engines if you were to use
STRICT_TRANS_TABLES). While setting up the SQL mode like this would already
prohibit the insertion of values like Feb 31st, one could still insert all zero dates or
dates with zero fields in them. This is what the other two options NO_ZERO_DATE
and NO_ZERO_IN_DATE take care of.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Configuring MySQL

258

There's more...
Starting with MySQL 5.0, the concept of SQL modes was introduced to provide granular
control over the degree of leniency the server will apply for invalid values. MySQL has
traditionally been very forgiving when receiving invalid values to be inserted into its tables.
There are truncation and approximation rules on what will happen when, for example, you
try to insert a value that exceeds the maximum length of a column's definition.

For enterprise systems, this clearly is unwanted behavior. Whenever an application tries to
store values in the database that do not meet the previously defined criteria of length and
value ranges, an error must be thrown to prevent silent data corruption. One might argue that
data validation must be done at the application level and invalid data never be stored to the
database anyway. But we are strong believers in the database being the "last line of defense".
Of course, any decent application will reject invalid inputs, but in reality there can be bugs or
an administrator accessing the database independently might just make a mistake. Setting up
MySQL to verify incoming data (again) can be invaluable in these situations. Even though you
take a slight performance hit, data integrity should be considered as an even higher priority.

The so-called strict mode enables the general use of MySQL server-side data validation.
The remaining options described in the MySQL online manual section 5.1.8 at
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html
allow a somewhat granular control over what exactly get validated and how.

We recommend going through all the SQL mode options to see if there are any that you would
like to enable on your servers.

Configuring SQL mode for the current session only
For experimenting with the different SQL modes, it is often easier to configure them for your
current session only. The following statement disables the global settings configured above
for the current session only:

mysql> SET @@session.sql_mode='';

This can also come in handy for maintenance scripts that need to temporarily disable certain
restrictions that are set up for normal operations.

Download at Wow! eBook

WWW.WOWEBOOK.COM

8
MySQL User

Management

In this chapter, we will cover the basic tasks related to MySQL user management. You will
learn about the following topics:

f Configuring MySQL Administrator to display global privileges and hosts

f Defining an alternative user for administrative tasks

f Disabling the default accounts

f Creating a basic user

f Creating an installation user

f Creating a read-only account

f Defining a specific user for backup

f Defining a specific user for replication

f Allowing access from specific hosts only

f Synchronizing user permissions across servers

f Regaining access to your database in case of lost account information

f Avoiding plain text passwords in administrative scripts

Introduction
While MySQL has a reputation for being easy to set up in the first place (and rightly so), one
has to keep in mind that the initial configuration, for example, as provided by the Windows
installation wizard, needs some more tweaking for production use. This particularly holds true
for the default user configuration.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

260

Whenever you connect to a MySQL server, the connection is associated with a specific user
(even if you do not specify the user explicitly, in which case a default account is selected).
If you tell MySQL Windows installer to create an anonymous user, the resulting configuration
allows for full local access to the database without having to provide any kind of credentials.
Whoever is able to access the machine that runs your database will be able to play havoc with
your data—which is not something you typically want for your production systems.

Do NOT use an anonymous user on production systems!

The definition of users and their respective access privileges is often considered a
downstream configuration task that can be tackled shortly before production use.
We strongly recommend defining the basic roles for database users in advance. This
often helps to structure the way the database is accessed, which in turn might improve
the systems architecture and prevent certain development flaws.

In this chapter, we will have a look at some typical user roles found in MySQL production
environments. First of all, we will discuss how to create a hardened administration account
that is not accessible anonymously, and then how to get rid of the default users provided by
the MySQL installation. Additionally, we will introduce accounts for basic operations and guest
access, and refer to technical users for replication, backup, and recovery.

Besides this, we will also cover how to restrict database access for certain users to specific
clients. This makes for an additional line of defense because knowledge of a username and
password are not sufficient to connect to the database. A potential attacker would also have
to take control of the defined client address.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

261

As MySQL installations with more than one database server are not an exotic configuration
any more, the sometimes tedious task of keeping the user definitions in synch throughout all
instances will be addressed as well. And finally, we will not conceal the downside of improved
security: if a potential attacker will not be able to access the database without knowing the
username and password, you will not, either. We will show you how to access your database
even if the sticky notes with your credentials are lost.

The recipes in this chapter will primarily focus on MySQL Administrator as the tool of choice
when manipulating the user accounts and their privileges.

MySQL Administrator is an administration client provided by MySQL as part
of the MySQL GUI Tools Bundle, which is available for free at http://dev.
mysql.com/downloads/gui-tools/5.0.html.

However, in some situations a graphical user interface just does not fit the requirements.
This is particularly the case if scripting is required, for example, for automated and
unattended changes. For these situations, we will also show alternative ways to change
the user rights without the help of MySQL Administrator.

While the recipes in this chapter will give you an overview of a typical role configuration, we
encourage you to adapt this proposal according to your needs. And from our experience,
it is typically a good idea to discuss the possible user configuration with your IT security
department—if your company happens to have one—well in advance, so as to prevent lengthy
discussions later on.

Configuring MySQL Administrator to display
global privileges and hosts

Throughout the following recipes, we will use MySQL Administrator as the main tool to manage
user rights. Some of the privileges, however, are not visible in MySQL Administrator in its
default configuration. This recipe will show you how to change the relevant options, so we
will be able to manage even the global privileges.

Getting ready
To step through this recipe, you will need a running MySQL database server and a working
installation of MySQL Administrator. No other prerequisites are required.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

262

How to do it...
1. Start MySQL Administrator. Connect to your database server using any account.

2. Select the entry Options… from the Tools menu.

3. Make sure the options Show Global Privileges and Show hosts in user list
are selected.

4. Select Close. If a Save changes? dialog comes up, press the Yes (Apply these
changes permanently) button.

How it works...
With the options selected throughout this recipe, MySQL Administrator will allow you to view
and change not only the schema privileges that define the operations allowed on certain
schemata, but also the global privileges.

The available global privileges are partially identical to the schema privileges, for example,
SELECT or UPDATE, but there are also some additional privileges, such as SHUTDOWN, that
affect the whole database regardless of specific schemata.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

263

The options affect the User Administration view of MySQL Administrator. You will notice an
additional tab Global Privileges, and when you select a user account in the list to the lower
left, the hosts for which the specific rights were defined are listed.

Defining an alternative user for
administrative tasks

During MySQL installation, an account for user root is created. This account receives all
privileges without any exceptions. In most installations, this configuration is basically left
unchanged, which makes the root account a very rewarding target for attacks. An attacker
will not have to guess a username and a corresponding password—the password alone
will do because it is a safe bet to assume the existence of a username root. This is why we
recommend that you create an administration account with a different name.

This recipe will show you how to create a user account that can act as a replacement for the
root user.

Getting ready
You are going to need a catchy username for your administration account and a
corresponding password. When making up the password, keep in mind the typical password
recommendations for good passwords (hard to guess, but easy to remember; should contain
upper and lower case letters, numbers, and special characters). Throughout this recipe,
we will assume a username admin4mysql and a password As,ysp4M ("A simple, yet strong
password for MySQL") throughout this recipe.

The admin4mysql user is only used as an example. For security reasons,
please do NOT use this account name (or any of the other users introduced in
this chapter) for real-world installations! We strongly suggest using your own,
individual usernames instead.

Additionally, you will have to make sure that manipulation of global privileges is enabled in
MySQL Administrator options. Please refer to the Configuring MySQL Administrator to display
global privileges and hosts recipe if in doubt.

Finally, you have to think about from which host you are going to connect to your MySQL
instance to perform administrative tasks. In most cases, this will be localhost, which we
assume as host in the following recipe. In some situations, however, this might differ, for
example, if you have no login rights on the database host itself. In these situations, you should
define a certain host as your base for administrative tasks. Have its host name or IP address
ready for the following tasks.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

264

The steps below will guide you through the process of creating an alternative
administration account.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the root account.

2. Select the User Administration entry either from the list on the left or from the
View menu.

3. Click on the Add new user button.

4. Enter the basic user information (username, password, contact information), followed
by a click on the Apply changes button.

5. Right-click on the new user admin4mysql (in the user list on the lower left) and
choose the option Add host from which the user can connect.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

265

6. In the following form, enter the host from which you are going to perform your
administration tasks (typically localhost).

7. Select the tab Global Privileges. Choose the << button to grant all global rights to
the user, followed by a click on the Apply changes button:

8. Right-click on the admin4mysql entry on the user list and select Remove host from
which the user can connect from the context menu.

9. Confirm the message box indicating The any-host (%) entry has been deleted,
followed by the Apply changes button.

How it works...
Let's take a look at what we did throughout the above recipe. In steps 1 through 4, we created
a new user named admin4mysql. At this point, this user could connect to the database server
from any host, but as new users have no initial rights whatsoever, he or she would not be able
to actually do anything. With steps 5 and 6, we defined a specific host from which the user will
be allowed to log on. Step 7 finally assigns all rights to the newly-created user.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

266

With steps 8 and 9, the user admin4mysql is no longer able to connect from any host other than
localhost. This makes it necessary for a possible attacker to log in on the host itself before
he or she can try to gain access to the database. This in turn ensures brute force attacks on the
MySQL server via the network from a random host for this user will not be successful.

There's more...
MySQL Administrator features a graphical user interface—it is not the tool of choice in some
situations such as if scripting capabilities are needed. In these circumstances, a single SQL
script will perform the same changes as the above recipe. This script could be executed, for
example, by using the mysql command-line client and connecting with a privileged MySQL
user like your current root account:

GRANT ALL PRIVILEGES ON *.* TO 'admin4mysql'@'localhost'
IDENTIFIED BY 'As,ysp4M' WITH GRANT OPTION;

The values for password and maybe host name have to be adapted according to your choices.

See also
f Configuring MySQL Administrator to display global privileges and hosts

f Avoiding plain text passwords in administrative scripts

Disabling the default accounts
In the previous recipe, we created a new user for administration tasks as a replacement for the
default root user. If and only if another user with full rights is available, we can discard
the default users that were created during MySQL installation. This helps harden your MySQL
installation against possible intruders who will not be able to attack well-known account names.

Getting ready
You have to assure yourself that you have a second user with full rights (in addition to the root
user) at your disposal. By deleting the root account, you risk a database with no means of basic
administration—unless there is an equivalent user available. This is why MySQL Administrator
won't let you delete this user and hence we will have to resort to the command-line client to
delete the root account.

The following steps will show you how to remove the default accounts.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

267

How to do it...
1. Connect to your database server with the mysql command-line client using the

additional administration account (admin4mysql).

2. To delete the root user, issue the following commands:
DROP USER 'root'@'localhost';

DROP USER 'root'@'%';

3. To delete the anonymous user, execute these commands:
DROP USER ''@'localhost';

DROP USER ''@'%';

How it works...
MySQL creates up to four default accounts, depending on the choices made during the
installation. These four accounts use two usernames, namely root, and the anonymous user
with an empty username. For each username the two hosts—localhost and %—are defined,
with the latter being the place holder for any host. Thus the default accounts are as follows:

f 'root'@'localhost'

f 'root'@'%'

f ''@'localhost'

f ''@'%'

The first account 'root'@'localhost' is always available, while the other
three are only created in certain installation scenarios.

With the commands in the above steps, all possible default accounts will be deleted. If these
users do not exist, you will receive an error message (error code 1396 "operation failed") in-
dicating that the account does not exist. After having executed all of these commands, you
can be sure that no unwanted default accounts are left.

You can test the effect of the steps performed by using MySQL Administrator. The entries
of the root user and the anonymous user (with the empty name) will be gone in the User
Administration view if you reconnect to your database server.

See also
f Regaining access to your database in case of lost account information

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

268

Creating a basic user
If installed from scratch, MySQL does not provide a default user suitable for everyday use.
You could of course use the root user or an alternative administrative user (for example:
admin4mysql) with full rights. However, this is strongly discouraged for security reasons,
especially if you have different users and/or applications that need access to your MySQL
database. In the following recipe, we will show you how to create a typical user that has full
access to a certain database (schema).

Getting ready
You will need some information before stepping through this recipe:

In the first place, you will need a username and a password. If the user is a person who is
going to use the database interactively, you will mostly use his or her real name as the login
name. For accounts that will be used by applications, it is typically a good idea to include the
application (and—if applicable—the role for which the account will be used) in the account
name. Examples would be john_doe, hotelbooking, or carrental_stdusr. Keep in mind,
however, that the length of the username (as of MySQL 5.1) is limited.

The length of a MySQL username must not exceed 16 characters!

Second, you should find out about which database of your MySQL installation has to be
accessed by your user. This database has to exist already, otherwise you will not be able to
assign the respective rights using MySQL Administrator (however, the script solution in the
There's more... section would even work without an existing target schema).

Throughout this recipe, we will show you how to create a basic user sample_stduser
with read-write access to a database named sample and a password S4mpl3-Pw.
As a prerequisite, we assume that the database sample already exists.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the

admin4mysql account.

2. Select the entry User Administration either from the list on the left or from the
View menu.

3. Click on the Add new user button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

269

4. Enter the basic user information (username, password, contact information), followed
by a click on the Apply changes button.

5. Select the tab Schema Privileges and select the schema sample from the Schemata
list on the left. Select the privileges SELECT, INSERT, UPDATE, DELETE, CREATE
TEMPORARY TABLES, LOCK TABLES, and EXECUTE from the Available Privileges
list on the right, and for each selected privilege press the < button. Choose the Apply
changes button afterwards.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

270

To select and assign more than one privilege at once, hold down the Ctrl key
while selecting the privileges.

How it works...
Step 4 creates a new user who is allowed to connect from any host, but has no privileges
whatsoever. By assigning the privileges in step 5, the user is granted the rights to read
(SELECT) and change (INSERT, UPDATE, DELETE) data from any table in the sample
schema. These are the most basic rights that are typically necessary for a basic user.

Additionally, we grant the CREATE TEMPORARY TABLE privilege. This sometimes comes
in handy for complex statements and the corresponding risks are typically acceptable.
Temporary tables are not visible to other users and are limited to the database connection
by which they are created. Moreover, they are purged as soon as the connection is closed. So
typically, it is not a problem to grant this right. However, as with all privileges the basic security
rule holds true for this rights as well.

Don't assign unnecessary privileges!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

271

If you are sure that this privilege will not be used, it is recommended not to assign it to the
user you created.

The LOCK TABLES privilege allows the user to completely lock tables. This is sometimes
helpful to coordinate concurrent access to data by different sessions and is needed by
some applications that make use of LOCK TABLES statements to prevent concurrent data
modifications. On the other hand, this privilege enables a user to block read and write access
to all tables at discretion, which might basically render the database useless to other users in
case of extensive or incautious use of of LOCK TABLES statements. If you are sure that your
user won't need such statements, it is recommended not to assign this privilege.

Finally, the EXECUTE privilege gives the user the right to call stored routines. As the user is
not granted the rights to create or change such routines, granting this privilege does not pose
a noteworthy additional risk even if there are no stored routines to execute. If there are any,
the EXECUTE privilege has to be assigned for the user to be able to call these stored routines.
Some applications make use of stored routines, so this right was included for typical users.
But as stored procedures and functions are still a fairly new feature of MySQL, they are not
very widely used yet. So in many cases, you can do without this privilege.

With this set of privileges, we created a user that has full access to all tables in our schema.
This account is a reasonable compromise between rights granted and restrictions still in
place. However, you will need a corresponding installation user that can be used to set up the
schema in the first place. The creation of this user is described in the following recipe.

There's more...
If you want (or need) to avoid using MySQL Administrator for creating the basic user account,
you can alternatively issue a single SQL statement instead (the values for password and
database name have to be adapted according to your choices):

GRANT SELECT, INSERT, UPDATE, DELETE, CREATE TEMPORARY TABLES, LOCK
TABLES, EXECUTE ON sample.* TO 'sample_stduser'@'%' IDENTIFIED BY
'S4mpl3-Pw';

This is helpful if you need a scripting solution for user definitions, but it also gives you
the possibility to create the user before the target database schema exists. With MySQL
administrator, you have to define the schema first because it will only let you assign rights
for existing databases. This script could be executed, for example, by using the MySQL
command-line client.

See also
f Defining an alternative user for administrative tasks
f Avoiding plain text passwords in administrative scripts

f Creating an installation user

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

272

Creating an installation user
In the previous recipe Creating a basic user, we discussed how to define a typical user for
accessing a certain database schema. Additionally, there is an administration user account
with full rights. For installations that are managed by one single administrator, this might
be sufficient. But often you do not want to perform all administrative tasks by yourself. For
example, you might want to delegate the task of defining the database structure to a different
person. Some applications also have their own installation routines that require rights to set
up a database schema. For these tasks, you should consider creating a specific installation
user for certain databases. This user should not have global rights, but should be restricted
to make changes to one specific database. This way, you can delegate certain administration
tasks without the risk of users tampering with other databases that are not their business.

Even if you manage your database installation all by yourself, it might be a good idea to
use a specific account to perform these tasks, as this helps prevent accidental changes
to other databases.

This recipe will guide you through the steps of creating such an installation user for a certain
database (schema).

Getting ready
For this recipe, you will again need to come up with a username (remember the 16 character
length limit), a password, and the name of the database that will be accessible to the user.
As before, this database should already exist, otherwise you will have to resort to the scripting
solution from the There's more... section of this recipe.

We will assume sample_install as the username, sample as the database, and 1n5t4ll Pw as
the password.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the administration

account (admin4mysql).

2. Select the entry User Administration either from the list on the left or from the
View menu.

3. Click on the Add new user button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

273

4. Enter the basic user information (username, password, contact information), followed
by a click on the Apply changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

274

5. Select the tab Schema Privileges and select the schema sample from the Schemata
list on the left. Press the << button to assign all privileges for the sample database.
Next, select the GRANT privilege from the Assigned Privileges list and press the >
button to exclude the GRANT right. Choose the Apply changes button afterwards.

How it works...
The new user is created in steps 1 through 4, while step 5 assigns all rights on the sample
database to the user, with the GRANT privilege being the only exception (also see the There's
more… section of this recipe).

This user has basically full rights for the whole database schema. This account can be used
to set up the database, which might, for example, involve creation, deletion, or making
changes to tables, management of stored routines, or definition of views. However, it is not
recommended to use such a powerful account for normal operations. You should preferably
stick to a basic user for this instead, as we have defined in the previous recipe.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

275

There's more...
In this section, we will discuss some advanced aspects of the user creation, such as scripted
solutions to the problem and granting rights to create users to certain accounts.

Creating the account without using MySQL Administrator
You can also create the account without having to use MySQL Administrator by issuing
the following SQL command (adapt the values for password and database schema name
accordingly):

grant ALL PRIVILEGES on sample.* to 'sample_install'@'%' identified by
'1n5t4ll-Pw';

As mentioned before, this allows for scripting as well as defining the account without having to
create the database beforehand. For example, you could use the MySQL command-line client
to execute this script.

Permitting management of user rights
Some applications feature highly sophisticated installation routines, which try to perform
many tasks automatically. In some cases, they also try to define MySQL user rights themselves
to make sure they have the correct set of privileges. If this is the case, you might need to
permit privilege management for the installation user.

As another example, you might want to delegate not only the responsibility of managing
a database, but also the (sometimes tedious) task of maintaining the privileges of the
corresponding user accounts.

In both situations, you should consider assigning the GRANT privilege to the installation user.
This right allows granting those rights to other users (or revoking them from them) that you are
granted yourself. As a result, the GRANT privilege will not allow the installation user to extend
his or her rights.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

276

To assign the GRANT privilege using MySQL Administrator, select the sample_install user
in the User Administration view, switch to the Schema Privileges tab, select the sample
schema, and assign the privilege by selecting it and pressing the < button, followed by the
Apply Changes button.

Alternatively, you could issue the following SQL command:

GRANT ALL PRIVILEGES ON sample.* TO 'sample_install'@'%' IDENTIFIED BY
'1n5t4ll-Pw' WITH GRANT OPTION;

Please note that the GRANT privilege itself does not allow you to create users!

For being able to create users, an administration user has to have write access to the mysql
database. Unfortunately, this allows for manipulation of all user accounts regardless of their
scope; so a user with mysql write access is not restricted to managing one separate database
any more. Because of this, we recommend leaving the creation or deletion of the accounts to
the main administrative user. The installation user is then able to assign the specific rights for
the database he or she is responsible for to the user.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

277

Example: Let the admin4mysql account create a user with:

GRANT USAGE ON *.* to 'john_doe'@'%' IDENTIFIED BY 'Confidential';

The installation user sample_install (if he or she has the GRANT privilege) can then assign
specific rights to the user at his or her own discretion:

GRANT SELECT ON sample.* to 'john_doe'@'%';

See also
f Defining an alternative user for administrative tasks
f Avoiding plain text passwords in administrative scripts

f Creating a basic user

Creating a read-only account
In the previous recipes, we presented how to define users for different roles: global
administration, setting up a specific database, and basic access. Another typical role for users
is the guest user, which typically is limited to read-only operations. Credentials for such an
account can be passed on to different people without risking accidental or deliberate data
manipulation. In this recipe, we will show you how to define such a read-only user account.

Getting ready
Think of a catchy username, password, and the name of the database schema for which the
user will have read access. In addition, this schema should already exist. You will have to use
the SQL statement alternative from the There's more... section of this recipe otherwise.

We will assume sample_guest as the username, sample as the database, and R34d-0nly as
the password.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the administration

account (admin4mysql).

2. Select the entry User Administration either from the list on the left or from the
View menu.

3. Click on the Add new user button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

278

4. Enter the basic user information (username, password, contact information), followed
by a click on the Apply changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

279

5. Select the tab Schema Privileges and select the schema sample from the Schemata
list on the left. Click on the SELECT privilege from the Available Privileges list on
the right, and press the < button to assign this privilege. Choose the Apply changes
button afterwards.

How it works...
Steps 1 through 4 create the user without any privileges; step 5 assigns the SELECT right on
the sample database to the user.

With these settings, this user is not able to make any changes to the database. Nevertheless,
we strongly recommend not communicating the username and the password for this guest
account too laxly. In many cases, a database contains valuable or sensitive information. If the
credentials of a guest user account are common knowledge (or too easy to guess, like the
infamous username 'guest' with exactly the same password), your data will be an easy prey for
any possible intruder.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

280

There's more...
In this section, we will discuss some advanced aspects of the user creation, such as scripted
solutions to the problem and granting rights to create users to certain accounts.

Creating the account without using MySQL Administrator
To create the guest account without using MySQL Administrator, execute the following
SQL command:

GRANT SELECT ON sample.* TO 'sample_guest'@'%' IDENTIFIED BY
'R34d-0nly';

This command will also work if the sample database was not created in advance.

Allowing stored procedure calls
Some database designers try to encapsulate complex statements in stored routines (functions
or procedures). Some of these routines could also be very helpful for a guest user, so he or
she can resort to predefined logic, and does not have to try to construct complex queries
by him- or herself. For this reason, it might make sense to also assign the EXECUTE privilege
to the guest user. But please note that assigning this privilege might have an unexpected
side effect:

A guest user with EXECUTE rights can perform changes to the database!

If a stored routine performs changes to the database, like an UPDATE or a DELETE operation,
it will execute flawlessly even if the user who calls this routine does not have any other rights
but EXECUTE. This does not typically pose a serious risk because the guest user is not able
to define new routines on his or her own. But as soon as there are stored procedures in place
that perform changes to the database, the EXECUTE privilege should be granted with care.

See also
f Defining an alternative user for administrative tasks

f Avoiding plain text passwords in administrative scripts

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

281

Defining a specific user for backup
Even though many people have a tendency to ignore the possibility of unpleasant future
events, one of your duties as a database administrator is to take reasonable precautions to
minimize the negative effects of a disaster. In short, it is your job to perform backups.

There are some strategies on how to best back up your database and there are also different
tools on the market that promise to help you do so. Basically, the different backup strategies
can be divided into two groups: hot and cold backup. While cold backups can simply be done
by copying and saving files, hot backups are not as easy to perform.

There are some tools available that promise file-based hot backups. However, if you want or
need to resort to the MySQL tools, you will typically have to do a database dump (for example,
using myqsldump) to back up your data during normal operations (if all your tables are
MyISAM tables, you could use the mysqlhotcopy tool instead).

To perform a database dump, you will need a user to connect to your database. We
recommend defining a user that is specifically suited for this task. This allows you to quickly
identify connections used for backups and you can be sure that these connections will not be
able to change any data. The following recipe will show you how to create such an account.

Please note that this user is suited for backup purposes only. The recovery
task should be performed by an administrator user because you typically
need full access to the database for this.

Getting ready
Again, you are going to need a username and a password. We will use backup_usr as the
username and B4ckM3Up! as the password.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the

admin4mysql account.

2. Select the entry User Administration either from the list on the left or from the
View menu.

3. Click on the Add new user button.

4. Enter the basic user information (username, password, contact information), followed
by a click on the Apply changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

282

5. Right-click on the new user backup_usr (in the user list on the lower left) and choose
the option Add host from which the user can connect.

6. In the following form, enter the host from which you are going to perform your
backups (typically localhost).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

283

7. Select the tab Global Privileges. Choose the SELECT, RELOAD, LOCK_TABLES, and
REPL_CLIENT privileges from the Available Privileges list on the right, press the <
button for each of them, and click on the Apply changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

284

8. Right-click on the backup_usr entry on the user list and select Remove host from
which the user can connect from the context menu.

9. Confirm the message box indicating The any-host (%) entry has been deleted, then
click the Apply changes button.

How it works...
Let's take a look at the steps of this recipe. By following steps 1 through 4, a new user named
backup_usr is created. At this point, this user does not have any rights, but could successfully
connect from any host. Steps 5 and 6 define a specific host (localhost) from which the
user will be allowed to log on. Step 7 finally assigns the rights that are necessary to perform
backups using the mysqldump command.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

285

With steps 8 and 9, the user is no longer able to connect from any host other than
localhost. This makes an attack harder because a possible intruder would first have
to log in to the host itself before he or she can access the database.

The first (and most important) privilege that was assigned is the SELECT privilege, which is
used to read the data; otherwise we would not be able to write it to the dump file. As this user
is allowed to read all data from all databases, you should not forward the user credentials of
this user.

The second privilege is LOCK_TABLES. It is needed because mysqldump locks the tables
before dumping their data. This privilege is not required when the mysqldump options
--single-transaction or --master-data are used, but it is recommended to assign
this right just in case a dump without one of these options has to be done.

Finally, the privileges RELOAD and REPLICATION_CLIENT are required for the mysqldump
option --master-data. This option is used frequently, if you have to recover databases that
are configured as replication clients; assigning these privileges allows you to use this option
as well.

There's more...
MySQL Administrator is not always the proper tool for user definition (for example, in a scripted
environment). An alternative route to constitute an account for backup tasks is the execution
of the following SQL command:

GRANT SELECT, LOCK TABLES, RELOAD, REPLICATION CLIENT ON *.* TO
'backup_user'@'localhost' IDENTIFIED BY 'B4ckM3Up!';

See also
f Defining an alternative user for administrative tasks
f Configuring MySQL Administrator to display global privileges and hosts

f Avoiding plain text passwords in administrative scripts

Defining a specific user for replication
In some cases, the MySQL replication mechanism is a very helpful feature, for example, to
horizontally scale your read loads or to provide redundancy for improved robustness. If you
plan to use this feature, you have to define a user on the replication master for this. This
recipe will show how to create this user.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

286

Getting ready
To step through the recipe, you will need a username, a password, and the host on which the
replication slave will be located. We will use repl_user as the username with Pw_4_R3pl as
the corresponding password and we will assume that the replication slave will be located on
host bluebox.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the

admin4mysql account.

2. Select the entry User Administration either from the list on the left or from the
View menu.

3. Click on the Add new user button.

4. Enter the basic user information (username repl_user, password Pw_4_R3pl, contact
information), followed by a click on the Apply changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

287

5. Right-click on the new user repl_user (in the user list on the lower left) and choose
the option Add host from which the user can connect:

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

288

6. In the following form, enter the host from which you are going to perform your
backups (here: bluebox).

7. Select the tab Global Privileges. Choose the REPL_SLAVE privilege from the
Available Privileges list on the right, press the < button, and subsequently click
on the Apply changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

289

8. Right-click on the backup_usr entry on the user list and select Remove host from
which the user can connect from the context menu.

9. Confirm the message box indicating The any-host (%) entry has been deleted, then
click the Apply changes button.

How it works...
Let's inspect the steps of the above recipe. In steps 1 through 4, we defined a new account
named repl_user, which at this point has no privileges at all, but could connect to the MySQL
server from any host. With steps 5 and 6, we define the specific host from which the user
will be allowed to log on (in this case this is the host that runs the replication slave). Step 7
assigns the privilege necessary for the replication slave to the new account.

With steps 8 and 9, the account repl_user is changed in such a way that it can no longer be
used from any host (actually, the account repl_user@% is removed, while a second account
repl_user@bluebox stays intact). A possible attacker would have to log in to the replication
slave host to make use of this account.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

290

There's more...
To create the replication account without resorting to a GUI tool, you can alternatively use the
following SQL command:

GRANT REPLICATION SLAVE ON *.* TO 'repl_user'@'bluebox' IDENTIFIED BY
'Pw_4_R3pl';

See also
f Defining an alternative user for administrative tasks
f Configuring MySQL Administrator to display global privileges and hosts

f Avoiding plain text passwords in administrative scripts

Allowing access from specific hosts only
When creating a user account using MySQL Administrator, the user is by default entitled to log
in from any host. If the account will be used on specific clients only, it is advisable to modify
the account in such a way that login is restricted to these clients. This helps to reduce the
chance of successful attacks against your database server because a possible intruder will
not only have to get hold of (or guess) the proper credentials, but also has to seize control of
one of the registered clients.

The following recipe will guide you through the steps of restricting a user account to a
specific host.

Getting ready
For the following steps, we assume that an account with username example has already been
defined and that this account is enabled for login from any host. We furthermore assume
that this account should be changed in such a way that it can only be used to log in from host
client1.mycompany.com.

How to do it...
1. Start MySQL Administrator. Connect to your database server using the

admin4mysql account.

2. Select the entry User Administration either from the list on the left or from the
View menu.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

291

3. Right-click on the user account you want to change in the Users Accounts list on the
left and choose the option Add host from which the user can connect.

4. In the following form, enter the host from which the user will be able to connect
(here: client1.mycompany.com).

5. Save the changes by clicking on the Apply changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

292

6. Select the tab Global Privileges. Left-click on the user entry example on the list on
the lower left. Note the privileges that are listed in the Assigned Privileges list (in the
example screen, we assume that global privileges SELECT and CREATE TEMPORARY
TABLE are assigned to the user).

7. Switch back to the new host by clicking on the host name client1.mycompany.
com on the left. Assign the same privileges noted in the previous step (in this ex-
ample: SELECT and CREATE TEMPORARY TABLE) by selecting them from the list of
available privileges on the right and selecting the < button, followed by the Apply
changes button.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

293

8. Choose the tab Schema Privileges and select the first schema from the
Schemata list.

9. Select the entry example from the Users Accounts list on the lower left. Note the
privileges that are assigned for the selected schema.

10. Switch to the new user by selecting the host name client1.mycompany.com on
the left. Assign the privileges noted in the previous step (by selecting them from the
list on the right and clicking the < button), then choose Apply changes.

11. Select the next schema and repeat steps 9 and 10 for every entry in the
Schemata list.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

294

12. Right-click on the example entry on the user list and select Remove host from which
the user can connect from the context menu.

13. Confirm the message box indicating The any-host (%) entry has been deleted, then
click the Apply changes button.

How it works...
Let's have a look at what we did throughout this recipe.

In steps 1 through 5, we added the new host to which the account should be restricted (to be
precise, we created a new account example@client1.mycompany.com).

Steps 6 and 7 are performed to copy the existing global privileges, while steps 8 through 11
do the same for the schema-level privileges. With these operations, the user will be granted
the same permissions when logging in from the newly-defined specific host (this recipe does
not take into account any schema object privileges).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

295

Within steps 12 and 13, the permission to log in from any host is withdrawn by deleting the
host from the account (technically speaking, the user example@% is deleted).

With these steps, we created a copy of the existing example account, which is restricted to a
specific host, and disabled the possibility to log in from any other machine.

There's more...
The preceding recipe can be used interactively only and it describes definition of single hosts
only. Next, we will show you how to create a user by using a script and how to introduce
multiple hosts.

Creating the account without using MySQL Administrator
If you want to restrict access of an account to a client machine, but you do not want to use
MySQL administrator for this, the following steps lead to identical results:

1. Connect to your database server as an administrative user (admin4mysql) using your
favorite SQL client (for example, MySQL Query Browser).

2. Find out about the current privileges by issuing the following command:
mysql> show grants for 'example'@'%';

3. The result of the above query will be a list of one or more SQL statements. Modify
these statements by replacing the username 'example'@'%' by the new name
'example'@'client1.mycompany.com'.

4. Execute each of the modified statements from the previous step (you will have to put
a semicolon at the end of each statement).

5. To deny login from any host, execute the following command:
mysql> drop user 'example'@'%';

Allowing access from a group of hosts
The above recipe is suited for accounts that are restricted to log in from a specific client ma-
chine. In some cases, however, you do not want to allow access from any host, but it is not
possible to restrict connections to a single client machine either.

As long as the number of clients is reasonably low, it is possible to individually register the
respective machines. For this, the mechanism outlined in the above recipe can be used. You
will have to adapt steps 6 and 9 by selecting the appropriate template user and you typically
will skip steps 12 and 13.

As soon as the number of clients exceeds a certain limit, it is no longer feasible to register
them separately. For these cases, the wildcard feature of MySQL might be a valid alternative
for you.

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

296

MySQL allows the use of wildcard operators when defining host names of user accounts. Let's
assume you have a set of client machines client01.mycompany.com through client99.
mycompany.com. These clients should be able to access the database, but you do not want
to allow access from any other machine. In this case, you would restrict the access of your
account to host client%.mycompany.com (note the % character). The percent sign acts as
a wildcard that can be replaced by any character string. With this definition, login from host
client57.mycompany.com will be successful, but a connection attempt from alien1.
mycompany.com will be refused.

Please note that the use of wildcards does not necessarily allow for the exact restrictions you
might want to define. In the above example, there are some unwanted machines that are still
able to access the database: a machine named clientfake.mycompany.com would match
the host definition as well. To minimize the wrong matches, you could use the host definition
client__.mycompany.com instead (with _ being a placeholder for exactly one arbitrary
character), but a machine clientXY.mycompany.com would still be able to establish
a connection.

The host definition for MySQL user accounts can also be used to provide IP addresses instead
of machine names. If you are able to assign similar IP addresses to all machines that should
be able to access your host, you can provide a host name like 192.168.1.%. This example
value would enable access for all clients with an IP address from 192.168.1.0 through
192.168.1.255.

The use of the single character wildcard is possible with IP addresses as well. A host value
of 192.168.1.1__ will allow login from clients with IP addresses 192.168.1.100 through
192.168.1.199.

An alternative to wildcards is to group possible clients in a common subnet. You can then
make use of a notation that allows defining IP ranges using the base address of the range
combined with the corresponding netmask. If you set the host of a MySQL account to
<subnet prefix>/<subnet mask>, connections from any IP address within this subnet
will be accepted by MySQL.

If, for example, you want to allow login from four client machines whose IP addresses range
from 192.168.1.100 to 192.168.1.103, you could set up an account with the host set to 192.
168.1.100/255.255.255.252, which will enable login for just the range you intended to.

This behavior is somewhat contradictory to the MySQL manual, which states:

 "The netmask can only be used to tell the server to use 8, 16, 24, or 32 bits of the
address." (See http://dev.mysql.com/doc/refman/5.1/en/account-
names.html.)

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

297

If this statement were true, the only possible subnet masks would be 255.0.0.0, 255.255.0.0,
255.255.255.0, and 255.255.255.255 (in the latter case the subnet mask would be skipped
for the sake of brevity). However, experience shows that other subnet masks work just as
well, but you have to make sure that the IP address given before the subnet mask is the pure
subnet prefix. Any address from within the subnet would not work, as all connections would
be refused.

To clarify that, we will inspect the example from the MySQL manual, which tries to
prove that different netmasks do not work. The manual states that a host value
192.168.0.1/255.255.255.240 (28 bits) will not work, which is basically correct! But
the reason for that is not that handling of a 28 bit netmask (255.255.255.240) is generally
unsupported, but that the IP address 192.168.0.1 is an address from the subnet and not
the subnet prefix itself. The correct subnet prefix would be 192.168.0.0, and with a host of
192.168.0.0/255.255.255.240, every client from the subnet—with an IP address from
192.168.0.0 to 192.168.0.15—would be accepted for connections.

Generally, if you define the host with the <subnet prefix>/<subnet mask> notation,
any client address is tested against this value according to the following rule (the operator "&"
stands for the bitwise AND operation).

If the following equation is true, the client address is accepted: <client address> &
<subnet mask> = <subnet prefix>.

See also
f Defining an alternative user for administrative tasks
f Configuring MySQL Administrator to display global privileges and hosts

f Avoiding plain text passwords in administrative scripts

Regaining access to your database in case
of lost account information

Of course, you want to protect your database against attacks in every possible way. However,
from time to time you might find yourself in a situation in which you have to act as an attacker
yourself—for example, if you forgot the user credentials for the administration user or if
you accidentally deleted the root user account without having created an equivalent user
beforehand. But do not worry. We will show you a way to regain control of your database
without losing any data (not even your existing user accounts).

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

298

Getting ready
This recipe involves steps to edit the MySQL configuration files and to restart your MySQL
server. Therefore, you will need access to the host your database runs on. You also need the
rights to start and stop the MySQL instance at your own discretion. Furthermore, you should
know the location of the MySQL configuration file (typically my.ini) and you should have the
rights to change this file.

This recipe allows you to both create a new user and to change the password of a user that
already exists. In our example, we will change the password of the user admin4mysql to
As,ysp4M and we will create a new user root with r00t_pw as the password.

Before executing the following instructions, you should make sure that no
users or processes can access your database server.

How to do it...
1. Open a text editor and create a file with the following content:

SET PASSWORD FOR 'admin4mysql'@'localhost' =
 PASSWORD('As,ysp4M');

GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' IDENTIFIED
 BY 'r00t_pw' WITH GRANT OPTION;

Make sure that the SET command and the GRANT command
are each written on a single line.

2. Save the file in a location of your choice (for example: C:\temp\mysql-init.sql).
3. Open the MySQL configuration file (for example: C:\Program Files\MySQL\

MySQL Server 5.1\my.ini) in a text editor. Find the line that reads [mysqld]
and add the following line below (if a line starting with init-file= already exists,
change it accordingly):
init-file="C:/temp/mysql-init.sql"

4. Use the location of the file you saved in step 2. Please note the use of simple forward
slashes instead of backslashes.

5. Save the MySQL configuration file.
6. Restart your running MySQL instance (for example, by restarting the Windows service:

net stop MySQL & net start MySQL)

7. Open the MySQL configuration file in a text editor again to revert the changes made
in step 3. Remove the init-file line from your configuration file (or disable it by
putting a hash # character in front) and save it.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

299

How it works...
The file created in steps 1 and 2 contains the SQL commands by which the password of the
user admin4mysql is reset and a user root is created. In the case of lost account information
for the administrative user, these commands can't be executed as usual (for example, via a
MySQL client). We change the MySQL configuration in steps 3 and 4 in order to have these
commands executed on the next MySQL start despite the lost credentials. Step 5 initiates a
restart of the MySQL server, which causes the commands to be executed. Step 6 reverts the
configuration changes of steps 3 and 4, so the command file won't be repeatedly executed on
every subsequent MySQL start.

The content of the initialization file as listed in step 1 has to be adapted according to your
specific needs. As you might have guessed already, this mechanism is also suitable to change
your actual database content, not only user information. It allows for basically every change
imaginable to your database, so you should make sure that access to the MySQL configuration
file is restricted to authorized persons. The init-file option might be used otherwise to
tamper with your data, create user accounts for future unauthorized access, or render your
system inoperable.

There's more...
A different alternative to reset passwords is to start your MySQL database server using the
option --skip-grant-tables. With this setting, any login will be successful and full rights
will be granted—regardless of the user credentials specified. In fact, this option is often
referenced as the preferred way to change your user accounts without the need for proper
credentials. Nevertheless, we strongly recommend not using this approach, as there are some
limitations and drawbacks.

While the --skip-grant-tables approach enables you to reset a forgotten password, it
does not allow creating a new user account right away, as any attempt to grant rights using
the GRANT statement will at first be refused with reference to the disabled grant tables:

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

300

You have to issue a FLUSH PRIVILEGES statement first in order to have MySQL accept
a GRANT command. While this is a way to create a new user account with full rights, it is
a bit cumbersome.

More importantly, use of the --skip-grant-tables is a major security issue because as
long as the database runs with this option enabled, anybody can connect to the database
without having to provide any credentials at all, which enables free access for all possible
intruders. While this might not be critical for your personal development database, it is
absolutely intolerable for production use or other databases with sensitive data. To prevent
unauthorized access while the grant tables are disabled, it is strongly recommended to
accompany this configuration with the option –-skip-networking (on Windows
machines, you have to additionally provide one of --shared-memory or --named-pipe
options). Unfortunately, this actually deactivates access for most regular clients as well,
which is equivalent to a service interruption until the database is relaunched in the
regular configuration.

In conclusion, the --skip-grant-tables option makes it necessary to restart the
database twice (as opposed to once with the --init-file variant) and there will be a
service interruption between the two restarts due to the network cut-off that is necessary
for security reasons (while the --init-file approach allows for continued access except
for the moment of the first restart). This is why we strongly recommend using the method
described in this recipe.

Avoiding plain text passwords in
administrative scripts

In many of the previous recipes, we also showed how to define user permissions using SQL
commands. As such statements can easily be executed in scripts, these are well suited to
produce scripts for automated definition of MySQL accounts. While it is generally a good idea
to reduce the manual tasks in database administration, one should keep in mind that such
scripts contain information that is extremely useful for possible attackers. One can extract the
defined users, their specific rights, the hosts from which access is granted, and typically even
the corresponding passwords. In this way such user definition scripts often contain all the
information necessary to access your database, which makes them extremely sensitive. The
risk that somebody coincidentally trips over such a script should not be underestimated—and
an open door may tempt a saint.

The most critical portion of such scripts is of course the passwords. In this recipe, we will
show how to create user definition statements without the need to give a plain text password.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 8

301

Getting ready
To step through this recipe, you will need a running MySQL database server and a SQL client
(we are going to use the MySQL command-line client). You should also have a working SQL
script that defines the accounts (using plain text passwords). No other prerequisites
are required.

How to do it...
1. Connect to your database server with the MySQL command-line client.

2. For a plain text password in your script, give the following command and make a note
of the encoded result:
SELECT PASSWORD('<Your plain text password>');

3. Replace the IDENTIFIED BY '<Your plain text password>' portion of the
script by IDENTIFIED BY PASSWORD '<Encoded result>'.

4. Repeat steps 2 and 3 for all passwords in your script.

How it works...
MySQL needs to store its passwords to be able to verify user credentials. This information is
not stored in plain text, but as a so-called hash value. A hash value is a value that represents
a password, but which is not reversible, so it is basically impossible to find the actual
password for a given hash value.

To check whether a given password is correct, MySQL calculates the hash value for it and
compares it with the stored value. If these values are identical, the password is verified.

When creating a user account using the IDENTIFIED BY '<Your plain text
password>'syntax, MySQL calculates the hash code and stores the resulting value in its
user data. The IDENTIFIED BY PASSWORD '<hash value>'syntax stores the hash value
immediately. In both cases, the effects of the script are identical, but with the second variant
no plain text password is accidentally exposed.

Example of creating a user in a script without a plain text
password
Let us assume the following script:

GRANT ALL PRIVILEGES ON *.* TO 'admin4mysql'@'localhost' IDENTIFIED BY
'As,ysp4M' WITH GRANT OPTION;

Download at Wow! eBook

WWW.WOWEBOOK.COM

MySQL User Management

302

Execute the following command on the MySQL command line:

mysql> SELECT PASSWORD('As,ysp4M');

Replace the password in the script:

GRANT ALL PRIVILEGES ON *.* TO 'admin4mysql'@'localhost' IDENTIFIED
BY password '*46FFD1D6944482DFCCD3B31AC500199AFDE515F7' WITH
GRANT OPTION;

There's more...
The SET PASSWORD command is another common place for use of plain text password.
To prevent use of plain text passwords altogether, you should replace all SET PASSWORD
[…] = PASSWORD('<plain text password>') expressions in your scripts by the
corresponding variant using hash values directly (without using the PASSWORD() function):
SET PASSWORD […] = 'Encoded password'.

Download at Wow! eBook

WWW.WOWEBOOK.COM

9
Managing Schemas

In this chapter, we will cover:

f Adding new columns at specific positions

f Defining a Primary key for a table containing (non-unique) data

f Allowing individual INSERT statements with "0" values in auto-incrementing columns

f Globally allowing INSERT statements with "0" values in auto-incrementing columns

f Choosing a suitable storage engine

f Improving the performance of ALTER TABLE for InnoDB

f Using a stored procedure to conditionally add columns or indexes

f Improving query performance for InnoDB tables with BLOB columns

f Identifying differences between two schemas

f Comparing schema revisions using hash values

Introduction
When you first install a database server, you obviously do so because you want to store and
later access information reliably and quickly. A major concern in this regard—apart from the
server's hardware and operating system—is the logical layout of the database. This refers to
how you decide on the structure of the tables, which will in the end be what any database-driven
application will use as its primary level of abstraction.

This chapter is not about data types, table naming, or other topics revolving around those kinds
of decisions that are often best made in cooperation with application developers. Often they
will have their own ideas about how to set up the database schema that you should take into
account as a database administrator (both their and your lives will be easier in the days to come
when you both agree on naming conventions for tables, columns and indexes, and so on).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

304

Instead in this chapter, you will find advice on the specialties and differences that make
MySQL different from other Relational Database Management Systems (RDBMS) like
Oracle, Microsoft SQL Server, or IBM's DB/2. Moreover, we will have a look at some common
tasks that will come up time and again, either before you set up the tables or afterwards,
when your database is already up and serving requests from applications.

MySQL is different from most other RDBMS in that it does allow you to choose from a
variety of storage engines. A storage engine is a part of the database system that handles
physically storing your data on a disk, in contrast to, for example, checking the syntax of a SQL
statement or executing a function like DATE(). With MySQL you get a choice as to which of
those implementations (each with its individual strengths and weaknesses) is to be used on a
per-table basis. The following picture shows the general architecture of the MySQL server layer
above the individual storage engine implementations:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

305

Using this approach, one can choose the optimum storage strategy for each table individually.
There are third parties too that produce (open and closed source) storage engines that may
specialize in niches like PBXT for media storage. Other databases offer all the features in their
default (and usually only) storage format: from transaction support to high performance, over
full-text indexing and fine-grained locking to special data types.

MySQL makes the administrator choose from a range of options, none of which supports all of
the features just named together. So in the end, having the option to pick from the available
storage engines is sometimes more of a burden than an opportunity.

The MySQL online manual contains a table contrasting the available storage engines and their
respective feature sets in its Chapter 13 at http://dev.mysql.com/doc/refman/5.1/
en/storage-engines.html.

We will not go into the details of each and every engine available because from a business
perspective—and this is what counts in our opinion—realistically only two of them are worthy
of a detailed discussion: MyISAM and InnoDB.

Apart from that, you might find the Blackhole engine useful for special replication scenarios
and you should also take a look at the Federated and Merge engines, both of which, even
though with limits, allow multiple tables to be treated as one, locally and over the network.

Adding new columns at specific positions
One of the regular tasks a database administrator has to perform is to modify the structure
of existing tables, especially adding new columns to accommodate the need to store more
attributes for the records stored in a table.

While in general the order of columns is not relevant for MySQL itself—or any well-behaved
application accessing columns by name rather than their position in the table—it is often
desirable to have control over the order the columns appear in a table.

There are several reasons to precisely control the column order: from a general drive to keep
your schema tidy, over the general benefit of a table displaying its columns in a sensible order
when doing a SELECT *, to other external constraints that you cannot influence.

In this recipe, we will show you how to modify an existing table and add one or more new
columns at specific positions.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

306

Getting ready
To follow along, you will need access to MySQL server with a user account that has sufficient
privileges to alter table definitions. For example, we will first create a table with a few attributes
and then add a few more columns at predefined positions. We assume the test database to
be available and your user account to have the right to create and modify tables in it.

�
 Connect to the database using the command-line mysql client.

� Make the test database the default:
mysql> USE test;

� Create the initial sample table:
mysql> CREATE TABLE person (

 firstname VARCHAR(30),

 lastname VARCHAR(30),

 birthday DATE,

 person_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 PRIMARY KEY (person_id)

);

� Insert some records:
mysql> INSERT INTO person (firstname, lastname, birthday)

 VALUES ('Martin','van Buren','1782-12-05'),

 ('Thomas','Wilson','1856-12-28'),

 ('William','Clinton','1946-08-19');

� Select the full contents of the table:
mysql> SELECT * FROM person;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

307

�

 Select the full table contents again:

mysql> SELECT * FROM person;

How it works...
The ALTER TABLE ADD COLUMN command allows for parameters specifying the position
of a newly added column. To make a new column the first after the modification is complete,
use the FIRST option. For all other positions, you specify AFTER which existing column a new
column is to be placed. In our example, we added the salutation column at the beginning
of the table, while the middle_initial column was put right after firstname.

Doing a simple SELECT * displays the presidents' names and salutations nicely readable
because of the column order. Had we just added the columns without specifying AFTER or
FIRST, they would have been appended to the end, behind the person_id column. While
semantically identical, the output would not have been as readable.

There's more...
For a full syntax description of the ALTER TABLE ADD COLUMN command, please
refer to section 12.7.1 of the online MySQL manual at http://dev.mysql.com/doc/
refman/5.1/en/alter-table.html.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

308

See also
f Comparing schema revisions using hash values

Defining a primary key for a table containing
(non-unique) data

When you need to add a Primary key to a table that did not have one previously, you might find
yourself confronted with a problem that is not immediately obvious, but can be rather annoying.

A typical example for this problem occurring is with persistence frameworks that require
you to have a Primary key on all tables you want it to manage. If the tables were designed
independently and before you knew of this requirement, you might not have defined an
explicit Primary key, for example, on the dependent one in a relationship between two tables.

In this recipe, we will show you a way to simply add a Primary key to a table that already
contains data and is even taking part in a Foreign key relationship.

Getting ready
To follow this example, you will need MySQL server and an account with privileges sufficient
to create and modify tables and their contents. For the next section, we assume that you have
these rights in the test schema.

�
 Connect to the MySQL server and make test the default schema.

� Create the following tables:
CREATE TABLE parent (

 parent_id bigint(20) NOT NULL,

 somevalue varchar(20) default NULL,

 PRIMARY KEY (parent_id)

) ENGINE=InnoDB;

CREATE TABLE child (

 x_parent_id bigint(20) default NULL,

 value bigint(10) default NULL,

 KEY fk_parent_id (x_parent_id),

 CONSTRAINT child_fk_1 FOREIGN KEY (x_parent_id) REFERENCES
parent (parent_id)

) ENGINE=InnoDB;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

309

There is a 1:0..* relationship between parent and child. Clearly, it is possible
(and intended) that there can be several children with references to the same
parent, even if they have equal values.

� Insert some sample data to demonstrate this:
mysql> INSERT INTO parent

�

 Instead, use these statements to add the Primary key:
mysql> ALTER TABLE child

 ADD COLUMN child_id BIGINT(20)

 AUTO_INCREMENT NOT NULL FIRST,

 ADD PRIMARY KEY(child_id);

Query OK, 9 rows affected (0.06 sec)

Records: 9 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE child

 MODIFY COLUMN child_id BIGINT(20) NOT NULL;

Query OK, 9 rows affected (0.08 sec)

Records: 9 Duplicates: 0 Warnings: 0

Notice that you cannot combine these two statements into a single
ALTER TABLE command.

� When inserting new data, make sure you provide Primary key values.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

310

How it works...
At first the statement presented first in the steps above would seem sensible to add a Primary
key column to the table:

mysql> ALTER TABLE child
 -> ADD COLUMN child_id BIGINT(20) NOT NULL FIRST,
 -> ADD PRIMARY KEY(child_id);
ERROR 1062 (23000): Duplicate entry '0' for key 1

The error message is a little hard to grasp at first, but becomes perfectly clear when thinking
more thoroughly about what MySQL tries to do here. First, let's have a look at the sample data:

mysql> select * from child;

Trying to add a column in MySQL will fill it with either NULL or with the data type's default
value—in this case 0 for a BIGINT column. Declaring it as a Primary key at the same
time then ought to fail because all 9 rows would get the same default value, violating the
requirement of uniqueness for a key column.

So to get around this, we need some initial distinct values for the column. Later on in the
application, you will have to provide unique key values for new records. Often the persistence
layer can provide generated keys once it has been told about the Primary key column. For the
initial round, the auto-increment feature comes in handy:

mysql> ALTER TABLE child
 -> ADD COLUMN child_id BIGINT(20) AUTO_INCREMENT NOT NULL FIRST,
 -> ADD PRIMARY KEY(child_id);
Query OK, 9 rows affected (0.06 sec)
Records: 9 Duplicates: 0 Warnings: 0

mysql> select * from child;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

311

This takes care of providing a unique value for each record's newly created Primary key
column. Because we do not need the auto-incrementing anymore, we can remove it again:

mysql> ALTER TABLE child MODIFY COLUMN child_id BIGINT(20) NOT NULL;
Query OK, 9 rows affected (0.08 sec)
Records: 9 Duplicates: 0 Warnings: 0

The values of the child_id column are retained; the final column definition just gets rid of
the temporary AUTO_INCREMENT option.

Unfortunately, this cannot be combined into a single ALTER TABLE statement because the
parser first checks if the statement's parts are all fine before beginning execution. However, at
the time the statement is checked, the latter MODIFY COLUMN segment is not valid because
at that time the child_id column does not exist yet.

There's more...
The above example only works for numeric key columns because the AUTO_INCREMENT
feature can only be used for those. If you need a different data type for key, you can of
course modify the second ALTER TABLE statement to change the column's type instead
of just dropping the AUTO_INCREMENT option. MySQL will then try to convert the numbers
that it inserted automatically to the newly defined data type—for example, VARCHAR or CHAR:

mysql> ALTER TABLE child
 MODIFY COLUMN child_id VARCHAR(20) NOT NULL;
mysql> INSERT INTO child VALUES ('foo',3,31);

After that you are free to use UPDATE statements to modify the key values to your liking.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

312

Allowing individual INSERT statements with
 "0" values in auto-incrementing columns

Auto-incrementing columns have many uses; primarily, they are used to automatically provide
Primary key values for new records inserted into tables.

The usual behavior for MySQL is to assign the next free number from the auto-increment
sequence to a record you insert that has either NULL or 0 as the value for any such column.

However, sometimes it may be necessary to insert an actual 0 value without assigning an
automatic replacement.

In this recipe, we will show you how to do so for individual INSERT statements.

Getting ready
You will need a MySQL user account that can insert data.

In the example that will follow, we will demonstrate how to execute a single INSERT
statement with a 0 (zero) column value, even though the table definition calls for this column
to be auto-incremented. We will assume a table called enumerator to be present in the
test database with the following structure:

CREATE TABLE enumerator (
 id INT NOT NULL AUTO_INCREMENT,
 textvalue VARCHAR(30),
 PRIMARY KEY (id)
) ENGINE=InnoDB;

�
 Connect to the MySQL server and make test the default database.

�

 Insert a record with a 0 value for the id column like this:
mysql> INSERT INTO enumerator VALUES (0,'Zero');

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

313

� Read back the data to verify:
mysql> SELECT * FROM enumerator;

� Reset the SQL_MODE variable to its previous value:
mysql> SET SESSION SQL_MODE=@OLDMODE;

How it works...
By default, MySQL will interpret 0 or NULL values for columns marked as AUTO_INCREMENT
as a sign to issue the next free number from its internal auto-increment counter and
substitute it for the 0 or NULL value in the INSERT received. This makes it generally easy
for applications to ensure conflict-free key values. However, for special requirements, this
behavior can be modified to allow 0 as a regular value for individual sessions. This is what
we did by adding the NO_AUTO_VALUE_ON_ZERO option to the SQL_MODE system variable
for the current session. Once the record has been inserted, we restore the variable to its
old value.

Globally allowing INSERT statements with
"0" values in auto-incrementing columns

In this recipe, we will show you how to set MySQL's default behavior to globally allow inserting
0 values in columns defined as auto-incrementing for a whole server and all connections.

Historically, MySQL created a new automatic value for any insertion with a 0 or NULL value
in a column set up as auto-incrementing. This can lead to unexpected behavior if the data
you are going to store contains actual zeroes—these will silently be converted to new values
from the auto-increment sequence. See the Appendix for a more thorough description and
demonstration of this effect.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

314

The MySQL online manual's description of the NO_AUTO_VALUE_ON_ZERO option contains
a paragraph on how this behavior could even lead to changed data when restoring tables
from backup dumps (just the opposite of what a backup is supposed to accomplish). For that
reason, current mysqldump versions (starting from MySQL 4.1.1) make sure that the option is
turned on automatically when restoring by including it in the dump file.

To avoid accidentally falling into the same trap, in this recipe we will globally enable
NO_AUTO_VALUE_ON_ZERO for all databases of the MySQL server instance.

Getting ready
You will need an operating system account with privileges to change the MySQL server
configuration file. To activate the new setting, you will have to restart the server after the file
has been edited.

�
 Open the MySQL configuration file with a text editor.

�

 Save the file.

� Restart the server.

How it works...
The per-session variable you set in the recipe mentioned earlier can be configured as a server
default by setting the value in the config file. This is what this recipe has shown how to do.
As an example of how the setting works, see the recipes listed in the See also section. Of
course, you will not need the SET SQL_MODE statements contained therein, as you set the
same behavior up as the default.

See also
f Allowing individual INSERT statements with "0" values in auto-incrementing columns

f Understanding auto-increment values (Appendix)

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

315

Choosing a suitable storage engine
When creating tables, either by mistake or on purpose, you may use a storage engine that
does not prove to be the right choice later. Fortunately, MySQL allows you to change the
storage engine type of existing tables with a single statement. Fittingly, MySQL extended the
syntax of the ALTER TABLE command to allow you to specify the storage engine as just
another property. The operation is non-destructive, which means existing data is preserved
in the table.

In this recipe, we will show you how to move a table from MyISAM to InnoDB. Of course, there
are many more storage engine types available, but these two are the most widely used and
therefore most relevant.

Getting ready
To follow along, you will need a MySQL user account with access to the test database and the
rights to modify table structures (the ALTER privilege). We will be using a table defined like this:

CREATE TABLE person (
 salutation char(10) DEFAULT NULL,
 firstname varchar(30) DEFAULT NULL,
 middle_initial char(1) DEFAULT NULL,
 lastname varchar(30) DEFAULT NULL,
 birthday date DEFAULT NULL,
 person_id int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (person_id)
) ENGINE=MyISAM;

If it does not exist yet in your test database, execute the above CREATE TABLE statement
before moving on.

How to do it...
�

 Change the table storage engine like this:
mysql> ALTER TABLE person ENGINE=InnoDB;
Query OK, 3 rows affected (0.24 sec)
Records: 3 Duplicates: 0 Warnings: 0

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

316

How it works...
The ALTER TABLE statement tells MySQL to create a new InnoDB table with the exact same
definition as the source table and copy all the contents over there. Once done, the original
table will be removed and the new one put in its place. This operation does preserve all data
in the original table.

However, as changing the storage engine effectively means storing the data in a different
format on disk, your server will have to deal with potentially lots of I/O, directly proportional to
the current size of the table. In this example, the table was very small (only three records) so
everything went quickly.

Large tables, however, will take much longer because not only will all data
have to be read, but also written simultaneously.
During that operation, MySQL will allow read operations, but any writes
(UPDATE, DELETE, and INSERT) will be delayed until the conversion is
complete. Only then will they execute against the new table. This will cause
trouble for most applications not expecting their operations to take that long!
This is why you will want to delay changing the storage engine to a low-traffic
time period or better yet, an offline maintenance window!

Moreover, your disks must provide enough space for the tables in both the old and the new
formats at least temporarily because MySQL will only remove the old table once the new one
has been successfully created and all the data has been transferred.

Be careful here that different storage engines have different disk space requirements for the
same data. InnoDB tables tend to be larger than their MyISAM counterparts.

There's more...
The example outlined in this recipe was a very simple one—converting from MyISAM to
InnoDB is usually no problem because InnoDB basically offers the same features as MyISAM
and more. However, you will not be able to convert MyISAM tables that have full-text indexes
because those are not supported by InnoDB. If you try to alter the engine type on such a table,
you will get an error message:

mysql> ALTER TABLE forum_posts ENGINE=InnoDB;
ERROR 1214 (HY000): The used table type doesn't support FULLTEXT
indexes

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

317

Converting tables from InnoDB to MyISAM is usually less common, but still possible, as long
as there are no Foreign key relationships in place. This applies to both sides of any such
relationship. If, for example, you had two InnoDB tables called parent and child, where
child records were set up to refer to their parent row in that table, trying to change the
engine on any of these would fail:

mysql> ALTER TABLE parent ENGINE=MyISAM;
ERROR 1217 (23000): Cannot delete or update a parent row: a foreign
key constraint fails

mysql> ALTER TABLE child ENGINE=MyISAM;
ERROR 1217 (23000): Cannot delete or update a parent row: a foreign
key constraint fails

Before you could change the storage engine for those, you would have to first drop any Foreign
key constraints on them.

Apart from MyISAM and InnoDB, there are many more storage engines available. For
information on their respective capabilities and other properties please refer to Chapter 13 of
the MySQL online manual at http://dev.mysql.com/doc/refman/5.1/en/storage-
engines.html, and to the ALTER TABLE documentation in section 12.1.7 at
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html.

Keeping a watch on silent engine substitution
Special attention should be paid to the fact that MySQL might silently ignore your request or
even modify the storage engine type to a default one, if the one you specified is not available
on your server. The exact behavior depends on your MySQL server version and the setting of
the SQL_MODE configuration variable:

MySQL 5.1.11 and
older

MySQL 5.1.12 and newer

NO_ENGINE_SUBSTITUTION specified Gives error Gives error
NO_ENGINE_SUBSTITUTION disabled
(missing)

Uses default storage
engine and issues
warning, not error

Ignores requested engine
and issues warning,
not error

Please note that this table does not apply to CREATE TABLE, but only to ALTER TABLE.
For more information on this topic, see the MySQL online manual, section 5.1.8 on Server
SQL Modes at http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.
html#sqlmode_no_engine_substitution.

We recommend always enabling the NO_ENGINE_SUBSTITUTION option
to avoid risking missing a warning and running into problems later on!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

318

Improving the performance of ALTER TABLE
for InnoDB

This recipe will show you a way of limiting the unavoidable impact of InnoDB table alterations
to the necessary minimum.

Unfortunately, there is no way of circumventing that, as ALTER TABLE on InnoDB is
a time-consuming and I/O-intensive operation, but planning ahead can make a huge
difference as to how severe the impact on your systems will be.

Getting ready
While this recipe applies to any InnoDB table, the actual benefits of the following
recommendations are best seen with a large table. For the example below, we will be using
the employees sample database's salaries table, which contains slightly less than 3
million records and is about 100 MB in size. This sample database can be downloaded from
the MySQL website at http://dev.mysql.com/doc/employee/en/employee.html.

The table is defined like this:

CREATE TABLE salaries (
 emp_no int(11) NOT NULL,
 salary int(11) NOT NULL,
 from_date date NOT NULL,
 to_date date NOT NULL,
 PRIMARY KEY (emp_no,from_date),
 CONSTRAINT salaries_ibfk_1 FOREIGN KEY (emp_no) REFERENCES
employees (emp_no) ON DELETE CASCADE
) ENGINE=InnoDB

We will add an index to the from_date column and also add a column called remark.

You will need a user account with sufficient rights to change the table definition.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

319

How to do it...
�

 This will take some time.

How it works...
When modifying an InnoDB table using the ALTER TABLE command, in most MySQL
installations (see the There's more... section for information about exceptions) it will perform
modifications by first creating a new table with the modified definition, then copying all data
from the original table, and finally swapping the newly-created, modified one for the original.

As tables grow, this can take a long time, creating lots of I/O activity for the copy procedure.
Making matters worse, this process requires much disk space because temporarily you will
have both the original table and the copy present on disk, filling up the remaining space and
thereby potentially influencing other applications. But even just inside MySQL itself you may
run into problems because your tablespace might not have enough free space left to hold
both copies of a large table.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

320

Using a second connection, you can actually see the temporary table being used through the
following command while the ALTER TABLE is still running:

mysql> SHOW FULL PROCESSLIST \G

Though you cannot prevent InnoDB from copying the tables for modification, you can at least
minimize the influence of this procedure by trying to make all necessary modifications at once.
That means instead of, say, first adding a new column with one ALTER TABLE command and
then adding the new index with a second one, you combine both in a single statement.

The longer composite statement itself may not be as readable as individual ones (even though
you can work around that with proper indentation and formatting), but it will only require a
single copy pass instead of one for each modification.

There are limits to this (for example, you cannot drop a constraint at the beginning of the
statement and then add another one with the same name later), but in general, this is the
way to go as soon as the table in question contains more than just a couple of rows.

The example statement above took 1 minute and 34 seconds on my iMac. The same computer
with an unmodified MySQL server configuration took 3 minutes and 2 seconds when issuing two
separate ALTER TABLE statements for the index and the new column individually.

There's more...
Starting with MySQL 5.1, storage engines can be loaded into the MySQL server as plugins.
Although InnoDB comes bundled with MySQL, there is a separate plugin version that is
developed independently of the main server. At the time of writing this book, MySQL version
5.4 was in beta and contained some of the newer features that were only available in the
plugin release, available from http://www.innodb.com. As the MySQL server release
model is currently in a state of change, it is hard to predict what the most recent version
will be at the time you are reading this and what it will be called.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

321

However, apart from other improvements, the main feature worth mentioning is called fast
index creation. It allows creating and dropping indexes without needing to copy a table and all
its data. This can alleviate the pain of schema modifications significantly. However, due to the
MySQL bug #33650 (http://bugs.mysql.com/bug.php?id=33650), this feature cannot
be used if any of the indexed columns are configured to use utf8 as their text encoding. We
suggest you monitor this bug if you want to try out the plugin.

Using a stored procedure to conditionally
add columns or indexes

Several of MySQL's schema-related commands allow for an IF EXISTS clause, which is
a very useful addition to standard SQL syntax because it allows for more robust automatic
schema handling. When you need to do unattended schema manipulations, for example,
re-create a table when you do not know for sure whether it exists on the target system, you
simply do a

DROP TABLE IF EXISTS tablename;
CREATE TABLE tablename (...)

Without the IF EXISTS clause, the DROP TABLE statement would fail if the table was not
present when executing the script and abort the execution immediately, in effect ending up
without the new table.

Unfortunately, there are some cases where the IF EXISTS clause would come in handy, but
is not supported by MySQL. One such case is the addition of new indexes to an existing table.
In this recipe, we will present a way to work around this limitation and write portable and
robust scripts to modify a table unattended.

Note that this is primarily useful for the automatic execution of updates to databases that
are not under your immediate control, for example, as part of a software update installer.
For manual modifications of a schema, it is usually way less work to have a look at the current
table structure first to determine if there is anything to do in the first place.

Getting ready...
In the following example, we will be modifying two tables in the test database schema. They
will be identical, except for one having an index IDX_B already, while the other does not. To
follow along, you will need a user account with sufficient privileges to first create these tables
and then modify them. This is done via a stored procedure that you must have the rights to
create as well.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

322

These are the table definitions:

CREATE TABLE TableA (
 col_A int(11) DEFAULT 1,
 col_B varchar(40) DEFAULT NULL
) ENGINE=InnoDB;

CREATE TABLE TableB (
 col_A int(11) DEFAULT 1,
 col_B varchar(40) DEFAULT NULL,
 KEY IDX_B (col_B)
) ENGINE=InnoDB;

�
 Connect to the MySQL server using an administrative user account.

2. Create a stored procedure with the following sequence of instructions. The meaning of
all the steps will be explained in the How it works... section:
mysql> DELIMITER $$

mysql> DROP PROCEDURE IF EXISTS sp_AddIndex $$

mysql> CREATE PROCEDURE sp_AddIndex

 (tblName VARCHAR(64),ndxName VARCHAR(64),

 colName VARCHAR(64))

BEGIN

 DECLARE IndexColumnCount INT;

 DECLARE SQLStatement VARCHAR(256);

 SELECT COUNT(index_name) INTO IndexColumnCount

 FROM information_schema.statistics

 WHERE table_schema = database()

 AND table_name = tblName

 AND index_name = ndxName;

 IF IndexColumnCount = 0 THEN

 SET SQLStatement = CONCAT('ALTER TABLE ',tblName,' ADD
INDEX ',ndxName,' (',colName,')');

 SET @SQLStmt = SQLStatement;

 PREPARE s FROM @SQLStmt;

 EXECUTE s;

 DEALLOCATE PREPARE s;

 END IF;

END $$

mysql> DELIMITER ;

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

323

3. Call the procedure, providing the table name, index name, and the column to
be indexed:
mysql> CALL sp_AddIndex('TableA','IDX_B','col_B');

4. Clean up, removing the procedure and resetting the statement delimiter:
mysql> DROP PROCEDURE IF EXISTS sp_AddIndex;
mysql> DELIMITER ;

How it works...
While MySQL does not offer a direct way of executing the statement only if the target index
already exists, a stored procedure can be used to perform this check. The first statement is
used to change the default statement delimiter from ; to something different—two dollar signs
$$ in this case. This allows the definition of the actual procedure contents in a more natural
form, using the default semicolons to separate the routine's commands.

The first application of this new delimiter is a statement to drop any procedure with the
same name as that we are about to use. It ends with $$, the temporary replacement for the
usual semicolon.

After that, the actual procedure is declared. It is called sp_AddIndex (sp_ being a
common prefix for stored procedures, but this is not strictly necessary) and takes three input
parameters to work with. The first one is the table name to operate on, the second one is used
to pass the name of the target index, and the last one the name of the column(s) the index is
supposed to span.

It then queries the INFORMATION_SCHEMA to find out if there already is an index with the
given name on the given table in the current schema. The result of the COUNT() query will be
zero if there is no index matching the given criteria. This is then checked in the IF statement,
guarding the building of a suitable ALTER TABLE … ADD INDEX statement, which is finally
executed. If an index already existed, the IndexColumnCount result will be greater than
zero, hence skipping the ALTER TABLE statement.

Finally, the procedure is called for TableA and col_B with an index name of IDX_B. Once
the procedure is completed, it is dropped again and the default delimiter is restored to
the semicolon.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

324

There's more...
Of course, you need not drop the procedure if you plan to use it more regularly. However, this
example was taken from an automated script we use to update large numbers of servers from
time to time. Therefore, we usually create and drop such maintenance procedures as needed.

At the time of writing this book, there was a bug in MySQL version 5.1.30 that lead to a wrong
result of the COUNT() query inside the procedure on Mac OS X and Windows. After contacting
MySQL support and some e-mailing back and forth, MySQL Bug #46771
(http://bugs.mysql.com/bug.php?id=46771) was put into their bug database.

While I recommend you to go and check on the state of things when you read this, the bottom
line is that the INFORMATION_SCHEMA pseudo-database does not answer queries correctly,
unless you enter table names all in lower case! Usually, you would not notice on Windows
or Mac OS X because their default file systems do not make a difference between two files
if their names only differ in upper/lower casing, while most Unix file systems do.

To work around this bug, make sure you only use lower case table names if you manage the
server on one of those operating systems, unless you find that your server version has already
been fixed.

Improving query performance for InnoDB
tables with BLOB columns

MySQL and InnoDB behave in a hardly predictable way when querying tables that contain
BLOB columns. This might catch you off guard and cause slow performance where it would
not have to be. This is caused by a bug (or a missing feature, depending on your perspective)
in MySQL.

In this recipe, we will demonstrate how to reproduce this bug, and in the How it works...
section explain how to work around it. Of course, you should first check the above bug report
and see whether it has been fixed at the time you are reading this in the MySQL server version
you are using. However, as this bug has been open since 2004 and has been prioritized as a
feature request, I do not think chances are especially good that this has happened.

Getting ready
To follow along, you will need a MySQL user account with sufficient privileges to create tables
in the test schema and insert data into them. For the BLOB contents, a file will be needed
to read from. In the example, we will use /tmp/blobdemo, but the content is not at all
important. You could also use any other file at your disposal.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

325

How to do it...
�

 Create a table with this structure:
mysql> CREATE TABLE blobtest (
�

 Execute the following command 10 times to produce some test data:
mysql> INSERT INTO blobtest (intB, contents)

�

 Execute a query that explicitly excludes the BLOB column:
mysql> SELECT intA, intB FROM blobtest WHERE intB=0;
Empty set (0.01 sec)

Notice that this query was completed significantly faster than the one
before, even though they both queried the same condition on the
same table and did not have to return any rows.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

326

How it works...
Back in 2004 we filed MySQL Bug #7074 (http://bugs.mysql.com/bug.php?id=7074),
which reports this unexpected behavior. Heikki Tuuri, the inventor of InnoDB, confirmed our
guess that MySQL first reads all the columns you specify in a SELECT statement from the
data store, before applying the WHERE condition to them. This is usually a good idea because
in case the criteria match, you already have all the data at hand. However, for BLOB columns,
this can quickly become overly expensive in terms of execution time because lots more data
has to be read from disk.

In the previous example (which is the same as in the bug report), we intentionally issued two
queries that do not match any rows—all the values of intB have been set to the constant
value 100—to show the effect very clearly.

Of course, this is only an issue if InnoDB cannot use an index to check for the WHERE con-
ditions. If it finds a suitable one, no BLOBs will be read in the earlier example for any of the
queries, no matter which columns are requested in the SELECT. However, depending on the
execution plan the optimizer generates, you might still end up with a situation like this if the
circumstances are right. This is what actually happened to us—which is how we found out
about the problem in the first place—and was tricky to diagnose.

So in the end there are two strategies to prevent this from hitting you:

f Make sure all queries against the table in question are covered by an index.

f Do not use SELECT * or a complete list of columns in your queries and only look
up the key values of the rows you want to process. Then go and retrieve the BLOB
columns with another query, leveraging Primary key lookups.

While having good indexes in place is always a thing to strive for, we also strongly recommend
only reading the columns you are actually going to use in any query. Especially, using the
* wildcard in your programs can make them susceptible to errors when you have to make
modifications to the table structure—column ordering being a good candidate—in the future.
Apart from making your software more robust, it can also help reduce network load between
the client and the server.

There's more...
If you do not want to use a real file for the BLOB columns contents, you can easily create a file
filled with completely random contents from the Linux or Mac OS X command line like this:

$ cd /tmp

$ dd if=/dev/urandom of=blobfile bs=4096 count=16

16+0 records in

16+0 records out

65536 bytes transferred in 0.008941 secs (7329882 bytes/sec)

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

327

What this does is read from the pseudo-device called /dev/urandom that simply provides
a continuous stream of (almost) random bytes (the if parameter is short for input file)
and writes 16 blocks of 4,096 bytes (bs means block size) to the output file (of for short)
called blobfile.

By varying the bs and count parameters, you can control the size of your output file.

Identifying differences between two
schemas

Especially when preparing software upgrades, it is important to know the differences between
a previous release's database schema and the current, probably modified development
version. There are several tools available to create a report on the differences between two
schema definitions, trying to make smart guesses as to what went on. Nevertheless, we
found most of them to be of only limited use. This is mostly due to the fact that whenever any
automated tool compares two schema definitions, it cannot know about many aspects that
are obvious to the human eye.

Consider a simple column rename, for example. In a previous schema version, a column might
have been simply called name while in the current release it is to be called lastname. Having
a look at the old and new individual table definitions will not reveal, however, that those two
columns have any relationship. Most automated tools will tell you to DROP COLUMN name and
ADD COLUMN lastname. This is, of course, not what you want to do because doing that you
would lose all the personal data already stored in the table.

In the end, from our experience it is the most primitive, but also the most efficient way
to compare two schemas by simply text-diffing their definitions. This is what we will do in
this recipe.

Getting ready
To follow along, you will need privileges to create a structure dump of both the old and the
new schema definitions. In the next example, we assume you have already dumped the
schema definitions to two files called old.sql and new.sql. You can find these files on the
book's website for download. They contain information about three tables called TableA,
TableB, and TableC in the test schema.

Table definitions for TableA and TableB are different in several details, while TableC is
missing completely in new.sql.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

328

On Mac OS X and any Linux distribution, the diff command is part of the usual
operating system installation. Windows users will have to get hold of a copy of a text
comparison tool separately. The diff command for Windows is part of the Unix Utilities
(http://unxutils.sourceforge.net), while WinMerge is an open-source graphical
utility and can be downloaded from http://winmerge.org. Many modern text editors and
development environments (like Eclipse) do include a text comparison feature as well. Some
of them are available cross-platform.

The steps below show a screenshot using WinMerge. The same information can be obtained
using the diff program. See the There's more... section for details.

�
 Put both old.sql and new.sql in a common folder.

� Open them both in WinMerge. You will see a screen like this:

3. You can see the differences highlighted by color. The tool tries to align the two files so
that the lines match up to make the comparison easier to understand.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

329

� Identify the differences between the old and new schemata
based on this output and formulate the appropriate ALTER TABLE statements. New
table creations and dropped tables need no changes, of course. For this example, the
following modifications are required:
mysql> ALTER TABLE test.TableA

�

 Repeat the schema dump for the altered schema tables and
compare again against the expected schema. You should not see any more structural
differences, if your modifications were correct.

How it works...
The principle of this recipe is quite simple and very straightforward: create a textual
representation of the current (old) schema and the desired (new) schema definitions and
compare them.

Based on the result and your knowledge about the context of the changes, you then write the
appropriate ALTER TABLE statements to migrate your schema from the old to the new version.

Finally, you rerun the comparison to make sure your modification statements were doing the
right thing.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

330

There's more...
For automation or pure command-line access to servers, the textual output of the diff tool
can be more suitable. Most versions of diff have a wealth of options, but the most important
one is -u, producing a unified diff formatted output:

$ diff -u old.sql new.sql > difference.sql

The newly created difference.sql file will contain the same information WinMerge showed
visually, but in a standardized textual format. You can find the difference.sql file on the
book's website, too.

If you are familiar with the diff tool, the output should be pretty obvious to you. If not, have a
look at the following simple example (taken from the recipe steps earlier):

--- old.sql 2009-12-15 00:39:40.000000000 +0100
+++ new.sql 2009-12-15 00:39:35.000000000 +0100

These first two lines tell you which files were compared with one another. The first line is
prefixed with three minus signs (---), telling you that whenever one of the following lines
starts with a minus, that line was taken from the old.sql file.

Similarly, the second line informs you that any subsequent line starting with a plus sign was
taken from the new.sql file.

After that, the diff tool renders lines with different contents from old.sql and new.sql
like this:

 CREATE TABLE `test`. `TableA` (
 `A_ID` int(11) NOT NULL AUTO_INCREMENT,
- `col_A` int(11) NOT NULL DEFAULT '1',
+ `col_A_new` int(11) DEFAULT '1',

The first two lines serve to give some context that was identical in both files. This allows you
(and automatic tools reading the diff output) to better understand where the differing lines
were found in the input files.

In this case, we can clearly see that the definition of TableA was changed. The line starting
with - shows what it looks like in the old.sql file, the line directly below, prefixed with +, is
the new version. So you see that the column was renamed from col_A to col_A_new while
at the same time dropping the NOT NULL constraint. This change will need to be taken care
of with an ALTER TABLE statement to migrate TableA from the old to the new schema.

With some practice, reading this output will become second nature to you. However, if you do
not want to mentally parse this format, we recommend one of the many graphical diffing tools
available. If you cannot use these, the diff command has a -y option that displays the two
files side by side:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

331

The differences are marked by the characters in the middle between the file contents. For
more information, consult your diff command's man page.

See also...
f Comparing schema revisions using hash values

Comparing schema revisions using
hash values

When dealing with software product versioning, you almost invariably will be facing a situation
where you have to upgrade a database schema from one version to a newer one. The problem
now is that even with robust scripts, you cannot be 100% sure that your updates will work
correctly, unless you are perfectly sure they are applicable to a current schema release on
a client's computer. This is even more true when the updates are run unattended, which is
a scenario we often face when silently upgrading several hundred MySQL instances across
several countries.

Applying an unsuitable set of ALTER TABLE or even DROP TABLE commands to a database
might lead to unrecoverable data loss and a broken system. This is something you will want to
avoid at any cost.

A simple way to try to make sure you know what you are dealing with would be to just
compare the version of the accompanying application or the contents of some (fictional)
special schema_version table that gets updated with every new software release. However,
this is not very reliable and probably just not good enough if you need to apply critical changes.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

332

In this recipe, we present a way to calculate checksums for table schemas that enable you to
verify beyond doubt if you are dealing with a well-known version that has not been modified.
This is based on cryptographic checksums that were specifically designed for this purpose.
Using an approach like this is superior to, say, a schema_version table because that could
easily get out of sync with reality, be it due to someone patching the database or simply
because some developer forgets to change the version number when they make their next
schema modification.

This method will tell you whether a schema conforms to a given well-known
version you tested your modifications with. It will not tell you what the exact
differences are, but rather which of the many possible schema versions you
are currently dealing with.

The major benefit of using this hash-based approach is that you can use it to uniquely identify
any given schema version. This is very handy when you are tracking a whole lot of different
versions because the hash values are very short and relieve you from carrying around all the
historic versions of schemas you might have. Instead, your upgrade process could choose
from a several available update scripts the one that is suitable for upgrading to the most
recent version the particular schema it identified on the target machine.

Getting ready
To follow along, you will need operating system and MySQL user accounts with privileges
sufficient to run a mysqldump command targeted at the schema you would like to calculate a
hash value for. In this example, we will be using the test database schema that contains two
tables TableA and TableB. The exact definition of those tables is not really important. You
can use any other schema as well. However, to try out provoking a hash checksum mismatch,
you will have to make at least some minor modification to the schema you pick.

The program used here to calculate the hash values is written in Java. This is not mandatory;
of course, the general principle can be implemented in any language you like. We chose Java
because it is available for practically any platform and is often installed anyway, especially on
Windows, where it is probably more common than Perl, for example.

If you do not have a Java Runtime Environment (JRE) installed yet, please download and
install it before you proceed. The machine you install it on need not be the MySQL server
machine, but can be your workstation instead. However, you will have to be able to connect to
the MySQL server via the network in that case, which might be restricted by the MySQL user
account setup or your company's network firewalls.

A description of the algorithm used by the program can be found in the How it works... section.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Chapter 9

333

How to do it...
1. Download the dbhash.jar file from the book's website. It contains a pre-compiled,

runnable version of the dbhash tool.

2. On a command line, enter the following command, substituting your own server,
database, and user names appropriately:
$ java -jar dbhash.jar /usr/bin/mysqldump localhost 3306 test root
rootpw

� The first parameter is the path to the mysqldump tool. Then
follows the MySQL host (localhost) and port (3306), the database schema (test),
and then the user name (root) to use and its associated password (rootpw).

�

 Rerun the same command again:
$ java -jar dbhash.jar /usr/bin/mysqldump localhost 3306 test root
rootpw

� Compare the new hash value with the previous
one. They will be completely different. This proves beyond doubt that the schema was
modified between the two runs of the hashing tool. If you dropped the table again and
ran the program a third time, you would get the same hash value as the first time.

� Before releasing any
new schema version of your database, run the hashing tool and record the calculated
value together with the version number. By doing so, you can build up a complete list
of supported database schema versions, being sure to recognize them beyond doubt.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Managing Schemas

334

How it works...
Contained in the dbhash.jar file is a program that does the following:

f Connect to the MySQL server by running the mysqldump command from the provided
location. It will automatically use the correct parameters to retrieve a "structure-only"
dump. No database contents will be read.

f Apply some processing to the retrieved dump. What this primarily does is sort con-
straint and index definitions to have them conform to a predictable ordering. This
"format normalization" is important because the cryptographic hashing function that
is going to be used will produce different results, even when the only difference
between two runs is in the ordering of those. mysqldump does not provide a
completely predictable order regarding the output of such information. Moreover,
whitespace will be removed to make sure no platform-specific line endings will
influence the result.

f A SHA-1 hash of the normalized schema definition is calculated and printed. For more
information on this algorithm, please refer to http://en.wikipedia.org/ wiki/
Sha-1. The main characteristic of any hash function is that even a slight change in
the input will produce completely different and non-reversible results. This ensures
that no two different inputs will ever have the same hash value. Therefore, by
comparing the results of two runs against two database schemas, you know for sure
if they are perfectly identical or have even the slightest difference.

There's more...
You can access the program's source code by downloading the dbhash-src.zip file from
the book's website. You will find a src folder inside it with the full source code of the program.

See also...
f Identifying differences between two schemas

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

In this chapter, we will cover:

f Avoiding silent replication disruption on full master disk

f Maximizing usable memory on 32-bit Windows

f Using separate temporary directories for multiple MySQL servers on a single
machine, preventing conflicts

f Non-availability of InnoDB may escape monitoring

f Troubleshooting "Can't start server: Bind on TCP/IP port: No such file or directory"

f Choosing character sets

f Understanding auto-increment values

Introduction
This appendix is a collection of several pieces of information we deemed important for
a MySQL administrator to know, but which did not really fit the style of a recipe as such.
However, many of the issues you will find here took us hours or sometimes days to figure
out. We would like to spare you this time by making our experiences available here.

Naturally, you need not read this chapter from beginning to end—just as in the rest of the
book, all items should be individually useful and understandable.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

336

Avoiding silent replication disruption on full
master disk

While using replication, you might experience corrupted or incomplete binlog files on the
master when the disk they get stored on becomes full. In older versions, the file would be
started and when the disk became full in the middle of an event being written, this partial
data would be replicated and cause errors on the slaves.

Versions 5.0 and up handle an out-of-space situation more gracefully, as they do not write
partial statements to the binlog and try harder to keep the table data and the binlog in sync.
However, you still need to be aware that there is no 100-percent sure way of preventing
problems on the slaves because under certain circumstances you can end up with the last
statement having executed in the database, but not recorded in the binlog.

The master server will log this fact into its logfile, so your monitoring system might pick this up
with lines like:

The binary log <name> is shorter than its expected size.

but still the problem remains.

The MySQL manual has more details about this in chapters 5.2.4 at http://dev.mysql.
com/doc/refman/5.1/en/binary-log.html and B.1.4.3 on disk-full problems at
http://dev.mysql.com/doc/refman/5.1/en/full-disk.html.

The bottom line about this, however, is that even with the most conservative
settings—--sync_binlog=1 and --innodb_support_xa=1, leading
to reduced performance due to more disk syncs—you can still end up with
incomplete binlogs, be it on MySQL's part or the operating system's, requiring
you to reset the replication and manually re-sync the slaves from a fresh dump.

Considering the performance penalties, the options MySQL offers to limit the risks of damaging
the binlogs and the fact that they do not guarantee problem-free operations anyway, we
recommend investing your resources in a reliable system-monitoring solution that will keep
you informed about critical conditions regarding disk space and allow you to prevent these
problems in the first place.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

337

Maximizing usable memory on 32-bit
Windows

MySQL is a cross-platform piece of software, with versions available for all major operating
systems and even embedded devices. Many enterprise-level servers nowadays are 64-bit
hardware and operating system combinations. However, at the time of writing this book,
there's still a large number of 32-bit systems in active use.

Limitations of 32-bit systems
One of the major limitations of 32-bit systems is their inherent limit of a maximum of 4 GB
address space per process, meaning that no process on such a system can ever address
more than 4 GB of memory. However, on typical 32-bit operating systems, there is an ever
lower limit in place. On Windows, this address space is split in half: 2 GB for the application
and 2 GB of reserved addresses for kernel use. In this half of the address space, there are
areas reserved for all sorts of hardware interfaces including graphics cards and extension
cards—precious addresses that cannot be used to address bytes in RAM chips.

In effect this means that any process—including a MySQL server—can use at most 2 GB
of combined RAM on a 32-bit Windows system. This is even true for systems running, for
example, Windows Server Enterprise Edition, which supports much more physical memory
in a machine using some clever trickery. Even though in total they can support many
Gigabytes of memory, the per-process limits still apply.

Impact on MySQL/InnoDB
For a typical InnoDB-centric MySQL configuration, you would usually assign most of the
available 2 GB per process to the InnoDB buffer pool (configuration setting innodb_buffer_
pool_size). However, you will often notice that even though the total of all buffer sizes is
less than this limit, you might still end up with error messages, when trying to start the server,
that look like this:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

338

In this example, we tried a 1,500 MB buffer pool size. This kind of problem is regularly caused
by memory fragmentation. InnoDB tries to allocate a large, contiguous area of the address
space for the buffer pool here. However, even before this takes place, the operating system may
have loaded shared libraries (DLLs) into the 2 GB user address space available to the process
(0x00000000 - 0x7FFFFFF) effectively splitting the available address range, so that InnoDB
cannot get a large enough contiguous chunk for its buffer pool. Such libraries can be part of
anti-virus solutions or management suites that need to hook on to all processes in a system.

The freely available Sysinternals ProcessExplorer tool (downloadable from Microsoft's website
at http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx) can
help you find out details in situations like this:

In the previous screenshot, you can see a MySQL process that has its address space
fragmented by two DLLs (see the lower pane)—one part of Sophos Antivirus and the other
part of the NetInstall software management suite. Both DLLs take up only a small amount of
memory for themselves; however, their position in the address space makes them a problem
for InnoDB. The Sophos Buffer Overrun Protection Library is loaded at address 0x552F0000.
This is only 1,358 MB from the start address of mysqld-nt.exe (0x40000) and prevents a
1,500 MB block from being assigned. If they were located at the far end of the address range,
InnoDB could allocate a block of memory large enough to function. Compare this with the next
picture where the anti-virus software has been removed from the system:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

339

In this setup, InnoDB can start just fine because there is a contiguous range free from
0x400000 to 0x641F0000, sized 1,597 MB. See the following screenshot showing the
InnoDB status output section (produced by entering SHOW ENGINE INNODB STATUS\G on
a MySQL command-line) telling you about the number of 96,000 available 16 KB pages in the
buffer pool. This is exactly the 1,500 MB the configuration variable
innodb_buffer_pool_size is set to in this server's my.ini file.

Usually, we would recommend a switch to more capable 64-bit hardware and
operating system setups if these memory limits become an issue. However,
there might sometimes be external factors preventing that.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

340

If you hit a problem like this, you have to try to decide whether either you can get rid of the
problematic libraries completely (by not using the program they are associated with), or you
should contact their respective vendors to find out if they can provide a different version of the
same DLL that gets loaded into a more convenient address range.

Warning!
Editing the registry can severely damage your system setup, up to the point of
not being able to boot or access it at all; so make sure you know what you are
doing. Get in contact with any software vendor whose libraries you disabled to
get clearance to try this; some libraries might be vital for your system
to function!
We strongly recommend making a system backup before you proceed with this!

For testing, you can modify the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs registry key to control which DLLs get
loaded when a process starts. After making sure this will not affect the stability of your
system, remove the DLLs in question from this key and restart the MySQL server. Verify if you
can now use a larger amount of memory.

Getting even more with the /3GB switch
To get even more memory available to MySQL on 32-bit systems, you might consider using
the /3GB boot parameter. This parameter, which can be added to the boot.ini file, will tell
Windows that you intend to run programs that need more than 2 GB of address space.

What it will do is present programs that are prepared for it (they need to be compiled with
support for this) with a 3 GB address range for application use and reserve only 1 GB for
kernel purposes. MySQL versions 5.0.79 and up and 5.1.33 and up are compiled to benefit
from this configuration. However, using it can adversely affect your system in other ways.
Refer to the Microsoft website or their support for more information.

Also note that this will not enable you to allocate more than 2 GB to the buffer pool alone;
however, the MySQL server could use the extra space for other buffers.

The following screenshot was taken on a Windows machine that was booted with the /3GB
option in place and shows a MySQL server process using more than 2 GB:

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

341

This is the InnoDB status output showing a 1,750 MB buffer pool on a 32-bit system:

Using separate temporary directories for
multiple MySQL servers on a single
machine, preventing conflicts

Whenever you run multiple MySQL server instances, which are possible by configuring
different sockets or TCP ports, you need to make sure to also configure a different temporary
directory for each instance.

This is not clearly documented and often it will work flawlessly, even if they share a common
temporary directory. If you do not specify a custom directory, the system's temporary directory
will be used.

However, a regular behavior of the MySQL server is to clean up any remaining temporary files
it may have created and left behind in a previous run. While this is generally a sensible idea,
the implementation is somewhat lacking. Upon start, each server process deletes all files from
its temporary directory whose file names start with #sql—regardless of who created them
(files) in the first place (and assuming it has sufficient access rights).

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

342

A problem now arises if one MySQL server is running and currently using a temporary
file (which will have a name starting with #sql) while another instance comes up. In
this situation, the second daemon will delete the file the first instance is currently using.
Depending on the file system and operating system, this will cause issues. For example,
SQL statements in the first, already running, server will fail with an:

ERROR 6 (HY000): Error on delete of 'C:\WINDOWS\TEMP\#sql_4a2c_1.MYI'
(Errcode: 2)

error because the temporary file has already been deleted by the other process.

The issue is discussed as MySQL Bug #47679 at http://bugs.mysql.com/bug.
php?id=47679. At the time of writing this book, the only workaround was to configure
distinct temporary directories for every MySQL server instance you start, using the
tmpdir configuration variable in either the configuration file or as an additional
command-line parameter.

Preventing mysqldump from failing with
Error 2013

This is a description of how to prevent mysqldump failures that are hard to explain and only
happen sporadically.

Diagnosing the symptoms
When taking backups of a database containing large rows—usually with BLOB columns—you
might sporadically experience error messages like:

mysqldump: Error 2013: Lost connection to MySQL server during query
when dumping table `tablename` at row: 1342

One of the strange symptoms of this problem is that the row number may vary between runs
of the identical statement on an unchanged set of data and that there seems to be nothing
wrong with the records specified in the error message.

We ran into this problem time and again, but very infrequently, over the course of several
months. Often restarting the dump would make the problem disappear, only to have it come
up again after a seemingly unpredictable number of successful runs.

The problem was finally diagnosed and identified as documented in MySQL Bug #46103 at
http://bugs.mysql.com/bug.php?id=46103.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

343

Finding the cause
When mysqldump runs, it will connect to the MySQL server using a network connection—just
like any other MySQL client. As such it is subject to the usual settings, especially the different
network timeouts and the max_packet_size setting.

What may now happen with large table rows is that the net_write_timeout may be set to
a time limit that is too short to transfer a whole data packet of max_packet_size bytes
length from the server to the client and write it to the disk there. From our experience, this
might even happen on a loaded machine when mysqldump is connecting via localhost.

To the MySQL server, this will look as if the client is not responding anymore and it will
terminate the connection after net_write_timeout seconds, causing the error message
shown earlier. As this problem is connected to server and network load factors, the error
message can contain varying row numbers, making the problem even more difficult to
understand at first glance.

Preventing the problem
The fix is quite easy—configure the net_write_timeout value to a large enough value
before running mysqldump, making sure that a full data packet can be transferred via the
network and its contents be written to the SQL dump file:

$ mysql -e "SET GLOBAL net_write_timeout=120;"

This will give mysqldump two minutes to retrieve and store a single data packet, which should
be plenty even for large BLOB columns.

The bug report #46103 is being kept open as a feature request at the time of writing
this, so that mysqldump will request a long enough timeout automatically. Until that gets
implemented, you can use the workaround presented here.

Non-availability of InnoDB may escape
monitoring

If the MySQL configuration file specifies parameters that make InnoDB fail to start—for
example, too large memory values for the buffer pool—the server will start up without this
particular storage engine, unless you have specified default-table-type=InnoDB in the
configuration, too. If InnoDB is your default storage engine as per that parameter, then server
startup will fail when InnoDB is not available.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

344

One reason to be wary of this is that, if you are just monitoring if the server has been started
and maybe do a simple query on the mysql database (or any other non-InnoDB table for that
matter), then you might fail to notice that your server is not running correctly in time.

If you are using InnoDB primarily anyway, you should use the default-table-type
parameter to make sure your server does not start up at all, if there is a problem with InnoDB.

Troubleshooting "Can't start server: Bind on
TCP/IP port: No such file or directory" error

When running on Windows, MySQL under certain circumstances issues misleading error
messages, which stem from its multi-platform programming. Windows has different ways
of communicating underlying errors—for example, from the network subsystem—than most
Unix-like operating systems.

One such misleading error message is related to the startup process when the server tries to
bind the TCP port it is configured to listen on and wait for client connections.

MySQL Bug #33137 (at http://bugs.mysql.com/bug.php?id=33137) explains error
messages like:

We saw this error in our systems several times and were misled by the No such file or directory
part. In fact, the TCP/IP port configured (usually 3306) was indeed already bound by a different
program at the time the message was created, but not anymore when we got to look at
the situation.

Further analysis revealed that there was no user application using that port, but that
the operating system itself was assigning this port as a local endpoint to processes that
connected to other network ports themselves. This is a regular mechanism and required for
the TCP/IP protocol to work normally. The main problem arises from the fact that the default
MySQL network port 3306 is in a range called ephemeral ports, specifically allocated for the
purpose the operating system used it for.

The range of these ports differs between operating systems, even though there is an IANA
(Internet Assigned Numbers Authority) recommendation.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

345

The IANA suggests 49152 to 65535 as "dynamic and/or private ports", according to
Wikipedia. The following information is also taken from Wikipedia:

Many Linux kernels use 32768 to 61000. The file system path /proc/sys/net/
ipv4/ip_local_port_range contains the range in use.

Microsoft Windows operating systems through Server 2003 use the range 1025 to
5000 as ephemeral ports. Windows Vista and Server 2008 use the IANA range.

FreeBSD uses the IANA port range since release 4.6.

This is a screenshot of an Ubuntu Linux default system setup:

This range does not conflict with the MySQL port, so usually no action is required here.

On Windows versions up to Windows Server 2003, however, you need to take action to
prevent conflicts from happening.

On all modern Windows versions—starting with Windows 2000—you can block out specific port
ranges (even if they only cover a single port) from the ephemeral ports for application use.

Effectively, they are not reserved for anything specific, but just excluded from the dynamic
allocation. To do so, create or edit the following registry value of type REG_MULTI_SZ/
Multi-String Value:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
ReservedPorts

In this value, specify port ranges in the format xxxx-yyyy with xxxx and yyyy being the
lowest and highest port of the range to be reserved. To reserve a single port, just use the
same values for both as seen below.

There can be multiple ranges, each on its own line. So for MySQL make sure there is a line
3306-3306 present.

To learn more about this, see Microsoft's Developer Network Site at
http://msdn.microsoft.com/en-us/library/ms737828(VS.85).aspx.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

346

Choosing character sets
This recipe is not a step-by-step set of instructions to follow. Consider the information
presented here as a list of topics that guide you towards a suitable configuration.

Text around the world
Whenever you store textual data in a database in CHAR, VARCHAR, or TEXT columns
(so virtually always)—you have to think about character sets and collations.

English does not have any special characters apart from the usual Roman letters which
makes it different from many other languages. For example, the French language requires
characters like â, é, ò, German texts will likely contain things like Ä, Ö, or ß that are often
forgotten when designing computer systems, unless you live in one of these countries. Of
course, Chinese, Japanese, Korean, Russian, among others have to be considered as well,
being based on completely different alphabets (if they are alphabetic at all).

Nevertheless, in today's global and networked systems, it has become common for a
database to be used by people from around the world, all of them expecting to be able to
use their native language with all its subtleties.

Character sets
Basically, a so-called character set is like a table that contains a mapping between any
character a given human language makes use of and a numerical representation the
computer uses to store that character internally. This concept is analogous to say the Morse
code in which, instead of mapping a character to a number, it is matched to a sequence of
short and long signals.

We will not dive too deeply into the theory of these character sets and their accompanying
collations (how to sort and compare characters in any given language), as there is lots
of information about this available elsewhere, including the MySQL online manual. For
now suffice it to say that MySQL has good support for a wide variety of character sets
and collations, and allows you to specify which ones to use on a per-server, per-database,
per-table, and even per-column basis.

You can find all the details in the online manual's Chapter 9 on Internationalization
and Localization at http://dev.mysql.com/doc/refman/5.1/en/
internationalization-localization.html.

Defaults
Even though you might not be immediately aware of it, any MySQL database schema you
set-up contains information about the character set to use for the tables and columns contained
in it. When you do not tell it to do otherwise, it will just silently use the default settings it was
shipped with.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

347

Instead of a concrete step-by-step walkthrough style recipe, we will merely provide some
checkpoints to think about when you design a database. As is often the case with complex
topics, there is no one answer that perfectly fits every scenario. However, you will find advice
on what basic aspects to consider when deciding on the character configuration you are going
to use.

Multiple levels of configuration
Be aware that due to MySQL's flexibility you do not have to decide on a single character set for
all your data, but can go for multiple sets if needed. We do, however, recommend sticking with
a single character set if at all possible because matters quickly become very complicated and
hard to maintain when dealing with JOINs, and different client programs, and so on.

For details on this, refer to the MySQL online manual, section 9.1.3 at http://dev.mysql.
com/doc/refman/5.1/en/charset-syntax.html.

Getting ready...
To find out what character sets are available to choose from, you can either refer to the MySQL
online manual at http://dev.mysql.com/doc/refman/5.1/en/charset-charsets.
html or retrieve a list from your MySQL server. To get it, connect to the server and issue
this command:

mysql> SHOW CHARACTER SET;

This will output a table of character sets supported by your server with their names, short
descriptions, the corresponding default collation, and the number of bytes any single
character will use up at most if stored in the database. We will get to this in a minute.

How to do it...
Even though we said before that there is no quick answer, you may skip reading the remainder
of this recipe if you are not interested in getting too many details, but just want quick general
advice that might not be an ideal solution for you, but will work well and keep your options
open for the future:

For the impatient:
Use utf8 as you default encoding for all your tables.
Following this advice will enable you to store any international text in your
database correctly.

If, however, you would like to know more before making a decision, please read on.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

348

Determining required languages
The most important decision you have to make is whether you want (or have) to support
contents in more than a single language. If you know for sure that a database is going to
exclusively contain English words, matters are going to be rather easy. In this case, you can
just use the default latin1 character set. Be aware, however, that you might want to specify
a different collation from the default Swedish one.

For any other single-language content, go through the list of supported character sets and see
if there is one for your language or family of languages. If in doubt, then read on.

Choosing from Unicode character sets
In case you cannot or do not want to commit yourself to a single language or family of
languages, you should probably choose one of the Unicode-based character sets. Those are
designed to handle many languages and mixed language content well. See below for more
details on which Unicode character set is most suitable for your needs.

Deciding on a Unicode character set
MySQL supports two Unicode character sets: ucs2 (which is the predecessor to UTF-16,
but still referred to with the older name in much of MySQL's documentation) and utf8. Both
are suitable to store any character that has been defined in Unicode. The main difference
between them is the amount of space they require for a single character. With ucs2,
characters are uniformly stored as a two-byte sequence, whereas with the utf8 character
set, the amount of storage required for a character depends on the individual character.

The UTF-8 encoding was designed to allow for a smooth migration from the commonplace
single-byte systems to more sophisticated and internationally usable software. The basic
idea was to continue representing the most often used characters of the Western languages
as a single byte, just as before, and dynamically use more than one byte per character
for more "unusual" (meaning non-ASCII) symbols. A well-defined mapping algorithm was
designed to be able to automatically map any not-so-usual character to a two-, three- or at
most four-byte-long representation.

A positive and intentional effect of this technique is that an English or German text will not
require more space in utf8 (at least not significantly more) than if it were encoded in a
single-byte character set like latin1. This is because there are only so many Umlauts in a
German text—none in English whatsoever—meaning that the bulk of the information continues
to be stored with just one byte per character.

Moreover, any existing software program that can handle regular single-byte text information
will continue to work with UTF-8 encoded information, maybe just displaying non-ASCII
characters incorrectly as two or more separate symbols.

The major downside is that you cannot tell the exact amount of space you need to reserve
to store any UTF-8 encoded text in advance because depending on the characters in the
text those requirements vary. To be on the safe side, you need to prepare for the worst case,
having each and every character of a text requiring the full four bytes. For a CHAR(10)

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

349

column, 40 bytes of storage space have to be reserved to be certain that there is enough
room to store any sequence of 10 characters. This is not 100-percent exact, but good enough
for our purposes here. See the MySQL online manual, section 10.5 at http://dev.mysql.
com/doc/refman/5.1/en/storage-requirements.html for all details on storage
requirements for each data type.

With ucs2, you have the benefit of being able to tell exactly how much space you will need to
store any given text, provided you know how many characters it has. This means that a column
defined, as say CHAR(10) will use 20 bytes of disk space internally. For the regular Western
language-based text this will usually be more than the equivalent utf8 encoded version
would take, but at least you can plan in advance.

A major drawback of ucs2 (and any double-byte character set in general) is that most
software products are not ready to process it because they were designed with a single byte
per character in mind.

From all the information above, we recommend you use utf8 in any case where English or
any Western language text will make up the bulk of the contents you are going to store in the
database. This will result in the most space-efficient and yet compatible way of storing textual
information while preserving any international characters.

Only when you know in advance that the bulk of your contents will be in languages different
from those, most notably languages from the Middle East and the Far East, should you go
with ucs2 from a space-efficiency standpoint. However, be sure you are aware of the other
implications this has in terms of database client support. If in doubt, utf8 is the safest option
here as well.

Considering conversion needs between server and clients
The most important benefit of using ucs2 instead of utf8 on the MySQL server is predictable
space requirements. However, MySQL for some reason does not support ucs2 as a character
set for returning data to any client software. What this means is that even though a character
might be stored with two bytes in the InnoDB table space or MyISAM data files, the server will
not just send you those two bytes when you ask for that data. Instead, it will convert it to a
different encoding before sending the data across the network. Whatever the reason for this,
it entails an additional burden on the server for any data entering or leaving a MySQL table.

To make matters worse from a processing-efficiency point of view, many modern systems
internally use ucs2 or its successor UTF-16 anyway (Java or Windows to name just two). So in
theory, those could take the data verbatim from the database server and go on processing it.
Instead, MySQL will convert the data from its internal ucs2 format to, for example, utf8, prior
to sending it to the client, which in turn will then often convert it right back to UTF-16.

As a consequence, we (again) recommend you use utf8 for database internal storage if none
of the national character sets fit your need, to save on the conversion effort when sending
data back and forth between clients and the server. Only when you really need to focus on the
reduced storage space for Eastern languages, should you consider setting up your data store
with ucs2.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

350

Understanding auto-increment values
In Chapter 9's Allowing individual INSERT statements with "0" values in auto-incrementing
columns recipe, the NO_AUTO_VALUE_ON_ZERO option to the SQL_MODE system variable
was used. To fully understand what was happening here, we suggest you to follow along on a
little experiment.

Getting ready...
Follow the preparations described in Allowing individual INSERT statements with "0" values in
auto-incrementing columns (Chapter 9). Once you are done, connect to a test database and
drop a possibly existing enumerator table (as used in the recipe mentioned above).

Be careful not to harm a production database; do this on a test system.

How to do it...
1. Create the database schema afresh:

mysql> DROP TABLE IF EXISTS enumerator;

mysql> CREATE TABLE enumerator (

 id INT NOT NULL AUTO_INCREMENT,

 textvalue VARCHAR(30),

 PRIMARY KEY (id)

) ENGINE=InnoDB;

2. Try to insert and read back some data like this:
mysql> INSERT INTO enumerator

 VALUES (0,'Zero'),(1,'One'),

 (2,'Two'),(3,'Three');

ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

3. See if anything was actually inserted:
mysql> SELECT * FROM enumerator;

Empty set (0.00 sec)

4. Obviously nothing happened, as was to be expected because of the error message
we got.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Appendix

351

5. Try the exact same INSERT statement again to increase confusion:

mysql> INSERT INTO enumerator

 VALUES (0,'Zero'),(1,'One'),

 (2,'Two'),(3,'Three');

Query OK, 4 rows affected (0.00 sec)

Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM enumerator;

What just happened...
When the table was just created, its auto-increment value was reset to be 1 for the first
record to be inserted. When we tried to insert the first batch of records shown previously, the
(0,'Zero') record was actually interpreted as a request to assign a new auto-increment
value for the id column. As this was going to be the first record, MySQL actually tried to insert
a (1,'Zero') record.

However, the second record we tried to insert as part of our statement was (1,'One'). This
conflicted with the id value that had just been generated for the first row, making the overall
INSERT statement fail.

Even though no records were inserted, MySQL increased the internal counter for this table's
auto-increment value once for each record we tried to insert. Issuing the same INSERT again
will work after that because the first record (0,'Zero') is now translated to an actual
(5,'Zero'), not creating a conflict for the other values.

This behavior can cause subtle errors if you do not notice what is going
on right away because you might be working on data different from what
you expect! This is one of the reasons why in general it is considered bad
practice to insert your own values for auto-incrementing columns; so strive
to avoid it if possible!

Download at Wow! eBook

WWW.WOWEBOOK.COM

Good to Know

352

There's more...
You can define the behavior shown here for a single session as the default behavior for a MySQL
server. See the Globally allowing INSERT statements with "0" values in auto-incrementing
columns recipe in Chapter 9 for more details on how to do that.

For more information on the SQL_MODE variable and its various settings, refer to the online
manual, section 5.1.8 Server SQL Modes at
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Index
Symbols
7-Zip 153
32-bit Windows usable memory

InnoDB impact 337-340
limitations 337
maximizing 340
MySQL impact 337, 338

_ token 120
\\h token 120
\\d token 120
\\u token 120
--databases option 148
--decompress option 160
--hex-blob option 147
--line-bytes option 165
--lock-tables option 145
--master-data option 163
--single-transaction option 43

A
access

allowing, from group of hosts 295-297
allowing, from specific host 290-294
regaining 297-300

alerting mechanism
configuration, improving 208
establishing, for remaining InnoDB tablespace

205-207
MySQL scheduler, enabling 208

alternative user
defining, for administrative tasks 263-266

ALTER privilege 62
ALTER TABLE ADD COLUMN command 307
ALTER TABLE ADD INDEX syntax 62

ALTER TABLE command
about 320
performance, improving 318-320

ALTER TABLE statement
using 73

AppArmor
turning off 255

auto-extending InnoDB tablespace
about 230
creating, from existing tablespace 232
defining 230, 231
extension steps, controlling 233
new data file, adding 233
setting up 231
size, limiting 233
working 232

auto incrementing columns
individual INSERT statements, allowing with 0

values 312
INSERT statements, globally allowing with 0

values 313, 314
AUTO_INCREMENT option 311
auto increment values

about 350
working 351

automatically updated SQL based selection
slaves, setting up

getting ready 14
steps 14
working 15

automatically updated SQL dump based
server slaves, setting up

starting with 10
steps 11, 12
working 12

Download at Wow! eBook

WWW.WOWEBOOK.COM

354

automatically updated slaves, setting up
data backup, percona-xtrabackup used 18
data file conservation, LVM used 18
data file copy, using 15-17
getting ready 16
working 18

B
backup size, SQL dump

command, working 151
compression ratio, achieving 152
compression utilities, using 153
data robustness, considering 152
getting ready 151
performance factors, considering 152
reducing 151
tool availability, considering 152

basic user
creating 268-271

binary logging
about 238
configuring 239
expire_logs_days setting 239
log_bin parameter 239
max_binlog_size parameter 239
PURGE BINARY LOGS command 240
requirements 238
use 240
working 239

binary logs
about 153
data loss risks 156
data, restoring 163
disk space, ensuring 156
exact location of failure, restoring 165
point-in-time recovery, performing 163, 164
purging 154, 155
purging, in Linux systems 155, 156
rotating 154, 155
rotating, in Linux systems 155, 156
specific database, restoring 164

binlogging. See binary logging
blackhole storage engine

diagrammatic view 39
using 28
using, for network limitation 28

BLOB columns
using, for improving InnoDB tables query per-

formance 324-326
bzip2 153

C
CHAR 74
character sets

about 346
auto increment values 350
choosing 346, 347
conversion needs, between server and clients

349
defaults 346
global text 346
multiple levels of configuration 347
required languages, determining 348
Unicode character sets, choosing from 348
Unicode character sets, decoding on 348

columns, finding
about 220
name columns 220
numeric data types 222
requirements 220
with data type 221
working 222

connection settings, sharing
changes, dealing with 97
MySQL GUI Tools, working 96
requirements 95
steps 95

CREATE INDEX command 62
curl tool

using 43
custom prompt, using to distinguish

connections
about 118
configuring 120
getting started 119
steps 119
tokens 120
working 120

Download at Wow! eBook

WWW.WOWEBOOK.COM

355

D
data

DELETE command, using 192
deleting, from large tables 188
deleting, incrementally from

large tables 197-199
exporting, to CSV file 168
exporting, to custom file 172
importing, from CSV file 178
importing, from custom file 180
inserting, based on existing database content

185
managing 168
new data, inserting 183, 184
performance considerations 195
some records, retaining 192-195
stored procedures, using 174
updating 183, 184

database name letter case
about 247
adjusting 247, 248
requirements 247

data, deleting from large tables
Foreign key constraints, removing 191, 192
starting with 188
steps 189
TRUNCATE TABLE command, using 189
working 189, 190

data, exporting to CSV file
error handling, with target file existing 170
getting ready 168, 169
headers, including 171
line breaks, handling 171
NULL values, handling 171
steps 169
working 169, 170

data, exporting to custom file format
about 172
starting with 172
steps 172
working 173

data, importing from CSV file
about 178
getting ready 178
LOAD DATA INFILE command 179
steps 179

working 179
data, importing from custom file formats

about 180
getting ready 180
steps 180
working 181, 182

data files, copying
backing up, LVM snapshots used 143
file-based backup data, restoring 143
file-based backup method, restrictions 142
getting ready 141
steps 141
working 141, 142

data insertion, based on existing database
content

example 185
starting with 185
steps 185
working 186, 187

data management
about 167, 168
data, exporting into CSV file 168
data, exporting to custom file format 172
data from large tables, deleting 188
data, importing to CSV file 178
data, importing to custom file format 180
data, updating 183
existing database content data, inserting 185
new data, inserting 183
stored procedures, using 174

data restoration, dump used
binlogs, disabling temporarily 161
compressed dumps, restoring 160
getting ready 159
parallel restore, using 161
steps 159
tables, restoring 161, 162
working 159

DATE() function 304
dbhash tool 333
default accounts

disabling 266, 267
default pager

less pager utility, using 117
mysql, configuring 117
specifying 117
working 118

Download at Wow! eBook

WWW.WOWEBOOK.COM

356

diff command 328
domain searches

about 83
getting started 84
speeding up, steps 84
working 84, 85

duplicate indexes
disadvantages 86
Index Analyzer, using 88
searching 87, 88
starting with 87
working 88

duplicate server IDs
about 50
avoiding, steps 51
getting ready 50
symptoms, recognizing 52
working 51

E
encrypted MySQL console

creating 127
creating, steps 128
SSH, using 127
working 129

ephemeral ports 344
example, user creating in script without plain

text password 301

F
fixed InnoDB tablespace

about 226
checking 202-204
installing 227
setting up 227, 228
working 228, 229

free InnoDB tablespace, checking
requirements 202
steps 202
TABLE_COMMENT column 204
working 203, 204

ft_stopword_file variable 68
fulltext index, adding

about 66
boolean query mode, using 68
case sensitivity 68
dropping 67
frequent words, ignoring 68
precautions 67
recreating 67
Sphinx 69
starting with 67
steps 67
stopwords 68
word length 68
working 67

G
grep utility 116
gzip 153

H
hash values, schema version

using 331-334
headers, including 171

I
IANA 344
indexes

adding, to tables 63
differences 58
drawback 58
features 58
fulltext index, adding 66
InnoDB 60
MySQL Query Browser used, for SQL

statement generation 64
naming 64
prefix indexes 65
prefix primary key, using 66
removing, from table 73
requirements 62
storage 58
working, with MyISAM storage engine 59

Download at Wow! eBook

WWW.WOWEBOOK.COM

357

INDEX privilege 62
InnoDB

ALTER TABLE performance, improving 318
advantages 61
index space requirements, estimating 73-76
primary index (clustered index) 61
redo log, configuring 240
secondary indexes 61, 62
timeout configuration settings 243

InnoDB data configuration, for storing in
separate files

starting with 234
steps 234
working 235

innodb_file_per_table feature
using 237

innodb_lock_wait_timeout option values,
settings 245

InnoDB primary key columns
choosing 80, 81
clustered indexes 83
clustered index nature, considering 81
getting ready 80
immutability 81
immutable attributes, identifying 80
key length 82
short keys, using 80
single-column keys 80, 82
unique attributes, identifying 80
uniqueness 81
working 81

innodb_rollback_on_timeout option value,
settings 245

InnoDB tables
alerting mechanism used 205
autoextend feature 205
drawbacks 22
full text index providing, replication used 22-

24
InnoDB tablespace. See tablespace
INSERT statements

allowing individual with 0 values 312
globally allowing with 0 values 313, 314
NO_AUTO_VALUE_ON_ZERO option, enabling

314

installation user
account, creating without using

MySQL Administrator 275
creating 272, 274

Internet Assigned Numbers Authority. See
IANA

invalid date value
storing in DATE, preventing 256-258
storing in DATETIME, preventing 256-258

J
Java Runtime Environment. See JRE
JRE 332

K
key length, InnoDB primary key columns 82

L
largest table

finding, requirements 219
finding, steps 219
working 219

less utility 113
LIKE keyword 66

M
mk-duplicate-key-checker 89
mk-table-checksum tool

about 48
downloading 48

more command
using 164

multiple MySQL server
alternative MySQL Sandbox project 255
AppArmor, turning off 255
running parallel, on Linux server 251-253
running parallel, on Windows 255
SELinux, turning off 255

Multi-Version Concurrency Control. See MVCC
MVCC 188

Download at Wow! eBook

WWW.WOWEBOOK.COM

358

MyISAM storage engine
about 59
drawbacks 60
PRIMARY KEY index 60

MySQL
binary logging 238
indexes 57
replication 7
timeout configuration settings 243

MySQL Administrator
configuring, for displaying global privileges

261, 262
MySQL Administrator GUI tool

about 106
additional backup options, exploring 140
backups, scheduling 139
custom graphs, adding 107-110
getting ready 137
limitations, handling 139
using, as backup frontend 137, 138
working 138

MySQL command line client
information, extracting from verbose output

114-116
pager command 113
pager command, parameters 114
using 112
using, requirements 112
using, to display query results page-by-page

111-113
MySQL configuration

overview 225
MySQL data backup

about 136
data files, backing up 141

mysqld_multi tool
about 251
working 254

mysqldump command
--hex-blob option 147
about 144, 332

mysqldump failure, preventing
cause, finding 343
problem, preventing 343
symptoms, diagnosing 342

MySQL GUI Tools
config file locations 93, 94
platform differences 93
stored connection, sorting 98

MySQL installation as Windows service,
custom options used

about 248
requirements 249
steps 249, 250
working 250

MySQL installation, monitoring
free InnoDB tablespace, checking 202

MySQL master server dump files
automatically updated slaves, setting up 11,

12
multiple databases, replicating 11
preparing 10
working 12, 13

MySQL server
encrypted connection, establishing 121-124
encrypted connection, SSH used 121-126

MySQL user management
about 259-261
access, allowing from specific host 290
access, regaining 297
alternative user, defining 263
basic user, creating 268
default accounts, disabling 266
installation user, creating 272
MySQL Administrator, configuring 261
plain text passwords, avoiding 300
read-only account, creating 277
specific user for backup, defining 281
specific user for replication, defining 285

MySQL variables
adapting 213
changing 213-215
global setting, displaying 216
global variable 215
multiple variables, displaying 216
requirements 213-215
session variables 215
working 215

Download at Wow! eBook

WWW.WOWEBOOK.COM

359

N
net_read_timeout values, setting 245
network estimation

about 25
compression, enabling 27
master’s network speed, checking 26
requirements 25
SLAVE_COMPRESSED_PROTOCOL option,

using 27
network limitation

alternatives, other than InnoDB 40
in heavy scenarios, blackhole storage engine

used 28-38
net_write_timeout values, setting 246
new columns

adding, at specific positions 305-307
NO_AUTO_VALUE_ON_ZERO option 313
normalized text search column

about 69
creating 70, 71
getting ready 70
working 71, 72

O
OPTIMIZE TABLE command

using 202
overall table count, assessing

requirements 217
steps 218
working 218

P
p7zip 153
plain text passwords

avoiding, in scripts 300, 301
prefix primary keys

using 77, 78
working 78, 79

primary key
defining, for non-unique data table 308-311

problematic queries
about 45
alternative solution 47, 48
skipping 45, 46

skipping, testing 45
working 47

PuTTY template connection
about 130
SSH connection, using 131
using, steps 131, 132
working 132, 133

Q
query performance improvement, InnoDB

tables
BLOB, using 324-326

R
RBR 8
RDBMS 304
read access, sharing across multiple

machines
about 19
connection pooling, working with 21
getting ready 20
programming environments, working on 22
slave addition efficiency, considering 22
steps 20
working 21

read-only account
creating 277, 279
creating, without using MySQL Administrator

280
stored procedure calls, allowing 280

redoing 243
redo log, configuring

requirements 240
steps 241, 242

Relational Database Management System.
See RDBMS

replication
about 7, 8, 156
getting ready 156, 157
RBR 8
SBR 8
statement, executing 157
using, to perform backups 157, 158
using, to provide fulltext index for InnoDB

tables 22-24

Download at Wow! eBook

WWW.WOWEBOOK.COM

360

REPLICATION SLAVE privilege 12
rollforward 243
Row Based Replication. See RBR

S
SBR

about 8
architecture 9
features 8
filtering 9, 10

schema differences
identifying 329, 330
identifying, steps 328, 329

schema management
about 303-305
ALTER TABLE performance, improving 318
InnoDB tables query performance, improving

324
INSERT statements, globally allowing with 0

values 313
MySQL storage engine architecture 304, 305
new columns, adding at specific positions

305
primary key, defining for non-unique data

table 308
schema differences, identifying 327
schema revisions, comparing 331
storage engine, choosing 315
stored performance, using 321

schema revisions, comparing
dbhash.jar file programs, activities 334
hash values, using 331-334

SELinux
turning off 255

server sync
checking, steps 49, 50
mk-table-checksum tool, using 48
mk-table-checksum tool, working 49

SET GLOBAL command 216
SHOW SLAVE HOSTS command 52
SHOW TABLE STATUS command 89
silent replication disruption

avoiding, on full master disk 336
SLAVE_COMPRESSED_PROTOCOL option

using 27

slave configuration
getting ready 53
report-host setting 54
report-password setting 55
report-port setting 55
report-user setting 55
setting up, to update master 53

slave I/O load estimation
about 25
individual slaves’ network speed, checking 26
requirements 25
SLAVE_COMPRESSED_PROTOCOL option,

using 27
working 26

slaves, setting up via network streaming
configuration, setting up 44
curl tool, using 43
data directory, compressing 43
getting ready 41
master.info file, understanding 44
mysqldump tool, using 43
START SLAVE statement, issuing 44
steps 41
temporary daemon 42
temporary server, shutting down 43
working 41

source command 159
specific user

defining, for backup 281-285
defining, for replication 285-289

Sphinx 24
split tool 165
SQL configuration

for current session only 258
SQL dump

backup size, reducing 151
creating, of all databases 144
creating, of specific tables 150
creating, of specific databases 148

SQL dump creation, of all databases
binary log position, including 147
consistency, preventing 146
consistent dumps, performing 147
getting ready 144
InnoDB table dumps, creating 146
locking issue, InnoDB storage engine used

146

Download at Wow! eBook

WWW.WOWEBOOK.COM

361

performing impacts, reducing 147
steps 144
working 144, 145

SQL dump creation, of specific databases
advantages 148
automated backups, side effects 149
getting ready 148
steps 148
working 148
work, parallelizing 149

SQL dump creation, of specific tables
getting ready 150
steps 150
working 150

Statement Based Replication. See SBR
storage engine

choosing 315, 316
silent engine substitution 317

stored connection, MySQL GUI Tools
automatically created, working 105
creating, automatically 102-104
sorting 101
sorting, requirements 98
sorting, steps 99
working 100, 101

stored procedures
defining 174
starting with 175
using, for column addition 321-323
using, for index addition 321-323
using, to export 175, 176
working 176

T
table letter case

about 247
adjusting 247, 248
requirements 247

table reference
about 223
finding 223, 224
requirements 223
working 224

tablespace
about 226
innodb_file_per_table feature, using 237
shared tablespace, working 237

size, decreasing 236
tablespace requirement, estimating

about 209
requirements 209, 210
sample values, choosing 209
steps 210, 211
working 212

temporary directories
using, for multiple MySQL servers 341

TEXT 74
timeout configuration settings

applying, requirements 243
configuring 244
innodb_lock_wait_timeout option value, set-

tings 245
innodb_rollback_on_timeout option values,

settings 244
interactive_timeout values, setting 245
net_read_timeout values, setting 245, 246
net_write_timeout values, setting 246
wait_timeout values, setting 245
working 244

tools
MySQL command line client 92
MySQL GUI Tools 92
official tools 92

troubleshooting errors 344, 345
TRUNCATE TABLE command

using 189

U
UNLOCK TABLES command 143
user rights management

permitting 275, 276

V
VARCHAR 74

W
wait_timeout values, setting 245

X
xcopy command 155
xsltproc command 101

Download at Wow! eBook

WWW.WOWEBOOK.COM

Download at Wow! eBook

WWW.WOWEBOOK.COM

Thank you for buying
MySQL Admin Cookbook

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that project.
Therefore by purchasing MySQL Admin Cookbook, Packt will have given some of the money
received to the MySQL project.

In the long term, we see ourselves and you—customers and readers of our books—as part of the
Open Source ecosystem, providing sustainable revenue for the projects we publish on. Our aim at
Packt is to establish publishing royalties as an essential part of the service and support a business
model that sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

Download at Wow! eBook

WWW.WOWEBOOK.COM

Spring Persistence with
Hibernate
ISBN: 978-1-849510-56-1 Paperback: 460 pages

Build robust and reliable persistence solutions for your
enterprise Java application

1. Get to grips with Hibernate and its configuration
manager, mappings, types, session APIs, queries,
and much more

2. Integrate Hibernate and Spring as part of your
enterprise Java stack development

3. Work with Spring IoC (Inversion of Control), Spring
AOP, transaction management, web development,
and unit testing considerations and features

Mastering phpMyAdmin
2.11 for Effective MySQL
Management
ISBN: 978-1-847194-18-3 Paperback: 340 pages

Increase your MySQL productivity and control by
discovering the real power of phpMyAdmin 2.11

1. Effectively administer your MySQL databases with
phpMyAdmin.

2. Manage users and privileges with MySQL Server
Administration tools.

3. Get to grips with the hidden features and
capabilities of phpMyAdmin.

Please check www.PacktPub.com for information on our titles

Download at Wow! eBook

WWW.WOWEBOOK.COM

Oracle Warehouse Builder
11g: Getting Started
ISBN: 978-1-847195-74-6 Paperback: 368 pages

Extract, Transform, and Load data to build a dynamic,
operational data warehouse

1. Build a working data warehouse from scratch with
Oracle Warehouse Builder.

2. Cover techniques in Extracting, Transforming, and
Loading data into your data warehouse.

3. Learn about the design of a data warehouse
by using a multi-dimensional design with an
underlying relational star schema.

Expert Cube Development
with Microsoft SQL Server
2008 Analysis Services
ISBN: 978-1-847197-22-1 Paperback: 360 pages

Design and implement fast, scalable and maintainable
cubes

1. A real-world guide to designing cubes with
Analysis Services 2008

2. Model dimensions and measure groups in BI
Development Studio

3. Implement security, drill-through, and MDX
calculations

4. Learn how to deploy, monitor, and performance-
tune your cube

Please check www.PacktPub.com for information on our titles

Download at Wow! eBook

WWW.WOWEBOOK.COM

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Replication
	Introduction
	Setting up automatically updated slaves of a server based on a SQL dump
	Setting up automatically updated slaves of a selection of tables based on a SQL dump
	Setting up automatically updated slaves
	Setting up automatically updated slavesusing data file copy
	Sharing read load across multiple machines
	Using replication to provide full-text indexing for InnoDB tables
	Estimating network and slave I/O load
	Limiting network and slave I/O load in heavy write scenarios using the blackhole storage engine
	Setting up slaves via network streaming
	Skipping problematic queries
	Checking if servers are in sync
	Avoiding duplicate server IDs
	Setting up slaves to report custom information about themselves to the master

	Chapter 2: Indexing
	Introduction
	Adding indexes to tables
	Adding a fulltext index
	Creating a normalized text search column
	Removing indexes from tables
	Estimating InnoDB index space requirements
	Using prefix primary keys
	Choosing InnoDB primary key columns
	Speeding up searches for (sub)domains
	Finding duplicate indexes

	Chapter 3: Tools
	Introduction
	Transferring connection settings between different machines using a network share
	Sorting MySQL GUI Tools' stored connections
	Automatically creating stored connections
	Adding custom graphs to MySQL Administrator
	Displaying query results page by page and with scrolling using the MySQL command-line client
	Extracting information from verbose output using the MySQL command-line client
	Specifying a default pager
	Using a custom prompt to distinguish connections
	Encrypting a MySQL server connection with SSH
	Creating an encrypted MySQL console via SSH
	Using a PuTTY template connection for SSH secured connections

	Chapter 4: Backing Up and Restoring MySQL Data
	Introduction
	Using MySQL Administrator GUI Tool as a frontend for backups
	Copying all data files to a backup location
	Creating a SQL dump of all databases
	Creating a SQL dump of specific databases
	Creating a SQL dump of specific tables
	Compressing SQL dumps on-the-fly
	Rotating and purging binary logs
	Using replication to perform backups without hurting a production system's performance
	Restoring data from a dump to a previously backed-up state
	Performing a point-in-time recovery using the binary logs

	Chapter 5: Managing Data
	Introduction
	Exporting data to a simple CSV file
	Exporting data to a custom file format
	Using stored procedures to export repeatedly
	Importing data from a simple CSV file
	Importing data from custom file formats
	Inserting new data and updating data if it already exists
	Inserting data based on existing database content
	Deleting all data from large tables
	Deleting all but a fragment of a large table's data
	Deleting all data incrementally from large tables

	Chapter 6: Monitoring and Analyzing a MySQL Installation
	Introduction
	Checking free InnoDB tablespace
	Establishing alerting mechanisms for low remaining tablespace by using triggers
	Estimating tablespace requirements
	Identifying and changing MySQL variables
	Assessing the overall table count
	Finding the biggest tables
	Finding all columns with a certain name and/or type
	Finding all tables referencing each other

	Chapter 7: Configuring MySQL
	Introduction
	Setting up a fixed InnoDB tablespace
	Setting up an auto-extending InnoDB tablespace
	Storing InnoDB data in one file per table
	Decreasing InnoDB tablespace
	Enabling and configuring binary logging
	Configuring the InnoDB redo log
	Understanding and configuring important MySQL and InnoDB timeout options
	Adjusting table and database name letter case handling for better platform independence
	Installing MySQL as a Windows service with custom options
	Running multiple MySQL server instances in parallel on a Linux server
	Preventing invalid date values from being stored in DATE or DATETIME columns

	Chapter 8: MySQL User Management
	Introduction
	Configuring MySQL Administrator to display global privileges and hosts
	Defining an alternative user for administrative tasks
	Disabling the default accounts
	Creating a basic user
	Creating an installation user
	Creating a read-only account
	Defining a specific user for backup
	Defining a specific user for replication
	Allowing access from specific hosts only
	Regaining access to your database in case of lost account information
	Avoiding plain text passwords in administrative scripts

	Chapter 9: Managing Schemas
	Introduction
	Adding new columns at specific positions
	Defining a primary key for a table containing
	(non-unique) data
	Allowing individual INSERT statements with
	 "0" values in auto-incrementing columns
	Globally allowing INSERT statements with
	"0" values in auto-incrementing columns
	Choosing a suitable storage engine
	Improving the performance of ALTER TABLE
	for InnoDB
	Using a stored procedure to conditionally
	add columns or indexes
	Improving query performance for InnoDB
	tables with BLOB columns
	Identifying differences between two
	schemas
	Comparing schema revisions using
	hash values

	Appendix: Good to Know
	Introduction
	Avoiding silent replication disruption on full master disk
	Maximizing usable memory on 32-bit Windows
	Using separate temporary directories for multiple MySQL servers on a single machine, preventing conflicts
	Preventing mysqldump from failing with Error 2013
	Non-availability of InnoDB may escape monitoring
	Troubleshooting "Can't start server: Bind on TCP/IP port: No such file or directory" error
	Choosing character sets
	Understanding auto-increment values

