
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering AWS Development

Develop and migrate your enterprise application to the
Amazon Web Services platform

Uchit Vyas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering AWS Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-363-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Uchit Vyas

Reviewers
Goldin Evgeny

Naoya Hashimoto

Dr. Ketan Parmar

Commissioning Editor
Kunal Parikh

Acquisition Editor
Meeta Rajani

Content Development Editor
Pooja Nair

Technical Editors
Manali Gonsalves

Taabish Khan

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Jason Monteiro

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Uchit Vyas is an IT industry veteran, a Cloud technologist at heart, and a hands-on
Cloud automation lead at Opex Software, for Cloud automation and DevOps.
He is responsible for the delivery of solutions, services, and product development.
He explores new open source technologies and defines architecture, roadmaps,
and best practices for enterprises. He has consulted and provided training on
various tools and technologies, including Cloud computing, Big Data, Hadoop, ESB,
infrastructure automation (Chef/Puppet/Ansible), Java-based portals, and CMS
technologies to corporations around the world.

He has completed his engineering in computer science from Gujarat University.
He worked as a senior associate at Infosys Limited in the Education and Research
Team, during which time he worked on Big Data analytics, Cloud security,
and virtualization.

He has also published books on Mule ESB, AWS Development Essentials, and AWS
DynamoDB and continues to write books on open source technologies.

He hosts a blog named Cloud Magic World, where he posts tips and events about
open source technologies mostly related to Cloud on cloudbyuchit.blogspot.com.
His Twitter handle is @uchit_vyas.

I dedicate this book to my family and friends. A special thanks to
my loving parents, Hamendra and Shreya Vyas whose words of
encouragement and push for tenacity always provided the necessary
inspiration. I dedicate this book to my wife Riddhi Vyas who never
left my side during the whole writing process and is very special to
me. I also dedicate this book to my manager and friend Dr. Manoj
Manuja who has supported me throughout the process and given so
much encouragement. I will always appreciate all that he has done,
especially for helping me to develop my technical skills. And last but
not the least, I would like to thank to my best friend and colleague
Prabhakaran for being there for me throughout the book program.

www.allitebooks.com

cloudbyuchit.blogspot.com
http://www.allitebooks.org

About the Reviewers

Goldin Evgeny is a Ruby, Groovy, and Scala software developer who turned into
an automation and release engineer to introduce order where chaos usually reigns.
On an average day, all things cloud, automation, and continuous delivery get his
immediate attention. Back at home, he's a father to his 2-year-old son, dreaming of a
day when a proper tech talk can happen between the two. When he gets any spare
time, he enjoys exploring the subjects of functional programming, Web performance,
and TCP/IP networking. He's an open-source developer, speaker, and passionate
advocate when it comes to tools and techniques making for smooth and painless
release processes.

Naoya Hashimoto has been working on system designing, implementing, and
system maintenance as an infrastructure engineer at Data Center, Management Service
Provider, and Housing/Hosting Service Provider for years. After meeting public
Cloud services a few years ago, his career, interests, and motives began to face toward
public Cloud, including private and hybrid; services related to Cloud computing such
as network, storage, orchestration, job automation, and monitoring; and open source
software as well. He has worked on Mastering AWS Development, Building Networks and
Servers Using Beaglebone, PostgreSQL Cookbook, Icinga Network Monitoring, and Building a
Home Security System with BeagleBone all by Packt Publishing.

Thanks to Packt Publishing for giving me the opportunity to
review this book and thanks to the author and coordinator for their
contributions to this book. I did enjoy reviewing this book and
studying AWS further because I got the opportunity to examine
several AWS services that I've never used through this review.

I hope this book will be your first step to AWS!

www.allitebooks.com

http://www.allitebooks.org

Dr. Ketan Parmar (aka KPBird) has been a Java enthusiast for more than 7
years. He has worked in various technologies in Java and explored all three
areas of Java (SE, ME & EE). He has provided a lot of solutions on StackOverflow
and has contributed to various blogs and sites. He is passionate about Java,
Android, grid computing, user interface, open-source, and Cloud computing.
He has been an eminent speaker for tools and technologies related to Java Enterprise
and Android Mobile. He is the leader and founder of JUGAhmedabad (Java User
Group Ahmedabad).

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Architecting in the Cloud 1

AWS services 2
The AWS global infrastructure 3
Regions and Availability Zones 6

What are AWS regions? 7
What are AWS Availability Zones? 9
How to use AWS AZs 10

AWS EC2 and IAM 11
The AWS EC2 functionality 11
Instance types and pricing 12

Selecting an instance type 12
AWS EC2 instance numbers and pricing 17

Billing and pricing 17
Ephemeral versus persistent storage 18

What is ephemeral storage? 18
How to use persistent storage with your instance 24

Scalability, elasticity, and bootstrapping 26
Bootstrap your instances 27
Black belt booting 28

Identity and Access Management 28
Accessing IAM 29

Authentication and authorization 31
Summary 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Elastic and Fault-tolerant Infrastructure 35
The AWS Elastic infrastructure by Auto Scaling 36

Working with Auto Scaling 37
Ways to access the Auto Scaling service 37

Installing and configuring Auto Scaling 38
Installing Auto Scaling prerequisites 38

Working with Auto Scaling using the CLI 42
Getting started with Auto Scaling using AWS Management Console 45

Summary 57
Chapter 3: Storage Lifecycle Management 59

Data storage scaling 59
AWS DynamoDB 60

DynamoDB data types 61
Creating the first SDK project 65
Java SDK operations 70
The DynamoDB local 76

AWS Simple Storage Service (S3) 79
Amazon CloudFront 85

Creating Amazon CloudFront Distribution 86
Amazon RDS management with CLI 91

Authorizing network access 94
Summary 96

Chapter 4: Web Application and Batch Processing Architecture 97
Alarms with Amazon CloudWatch 98

Creating an EC2 instance 101
Batch processing flow 104

Creating an IAM role 105
Creating SQS tasks 107
Creating S3 bucket 108
Launching worker nodes 109
Dispatching work and viewing results 115
Monitoring the cluster 116

Amazon CloudFormation 117
Where should I start on AWS? 122
Case study 122

LAMP on your Amazon EC2 122
Prerequisites 122
Installing and starting the LAMP server 123
File permissions 124
Testing the LAMP web server 124

Summary 125

Table of Contents

[iii]

Chapter 5: High Availability, Disaster Recovery,
and Amazon VPC 127

Disaster recovery circumstances with AWS 128
Recovery time objective and recovery point objective 128
Backup and restore 129
Pilot light recovery in AWS 130
Warm standby solution 132
Multisite solution 135

Replication of data 137
Architecting with Amazon VPC 139

Launching an instance in the VPC 143
Creating a private subnet 148
Spinning a database instance in the private subnet 148
Creating a Remote Access Software VPN to your VPC 151
Launching an OpenVPN instance 151
Downloading the OpenVPN client 154
Configuring the OpenVPN server 155

Summary 156
Chapter 6: Tools for AWS and Setup Guidelines 157

Working with AWS SDKs and IDE toolkits 158
Working with tools and code libraries 176

Creating an SDK project 177
Java SDK operations 180

DynamoDB Local 185
Command-line interface 187
Summary 191

Chapter 7: Interacting with AWS Using API 193
REST-based APIs 194
Authenticating requests using REST APIs 194

Getting started with API tools 196
Installing API tools 197
Running your first instance 198

Example of EC2 API 198
Data format for DynamoDB 199
HTTP requests 200

Request header 202
Request body 203
Response header 203

Table of Contents

[iv]

Operations in DynamoDB 204
CreateTable 205
PutItem 205
UpdateItem 206
GetItem 207
Query 208
Scan 209
DeleteItem 210
DescribeTable 210
UpdateTable 211
DeleteTable 212
ListTables 212
BatchGetItem 212
BatchWriteItem 214

Summary 215
Chapter 8: Amazon Beanstalk, CloudTrail, and
Data Warehouse Services 217

Application deployment using AWS Elastic Beanstalk 217
Getting started with Amazon Redshift 227

Configuration options 228
Cluster configurations 230

Interacting with AWS Trail 232
Features and benefits 232

Case study: migrating applications to the Cloud 238
Summary 241

Chapter 9: Bootstrapping and Auto-configuration 243
Black belt booting 244
Bootstrapping instances with AWS CloudFormation 250
Bootstrapping Amazon instances using Chef 252
Continuous integration and deployment 263
Automation with Amazon SWF 265

The workflow execution of Amazon SWF 266
Working with AWS OpsWorks 275

Creating an OpsWorks stack 277
Creating the Rails App Server layer 278
Creating the database layer 279
Adding instances 280

Summary 286

Table of Contents

[v]

Chapter 10: AWS Billing and Amazon CDN Service 287
Programmatic AWS billing 287

Turning on detailed billing reports 288
Select the detailed billing reports you want to receive 289
Referencing your detailed billing report data 290

Cost allocation reporting 290
Cost control architectures 292

Controlling access to your billing report files 292
CDN service from AWS – CloudFront 293

How CloudFront works 293
Getting started with CloudFront 297

Streaming 307
Summary 307

Chapter 11: Analyzing Big Data with AWS 309
Introducing Big Data and Hadoop 310
Introducing Amazon Elastic MapReduce 310

Provisioning a Hadoop cluster on EMR 311
Hive structural design 323

Metastore 323
Compiler 324
The execution engine 324
Supporting apparatuses 324

Data types 325
Data model 326

Indexing on Hive tables 328
Amazon Kinesis 330

Kinesis terminology 330
Streams 330
Data records 330
Producers 330
Consumers 331
Shards 331
Partition keys 331
Amazon Kinesis Client Library 331

Summary 335
Chapter 12: Miscellaneous Features, AWS Security,
and Troubleshooting 337

Amazon CloudSearch 337
Creating and configuring a search domain 338
Uploading and indexing the data for search 342
Searching your Amazon CloudSearch domain 344

Table of Contents

[vi]

Amazon Mechanical Turk 347
AWS Security best practices 350

Understanding AWS Secure Global Infrastructure 351
Regions, Availability Zones, and service endpoints 353
Managing keys in the Cloud 353
Managing patches 354
Mitigating compromise and abuse 354
The Trusted Advisor tool 354

Troubleshooting practices 355
Ephemeral disk corruption 355
DNS concerns 356
Resizing or emptying disks 356
Host dispute 356
Security group misconfiguration 356

Summary 357
Chapter 13: Building Applications and AWS Best Practices 359

Application impression 359
Tool mixture 360
Development phase 360

Conventions 361
Handlers 361
Starting with EduCloud 362
Handling instance entreaty 365
Instance entreaty sanction 367
Rejecting an instance entreaty 372
Using RDS and Elastic Beanstalk 374
The application of superlative AWS exercises 375

Best practices with AWS 375
Summary 382

Index 383

[vii]

Preface
Mastering AWS Development is a single place in which you can find solutions for
all of your issues with Amazon Web Services. This book will explain how to begin
and manage different services using the AWS SDKs and APIs as well as the AWS
Management Console, a browser-based graphical user interface to interact with the
services. It will include a significant number of examples and use cases that can be
used by anyone, from an intermediate to an expert. Using the examples in this book,
users can perform advanced-level programming and gain the advantages of AWS
services in their SDLC at significantly lower costs on AWS.

What this book covers
Chapter 1, Architecting in the Cloud, covers the AWS development platform and its
access and how to manage the identity for applications. Later, users will be able to
state elasticity, scalability, and bootstrapping functionality using code.

Chapter 2, Elastic and Fault-tolerant Infrastructure, discusses how to create
scalable infrastructure using EC2, EBS, and an Elastic Load Balancer and, as per
the requirement from web traffic, how to scale it efficiently. Users will also learn
what Auto Scaling is and launch the configuration with EC2 instances and
load balancers.

Chapter 3, Storage Lifecycle Management, discusses how to manage the entire life
cycle of storage of AWS using different services such as RDS, S3, and Redshift
programmatically.

Chapter 4, Web Application and Batch Processing Architecture, covers how to design
and develop web applications and their required infrastructure. Users will also
learn an alarm mechanism and how to create an environment for a batch processing
system on AWS.

Preface

[viii]

Chapter 5, High Availability, Disaster Recovery, and Amazon VPC, discusses how to
create highly available infrastructure for applications and what the vital steps and
logic are that should be implemented as a disaster recovery plan. Later, users will
also discover how to create Virtual Private Cloud on the AWS Management Console
and CLI.

Chapter 6, Tools for AWS and Setup Guidelines, covers how to set up and use
the AWS code library. Users will also get practical setup instructions for SDKs
and IDE toolkits, which can be used during programming with AWS services.

Chapter 7, Interacting with AWS Using API, provides hands-on knowledge about
APIs and how to connect AWS services through REST-based APIs. Also, users will
learn how to authenticate and serve a request of/from API calls.

Chapter 8, Amazon Beanstalk, CloudTrail, and Data Warehouse Services, discusses how
to migrate and host an existing/new app on AWS and how to identify appropriate
services for the app. You will find out how to use the Elastic Beanstalk container
service, AWS trail, CloudFormation, and how to do Auto Scaling based upon the
requirements from end user traffic.

Chapter 9, Bootstrapping and Auto-configuration, covers how to bootstrap AWS EC2
instances with pre-configuration commands for the environment setup and how to
use Chef for automation and deployment using code. Users will also learn how the
AWS CloudFormation service can work seamlessly with an application and how the
SWF and OpsWorks service can be used with the AWS infrastructure.

Chapter 10, AWS Billing and Amazon CDN Service, discusses how to do programming
for AWS billing, which can be accessed from an application and how to do cost
allocation reporting. Users will also learn cost control architecture designs to cut
down the cost.

Chapter 11, Analyzing Big Data with AWS, provides brief practical knowledge about
big data and Apache Hadoop on AWS Cloud. Users will also learn how to use the
EMR and Kinesis services with Big Data analytics and for Hadoop solutions.

Chapter 12, Miscellaneous Features, AWS Security and Troubleshooting, discusses
advanced services administration and programming with CloudSearch and
Mechanical Turk. Also, users will discover what kind of security AWS provides and
how to use those security features at the infrastructure and application level. At the
end of this chapter, users will learn some best troubleshooting practices.

Preface

[ix]

Chapter 13, Building Applications and AWS Best Practices, covers the tools/apps that
are available to use with AWS for smooth development/migration and deployment.
Later in this chapter, users will also learn integration techniques.

Chapter 14, Third-party Apps and Tools Integration with AWS, is an online chapter
which can be found at https://www.packtpub.com/sites/default/files/
downloads/Chapter14.pdf.

What you need for this book
To start using this book, you need the following software/applications to be installed
on your system:

• An AWS account
• Java 1.6 or higher
• Eclipse (Juno or Kepler)
• The AWS SDK
• AWS CLI tools
• MySQL Workbench

Who this book is for
This book is ideal for programmers, developers, and architects who want to move
their existing infrastructure to the AWS Cloud and start using AWS services in all
the application tiers using services such as compute, storage, database, queuing,
messaging, or mailing in an application, and finally, hosting this application in AWS
too. Readers should have a basic knowledge and understanding of Java programs
and AWS essentials.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

https://www.packtpub.com/sites/default/files/downloads/Chapter14.pdf
https://www.packtpub.com/sites/default/files/downloads/Chapter14.pdf

Preface

[x]

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xi]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/3632EN_ImageBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/3632EN_ImageBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/3632EN_ImageBundle.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[xii]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Architecting in the Cloud
For many years, application/system analysts and software architects have surveyed
and analyzed several important concepts, best practices, and tools to build highly-
scalable and fault-tolerant applications or infrastructures. In today's "era of Big Data",
these concepts or best practices may be more relevant due to "Big Bang" data, non-
predictable web traffic patterns, and the demand for reduced response time. This
chapter will introduce, reinforce, and reiterate some of these traditional approaches,
and how they can be involved in the context of Amazon Web Services (AWS). We
will also discuss some basic concepts of the AWS terminology, which will be helpful
in starting to architect with AWS.

In this chapter, we will cover the following points:

• An overview of AWS services
• The AWS global infrastructure
• Regions and Availability Zones
• An overview of AWS EC2, IAM, and EBS
• Scalability, elasticity, and bootstrapping
• Authentication and authorization

Let's start by introducing AWS services.

Architecting in the Cloud

[2]

AWS services
The AWS Cloud provides a highly-scalable and fault-tolerant infrastructure on
which to deploy web-based solutions, with minimal cost and administration, and
more flexibility than your in-house infrastructure or datacenter capabilities:

AWS offers a very good number of infrastructure services. The previous fundamental
diagram shows you the AWS terminologies and how AWS services can interact
with each other and your web-based apps, to provide solutions to build, maintain,
and deploy your applications, needs, a wide range of various technological services
which will help you to deploy and manage your applications. Clients and customers
always ask: what demonstrates a fully managed and flexible technical infrastructure
platform? To start from scratch, you can search for the AWS platform, which delivers
an industry-leading infrastructure platform with all the required features that Cloud
brings. Also, AWS provides knowledge about how AWS satisfies custom requirements
and why users might need each service capability provided by AWS.

Chapter 1

[3]

AWS started contributing to their highly available infrastructure platform in 2006,
based on the pay-as-you-go model. After that, whatever they have garnered as
services and customers till now is remarkable because they have thousands and
thousands of customers across 191 countries who use AWS platform services for
their initiatives, and the number is increasing in the AWS customer bucket. AWS
provided around 160 features and services in 2012 and around 280 in 2013. In 2014,
the number is increasing further.

The AWS global infrastructure
At present, AWS supports nine regions all over the world, which are the East Coast
of the U.S., the West Coast of the U.S., Europe, Tokyo, Singapore, Sydney, Brazil, 26
redundant Availability Zones, and 56 Amazon CloudFront points-of-presence, and
this number is increasing with time.

It is very crucial and important to have an option to place apps as close as
possible to your customers and end users when you create and deploy apps,
by ensuring the best possible lowest latency and user expected features and
experience for performance. For this, AWS provides regions worldwide.
Specific regions are as follows:

• US East (Northern Virginia) region
• US West (Oregon) region
• US West (Northern California) region
• EU (Ireland) region
• Asia Pacific (Singapore) region
• Asia Pacific (Sydney) region
• Asia Pacific (Tokyo) region
• South America (Sao Paulo) region
• US GovCloud

Architecting in the Cloud

[4]

Apart from infrastructure-level highlights, AWS have plenty of managed services,
which can be the cream of the AWS candy bar! The managed services bucket has
the following services:

• Security: For every organization, security is a very vital element. For
that, AWS has several remarkable security features, which distinguish
it from other Cloud provides. At the moment, I am just underlining the
security features at a very high level but we will discuss all the features
of AWS security in Chapter 12, Miscellaneous Features, AWS Security and
Troubleshooting. The security features of AWS are as follows:

 ° Certifications and accreditations
 ° Identity and Access Management

• Global infrastructure: AWS provides a fully-functional, flexible technology
infrastructure platform worldwide with managed services with certain
characteristics, for example:

 ° Multiple global locations for deployment
 ° Low-latency CDN service
 ° Reliable, low-latency DNS service

• Compute: AWS offers a huge range of various Cloud-based core
computing services, including a variety of compute instances, which can
be automatically scaled to justify the needs of your users and application;
a fully managed elastic load balancing service; and more fully managed
desktop resources on the pathway of AWS Cloud. Some of the common
characteristics of computer services include the following:

 ° Broad choice of resizable compute instances
 ° Flexible pricing opportunities
 ° Great discounts for compute resources are always on
 ° Lower hourly rates for elastic workloads
 ° Wide-range of networking configuration selections
 ° A widespread choice of operating systems
 ° Virtual desktops
 ° One can save as one grows, with the tiered pricing model

Chapter 1

[5]

• Storage: AWS offers low cost with high durability and availability with their
storage services. The pay-as-you-go pricing model with no commitment
provides more flexibility and agility in services and processes for storage
with a highly secure environment. AWS provides storage solutions and
services for backup, archive, disaster recovery, and many more. They
also support block, file, and object kind of storages with highly available
and flexible infrastructures. A few major characteristics of storage are the
following:

 ° Cost-effective, high-scale storage varieties
 ° Data protection and data management
 ° Storage gateway
 ° Choice of instance storage options

• Content delivery and networking: AWS offers a wide set of networking
services, which enable us to create a logical isolated network that network
architects define and, creates a private network connection to the AWS
infrastructure, with fault-tolerant, scalable and highly available DNS
services. It also provides delivery services to your end users for content by
very low latency and with high data transfer speed with the AWS CDN
service. A few major characteristics of content delivery and networking
include the following:

 ° Application and media files delivery
 ° Software and large file distribution
 ° Private content
 ° Device detection

• Databases: AWS offers fully managed, distributed relational, and NoSQL
types of database services. Moreover, database services are capable of
in-memory caching, sharing, and scaling with/without data warehouse
solutions. A few major characteristics for databases include the following:

 ° RDS
 ° SimpleDB and DynamoDB
 ° Redshift
 ° ElastiCache

Architecting in the Cloud

[6]

• Application services: AWS provides a variety of managed application
services with low cost application streaming and queuing, transcoding,
push notifications, searching, and so on. A few major services for databases
include the following:

 ° AppStream
 ° CloudSearch
 ° Elastic Transcoder
 ° SWF, SES, SNS, SQS

• Deployment & management: AWS offers the management of credentials
to explore AWS services such as monitor services, application services, and
updating stacks of AWS resources. They also have deployment and security
services alongside the AWS API activity. A few major characteristics of
deployment and management services include the following:

 ° IAM
 ° CloudWatch
 ° Elastic Beanstalk
 ° CloudFormation
 ° Data pipeline
 ° OpsWorks
 ° CloudHSM
 ° Cloud Trail

Additionally, there are a couple more additional important services from AWS such
as support, integration with the existing infrastructure, Big Data, and ecosystem,
which put them on the top of other infrastructure providers. As a Cloud architect, it
is necessary to learn Cloud service offerings and their all-important functionalities.
Let's look at AWS start up fundamentals and core technical concepts.

Regions and Availability Zones
AWS is a wide-ranging Cloud service provider, which empowers enterprises to
start all phases of their business, ranging from small enterprise portals to large
transactional data projects, and from mobile applications to gaming.

Failure can happen at any point in time and can affect the availability of instances,
which reside in the same geographical locations. Although rare, if you are hosting
your application in the same geographical location, you may experience this kind of
failure, and your whole environment may be down at some point in time.

Chapter 1

[7]

What are AWS regions?
AWS EC2 can be hosted in different locations worldwide. These multiple locations
are created as regions. Amazon EC2 offers you the flexibility and ability to use
resources, such as instances and databases, in multiple regions or geographical
locations. However, resources won't be replicated specifically across multiple regions
until and unless you do it externally.

In the following screenshot, you can see the eight currently available regions
now over the globe, which can accessible from anywhere. However, as per
geographical conditions, the pricing is different for particular regions among
various services. AWS services are also subject to this, AWS regions as well AWS
services are not supported in each and every region. To check whether a service is
available in a specific region, you can go to http://aws.amazon.com/about-aws/
globalinfrastructure/regional-product-services/. There is one more region
called "GovCloud", which is for the U.S. citizens only. So, apart from U.S. citizens,
nobody else can access that region.

Each AWS region is intended to be completely insulated from other AWS regions
by geographical location. So this will achieve the high availability and stability
with fault-tolerance. In most appropriate situations, it is good to deploy your apps
as close as possible to your end users. For example, if the majority of your users are
from the UK, it would be best to go with the EU (Ireland) region because it is the
nearest one. Other points you need to consider when choosing the regions are legal
clauses and costs.

http://aws.amazon.com/about-aws/globalinfrastructure/regional-product-services/
http://aws.amazon.com/about-aws/globalinfrastructure/regional-product-services/

Architecting in the Cloud

[8]

All major AWS services (with the exception of CloudFront and Route 53) allow you
to choose a region that you would like to work with. The default region will be N.
Virginia. You can select the region by using the drop-down menu, as shown in the
following screenshot:

After launching the resources, one can only view those resources tied to specified
regions over the globe. As regions are totally insulated from other regions, resources
won't replicate automatically between multiple regions.

While working with an instance using the command-line interface (CLI) or API
actions, you have to declare the regional endpoint and, if you are launching an
instance, you have to select an Amazon Machine Image (AMI), which resides in the
same region. If your AMI is in another region, you have to first copy that AMI to
your existing working region to launch it. For the AWS EC2 endpoint, please refer to
the following table:

Region name Endpoint
US East (Northern Virginia) ec2.us-east-1.amazonaws.com

US West (Oregon) ec2.us-west-2.amazonaws.com

US West (Northern California) ec2.us-west-1.amazonaws.com

EU (Ireland) ec2.eu-west-1.amazonaws.com

Asia Pacific (Singapore) ec2.ap-southeast-1.amazonaws.com

Asia Pacific (Sydney) ec2.ap-southeast-2.amazonaws.com

Asia Pacific (Tokyo) ec2.ap-northeast-1.amazonaws.com

South America (Sao Paulo) ec2.sa-east-1.amazonaws.com

Table 1.0 – AWS EC2 region wise endpoints

Chapter 1

[9]

You can copy both types of AMI, AWS EBS-backed AMIs and instance-store-backed
AMIs. You can copy AMIs into multiple regions whenever you want them. You
can also copy an AMI into the same region for custom use. However, each AMI has
a unique AMI ID, so if you copy an AMI from one region to another, it will work
as a new AMI with a new unique ID. If you are communicating between multiple
regions, it will be over the Internet. That's why administrators or developers have to
be careful about the communication channel, and they need to use proper encryption
methods to protect their data. Data transfer charges will be applicable on both ends,
sending the data from an instance and receiving it at the instance end.

What are AWS Availability Zones?
With AWS EC2, you can place instances in several geographically distinct locations.
Locations are combinations of regions and Availability Zones (AZ). AWS EC2
Availability Zone locations can be within regions that are designed to be isolated
from other zones' failures. You can get some very good advantages such as low
latency and cheap network connectivity while using EC2 Availability Zones within
the same region.

The biggest advantage of, deploying your apps across multiple AZs make your
architecture ready and fault-tolerant for unexpected outages. So if a breakdown
occurs in a single Availability Zone and you deployed your app in multiple AZs,
your app will remain accessible from different AZs. At the time of writing this
chapter, there are a total of 25 AZs that exist all over the globe.

www.allitebooks.com

http://www.allitebooks.org

Architecting in the Cloud

[10]

Availability Zone count can vary with time in regions because with
time it increases based on the demand and infrastructure.

How to use AWS AZs
Every AZ will be running on its own infrastructure environment, with self-governing
cooling, network with security, and power. AZs are not affected by common
failures such as generators or cooling equipment failure. The great advantage of
AZs is that they are physically separated so that disasters such as fire, floods, and
tornadoes won't affect more than one AZ. Every AZ may have a single or multiple
data centers internally as per the infrastructure availability. Each AWS Account has
independently mapped AZs, which can vary between different accounts. To map an
IP address with AZs, you can use the Elastic IP addresses.

To check AZ statistics with regions, you can sign in to the AWS Management
Console and go to the EC2 console. In EC2, the navigation bar will show you the
regions and from those regions, you can check the associated Availability Zones
when an instance or Amazon Elastic Block Storage (Amazon EBS) volume is going
to be launched. If you don't specify the AZ at the time of the instance launching, it
will take the default AZ based on the available capacity and system health. To select
and get optimal output from the AZs, you can consider the following architecture
points as per the requirement. Though you can change your architectural design at
any time, based on the traffic and user's behavior on the Cloud, you need to focus on
the price, consistency, site downtime, and performance. The following architecture
use cases may be the most suitable for you:

• Simple failover: The most reasonable failover preference contains a running
deployment of your application in a primary AZ. Backup deployment is
arranged for launch in a different AZ, in a situation where the primary zone
fails. The expected downtime is nearly 8-10 minutes after launching the
backup deployment.

• Intermediary failover: A slightly diversified deployment is set up across
two AZs; this works best for production deployments that cannot afford a
10-minute downtime.

• Advanced failover: This is the best choice for a deployment strategy that
needs reliability with around 99-100 percent uptime. However, of course,
this is the most costly of the three. This give you a continuously running site
not withstanding a deleted instance and no reaction for your application
infrastructure.

Chapter 1

[11]

In this section, you will learn some of the business and technical specifications of
AWS services, such as EC2, IAM, and the architectural terms of Amazon regarding
infrastructures. Let's start with the core services of AWS: Elastic Compute Cloud
(EC2) and Identity & Access Management (IAM).

AWS EC2 and IAM
Amazon EC2 is a web service (launched in 2006) that helps virtual machines run
on host applications or databases. In other words, it provides a resizable compute
capacity in the AWS Cloud. You can group your OS, application software, and its
associated configuration settings with EC2 AMIs. An AWS user can boot AMIs to
launch virtual machines. In AWS terms, it is called an "instance". A user can create,
configure, launch, and delete the EC2 instances as per requirements. You can use
AMIs to launch a number of virtual instances and also decommission them using
web service calls to scale your environment as per your requirements.

The AWS EC2 functionality
AWS EC2 generates a fully virtualized environment, which allows you to use a
web-based interface to start instances with different types of operating system and,
built-in application packages with custom permissions. You can run n number of
instances from the same AMI as required.

Architecting in the Cloud

[12]

To work with AWS EC2, you have to:

1. Choose a pre-configured template called AMI to run and make it available
for use. Another option is to manually create your own custom AMIs to have
your required applications and configurations.

2. Create a new or configure an existing default security group and network
accessible protocols to reach your instance from the backend as well as from
the frontend.

3. Select your instance type and size based on the requirement.
4. Select your instance location, addition storage, plus the Elastic IP

requirement.
5. Pay only for what you use per hour.

Instance types and pricing
AWS EC2 instances are the basic building blocks required for your computing
requirements on the AWS Cloud platform. Also, as it's a core component of any
customer infrastructure, AWS provides a variety of instance types. Instance types
comprise various combinations of memory, CPU, storage, and network capabilities,
and so will give the freedom to AWS users to select the appropriate mix of resources
for their web-based solutions.

Selecting an instance type
For an easier understanding of instance types and based on real-time cases,
AWS has grouped together instances into families based on final application usages.
The following information guide will help you to think about the instance type that
would be best suited as per your requirements.

Chapter 1

[13]

AWS EC2 instances can be differentiated via three purchasing models:

• On-demand instance
• Reserved instance
• Spot instance

At the beginning of Cloud technology, it was first defined by its properties of elasticity
and supply of infrastructure with whatever configuration the consumer needs and
whenever he needs. This was the primary logic behind on-demand instances.

You don't need to pay any up-front cost, but only charges per hour plus how long
you are going to run the AWS instance for. This purchasing model is very flexible,
but it is also the most expensive one. If somebody requires dynamic throughput, the
on-demand instance type can be the best choice for them.

If you know the exact duration for the instance to become available on AWS,
accurate usage as per the instance types, and the geographical location of instances
from where you can serve the content with low latency to your end users, you can go
with reserved instances:

Architecting in the Cloud

[14]

Reserved instances always start as on-demand instances but the only difference is the
billing method. You have to pay a one-time fee to cut down the per hour charges at
runtime. If you are going to use AWS EC2 instances all the time like 365x24x7, you
will realize a drastic price reduction in billing.

The reserved instances are classified based on their utilization, for example, light
utilization, medium utilization, and heavy utilization. The basic difference between
these three types is their upfront cost and per hour billing. If you select a heavy
utilization type, per the hour charges will be much less but the upfront cost will be
higher than the light and medium utilization types.

After purchasing the reserved instance, you cannot change the
platform, AZ, instance type, term period, and offering type.

Again, if you are going for light utilization, you have to pay a smaller upfront cost
but the per hour charge will be increased compared to high utilization and medium
utilization. The best use case is to run light and medium utilization type instances for
those who often need to run a particular instance type, but not all the time.

However, after offering resources to end users over the globe, AWS has unused
infrastructure in their datacenters. So AWS has decided to rent this infrastructure by
bidding it. A user will come and bid for the instance, and they will get the instance
resource as long as their bid is higher than the others:

Chapter 1

[15]

In other words, in Spot instances, you can specify the maximum price based on
the per hour charge you'll pay and if there is space, you will get the instance. At
any point in time, if you are outbid, your instance will be snatched away from you
without any prior notice. That means you can utilize these kinds of resources to
finish the process when it's most economical. Spot instances can be best suited to web
applications or web servers, where if one or more instances shuts down, the process
won't be affected.

The Spot instances console is the same as an on demand
console except the configuration step in which a user will
define the bid price.

Whenever you are going to launch an instance in any region and whatever the
instance type you selecting, determine the hardware of the server/instance, which
will be used in your virtual infrastructure. Each and every instance type has different
RAM, CPU power, and storage capacities. Among these instance types, you have to
choose the most suitable instance type on which you can start hosting your software
or applications. AWS EC2 gives you consistent CPU power, regardless of its whole
underlying hardware infrastructure/datacenter.

AWS EC2 reserves some of the resources from its pool for the host computer, such as
the CPU, memory, and some instance storage for an appropriate instance. AWS EC2
will share the remaining resources of the existing host computer, such as network
and disk, among other instances. So, if any instance on a host computer tries to
utilize the capacity of shared resources, each instance will receive an equal part of
those shared resources. And if the resource performance and usage is under-utilized,
an instance can acquire a larger share of those shared resources as it can in that
period of time.

In AWS EC2, each instance will provide you with higher performance or lower
performance based on that instance type and shared resource. Let's take an example.
Say you select a high I/O instance type, which has a higher allocation of the shared
pool of resources. Allocating a higher set of shared resources will also vary the
I/O results of the instance type. For a general application that has a normal load,
moderate I/O performance is sufficient. However, applications such as market
trading will require a higher or more consistent I/O performance by considering an
instance type that has a higher I/O performance output.

Architecting in the Cloud

[16]

Available instance types
AWS has divided the instances based on common usage patterns, configuration
families, and its configuration properties, as shown in the following image:

You can find out more about common instance categories at http://aws.amazon.
com/ec2/instance-types/

Popular use cases for instance categories
The various instance categories are as follows:

• General purpose instance: Data processing, small size databases, enterprise
applications/portals like SAP, SharePoint, and so on.

• Compute-optimized instances: Batch processing, websites that have very
high traffic, GNOME analysis, ads and media serving, computational fluid
serving, and video encoding.

• GPU instances: Application/software and 2D/3D application streaming,
rendering and engineering design, and so on.

• Memory-optimized: Applications with larger deployment and analysis such
as SAP, GNOME assemble analysis, distributed memory caches, and so on.

• Storage-optimized: Scale out transactional databases, data warehousing,
and Hadoop.

• t1.micro instances: Low traffic sites, getting hands on with AWS EC2 or for
some free tier stuff.

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

Chapter 1

[17]

AWS EC2 instance numbers and pricing
In general, you are limited to run a total of 20 on-demand or reserved instances
and can request 100 Spot instances per region. If you are a new customer, the
instance limit can be lower than the limit described. Certain instance types are
more specific with numbers per region and can vary based upon the account and
production instance request form. You can find more details regarding limits at
the following URL:

http://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_
Amazon_EC2

Billing and pricing
On AWS, you will be charged for what you use and there are no minimum charges;
in other words, they follow the pay-as-you-go model. Charges will be based on per
hour usage of an instance type. Partial or semi partial instance hours consumed will
be counted as full hours. For example, if you are using an instance for 55 minutes,
you will be charged for 60 minutes. There is no data transfer charges between
two Amazon services within the same region, for example, if you are transferring
some data from AWS EC2 US West to AWS RDS US West. Charges are exclusive
of applicable taxes and duties, including VAT and applicable sales tax in monthly
billing.

AWS services, data transferred between multiple regions, and the usage of other
AWS resources will be billed separately to AWS EC2. Billing originates when
Amazon EC2 initiates the boot sequence of an AMI instance. The billing cycle stops
when the instance terminates, which could ensue through a web services command,
by running shutdown -h or due to instance failure. To count the cost before
initiating the new AWS resources you can check the estimate monthly billing at
http://aws.amazon.com/calculator.

http://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
http://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
http://aws.amazon.com/calculator

Architecting in the Cloud

[18]

The calculator page will look like the following screenshot:

Calculator page

On the calculator, you can estimate your monthly billing based on your approximate
services-based usage.

Ephemeral versus persistent storage
You learned about the EC2 instance and instance types, we saw the instance storage
option in the previous table. Starting from the m1.small type, you can identify that
the extra storage will be added to that instance automatically without attaching the
storage externally. It can be more noticeable in larger or bigger instances such as
m1.medium and so on, where you will get a large disk in the /mnt directory of your
Linux system. And guess what? It's absolutely free for you! You won't get charged
for using it to read or write.

What is ephemeral storage?
Ephemeral disk will be a temporary storage option that will be added automatically
to your instance, and it depends on your instance type. The ephemeral disk size of an
instance store ranges from 150 GB to 48 TB, and varies by a particular instance type.
The bigger your instance, the bigger the ephemeral storage disk you will be assigned.

For certain instance types, such as c1.medium and m1.small, they practice instance
storage repeatedly as SWAP as they have a restricted quantity of memory, whereas
several are generally structured and mounted at the /mnt directory.

Chapter 1

[19]

The ephemeral storage in an instance, is a temporary storage in nature, one
should not depend on these disks to keep long-term production data or even other
important data that you would not like to misplace when an instance stop happens,
for example, stopping and starting an instance, failure of the underlying hardware
of EC2, or terminating an instance. Because of these problems, you should keep in
mind that EBS/S3 or any other insistent storage will be the best solution. Let's take
an example of losing ephemeral disk data while starting and stopping an instance.
The following steps test this operation practically:

1. Launch an instance that has an ephemeral disk:

2. Log in with an instance and go to the /mnt or /media directory after
checking the ephemeral storage using the following command. We get the
following output:
df -h

www.allitebooks.com

http://www.allitebooks.org

Architecting in the Cloud

[20]

3. Create any directory or file in the /media directory, as shown in the
following screenshot:

4. Now stop the instance and start it again. After starting the instance, check the
/media directory for your content. You won't be able to see your content as
we performed the stop and start operation with an instance:

Chapter 1

[21]

5. Now, let's check by rebooting the system after we have created some content
in the /media/ephemeral10 directory:

6. Reboot your instance:

Architecting in the Cloud

[22]

7. After the reboot process, check your content:

EC2 instances that use Amazon EBS for the root device do not, by default, have an
instance store accessible at boot time. Also, you can't assign instance store volumes
after you've launched an instance. Therefore, if you want your Amazon EBS-backed
instance to use instance store volumes, you must postulate them using a block device
mapping when you create your AMI or launch your instance. The block device
mapping entries are /dev/sdb=ephemeral0 and /dev/sdc=ephemeral1.

The following URL shows a list of ephemeral storage sizes with respect to the
instance type of EC2:

http://aws.amazon.com/ec2/instance-types/

There are lots of theories around instances backed with EBS or instance storages
concerning performance, costs, and so on. Therefore, I'd say the choice of which one
to use rests on the user. Normally, you can find the subsequent facts:

1. An instance with ephemeral storage is faster than EBS for modest statistics
which persistent is not.

2. You can't stop an instance in order to pay less for it; nevertheless, if you do,
you will simply lose everything. So you have to create backup strategies.

3. You can't advance instance, that is you can't upgrade directly or scale
vertically. So you will have to make an AMI and launch a bigger instance
from the console.

http://aws.amazon.com/ec2/instance-types/

Chapter 1

[23]

And of course, there are numerous workarounds for this, but truly I would like
to say that you should use these types of storages only when your application is
currently designed to not store anything locally. One more thing, ensure that you
have an EBS volume attached to your instance, which in turn will serve as backup or
to store sensitive data that can be lost.

EBS is a persistent storage given by AWS. All data stored in persistent storage is
presented after an instance is shut down and can function dynamically on device
level. When you create and start an instance, the root device volume grips the
image used to boot the instance. You can choose one option from the AMIs based
on the Amazon EC2 instance store and the AMIs backed by Amazon EBS. Experts
recommend that you use the AMIs backed by Amazon EBS because they launch
faster and use persistent storage.

For example, you can detach an EBS volume from one instance and attach it to
another instance. However, an EBS cannot be attached to more than one instance
at the same time but multiple EBS can be assigned to one EC2 instance, and they
can then be lined and/or emulated into a larger volume using Redundant Array of
Independent Disks (RAID).

These two AMIs based on type reveal numerous differences, for example, in their life
cycle, boot time and data persistence characteristics:

Characteristic name Amazon EBS-backed Instance (S3) Store-backed

Life cycle

Supports the stopping and
restarting of an instance by
saving the state to EBS

The instance cannot be
stopped; it can either be in the
running or terminated state

Data persistence

Data continues in EBS
on instance failure or
restart. Data can also be
configured to persist when
an instance is terminated.

Instance storage does
not continue on instance
shutdown or failure. It is
possible to attach non-root
devices using EBS.

Boot time Usually less than 1 minute Usually less than 5 minutes
Table 1.3 – EBS-backed and instance store-backed comparison

Architecting in the Cloud

[24]

How to use persistent storage with your
instance
EBS is a mountable storage service; it can be mounted as a device (such as
plug-and-play) to an EC2 instance.

Let's take an example to attach EBS (persistent storage) to your instance using the
following steps:

1. Go to the Amazon EC2 console, on the left-hand side of the navigation pane,
you will find the Elastic Block Store section:

2. Click on Volumes in the navigation pane. The console displays a list of the
current volumes:

Chapter 1

[25]

3. Select a volume and click on Attach Volume. Select an appropriate instance
from the drop-down box. Only the instances in the same AZ as the volume
will be displayed:

4. Fill the necessary details and click on the Attach button to attach the volume
to the instance. The volume and instance must be in the same AZ.

Instances with Windows OS will use either Red Hat or Citrix paravirtual
(PV) drivers. If you have a Windows instance with Citrix PV drivers,
you can attach up to a total of 25 EBS volumes; however, Windows
instances with Red Hat PV drivers are limited to 16 volumes only.

The following diagram summarizes the lifecycles of both persistent and
non-persistent storages with S3 and EBS-backed EC2 instances:

Architecting in the Cloud

[26]

EBS-backed EC2 instances present a new stopped state, which is not available in
the backed-by-instance store as of now. It is essential to keep in mind that while
an instance is in a stopped state, you will not experience any EC2 running charges
except EBS storage charges, which are related to your instance:

The other benefit of S3-backed instances is that a stopped instance can be started
another time while preserving its core state.

Scalability, elasticity, and bootstrapping
Generally, each and every Cloud is designed to gain infinite scalability. Even
though the Cloud is scalable, you cannot take advantage of the scalability if your
infrastructure is not scalable at any point. You have to conclude your components,
which requires scalability, and you have to find those parts in which on-demand
scaling won't work for your business. You have to design your application in
order to get maximum output to capture the market and leverage the scalable
infrastructure of the Cloud.

The characteristics of a proper scalable application are as follows:

• Growing capitals result in a comparative upsurge in the recital
of performance

• A scalable service is accomplished because of conduct heterogeneity
• A climbable service is operationally effective
• An ascendable service is robust
• In general, a scalable service should get more budget with respect to actual

one when it is required

Chapter 1

[27]

These are characteristics that must be converted into an intrinsic part of the business
application and if the architecture design is built with the preceding characteristics,
then both the architecture and infrastructure will work in an organized manner to
give you the scalability you are looking for.

As the provisioning time and upfront venture to obtain new capitals was too
high, software architects never invested time and resources in augmenting
hardware exploitation. It was tolerable if the hardware on which the apps run was
underutilized. The concept of "elasticity" inside a design went unnoticed as the idea
of having new capitals in transcripts was not conceivable.

Cloud modernizes the progression of obtaining the essential capitals; there is
no requirement lengthier than to place preparations ahead of time and grip the
unexploited hardware incarcerated. Instead, Cloud architects can demand whether
they want mere proceedings before obtaining resources, captivating the benefit of the
huge scale and rapid response time of the Cloud. The vice versa is relevant to reduce
the unwanted resources when you don't need them.

Elasticity is one of the essential properties of Cloud computing in today's fast-paced
demand-growing world. It is the power to scale computing capitals up and down in
a straightforward manner and with nominal chafing. It is important to comprehend
that elasticity will eventually initiate maximum of the paybacks of the Cloud. As a
Cloud engineer, you need to adopt the concept of elasticity and implement it in your
application architecture in order to get the best value from the Cloud and its services.

Bootstrap your instances
Design your instance deployment and let your instances ask you difficult questions
about their existence during the boot, such as "Why am I created and what will
be my role?"; each and every instance should have a specific part to play in the
infrastructure and deployment environment such as database servers, replica
servers, web servers, cache servers, and so on. So put your instances in a specific
category with a specific role.

These role features can be passed to an instance when you boot or spin the instances
from an AMI at runtime on air. At the time of booting the instance, we will
download and configure the scripts and codes necessary as per the role requirement
and work automatically as defined in the scripts.

The following are the advantages of bootstrapping your instances:

• Reconstruct the (development, test, and production) environment with little
snaps and nominal struggle

• The preceding instances govern your abstract Cloud-based capitals

Architecting in the Cloud

[28]

• Condense human-induced deployment mistakes
• Generates a self-healing and self-discoverable working environment, which

can be more robust to hardware failure

Black belt booting
There are numerous cutting-edge methods that compromise supplementary power
and flexibility when booting Linux. For example, some officialdoms preserve a
sequence of the standard instances, and modify the ideas upon promotion, at the
time of deployment. Communal practices include:

• Spontaneously checking for modernizers upon every boot.
• Staring at a well-known position, such as in an S3 (Simple Storage Service)

bucket, for data or a script to direct the instance, which packages to load.
• Gives access of the user data to the instance to achieve each of the preceding

goals, or perhaps, as an alternative to the other approaches.

Identity and Access Management
AWS has a shared security section that consist of AWS IAM. AWS IAM allows for
the creation of distinct users or groups, granulated authorizations, and even precise
services. Agreements can be set for any AWS service, including Amazon EC2, and
letting fashionable security credentials that avoid basic users from salvaging statistics
not related to their access. You can also use Identity and Access Management (IAM)
to achieve security credentials such as access keys, passwords, and multi-factor
authentication devices centrally. Active instantaneously, the IAM is a generally
available service among other AWS services no; this means it doesn't depend on a
region or Availability Zones!

IAM includes the following features:

• Complete control of users, groups, and security credentials
• Control of access based on user role, and security tokens
• Control over shared AWS resources
• Authorizations based on organizational groups and users
• Centralized networking controls

Chapter 1

[29]

Accessing IAM
You can work with AWS Identity and Access Management (AWS IAM) by using
the following methods:

• Using the AWS Management Console
• Using the AWS command-line interface
• Using the AWS API

Using any of the preceding access methods, one can accomplish IAM capitals, by:

• Creating users/groups and assigning permissions to them
• Creating security credentials (roles and policies) for your users
• Assigning passwords to your users and restricting them for

particular services

Here, to get familiar with AWS IAM and its usage, we will follow the first method
for an overview and later in this book, we will look into IAM using CLI with other
services. Let's start with a detailed overview of the IAM console:

www.allitebooks.com

http://www.allitebooks.org

Architecting in the Cloud

[30]

When a user signs in to their AWS account, they sign in via an IAM-enabled user
sign-in page. For their accessibility, this sign-in page routes a cookie to evoke the
user's position so that the next time a user serves to the AWS Management Console
at the next login or visits the same page, the AWS Management Console calls the
IAM-enabled user sign-in page automatically. This left-hand side navigation tab
allows you to create and manage IAM users, groups of IAM users, their permissions,
and their security credentials separately, along with other services:

You can select a policy template, which is predefined in the IAM service, or build
your own custom policies using AWS Policy Generator. The permission wizard
includes a specific template for every service that currently supports IAM to make it
easy for you to get started and define policies:

Chapter 1

[31]

The preceding features described represent my first overview-based steps toward
our long-term goals to learn about IAM and its best use cases in further chapters.
However, we have a long journey ahead of us and I am looking for additional
integrations, data access methods, and product based scenarios with AWS IAM.

Authentication and authorization
One of the characteristics that made me focus on AWS was my knowledge that the
Cloud can be pleasant and logical in which you can figure security solutions.

Two imperative ideologies are essential to confirm that the correct people are
undertaking the right things in every information system. These are as follows:

• Authentication: This is how you demonstrate your uniqueness. The
computer won't accept your identity until you exhibit an acquaintance of an
identity that the computer can then validate. Typically, it's your username
and password; it could also be the private key (secret key and access key)
associated with a digital certificate (here, X.509 in AWS). Authentication
classifications never send secrets over the wire; in its place, enigmas are used
to compute a difficult-to-reverse message. Since apparently only you know
your secret, your claim is valid in any system.

• Authorization: This is what we're permitted to look after once the Cloud
grants you access to services. Unfortunately, individuals aren't actually good
at keeping secrets and often divulge secrets when they get an opportunity.
The following figure shows the authorization services provided by AWS:

Architecting in the Cloud

[32]

The Multi-factor authentication (MFA) device in AWS alleviates this base
problem by demanding additional proof of the problem. Authentication factors
come in many varieties:

• Something you know: A password, passphrase, key, pin, and response
to a challenge.

• Something you have: A token, smartcard, mobile phone, passport,
and wristband.

• Something you are or do: A meddle-resistant and theft-resistant
biometric individual.

On AWS, for authentication, you can use two factor authentication devices: one for
connection and the other for the retrieval of data. You can use secret keys, access
keys, and X.509 certificates for authentication. You can find these under the AWS
Management Console/Security Credentials option as described in the preceding
screenshot. They also provide MFA, which can be used for two-factor authentication.
The following screenshot is for the MFA device. There are two types of MFA devices:
Virtual MFA and Hardware MFA.

Chapter 1

[33]

At the following URL, you can purchase your MFA device if you want:
http://onlinenoram.gemalto.com/

There are two types of MFA devices available on this site, which differ in
characteristics and pricing. As per your requirement, you can buy them and secure
your AWS environment using two-factor authentication.

http://onlinenoram.gemalto.com/

Architecting in the Cloud

[34]

Summary
In this chapter, you learned about all the basics requirement of AWS. You also
learned what AWS regions and Availability Zones are and about EC2 instances.
In the EC2 section, you learned about instance types and pricing models. Later,
you looked into persistent storage and ephemeral storages, and their life cycles.
In the last section of the chapter, we covered what IAM is and its dashboard
overview. Finally, you learned what authentication and authorization are
with a high-level overview of the AWS security dashboard.

In the next chapter, you will learn how to create fault-tolerant applications with EC2,
EBS, and the ELB. In this, you will dive deep into EC2 to learn about application
availability and other components such as EBS and ELB along with how they work.

[35]

Elastic and Fault-tolerant
Infrastructure

In normal business scenarios, while your internet applications are getting more
traffic, you have to add more capacity either by increasing the number of servers or
the size of the existing servers to handle those traffic spikes. Vice versa, if your web
application traffic goes down or is normal, you have to shut down under-utilized
servers or decrease the capacity of the existing servers. There are basically two types
of scaling available:

• Horizontal scaling: Adding or removing the number of servers to handle
traffic on demand

• Vertical scaling: Increasing the capacity of the existing servers or
infrastructure (RAM, CPU, and storage)

The final decision on which scaling to use can depend on crucial factors such as cost,
performance, and infrastructure.

In this chapter, we will cover the following topics:

• The AWS Elastic infrastructure by Auto Scaling
• How to use Elastic Load Balancer (ELB) with an EC2 instance

So, let's start with the AWS Elastic infrastructure.

Elastic and Fault-tolerant Infrastructure

[36]

The AWS Elastic infrastructure by
Auto Scaling
For web applications configured to run on Cloud, scaling is a vital part of cost control
and resource management. Auto Scaling is a web service mechanism provided by
AWS to automate the process of launching and terminating AWS EC2 instances based
on user-defined rules and scheduling with the health status check facility.

Auto Scaling can be applied for those applications that experience traffic on an
hourly, daily, or weekly basis and that need to scale horizontally or vertically. Mostly
on AWS, horizontal scaling is recommended, because to do vertical scaling with
the Amazon infrastructure, you need to stop the instance and increase or decrease
its capacity as per your requirement. When you are doing horizontal scaling, there
is no need to stop/start your existing instances/servers. The Auto Scaling service
frees you from managing your Cloud infrastructure based on your traffic spikes,
accurately planning for resources in advance. So, by using Auto Scaling, you can
build a fully elastic and scalable infrastructure affordably.

Let's look at an example of how scaling works. I have a blog called Cloud Magic
World (http://cloudbyuchit.wordpress.com) that runs on a single EC2 small
instance. An EC2 instance performs best when I have regular traffic on my blog at
night. However, during the day, say from 10:00 am to 07:00 pm, the traffic to my
blog increases by up to three times. When this happens, I need an additional Cloud
instance to handle the increased load. For my blog application to scale in accordance
with the additional load, I'll need to launch the second EC2 small instance before the
increased load occurs, and I will terminate that server after the traffic goes down to
normal levels. This process works best for me where the application has predictable
traffic patterns; I know when to launch the extra instance and when to terminate it.

However, say, for example, that we are not aware about how big a traffic spike will
hit my blog post. So, for my blog, if the traffic load is not predictable, I have to add a
few more servers, although there won't be continuous traffic on those servers.

What happens in this example if I use Auto Scaling for my blog? The answer is very
simple, I won't be charged for other extra instances and I don't need to run those
extra instances all the time. Instead, I can define the conditions that determine the
increasing traffic to my blog instance, and then I will tell Auto Scaling to launch a
similar application server whenever those conditions are met and required.

http://cloudbyuchit.wordpress.com

Chapter 2

[37]

In the same way, I can define policies for heavy-to-normal spikes, and then tell Auto
Scaling to terminate a server when these conditions are met. AWS Auto Scaling
allows you to scale resources in two ways:

• Dynamic scaling: This is based on conditions specified by you (for example,
the number of users or CPU utilization).

• Predictive scaling: This is based on a schedule, which will be defined by the
admin (for example, every day at 14:00:00 hours).

Working with Auto Scaling
For general web applications, such as online learning portals, one can add multiple
instances for a single application to handle customer traffic over the globe. These
numbers of copies of applications can be hosted on identical AWS EC2 instances to
use the Auto Scaling service.

In Auto Scaling, your hosted EC2 instances on different AZs will be categorized
into Auto Scaling groups for management and scaling activity. You can create
Auto Scaling groups with different configuration parameters, such as minimum,
maximum, or/and the number of EC2 instances in a particular group at any time.

In Auto Scaling groups, with the help of launch configuration, instances will be
launched. You can create your own launch configuration with the AMI information,
which will be used in Auto Scaling to launch instances. Image information would be
image ID, type, security key pair, groups, and block devices. After creating a launch
configuration and an Auto Scaling group, you have to create a scaling plan for the
Auto Scaling group to define when and how to scale. One can create a scaling plan
based on your requirement, such as using scheduling or using specified conditions
for dynamic scaling.

Ways to access the Auto Scaling service
You can manage your Auto Scaling resources in a number of ways. AWS provides
the following ways to manage Auto Scaling:

• Auto Scaling Command Line Interface (CLI): CLI silently uses the API
actions to provide multifunction commands without using SDKs and APIs.
The CLI commands are written in Python and include shell scripts for
automation and management.

• AWS Command Line Interface: This can be used to organize and automate
AWS services on Windows, Mac, and Linux.

Elastic and Fault-tolerant Infrastructure

[38]

• The Auto Scaling API: Auto Scaling uses APIs, which you can call by
submitting a query request, and it is the fanciest way to access a web
service directly.

• SDKs for Auto Scaling: This provides functions that bind an API and take
care of the connection details using Java, .NET, PHP, Node.JS, Android,
iOS, or the Ruby language.

• AWS Management Console: This is a web-based interface that you can use
to manage and access Auto Scaling and other AWS services.

In this chapter, we will configure and access Auto Scaling via AWS Management
Console and AWS Command Line Interface.

The limitation for Auto Scaling is that there is a default limit
of 20 Auto Scaling groups and 100 launch configurations per
region per AWS account. If you reach the limit, you can go to the
support center at https://aws.amazon.com/support/, and
request to raise this limit.

Installing and configuring Auto Scaling
The Auto Scaling utility can be accessed via CLI to access the Auto Scaling
functionality without any of the preceding ways mentioned. It wraps the API
actions to give multi-utility commands.

Installing Auto Scaling prerequisites
Proceed with the following steps to install and configure Auto Scaling Command
Line Interface:

1. Set the Java variable in your system:
1. The command-line tool reads an environment variable (JAVA_HOME)

on the machine to locate the Java runtime. Either JRE or JDK
should be fine with Version 6 or higher. To download Java,
go to http://java.oracle.com/.

2. Extract your downloaded Java and set the path using the variable
JAVA_HOME to the full path of the directory, which will contain the
bin subdirectory. For example, if you have Java installed in the /opt
directory, the path should be JAVA_HOME to /opt/jdk for Linux and
C:\jdk for Windows.

https://aws.amazon.com/support/
http://java.oracle.com/

Chapter 2

[39]

3. To set JAVA_HOME, use the following commands:
For Linux:

$export JAVA_HOME=/opt/jre

For Windows:

C:\> set JAVA_HOME=C:\java\jdk1.6.0_6

4. Include the Java directory to your system path before other versions
of Java:
For Linux:

$export PATH=$PATH;$JAVA_HOME/bin

For Windows:

C:\> set PATH=%PATH%;%JAVA_HOME%\bin

5. Verify your JAVA_HOME settings:

For Linux:

$ JAVA_HOME/bin/java –version

For Windows:

C:\> %JAVA_HOME%\bin\java –version

2. Setting up the CLI tools: To access the Auto Scaling Command Line tools,
you need to download it from the AWS site http://aws.amazon.com/cli/
and set it up with your AWS credentials within an instance. You need to
just download it and unzip it. No installation is required; it will come as
a .zip bundle.

1. The CLI also depends on the environment variable, so, again,
we have to set its path with AWS_AUTO_SCALING_HOME:
For Linux:

$ export AWS_AUTO_SCALING_HOME=/usr/local/as-1.0.12.0

$ export PATH=$PATH:$AWS_AUTO_SCALING_HOME/bin

For Windows:

C:\> set AWS_AUTO_SCALING_HOME=C:\CLIs\as-1.0.12.0

C:\> set PATH=%PATH%;%AWS_AUTO_SCALING_HOME%\bin

www.allitebooks.com

http://aws.amazon.com/cli/
http://www.allitebooks.org

Elastic and Fault-tolerant Infrastructure

[40]

2. The way to use Python for the AWS CLI setup is very easy and
became very popular in the developer community as it requires only
a single command called pip. It will install AWS CLI tools on your
instance. So, the same can be possible for AWS Auto Scaling tools.

pip install awscli

Your environment variables of the Windows machine may reset when
you close the terminal window. You may want to set them undyingly
using the setx command, which is the same as set.

3. Authenticate your AWS account with the CLI tools:

1. After signing in, you need to create access keys and secret keys
for your account. You have to provide these keys to your CLI
tools. You can create your AWS secret keys and access ID from
https://console.aws.amazon.com/iam/home?#security_
credential.

2. Create one new file called CredentialFile and save your access
key ID and secret access key to the file.

3. Provide 600 (read and write for owner only) permission to
CredentialFile if you are a Linux user using the following
command:
$ chmod 600 CredentialFile

4. Set the AWS_CREDENTIAL_FILE variable based on your file location.

Now, you are almost done with setting up the AWS CLI tools for Auto Scaling.
So, now you can test the tools on a Windows or Linux machine using the
following command:

as-cmd

You should see the output as follows, for your reference:

Command Name Description

------------ -----------

as-create-auto-scaling-group Create a new Auto Scaling
group.

as-create-launch-config Creates a new launch
configuration.

https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential

Chapter 2

[41]

as-create-or-update-tags Create or update tags.

as-delete-auto-scaling-group Deletes the specified
Auto Scaling group.

as-delete-launch-config Deletes the specified
launch configuration.

as-delete-notification-configuration Deletes the specified
notification configuration.

as-delete-policy Deletes the specified
policy.

as-delete-scheduled-action Deletes the specified
scheduled action.

as-delete-tags Delete the specified
tags

as-describe-adjustment-types Describes all policy
adjustment types.

as-describe-auto-scaling-groups Describes the specified
Auto Scaling groups.

as-describe-auto-scaling-instances Describes the specified
Auto Scaling instances.

as-describe-auto-scaling-notification-types Describes all Auto Scaling
notification types.

as-describe-launch-configs Describes the specified
launch configurations.

as-describe-metric-collection-types Describes all metric
colle... metric granularity types.

as-describe-notification-configurations Describes all
notification...given Auto Scaling groups.

as-describe-policies Describes the specified
policies.

as-describe-process-types Describes all Auto
Scaling process types.

as-describe-scaling-activities Describes a set of
activities belonging to a group.

as-describe-scheduled-actions Describes the specified
scheduled actions.

as-describe-tags Describes tags

as-describe-termination-policy-types Describes all Auto Scaling
termination policy types.

as-disable-metrics-collection Disables collection of Auto
Scaling group metrics.

Elastic and Fault-tolerant Infrastructure

[42]

as-enable-metrics-collection Enables collection of Auto
Scaling group metrics.

as-execute-policy Executes the specified
policy.

as-put-notification-configuration Creates or replaces
notifi...or the Auto Scaling group.

as-put-scaling-policy Creates or updates an Auto
Scaling policy.

as-put-scheduled-update-group-action Creates or updates a
scheduled update group action.

as-resume-processes Resumes all suspended
Auto... given Auto Scaling group.

as-set-desired-capacity Sets the desired capacity
of the Auto Scaling group.

as-set-instance-health Sets the health of the
instance.

as-suspend-processes Suspends all Auto Scaling
... given Auto Scaling group.

as-terminate-instance-in-auto-scaling-group Terminates a given
instance.

as-update-auto-scaling-group Updates the specified
Auto Scaling group.

help

version Prints the version of the
CLI tool and the API.

For help on a specific command, type 'commandname --help'

If you are getting the preceding output, you are done with the setup and are now
ready to access Auto Scaling using CLI.

Working with Auto Scaling using the CLI
You will understand the procedure of creating your basic Auto Scaling infrastructure
within EC2-Classic or the default Virtual Private Cloud (VPC) using the Auto
Scaling command line interface using the upcoming example. So, by now, you
should be able to understand that to start with Auto Scaling, you need to create:

1. The launch configuration
2. An Auto Scaling group

Chapter 2

[43]

The launch configuration determines the model that Auto Scaling uses to initiate
Amazon EC2 instances for your applications. This template will have all the required
data for the Auto Scaling configuration, which will be required to launch the EC2
instances that have your apps.

The as-create-launch-config command can take the following arguments:

Name Image-id
Instance-type Associate-public-ip-address
Spot-price IAM-instance-profile
Block-device-mapping EBS-optimized
Monitoring-enabled Kernel
Key User-data
User-data-file Ram disk
Group Other general option

Table 2.0-as-create-launch-config arguments

To start the Auto Scaling launch configuration, you have to perform the following:

1. Open your terminal and run the following command:
as-create-launch-config Uchit-test --image-id ami-0078da69
--instance-type m1.small

2. You should get the following output, if you passed the request successfully:

OK-Created launch config

Now, you are done with launching the configuration called Uchit-test, which
launches an "m1.small" instance using the ami-0078da69 AMI.

Auto Scaling groups are very important for Auto Scaling because they are a
collection of EC2 instances. It is important because billing is concerned with this
since you will define numbers for instances here!

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Elastic and Fault-tolerant Infrastructure

[44]

To create an Auto Scaling group, run the following CLI command:

as-create-auto-scaling-group

This command needs your Auto Scaling group, a launch configuration, one or
more AZs, a minimum group size, and maximum group size details as arguments.

As of now, for this demo launch configuration, I am going to specify the
following options:

• Auto Scaling group name: uchit-test-asg
• Launch configuration name: uchit-test
• Optional: Availability Zone: us-east-1a
• Minimum size: 1
• Maximum size: 5
• Desired capacity: 1

Enter the following command to launch your Auto Scaling group within
EC2-Classic:

as-create-auto-scaling-group uchit-test-asg --launch-configuration uchit-
test --availability-zones us-east-1a --min-size 1 --max-size 5 --desired-
capacity 1

If you are going to launch the Auto Scaling group in default VPC,
there is no need to specify the Availability Zone.

If your command runs successfully, you will get an output like the following:

OK-Created AutoScalingGroup

With the reference of your commands to the preceding arguments, the uchit-test-
asg Auto Scaling group and the uchit-test launch configuration, Auto Scaling will
launch one EC2 instance in the us-east-1a AZ that has type m1.small.

Use the following command to verify the Auto Scaling instances setup:
as-describe-auto-scaling-instances --headers

Also, one can check the Auto Scaling groups creation using the
following command:
as-describe-auto-scaling-groups uchit-test-asg
--headers

Chapter 2

[45]

In this way, you can configure and launch your elastic applications using AWS Auto
Scaling services from CLI directly, without touching the AWS Management Console.
It is best suited for developers to launch and configure their application from CLI
or any IDE. Now, you will see how to configure the Auto Scaling service from AWS
Management Console for your web application to get high availability and handle
terrific traffic load.

Getting started with Auto Scaling using AWS
Management Console
Using AWS Management Console, you can launch configurations and Auto Scaling
using a single mouse click, and you can also bid for spot instances within this console
when required.

The welcome page shows some major benefits, such as the following:

• Fully automated provisioning
• Reuse instance templates
• Capacity adjustment

Elastic and Fault-tolerant Infrastructure

[46]

To start with the configuration, please follow the ensuing steps carefully:

1. Creating launch configuration.

So, here we have to select the AMI and its relevant architecture, which suits
our application.

You can select your desired AMI from the given options from AWS.
Here, you have to give the instance type as per your requirement.
For example, you can choose m1.small, t1.micro, and so on.

2. Provide configuration details:

Chapter 2

[47]

In the preceding screenshot, you can provide information in the Advanced
Details section; it lets you choose AMI's Kernel ID and Ram Disk ID and
optionally fill in a User data block. User Data can be regular data to be read
by an application or an executable bash script, which will be run by an EC2
instance on its start. You can provide spot instance bid details, if you want:

Spot instance bid details

3. Provide your necessary storage options in the form of the root device size,
EBS volume size, and so on.

Elastic and Fault-tolerant Infrastructure

[48]

4. You can select an appropriate security group in the Configure Security
Group tab, or just add a new customized one, as shown in the following
screenshot, where you restrict the SSH access to your IP while leaving the
HTTP and HTTPS access open to be used from anywhere around the globe:

5. Finally, the last tab allows you to review and eventually change previous
choices, if you need to:

Chapter 2

[49]

Lastly, you have to choose the key pair to access your instances and click on
Create launch configuration:

You are now done with the launch configuration for the AWS Auto Scaling service,
but you have to configure the Auto Scaling group based on a schedule or policy.
So, let's create an Auto Scaling group for your web application.

www.allitebooks.com

http://www.allitebooks.org

Elastic and Fault-tolerant Infrastructure

[50]

1. In the very first tab, you have a few choices, for example, group name,
size, network, subnet, and so on, with some advanced details. In advanced
details, you can call AWS Load Balancer, which will route the traffic based
on policies to your scaled instances. Fill the appropriate details and click on
Next: Configure scaling policies.

2. The next tab is very important as it allows you to select between two
fundamental scaling plans. Here, there are two options:

 ° Keep this group at its initial size, which will ensure that your group
figures out a number of healthy instances equal to the initial size you
mentioned. At any point of time, if an instance fails the checks, it will
be replaced automatically.

Chapter 2

[51]

 ° Use scaling policies to adjust the capacity of this group.
You can select the CloudWatch alarm based on some policies
(for example, add 1 instance if CPU usage is more than 60% or
remove 2 instances if CPU usage is less than 40%) to increase or
decrease the number of instances.

Elastic and Fault-tolerant Infrastructure

[52]

3. You can set policies for the minimum and maximum number of instances
initiating your Auto Scaling group. You can add CloudWatch alarms easily
after some time, or during the middle of deployment, but, here, we'll add
the one to allow your group to increase its size, as shown in the following
screenshot; you can also configure to decrease the group size.

4. You are almost done, so now it's time to configure the notifications in the
Configure Notifications tab using Simple Notification Service (SNS)
relative to your group to get updates:

Chapter 2

[53]

5. Finally, the Review tab will be there to review the configuration, and after
clicking on the Create Auto Scaling Group button, you will be redirected
to a status screen showing the creation of your resources. If something fails,
you're prompted to retry the single resource initiation again with correction.

So, after initiating, you can see the new scaling activity on your EC2 dashboard.
And, whenever required, you can make changes in these configurations.

Here, you are done with Auto Scaling via GUI and CLI. So, now, you will see how
we can configure AWS ELB with our instances to balance and route the load as per
instance health check and utilization.

To start with ELB, you have to make sure that you create your ELB in the
same region in which you have your EC2 instances created. I am going to list the
summary steps from which you can easily understand the flow to launch ELB from
your AWS Management Console. The following steps outline how to create a basic
ELB in EC2-Classic:

1. Configure the listeners.
2. Configure a health check.
3. Review and create load balancer.
4. Register instances with the load balancer.
5. Verify that your ELB is created and working.

Elastic and Fault-tolerant Infrastructure

[54]

Let's look at each step one by one and see how they can be configured.

1. To configure the listeners, start your ELB wizard and click on
Create Load Balancer:

2. You will be navigated to the first tab, which is the Define Load Balancer
tab. Here, you have to set Load Balancer name, description, and, most
importantly, the port numbers. So, based on your port number configuration,
the ELB will route the traffic to the given port for your application.

Chapter 2

[55]

3. After clicking on the Continue button, you will be taken to the next tab called
Configure Health Check. So, on this tab, you have to define your ping path
and port number on which the ELB will ping to check the status. If the given
consecutive count for unhealthy or healthy numbers is set and your instance
does not match with that, the ELB will take action like to remove or add
instance back again into ELB. So, it will check your instance health based on
the defined interval.

Elastic and Fault-tolerant Infrastructure

[56]

4. After clicking on the Continue button, you will be taken to Assign
Security Groups to help your desired security groups communicate with
your instances. Finally, the important Add EC2 Instances tab will be there
on your screen in which you will add your instances that will be under ELB.

5. Finally, the Review tab will open to check the configurations made. You can
see the load balancer on the load balancer wizard, and it will take some time
to populate your configurations and register your EC2 instances as well. You
can even configure your third-party SSL certificates with the AWS ELB at
the time of creation or later. Moreover, based on your Auto Scaling, you can
define your load balancer in it. At the time of creation of the Auto Scaling
group, you can define your load balancer, if you want.

Chapter 2

[57]

6. If you are configuring your Auto Scaling using CLI, you can define your
ELB as an argument, so that it will automatically create a load balancer for
you, and later on, you can configure the necessary route details, or you can
make configurations that your ELB can communicate with EC2 instances at
the same time.

Summary
In this chapter, we discussed how by using Auto Scaling and ELB services, you
can set up your web application with EC2 instances and scale them based on your
requirements. Using Auto Scaling and ELB, you won't face any downtime for your
applications, and that's the power of Auto Scaling on AWS, which is awesome!

In the next chapter, you will see the overall architecture of AWS, with a focus on
breaking down the problem into discrete systems, and deciding how to physically
separate those systems. You will also learn practical setup instructions for SDK and
IDE toolkits, which can be used during programming with AWS services.

[59]

Storage Lifecycle
Management

At the time of development, many storage systems are very similar to linear
storage systems, but if you want to upgrade an application or its storage, for
example, an application needs to be scaled with additional capacity which is more
focused on supporting a large number of users with large file capacity and more
attached data servers, it may become difficult to upgrade, as increasing the number
of servers requires additional storage resources. In this chapter, we'll go through the
following topics:

• Data storage scaling
• AWS DynamoDB
• AWS Simple Storage Service (S3)
• AWS CloudFront

So let's start with the basics of data storage scaling.

Data storage scaling
A storage system is one that uses a scaling method to create a dynamic storage
environment that will support stable data growth whenever required to scale.
Storage scaling means increasing or decreasing resources for a particular application,
which includes two major categories: vertical scaling (scale-up) and horizontal
scaling (scale-out).

Storage Lifecycle Management

[60]

If we add resources to a single machine such as adding CPUs or memory, it's called
scale-up storage. The problem with this storage is that the storage capacity is added
to the existing machine, but the bandwidth and computer power provided for that
machine will be the same so it degrades the performance. To overcome this problem,
scale-out storage systems are used, in that individual storage components (nodes)
are added to the system. Each of these nodes contain capacity, computer power,
and storage I/O bandwidth. A node added to the storage system comprising of
these three resource in the system will be raised at the same time for extra storage
requirement. Removing resources from a single machine or removing a node from
the server is called scale-down storage.

So let's look at how AWS storage services are helpful to data, scaling, and
their behavior.

AWS DynamoDB
DynamoDB is a fully accomplished NoSQL database with a spotlight on scalability,
reliability, and performance. The data and traffic will be distributed to the table
globally over multiple servers to serve the load described by the customer to provide
consistent and fast performance, and durability. Data items will be stored on a Solid
State Disk (SSD) with replication over multiple AZs. DynamoDB has generated a lot
of enthusiasm for the obvious reason that Amazon is an authoritative figure in the
NoSQL space now.

In RDBMS, a table is organized as rows and columns, but in DynamoDB, we will
never use these (rows and column) words, except in this paragraph. Even if it is
used mistakenly, please note that rows are items and columns are attributes.

Do you know that whenever you build a DynamoDB table, an index is generated
automatically? This index is titled as the primary index. The primary index will
contain primary key attributes (both hash and range keys). The index produced
using hash keys is an unordered hash index. It measures the items in the table with
equivalent hash keys that will be grouped together and arranged adjacent to each
other, which benefits the retrieval of items with identical hash key attributes faster
(using the scan operation). However, there will not be any assembling in the item on
the hash key attribute.

Chapter 3

[61]

Throughout the creation of the DynamoDB table, it is better to postulate the
secondary index attributes, hash and range key attributes. It is not conceivable
to stipulate other attributes (mentioned earlier as optional attributes) throughout
the creation of the table. In fact, excluding hash and range key attributes, all
supplementary attributes are part of the items (rows). This is why we don't postulate
these optional attributes while producing the table. Let's look at an example for AWS
DynamoDB to learn its inner workings using Eclipse with reference to Java. You can
use any language listed on AWS:

1. Take the AWS toolkit for Eclipse from http://aws.amazon.com/eclipse/
and follow the setup steps, which are given on the download page. These
tools are mostly a combination of preconfigured templates to construct apps.

2. Next, you have to specify a credential file that you fashioned in the preceding
chapter for Auto Scaling. You can practice Auto Scaling it in the unchanged
file here. Use the following code to set credentials:

[default]
aws_access_key_id = <Your Access Key ID>
aws_secret_access_key = <Your Secret Key>

DynamoDB data types
DynamoDB provides six data types which are: String, Number, Binary, StringSet,
NumberSet, and BinarySet. To comprehend it better, we will get help from the AWS
Management Console. Once we have signed up with AWS, in our Management
Console will appear the DynamoDB icon under the Database section, presented
as follows:

http://aws.amazon.com/eclipse/

Storage Lifecycle Management

[62]

Clicking on the DynamoDB icon the first time will take us to the startup page that
has procedures to start with DynamoDB. We should click on the icon to
create the first table. We'll then get the following window:

Now, we will create the Tbl_Book table. We will insert only one item into the
Tbl_Book table. The table and its items are as follows:

BookTitle Author Publisher PubDate Language Edition
String (hash) String (range) String String StringSet Number
SCJP Kathy TMH 28-Dec-

09
{"English",
"German"}

1

As discussed, during the formation of the table, we need to stipulate only the
primary key attributes alongside the table name. In this table, both the key
foundations are of type String.

If we need to create a naive hash primary key (without range key), then we can
choose the Hash radio button instead of the Hash and Range button.

Chapter 3

[63]

The next page will deliver a selection to produce secondary indexes, which we need
not worry about much now. Once we advance with all the command buttons in the
browser, we will see the following page:

Initially, the status will be CREATING. Once it becomes ACTIVE, then we can click
on Explore Table (as shown to insert (or scan) items into the table. Clicking on the
Explore Table will open the following screen:

Once we have clicked on Explore Table, we should click on the button to
supplement an item. By clicking on this button, the subsequent window will open
(we have already populated it for saving paper).

Storage Lifecycle Management

[64]

The mandatory attributes, which are name and type, will already be set and
we cannot alter it. However, we can enhance the attribute values (which must
be distinctive).

In addition to this, we can click on unfilled textboxes (below the hash and range
key attribute name) to improve an item's precise attribute name, type, and value.

Here, the first four attributes are of the type String, so we can insert the
corresponding values into the attribute value.

In the case of inserting a set (StringSet for the Language field), stipulate numerous
strings or numbers by clicking on the + symbol to the right of the value text box.
Once all the attributes are inserted, click on the button, which will place
this item in the Tbl_Book table.

To view the inserted item, click on the Browse Items tab, choose the Scan radio
button and, click on the Go button. Now, we will be able to check the table content
as shown in the following screenshot:

The string attribute values are bound in double quotes and set attribute values are
bound by curly braces. Number attribute values won't be surrounded by a character.

There are some rules while using set data types. These are listed as follows:

• A set must have a non-zero number of elements (blank sets are not allowed)
• A set must not have supplementary values (the Language set will not take

"English","English")

There is a distinct data type called Binary, which is responsible for storing
base64 encoded values. It is also used to store images or pictures in a base64
encoded structure.

Chapter 3

[65]

Creating the first SDK project
If we have already installed the Eclipse plugin and can see the credentials file
created correctly, then we are ready to fly on the SDK plane.

1. By clicking on the AWS toolkit for Eclipse icon , we will see the option
to create a new AWS project, as shown in the following screenshot:

2. Here, we need to select New AWS Java Project.... Clicking on this option will
open the following window. Clicking on this option for the first time will get
a few sample codes from AWS and will ask whether we want these sample
codes to be part of the project.

3. It is recommended that you check the Amazon DynamoDB Sample
checkbox for the first time, to familiarize yourself with the syntax of the
DynamoDB table operations.

4. Once done, select the AWS account that is already configured or configure a
new AWS account.

Storage Lifecycle Management

[66]

5. Click on the Next button to proceed:

6. Clicking on the Next button will create a new project with the name
specified in the previous window. The project structure is as shown in the
following diagram:

7. In the src folder of the project, the credentials file will be made available by
default. The sample DynamoDB code will also be available in the default
package of this src folder in a file named AmazonDynamoDBSample.java.

Chapter 3

[67]

8. We can take a look at our credentials file by double-clicking on the
AwsCredentials.properties file. The file content is as shown here
(I removed my complete secret key for security purposes. You are not
supposed to share your keys with anyone. It is like opening the gate
of your safe; anyone with your key can pretend to be you):

Even though the properties file is located in the project, while running
any program through Eclipse, it will always fetch the configuration
information located at $USER_HOME/.aws/config. However,
it is not safe to place the credentials file at this location. AWS
always wants us to keep this information at $USER_HOME/.aws/
credentials (take a look at line two of the following screenshot.)

Even if we provide invalid credential information in the project's properties file,
it will fetch the correct ones from the default location while running the project.
Running the sample code will yield us the following output:

Output of the AwsCredentials.properties fie

All the red-colored lines are logger messages (warning, information,
or error) and the black-colored lines are system output that are the
print statements mentioned in the sample code.

I have deliberately modified the access key of the credentials file located at
$USER_HOME/.aws/config. After this, if we try running the sample code it
will give UnrecognizedClientException.

Storage Lifecycle Management

[68]

This exception will be thrown only if the project is not able to instantiate the
DynamoDB client, which is a clear indication that there is something wrong
with the credentials:

Since the sample code has been provided by AWS themselves, I don't want to get
into trouble by providing the code here. So we will see what this sample code does.
First and foremost, it creates a table named my-favorite-movies-table in the
US_WEST_2 region. Once we have run this code, we need to open AWS Explorer and
refresh Amazon DynamoDB shown as follows:

Make sure that you're selecting the correct region (US_WEST_2) in the
AWS Explorer, otherwise we cannot see the table that is created.

Double-clicking on the table name will open the following window showing the
content of the table:

I hope that there is nothing I need to explain about the table's attribute
names and types. In this table, name is the only key attribute.

Chapter 3

[69]

The sample code provided will not have code to create any indexes. In the following
topics of this chapter, we will discuss everything in detail. First, we will create a new
class named AwsSdkDemo in the same project:

In this DynamoDB class (named AwsSdkDemo), we can perform the following
DynamoDB operations:

• Initializing our AWS credentials
• Defining table attributes
• Defining key schema (of table and indexes)
• Creating local and secondary indexes
• Defining the provisioned throughput
• Creating a table with the preceding parameters
• Describing a table
• Updating the DynamoDB table
• Table status check
• Adding (placing) items to the table

Storage Lifecycle Management

[70]

Java SDK operations
There are eight user-defined private local functions that are being invoked in the
following code. We will see each and every function in detail:

public class AwsSdkDemo {

static AmazonDynamoDBClient client;
initializeCredentials();
String tableName = "Tbl_Book";

if (Tables.doesTableExist(client, tableName)) {
 System.out.println("Table " + tableName + " already EXISTS");
}
else {
 ArrayList<AttributeDefinition> attributeDefinitions =
getTableAttributes();
 ArrayList<KeySchemaElement> keySchemaElements =
getTableKeySchema();
 LocalSecondaryIndex localSecondaryIndex =
getLocalSecondaryIndex();
 ArrayList<LocalSecondaryIndex> localSecondaryIndexes = new
ArrayList<LocalSecondaryIndex>();
 localSecondaryIndexes.add(localSecondaryIndex);
 GlobalSecondaryIndex globalSecondaryIndex =
getGlobalSecondaryIndex();
 ProvisionedThroughput provisionedThroughput =
getProvisionedThroughput();

 CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchemaElements)
 .withProvisionedThroughput(provisionedThroughput)
 .withGlobalSecondaryIndexes(globalSecondaryIndex);
 request.setLocalSecondaryIndexes(localSecondaryIndexes);

 CreateTableResult result = client.createTable(request);

 System.out.println("Waiting for " + tableName + " to become
ACTIVE...");

 Tables.waitForTableToBecomeActive(client, tableName);

Chapter 3

[71]

 TableDescription tableDescription = client.describeTable(
 new DescribeTableRequest()
 .withTableName(tableName))
 .getTable();

 System.out.println("Created Table: " + tableDescription);

 UpdateTableRequest updateTableRequest =
getUpdateTableRequest(tableName);
 UpdateTableResult updateTableResult =
client.updateTable(updateTableRequest);
 putItems(tableName);
}}

For the complete code, please refer to 3632EN_03_01.txt in the code bundle.

The first chunk of code is to load AWS credentials and authenticate ourselves to
AWS to run the program and perform the DynamoDB operation.

For the kind of DynamoDB operations we wish to perform, they must be done
through this client:

static AmazonDynamoDBClient client;

The following block will initialize the table name to the local variable. Then, the if
condition will check whether the table already exists with this name (on the client
configured region) and returns the Boolean value. If the table already exists, then the
system output message will be printed as follows:

String tableName = "Tbl_Book";
if (Tables.doesTableExist(client, tableName)) {
 System.out.println("Table " + tableName + " already EXISTS");
}

Refer to 3632EN _03_02.txt in the code bundle for the complete code.

The following block will create CreateTableRequest with attributes such as
tablename, attribute definitions, key schema, provisioned throughput, and indexes:

CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchemaElements)
 .withProvisionedThroughput(provisionedThroughput)
 .withGlobalSecondaryIndexes(globalSecondaryIndex);

Storage Lifecycle Management

[72]

Refer to 3632EN_03_03.txt in the code bundle for the complete code.

The following line will submit the table creation request through the
DynamoDB client:

client.createTable(request);

The following line of code will pause the further execution of the code, until the
table becomes active (most probably used before adding items to the table).

Tables.waitForTableToBecomeActive(client, tableName);

The following code will request the user to describe the table name passed as a
parameter to the client:

client.describeTable(new DescribeTableRequest()
 .withTableName(tableName))
 .getTable();

Refer to 3632EN_03_04.txt in the code bundle for the code snippet.

The following code will update a table with the UpdateTableRequest
instance passed:

client.updateTable(updateTableRequest);

As we are already aware, we have kept our credentials file at $USER_HOME/.aws/
config, which the SDK will easily identify (even though the default location is
$USER_HOME/.aws/credentials). In that code chunk:

• The first line of try block will load the default AWS credentials
• The next line will configure the DynamoDB client with the loaded credentials
• The next line will initialize the region to US-WEST-2, which is Oregon
• The last line of the try block will set the region for the DynamoDB client to

US-WEST-2

In case of an improper location of the credentials file, this exception will be thrown:

private static void initializeCredentials() throws Exception {
AWSCredentials credentials = null;
try {
 credentials = new
ProfileCredentialsProvider().getCredentials();
 client = new AmazonDynamoDBClient(credentials);

Chapter 3

[73]

 Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 client.setRegion(usWest2);
} catch (Exception e) {
 throw new AmazonClientException(
 "Invalid location or format of credentials file.",e);
}
}

Refer to 3632EN_03_05.txt in the code bundle.

The following function will prepare ArrayList, which adds all
AttributeDefinition to it. Each AttributeDefinition will take two parameters:
the first is the attribute name and the other is the attribute type. In the following
code, we define five attributes:

private static ArrayList<AttributeDefinition> getTableAttributes()
{
 ArrayList<AttributeDefinition> attributeDefinitions = new
ArrayList<AttributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("BookTitle")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Author")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("PubDate")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Publisher")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Edition")
 .withAttributeType("N"));
 return attributeDefinitions;
}

Refer to 3632EN_03_06.txt in the code bundle.

The following method will return ArrayList of the KeySchemaElement type.
Inside this function, we instantiate ArrayList of the KeySchemaElement type. To
this ArrayList, we add two KeySchemaElement. The first element is for setting
the attribute BookTitle as the HASH key type and the second element is to set the
attribute Author as the RANGE key type. Finally, we return this ArrayList:

private static ArrayList<KeySchemaElement> getTableKeySchema() {
 ArrayList<KeySchemaElement> ks = new
 ArrayList<KeySchemaElement>();

Storage Lifecycle Management

[74]

 ks.add(new KeySchemaElement()
 .withAttributeName("BookTitle")
 .withKeyType(KeyType.HASH));
 ks.add(new KeySchemaElement()
 .withAttributeName("Author")
 .withKeyType(KeyType.RANGE));
 return ks;
}

Refer to3632EN_03_07.txt in the code bundle.

The following method will return the ProvisionedThroughput instance with the
populated write and read throughput capacities for our table. The long number
(2L) here means the maximum read or write data size per second. This is usually
measured in KBps. So here, we are restricting the read-write speed to 2 KBps:

private static ProvisionedThroughput getProvisionedThroughput() {
 ProvisionedThroughput provisionedThroughput = new
ProvisionedThroughput()
 .withReadCapacityUnits(2L)
 .withWriteCapacityUnits(2L);
 return provisionedThroughput;
}

Refer to 3632EN_03_08.txt in the code bundle.

The following code tries to update the table that has already been created. Here, we
modify only the ProvisionedThroughput capacity units. During the table creation,
we have set this value to 2L; now we update it to 4L. The UpdateTableRequest
request will allow us to change only a few parameters, such as changing the
provision throughput capacity of the table and (if needed) the secondary indexes
throughput capacity. If you have a question like can we update (add or remove)
secondary indexes of the table? The answer is no, we cannot add or remove
secondary indexes using UpdateTableRequest. The reason lies in the DynamoDB
data types section in this chapter.

private static UpdateTableRequest getUpdateTableRequest(String
tableName) {
 ProvisionedThroughput upt = newProvisionedThroughput()
 .withReadCapacityUnits(4L)
 .withWriteCapacityUnits(4L);

 UpdateTableRequest updateTableRequest = new
 UpdateTableRequest()

Chapter 3

[75]

 .withTableName(tableName)
 .withProvisionedThroughput(upt);
 return updateTableRequest;
}

Go through 3632EN_03_09.txt in the code bundle for the complete code.

In the following function, we will try to put two items (item1 and item2, each of
the type Map<String, AttributeValue>) into the table (whose name is taken as an
input parameter). As we discussed earlier (the getTableKeySchema method), every
item must have primary key attributes (the BookTitle and Author attributes). So
both the items have these two attributes.

In the first item (item1) we are totally adding four attributes, namely Publisher
(String type), PubDate (String type), Language (StringSet type) and Edition
(Number type). In order to add the attributes, we must call the correct method
of the AttributeValue class depending on the type of attributes we need
to pass as an argument.

In the second item (item2) too, we add the same attributes for another book,
with an additional attribute named Pages (Number type):

private static void putItems(String tableName) {
 Map<String, AttributeValue> item1 = new HashMap<String,
 AttributeValue>();
 Item1.put("BookTitle", new AttributeValue().withS("SCJP"));
 Item1.put("Author", new AttributeValue().withS("Kathy"));
 Item1.put("Publisher", new AttributeValue().withS("TMH"));
 Item1.put("PubDate", new AttributeValue().withS("28-Dec-09"));
 Item1.put("Language", new AttributeValue()
 .withSS(Arrays.asList("English", "German")));
 Item1.put("Edition", new AttributeValue().withN("1"));
 PutItemRequest putItemRequest = new PutItemRequest()
 .withTableName(tableName)
 .withItem(item1);
 client.putItem(putItemRequest);

 Map<String, AttributeValue> item2 = new HashMap<String,
 AttributeValue>();
 item2.put("BookTitle", new AttributeValue().withS("Inferno"));
 item2.put("Author", new AttributeValue().withS("DanBrown"));
 item2.put("Publisher", new AttributeValue().withS("TMH"));
 item2.put("PubDate", new AttributeValue().withS("28-Jul-12"));
 item2.put("Language", new AttributeValue()

Storage Lifecycle Management

[76]

 .withSS(Arrays.asList("English")));
 item2.put("Edition", new AttributeValue().withN("1"));
 item2.put("Pages", new AttributeValue().withN("623"));
 PutItemRequest putItemRequest1 = new PutItemRequest()
 .withTableName(tableName)
 .withItem(item2);
 client.putItem(putItemRequest1);
}

Refer to 3632EN_03_10.txt in the code bundle.

In the getTableAttributes method defined earlier in this section, have we
specified or defined the attributes Pages and Language? The answer is 'No'.

While creating the table, we must specify the primary key and
index attributes; all other optional attributes can be specified
during item insertion. Pages and Language being non-key and
non-index attributes, they are not part of the attribute definition
in the getTableAttributes method.

There are two more local functions invoked to create indexes, which we will see in
the next chapter.

The DynamoDB local
The DynamoDB local is a local client-side database, which emulates the DynamoDB
database in our local system. This is pretty helpful when developing an application
that uses DynamoDB as the backend. After writing a module, we need to connect
to Amazon and run it to check whether the code works fine. This will consume a
lot of bandwidth along with a few dollars. Moreover, it will increase the speed of
development as well as it's easy for unit testing. To avoid this, we can test the code
locally with the help of the DynamoDB local. Once the testing is done, we can make
our application use the AWS DynamoDB service. This requires only three things,
which are as follows:

• Downloading DynamoDB local from http://dynamodb-local.s3-
website-us-west-2.amazonaws.com/dynamodb_local_latest

• Starting the DynamoDB local service (JRE6 or later)
• Pointing the code to use the DynamoDB local port

http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest

Chapter 3

[77]

We don't need to discuss more about how to download a file from the Internet.
So let's go directly to the second point. The downloaded file might be a zipped one
(tar.gz or .zip or .rar). We need to extract it to a location. You can extract it to
C:\dynamodb, as shown in the following screenshot:

Starting the DynamoDB local is very easy. First, we need to change the working
directory using the cd command, and then we can start the DynamoDB local on
port 8888 by using the following command:

java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -port
8888

Even the command java -Djava.library.path=./
DynamoDBLocal_lib -jar DynamoDBLocal.jar is enough
to start the DynamoDB local, but it starts on port 8000, which is
occupied by my PC. That's why I used port 8888.

Storage Lifecycle Management

[78]

Once the DynamoDB local has started, it's easier to configure the client. We need
to make changes to three lines of our initializeCredentials method (discussed earlier
in the chapter). We need to insert a new line pointing to the DynamoDB local host
and port using the client.setEndpoint() method (shown as follows). Then,
we need to remove other client-related setters such as setRegion as shown in
the following code:

private static void initializeCredentials() throws Exception {
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider()
 .getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Invalid location or format of credentials file.",e);
 }
 client = new AmazonDynamoDBClient (credentials);
 client.setEndpoint("http://localhost:8888");
 //Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 //client.setRegion(usWest2);
}

You'll find this code snippet in 3632EN_03_11.txt in the code bundle.

After this, if we run the AwsSdkDemo class, it would give the following output in the
console (where DynamoDB local has started):

Chapter 3

[79]

AWS Simple Storage Service (S3)
To store an object in Amazon S3, you can upload the file you need to store to a
bucket. When you upload a file, you can set permissions on the object as well as
some metadata.

Buckets will work as the containers for your contents (objects). You can have one or
more buckets as per your requirement. For each bucket, you can control access to it
(who can generate, delete, and list objects in the bucket), view access logs for it and
its objects, and select the geographical region where Amazon S3 will store the bucket
and related contents.

Amazon S3 can store any data as objects within storage containers called buckets. An
object can be a file and may be any metadata that describes that file. You can find the
following window for the AWS S3 dashboard to understand more specifically:

AWS S3 dashboard

Storage Lifecycle Management

[80]

By selecting S3, you will be on the S3 dashboard, which will look something
like the following:

Just click on the Create Bucket button and you will be prompted by a pop-up box to
create your first bucket with S3, its region name to get the bucket creation dashboard
to see the power of AWS S3 and its configurations (available options).

Chapter 3

[81]

The bucket name should be unique all over the globe, otherwise, it won't allow you
to create a bucket with that name. After the creation of the bucket, you will see the
following window:

For bucket-related operations, you can perform them via CLI, API, or from the
dashboard directly. In this chapter, you will learn about bucket operations and
configurations from SDK. To start with SDK, you will require the AWS SDK and
AWS account with an access key and private key to connect to Amazon S3. The
object controls all the engagements through which you can interact with the
AWS S3 instance:

const string AWS_ACCESS_KEY = "your_AWS_access_key";
const string AWS_SECRET_KEY = "your_AWS_secret_key";
AwsS3 client = new AwsS3(AWS_ACCESS_KEY, AWS_SECRET_KEY)

Normally, these keys are stored in web.config and we access them by code in
web-based applications:

// In your application config file, set this
<appSettings>
 <add key="AWSAccessKey" value="AWS_access_key"/>
 <add key="AWSSecretKey" value="AWS_secret_key"/>
<appSettings>

You need to create a function to access your S3 credentials:

// Function to get credentials
public static AwsS3 GetS3Client()
{
 NameValueCollection appConfig =
ConfigurationManager.AppSettings;

Storage Lifecycle Management

[82]

 AwsS3 s3Client = AWSClientFactory.CreateAmazonS3Client(
 appConfig["AWSAccessKey"],
 appConfig["AWSSecretKey"]
);
 return s3Client;
}

Refer to 3632EN_03_12.txt for this code snippet in the code bundle.

This way, you can start work with AWS S3. Next, you will see how to upload and
retrieve content from the S3 bucket in the following example. If you want to store
data in S3, you need to create a bucket. It is similar to a root folder in Windows. In
Amazon S3, the maximum number of buckets is 100 and the names of buckets are
unique globally.

You are allowed to create a maximum of 100 buckets per account and the bucket
names should be unique. Using the following code, you can create a sample bucket
on AWS S3:

string BUCKET_NAME = "uchit";
ListBucketsResponse response = client.ListBuckets();
boolean found = false;
foreach (S3Bucket bucket in response.Buckets)
{
 if (bucket.BucketName == BUCKET_NAME)
 {
 found = true;
 break;
 }
}
if (found == false)
{
 client.PutBucket(new
PutBucketRequest().WithBucketName(BUCKET_NAME));
}

You'll find this code snippet in 3632EN_03_13.txt.in the code bundle.

Chapter 3

[83]

After successful execution of the preceding code, you will be able to see a new bucket
named uchit on the AWS S3 dashboard:

The S3 bucket: uchit

To create a new file in the S3 bucket there are plenty of ways, but here we will
introduce some generic simple ways. In the first way, you need FileKey, which will
be unique to the full path and content body that contains information. To create a
directory, use FileKey with the special character / at the end to show that you want
to create a specific directory:

String S3_KEY = " Demo Create folder/";
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(uchit_KEY);
request.WithContentBody("");
client.PutObject(request);

Refer to 3632EN_03_14.txt, which contains this code snippet.

The new directory will be created, which will look like the following screenshot:

Storage Lifecycle Management

[84]

To create a new file, there is a minor change in the code from the directory creation
code that you can see with following code:

String S3_KEY = "Demo Create File.txt";
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(uchit_KEY);
request.WithContentBody("This is content of S3 object in Demo
file.");
client.PutObject(request);

For this code snippet, see 3632EN_03_15.txt in the code bundle.

After successful execution of the preceding code, you will be able to see the file
created in the bucket:

If you want to create a file within the directory, you have to change the FileKey to
include the directory name:

String S3_KEY = "Demo Create folder/" + "Demo Create File.txt";
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(uchit_KEY);
request.WithContentBody("This is content of S3 object in Demo
file.");
client.PutObject(request);

Check 3632EN_03_16.txt in the code bundle for the complete code.

Chapter 3

[85]

After successful execution of the preceding code, you will be able to see the file
created in the defined directory within the bucket. Next, you will see how to upload
files from the local machine to the S3 bucket with the absolute path using the
following code:

//uchit_KEY is name of file we want to upload
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(uchit_KEY);
request.WithFilePath(pathToFile)
client.PutObject(request);

Take a look at 3632EN_03_17.txt for the code snippet.

Amazon S3 has so many useful features and is very useful for every developer who
wants to develop a web app that needs to store data online with some knowledge of
the AWS SDK.

Amazon CloudFront
CloudFront is a Content Delivery Network (CDN) service from AWS to deliver
the entire web application, including streaming or interactive content, and dynamic
or static content with the AWS global delivery network of edge locations. Content
request will automatically be routed to the nearest edge location, so content will be
delivered with the best performance. It is optimized to work seamlessly with other
AWS services such as AWS S3, Amazon EC2, Amazon ELB, Route 53, and also with a
non-AWS origin server, which will store the definitive versions of your files. We will
see how to leverage Amazon CloudFront using examples as it will be more beneficial
for developers and you can read theoretical information on the AWS website as well.
Mainly, there are various options and areas in which AWS CloudFront can work
effectively, such as the following:

1. Web distribution and RMTP distribution
2. Private content distribution
3. Dynamic and static content
4. HTTP and HTTPS protocols

Storage Lifecycle Management

[86]

In this chapter, you will look at the example of creating a CDN for the WordPress
blog with CloudFront and S3. A CDN is a farm of servers that are distributed around
the world, which will have copies of your content. In this way, users visiting your
site get a response from the server nearest to their location. Hence, decreasing data
travel distance, time, and intermediaries, results in faster access to the content. To
enable your WordPress blog to take advantage of Amazon CloudFront, you have to
make the following changes:

1. Store your site images outside the web server, or in other words,
offload any image-related work from your application server, let's say
from EC2 instances.

2. Allow your browsers to download your images at the same time
they download the textual content. For this, you have to create an
Amazon S3 bucket.

3. You have to create a CloudFront Distribution by clicking on Create
Distribution button, which will cache your images from S3 to the
configured edge locations over the globe.

4. You can install the WordPress plugin, which will serve the purpose
of uploading your images to S3 and will give you a CloudFront link
to the images.

You already learned how to create a bucket so you can start directly with the
second stage mentioned earlier, if you have the S3 bucket available to you.
If not, please create your bucket in the same region in which you are going to
create CloudFront Distribution.

Creating Amazon CloudFront Distribution
You can create your CloudFront Distribution from CLI, the AWS Console,
and using APIs. However, for convenience at the first stage, here you will be
creating using the console.

1. Go to the AWS services dashboard and select CloudFront from the listed
services and click on the Create Distribution button:

Chapter 3

[87]

2. CloudFront supports you to create static content as well as streaming content
distributions. You are going to distribute blog-related content, so select the
first option ("Download") and click on the Continue button:

3. Select your distribution's content origin. You need to specify the source of
the content that you want in the Origin Domain Name field. As seen in the
previous section, you have already created the S3 bucket, so your console
will help you in that case to identify the bucket and its related Origin ID,
which will just be the nickname assigned to the origin.

4. I recommend enabling the Restrict Bucket Access option to ensure your
content is not accessible directly from S3 but via CloudFront only. This
implies that you need to create an IAM identity and edit the bucket policies
but Amazon will do it for you here, you only have to choose Create new
identity and enable Yes, Update Bucket Policy:

Storage Lifecycle Management

[88]

5. Choose Default Cache Behavior Settings option. In this section, you can
enforce HTTPS usage. You can also select the cache behavior by policy or in
the content header. You can also forward cookies and URL query strings to
your origin, or restrict access for your content using signed URLs:

Chapter 3

[89]

6. Choose Distribution Settings. In this section, you have to select Price Class
to select regions and edge locations where your content will be cached. The
pricing is dependent on the regions and edge locations, so pick up the correct
and appropriate locations based on your traffic analysis and requirement.
You can even set an alias on your DNS to your CDN. For this, you have to
declare name(s) as Alternate Domain Names (CNAMEs). Once done, click
on Create Distribution button:

Storage Lifecycle Management

[90]

7. Once the distribution is in the Enabled state on the AWS console, you are
almost done. You can check the settings in which you will be able to find
the domain name for your content. Just note that you will have to tell the
WordPress blog where your CDN will be located:

8. Now you have to create an IAM user who can manage your S3 bucket
and assign a custom policy to it. Optionally, you can integrate Amazon S3
with Amazon CloudFront. For this, you will need the WordPress plugin,
which is available on http://wordpress.org/plugins/amazon-s3-and-
cloudfront/. So after the configuration and installation of this plugin, you
will see a new segment with the CloudFront URL where the content will be
served from.

To remove the content from the edge locations, you can use the invalidating
functionality of CloudFront. For this, you have to do the following:

1. Traverse to the CloudFront section on the AWS console.
2. Choose your distribution.
3. Click on the options icon.
4. From here, move to the Invalidations tab and then Create Invalidation.
5. Place the names of the files to be invalidated.
6. Click on the Invalidate button.

http://wordpress.org/plugins/amazon-s3-and-cloudfront/
http://wordpress.org/plugins/amazon-s3-and-cloudfront/

Chapter 3

[91]

Once this procedure is complete, the object cached on the edge locations will be
removed and the latest version will be cached at the subsequent time it is requested.

Amazon RDS management with CLI
Amazon Relational Database Service (RDS) is a web service that makes it easy to
set up, operate, and scale a relational database on the AWS Cloud platform. It has
access to the full capabilities similar to MySQL, Oracle, MSSQL, PostgreSQL, and
Aurora databases. So this means the code, applications, and tools you already use
today with your existing databases work seamlessly with Amazon RDS as well.
There are a number of advantages to Amazon RDS, which includes the following:

1. Accelerated deployment
2. Managed and scalable
3. Reliable and compatible
4. Automated backup and multi AZ deployment
5. Secure

To manage the Amazon RDS, you have to first set up tools for it. In our exercise,
we will install tools and the setup environment, database instance creation and
listing, and connect database instances. So let's gear up with the environment setup
and configuration. To install tools, you need Java 1.6 or higher and the Amazon RDS
command-line toolkit. To start with Java:

1. Set the Java variable in your system:
1. The command-line tool reads an environment variable (JAVA_HOME)

on the machine to locate the Java runtime. Either JRE or JDK should
be fine with the Version 6 or higher. To download Java, go to
http://java.oracle.com/.

2. Extract your downloaded Java and set the path using variable JAVA_
HOME to the full path of the directory, which will contain the bin
subdirectory. For example, if you have Java in the /opt directory,
the path should be JAVA_HOME to /opt/jdk for Linux and C:\jdk for
Windows.

3. To set JAVA_HOME, use the following commands:
For Linux:

$export JAVA_HOME=/opt/jre

http://java.oracle.com/

Storage Lifecycle Management

[92]

For Windows:

C:\> set JAVA_HOME=C:\java\jdk1.6.0_6

4. Include the Java directory to your system path before other
versions of Java:
For Linux:

$export PATH=$PATH;$JAVA_HOME/bin

For Windows:

C:\> set PATH=%PATH%;%JAVA_HOME%\bin

5. Verify your JAVA_HOME settings:

For Linux:

$ JAVA_HOME/bin/java –version

For Windows:

C:\> %JAVA_HOME%\bin\java –version

2. Setting up the RDS CLI tools. To access the RDS command-line toolkit,
you need to download it from the AWS site http://aws.amazon.com/
developertools/2928/ and set it up with your AWS credentials within the
instance. You need to just download and unzip it. No installation is required;
it will come as a zip bundle.

1. The CLI also depends on the environment variable, so we have to
again set its path with the AWS_RDS_HOME variable:
For Linux:

$ export AWS_RDS_HOME=/usr/local/RDSCLI1.15.001

$ export PATH=$PATH:$AWS_AUTO_SCALING_HOME/bin

For Windows:

C:\> set AWS_AUTO_SCALING_HOME=C:\CLIs\ RDSCLI1.15.001

C:\> set PATH=%PATH%;%AWS_AUTO_SCALING_HOME%\bin

Your environment variables in the Windows machine may reset when
you close the terminal window. You may want to set them permanently
using the setx command same as set.

http://aws.amazon.com/developertools/2928/
http://aws.amazon.com/developertools/2928/

Chapter 3

[93]

3. Authenticate your AWS account with RDS tools:

1. After signing in, you need to create access keys and secret keys for
your account. You have to provide these keys to your CLI tools.
You can create your AWS secret keys and access ID from https://
console.aws.amazon.com/iam/home?#security_credential.

2. Create a new file called CredentialFile and save your access
key ID and secret access key to the file.

3. Give 600 permission to that CredentialFile file if you are a
Linux user.
$ chmod 600 CredentialFile

4. Set the AWS_CREDENTIAL_FILE variable based on your file location.

Now, you are almost done with setting up the AWS RDS CLI tools. So you can test
the tools on a Windows or Linux machine using the following command:

rds –-help

You should see the usage page for all Amazon RDS commands. If it shows results,
that means you have done a good job of setting up an RDS toolkit. Now it's time to
create and launch an instance from CLI for RDS.

The following is the screenshot for the RDS dashboard from which you can perform
the same operations and manage your database on the AWS infrastructure:

https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential

Storage Lifecycle Management

[94]

Now, to start an RDS using CLI, follow below steps:

1. To launch an RDS instance from CLI, use the following command.
This will create a database instance called uchitinstance with 5 GB of
storage and an initial database named uchit:
rds-create-db-instance --engine MySQL5.3 --master-username root
--master-user-password mypass --db-name uchit --db-instance-
identifier uchitinstance --allocated-storage 5 --db-instance-class
db.m1.xlarge –-header

2. You can see the below output if everything is correct:
DBINSTANCE DBInstanceId Class Engine Storage
Master Username

Status Backup Retention

DBINSTANCE uchitinstance db.m1.xlarge mysql5.3 5 root

creating 1

SECGROUP Name Status

SECGROUP default active

PARAMGRP Group Name Apply Status

PARAMGRP default.mysql5.3 in-sync

3. To list the available instances, use the following command:

rds-describe-db-instances –-headers

Authorizing network access
You have to authorize your access to your database instance before you can connect
to it. Access to database instances is controlled by database security groups. A
database security group (called default) is created automatically the first time you
create your database instance, and you can create new customized database security
groups as required.

By default, a database security group has no access enabled; you must precisely
authorize network ingress. There are two techniques for this:

• Authorizing a network IP range using the following command:
rds-authorize-db-security-group-ingress default –cidr-ip
192.0.4.0/30 –headers

Chapter 3

[95]

You will get the subsequent output:

SECGROUP Name Description

SECGROUP default Default

IP-RANGE IP Range Status

IP-RANGE 192.0.4.0/30 authorized

Also, to check the state of the authorization, use the following command:

rds-describe-db-security-groups default --headers

• Authorize the present EC2 security group using the following command:

rds-authorize-db-security-group-ingress default --ec2-security-
group-name myec2group --ec2-security-group-owner-id 123456789021

You will get the subsequent output:

SECGROUP Name Description

SECGROUP default default

EC2-SECGROUP myec2group 987654321021

authorizing

IP-RANGE 192.0.2.0/30 authorized

Once a database instance is created, you can use any supported tools for the database
engine that the instance uses to connect. For example, you can use the MySQL
command-line tools to connect to the instance you just created. To connect to a
database instance using the MySQL monitor use the following command:

mysql -h uchitinstance.abcedefhijklsm.us-east-1.rds.amazonaws.com -P 3306
-u root –p

You will be able to see output similar to the following:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 350

Server version: 5.3-log MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

There are several other commands from which you can maintain, reconfigure, and
manage your RDS listed as follows:

rds-authorize-db-security-group-ingress

rds-create-db-instance

Storage Lifecycle Management

[96]

rds-create-db-parameter-group

rds-create-db-security-group

rds-create-db-snapshot

rds-delete-db-instance

rds-delete-db-parameter-group

rds-delete-db-security-group

rds-delete-db-snapshot

rds-describe-engine-default-parameters

rds-describe-db-instances

rds-describe-db-parameter-groups

rds-describe-db-parameters

rds-describe-db-security-groups

rds-describe-db-snapshots

rds-describe-events

rds-modify-db-instance

rds-modify-db-parameter-group

rds-reboot-db-instance

rds-reset-db-parameter-group

rds-restore-db-instance-from-db-snapshot

rds-restore-db-instance-to-point-in-time

rds-revoke-db-security-group-ingress

rds-version

You can try the preceding commands to learn their effects but do it step by step
as per the Amazon guidelines.

Summary
With the services in this chapter, you can manage your databases and their life
cycles on the AWS infrastructure. For start-ups and developers, you need some
basic knowledge of AWS tools and services. Even on the AWS website, you can
find very basic to advanced level material to start with database services.

So, in the upcoming chapters we will talk about Big Data with the AWS platform.
Users will come to know how to leverage the benefits of the AWS platform for Big
Data and its challenges.

[97]

Web Application and Batch
Processing Architecture

AWS provides a vast variety of services, which enables architects, developers, and
administrators to step up their ability for production environments while working
with customers and focused IT or non-IT applications on Cloud.

Batch processing on AWS permits on-demand provisioning of a multipart job
processing architecture, which can be utilized for sudden or late deployment of
a diverse, ascendable "grid" of worker nodes that can swiftly process large batch
jobs in correspondence. There are various batch-angled solicitations in place
in this era that can influence this style of on-demand processing, incorporating
claims processing, enormous scale conversion, media transcoding, and multi-part
data processing work. There are a couple of application management services
available in the AWS basket, which can really help you leverage the benefit of
the AWS infrastructure and managed platform to build your desired solutions by
using management services. Before jumping into batch processing, we will see the
monitoring service (Amazon CloudWatch) and one of the best deployment services
(AWS CloudFormation) to understand their behavior so that you can utilize them
in your infrastructures/applications on AWS. In this chapter, you will learn how to
manage your application by following AWS application monitoring and deployment
services such as the following:

• Amazon CloudWatch
• AWS CloudFormation

Web Application and Batch Processing Architecture

[98]

Moreover, after getting a brief overview of the preceding services, you will go
through how batch processing works on the AWS platform and how you can host
your simple static or dynamic website easily. In this chapter, we will cover the
following topics:

• Alarms with Amazon CloudWatch
• Batch processing flow
• Amazon CloudFormation
• A case study on Web application hosting

So, let's start with the first important service: AWS CloudWatch.

Alarms with Amazon CloudWatch
Amazon CloudWatch is the best ever monitoring service from Amazon to monitor
all of your Cloud resources and applications on AWS. Amazon CloudWatch
provides metrics to monitor your resources by collecting and tracking data from
your resources. You can utilize Amazon CloudWatch metrics to gain insights of
resource utilization, application performance, and instance operational health. So,
let's go through it with some exercises, as practice makes perfect!

Amazon CloudWatch generally provides predefined metrics, such as CPU usage,
Disk Read, Disk Writes, and so on. You can utilize these predefined metrics by
default. However, if you want to create some custom monitoring metrics, follow the
ensuing steps. So, in this section, you will monitor the custom CloudWatch metric.
For this, you have to perform the following steps:

1. Create a custom IAM role for an EC2 instance so that the instance can have
permission to write statistics to CloudWatch.

2. Launch a new EC2 server instance.
3. Use Secure Shell (SSH) to log in to the server and generate a custom

CloudWatch metric.
4. Use CloudWatch to monitor this custom metric.
5. Create a CloudWatch alarm, which will be triggered whenever the custom

metric you created drops below the level you mentioned.

Chapter 4

[99]

Now, let's start with the first step, which is creating a custom IAM role for an
EC2 instance.

1. On the AWS Management Console, go to Services | All services | IAM.

2. In the navigation pane, click on Roles.

Web Application and Batch Processing Architecture

[100]

3. Click on Create New Role and provide parameters as needed. (For example,
Role Name: uchit (you can give any name), in following screen, select AWS
services role: Amazon EC2, and at last, select policy template CloudWatch
Full Access Template).

4. Review the policy and click on Continue, and then click on Create Role.
5. Select the newly created role, and on the Permissions page, click on

Attach Role Policy.

Chapter 4

[101]

6. Under Select Policy Template, choose Amazon EC2 Read Only Access.

7. Follow the same steps from step 5 for accessing SQS from the policy
template.

Creating an EC2 instance
Until here, you have worked from access and policy end, so from now on, you have
to create an EC2 instance with a declared IAM policy. Here, you will monitor the
instance performance in subsequent processes.

1. Navigate to AWS Management Console and click on EC2.

Web Application and Batch Processing Architecture

[102]

2. Specify the IAM role and launch the instance. Please make sure that you use
the t2.micro instance type, which may come with the Free Tier service in
your account.

Once you are done launching an instance, log in to an instance using SSH and use
AWS CLI to generate a custom metric.

Make a note in the text file of your public IP address to use it further
and it will be called "monitoring-client-ip" in the following steps.

To set the region value to your environment variables, please go through the
following steps:

1. Copy the AZ value minus the final letter to a text file. This will be your region
and will be referred to as current-aws-region.

2. Set the environment variable for region:
export AWS_DEFAULT_REGION=<cuurent-aws-region>

Chapter 4

[103]

To check the region for our current instance, you can execute the
following commands:
REGION='curl http://169.254.169.254/latest/dynamic/
instance-identity/document|grep region|awk -F\"
'{print $4}''

echo $REGION

In my case, the output is shown as follows:
us-east-1

3. Use the following command to create a CloudWatch metric:

aws cloudwatch put-metric-data --namespace Uchit --metric-name
Test --value 8 -debug

This command will create the sample metric. Also, by using this command, you can
create any custom metric such as performance metric or usage metric. You can also
provide free memory metric or disc space metric to get some fruitful practices. Now,
you can see this metric on your CloudWatch dashboard. To monitor the custom
metric in CloudWatch, perform the following steps:

1. On the AWS CloudWatch Management Console, navigate to Metrics |
Namespace | Custom Metrics.

2. After selecting uchit, a normal graph will be displayed.
3. For the CLI console, use the following command to retrieve statistics on the

CLI console, so the following command will trigger the alarm whenever the
metric falls down from the designated level:

Aws cloudwatch get-metric-statistics --metric-name "Uchit"
--namespace="Test" --start-time=$ (date -d yesterday -I) --end-
time=$ (date -d tomorrow -I) --period=400 --statistics="Maximum"

To monitor a Custom CloudWatch metric, perform the following steps:

1. Under Alarm Summary in the CloudWatch Management Console, click on
Create Alarm.

2. Select the custom metric and configure Alarm threshold; for example,
provide Name, Description, and Attention Level.

3. Under Actions, provide state of the alarm and notification alerts settings.
4. Finally, click on Create Alarm.

Web Application and Batch Processing Architecture

[104]

To record a data point with CloudWatch that can trigger the alarm from the SSH
console, use the following command:

aws cloudwatch put-metric-data --namespace Uchit --metric-name Test
--value 4 -debug

To check the status of the alarm, you can verify it from the AWS CloudWatch
monitoring console. That's it!

Batch processing flow
AWS allows multiple job processing architectures via batch processing for the
instantaneous deployment of scalable nodes, which can quickly set up and
perform tasks in parallel. There are plenty of batch-oriented apps in the market
today that can leverage on-demand processing and large scale transformation work.

Batch processing architectures are identical with highly changeable practice patterns
that have significant usage (for example, finance year end processing) followed
by major periods of underutilization. There are many ways to start with a batch
processing architecture. Here, you will go through basic batch processing steps
by horizontally using the Amazon EC2 to compute and Amazon SQS for message
queuing. To create a batch processing cluster, you will use the AWS management
console. You will perform the following tasks:

• Launch and configure an EC2 instance, which will work as a template for the
worker node in your cluster

• Create the AMI from the instance
• Use SQS to task queues to pass messages to your EC2 instances
• Launch Auto Scaling Group
• Schedule work via a task queue
• Observe the output

In this batch processing cluster, the worker nodes in your cluster will convert
a number of different images into a single montage image. A worker node will
download images from the URLs provided by you and integrate those into a single
montage image using the ImageMagick tool. Let's start this operation one by one.
You have to start with creating an IAM role.

Chapter 4

[105]

Creating an IAM role
Your batch processing node will communicate with the queuing service SQS to get
processing instructions and will keep output from node into S3 bucket as per given
instructions:

1. Go to the AWS IAM console and in the left pane, move to Roles and click on
Create New Role.

Perform the following operations in this window:

 ° Give the role a name, such as BatchProcessing, and click on
Continue.

 ° In Select Role Type, select Amazon EC2.
 ° Locate the Amazon SQS Full Access policy and select it.

You have to add additional permissions to S3.

Web Application and Batch Processing Architecture

[106]

2. Select the newly created role and click on the Attach Role Policy button at
the bottom of the window to attach other policy.

3. Find Amazon S3 full access and apply it as another policy. So far, you are
done with IAM Roles and Policy creation.

Now it's time to move towards the EC2 section to launch the master EC2 instance.
Launch an EC2 instance that has Amazon Linux with a configuration script for the
ImageMagick tool and the batch processing software, as shown here:

1. In the configure Instance Details panel,
 ° Provide role as BatchProcessing
 ° Expand the Advanced Details section (scroll down to locate it)
 ° Provide the configuration script as user data, as shown in the

following code:

#!/bin/bash
yum install –y ImageMagick
easy install argparse
mkdir /home/uchit/jobs
wget –o /home/uchit/image_processor.py http://goo.gl/8e3WdB

Before using the wget command in the bash script, it is
recommended that you download image_processor.py
first manually from the given URL and use your own S3 bucket
to store and retrieve it.

2. Configure security group called batch processing and make sure that you
have port 22 (SSH) opened.

Chapter 4

[107]

3. Review the configuration and launch the instance.
4. Log in into your instance.

After you log in, you can see the jobs directory and the image_processor.py script.

For Mac or Linux OS, there is no need to convert a .pem file
to .ppk, but you have to change the permission to 600 for
the .pem file to log in using SSH into the instance.

It's time to create the AMI from the launched instance, so go to Amazon EC2
Management Console.

1. Select your respective instance and from the Actions menu, select the
Create Image option.

2. Provide the necessary details such as image name, image description,
and so on, and create it.

Your instance will be rebooted once and you will lose SSH
connectivity at this point of image creation.

Initially, the AMI will be in a Pending state and eventually it will be in a
Available state.

Creating SQS tasks
To dispatch work from the input queue and view the results via the output queue,
you have to go to Amazon SQS console and perform the following steps:

1. Click on Create New Queue and configure it by providing the necessary
inputs such as the following:

 ° Queue name: input
 ° Default visibility timeout: 90 seconds

2. Create another queue named the output queue.
3. Now, select the input queue and from the Queue Actions menu,

select Send a Message.
4. Provide the image URLs which you want use here. You can also put your

images in the S3 bucket and provide the S3 URL.
5. Click on the Send Message and Close button.

Web Application and Batch Processing Architecture

[108]

Creating S3 bucket
To hold the output of your worker nodes, you need to configure the S3 bucket for it
as shown here:

1. Select S3 from the services menu.

2. Click on Create Bucket and provide the necessary information.

3. Click on Create and you are ready to go with S3 too.

By creating all this, you are ready to launch worker nodes within an Auto
Scaling group.

Chapter 4

[109]

Launching worker nodes
Using AWS Management Console, you can launch configurations and Auto
Scaling using a single mouse click, and also bid for spot instances within this
console when required.

Web Application and Batch Processing Architecture

[110]

To start with the configuration, please follow the given steps carefully:

1. Creating a launch configuration.

So, here, we have to select the AMI and its relevant architecture, which suits
our application. You have already created the AMI, so select that AMI from
the AMI section (from the left pane) of EC2 Management Console.

2. Provide the configuration details. You can provide information in the
Advanced Details section, which lets us choose the AMI's Kernel and
RAM disk and optionally fill in a user data block.

3. You can provide spot instance bid details, if you want.

You can select an on-demand instance also because there is
nothing specific to go only with spot instances, but via spot one,
you can reduce your OPEX.

Here, in the configure details panel, you have to provide Name as Workers
and IAM Role as BatchProcessing.

Chapter 4

[111]

4. In the Advanced Section, provide your scripts in the User Data option,
as shown here:
#!/bin/bash
/usr/bin/python /home/ec2-user/image_processor.py &

5. Provide your necessary storage options in the form of the Root device size,
EBS volume size, and so on.

6. You can select an appropriate Security Group or just add a new customized
one named BatchProcessing, where you restrict SSH access to your IP
while leaving HTTP and HTTPS access open to be accessed globally.

7. Finally, just last tab Review to review, and eventually, change the previous
choices, if required.

8. Finally, choose the key pair to access your instances and click on Create
launch configuration.

Web Application and Batch Processing Architecture

[112]

So far, you have completed the launch configuration for the AWS Auto Scaling
service, but you have to configure the Auto Scaling group based on a schedule
or policy. So, let's create an Auto Scaling group for your web application.

1. In the very first tab, there will be a few choices, for example, group name,
size, network, subnet, and so on, with some advance details. Here, in
advanced details, you can call AWS load balancer, which will route the traffic
based on policies. Fill the appropriate details and click on Next: Configure
scaling policies.

Chapter 4

[113]

2. The next tab is very important as it allows you to select between two
fundamental scaling plans. There are two options:

1. Keep this group at its initial size, which will ensure that your group
figures out a number of healthy instances equal to the initial size
you mentioned. At any point, if an instance fails the checks, it will be
replaced automatically.

2. Use scaling policies to adjust the capacity of this group, in which
you can select a CloudWatch alarm based on scaling policies to
increase or decrease the number of instances.

Web Application and Batch Processing Architecture

[114]

3. You can set policies for the minimum and maximum number of instances
initiating your Auto Scaling group. You can add CloudWatch alarms easily
later, or during deployment, but here, we'll add the one to allow your group
to increase its size, as shown in following screenshot, and vice versa, you can
configure to decrease the group size as well:

4. You are almost done, so now it's time to configure the notifications relative to
your group to get updates:

Chapter 4

[115]

5. Finally, again, review the configuration in the Review tab, and after clicking
on the Create Auto Scaling Group button, you will be redirected to a status
screen showing the creation of your resources. If something fails, you're
prompted to retry the single resource initiation again with correction.

So, after initiating, you can see the new scaling activity on your EC2 dashboard.
And whenever required, you can make changes in these configurations as per
the requirement.

Dispatching work and viewing results
You have to use SQS Management Console to put some more messages into your
input SQS queue. Your worker node will expect a new line delimited list of URLs
of images.

Choose your input queue and confirm that you have one message in the queue.
Even if one message does not exist, check the following things:

• Worker node
• IAM role configuration
• Queue names
• BatchProcessing role for instance

Web Application and Batch Processing Architecture

[116]

The following are the steps to view the output from output queue:

1. Select the output queue and from the Queue Actions menu, select
View/Delete Messages.

2. Click on Start Polling for Messages.
3. Locate your message and click on More Details to view the message body.

Monitoring the cluster
You can now go to the Amazon CloudWatch to monitor your cluster. As you already
defined the CloudWatch alarm at the time of creating Auto Scaling policies, you need
to check metrics from the Services menu. To do this, perform the following steps:

1. Click on Browse Metrics.
2. Click on the SQS metrics header.
3. Choose the line for:

 ° Queue Name: input
 ° Metric Name: ApproximateNumberOfMessagesVisible

Check the configuration and you are done. Based on your Auto Scaling policy, your
cluster will work efficiently for the load. On AWS, there are some specific AMIs that
are available, which can help you generate a load, as well as some utility commands
such as "stress", which will burst your CPU.

Chapter 4

[117]

Amazon CloudFormation
Amazon CloudFormation is a way to launch your Cloud environments without
difficulty. That is, when you launch a CloudFormation environment, you will be able
to launch specific AMIs with scrupulous key pairs, on predefined instance sizes, and
given load balancers. Also, if any segment of your environment fails to launch, the
environment rolls back to previous state, terminating all the pieces down the way.

Of course, it's not as simple as that. Every so often, assets need to know about each
other (for example, what connection string should an EC2 instance use to connect
to your RDS instance that CloudFormation just launched). To assemble a set of
Amazon CloudFormation templates that enable a typical enterprise environment,
you will have to use a tool that inspects your running environment and creates
a CloudFormation template for you. You can find Amazon CloudFormation
Management Console, as shown here:

Web Application and Batch Processing Architecture

[118]

Here is an example: let's start with deploying the SugarCRM server using a template
file. For this, you need to save the template from the URL http://goo.gl/kCjGwE as
the sugarcrm.template file on your local system. Now, you have to just execute the
following instructions to launch the template with a full stack of resources.

1. Click on Create New Stack on AWS CloudFormation console.

2. Choose your Stack Name as you want, but remember that it must not
include whitespaces in name.

http://goo.gl/kCjGwE

Chapter 4

[119]

3. Provide your application credentials, such as the username and password.

Web Application and Batch Processing Architecture

[120]

4. Review your configuration and click on Create Stack.

Chapter 4

[121]

The setup process will take some time, around 5 minutes, so please have
some endurance and wait. Meanwhile, you can create an elastic IP if it's not
already created.

After a successful template creation, enter the Bitnami IP value in the web browser
window and you will see the start page, as shown here:

You can delete the new environment whenever you want by simply deleting the
stack that you have just created.

In this way, you can launch your application without touching a number of services
on the Amazon stack. Simply go with Amazon CloudFormation and deploy your
template; Amazon will take care of the rest.

Web Application and Batch Processing Architecture

[122]

Where should I start on AWS?
AWS provides a wide range of services. It is a common confusion for every
newcomer to get confused about what and where to initially start, and here,
our current section provides you with an overview of where should we start
and how we move ahead in our journey of the Cloud. Here are a few very
common areas of services:

• Hosting a simple web app
• Storage
• Managing resources

These basic services can be learned using the free tier package itself.

Case study
As an example, let's take a look at how to get your LAMP environment ready on
AWS in the following case study.

The following is a real-life case study.

LAMP on your Amazon EC2
Let's look at the procedure of getting your LAMP (Apache, PHP, MySQL
combination is often known as LAMP stack or LAMP server) stack working
on your Amazon EC2 instance as a case study here.

Here, I explained how to launch LAMP on a single EC2 instance
for simplicity. You can use an EC2 instance for Apache and PHP,
while you can leverage RDS to launch your MySQL.

Prerequisites
Before actually getting started with the LAMP stack, let's take a look at the following
prerequisites:

• A launched instance with a public DNS name reachable on the Internet
(refer to the preceding sections)

• A security group that is well configured to allow SSH (Port 22),
HTTP (Port 80), and HTTPS (Port 443) connections respectively

Chapter 4

[123]

Installing and starting the LAMP server
Let's try to dive into our instance and install the required packages.

• Connect to your instance, if you have any, or launch an instance, and then
connect to it

• Install MySQL and its dependencies using the yum group install
command (here, we will use Amazon Linux):
sudo yum groupinstall -y "Web Server" "MySQL Database" "PHP
Support"

• Install the PHP – MySQL package using following command:
sudo yum install -y php-mysql

• Start the Apache web server using the following command:
sudo service httpd start

• Configure the Apache web server to start each system boot using the
following command:
sudo chkconfig httpd on

• Test the web server by using a public DNS address in your browser
(you should see the Apache test page as shown here):

Web Application and Batch Processing Architecture

[124]

File permissions
You have to modify some files permissions to make it accessible through the Web.:

• Add the www group to your instance using the following command:
sudo groupadd www

• Add your username to the WWW group:
sudo usermod -a -G www your-user-name

• Log out and log in again to check the membership with the WWW group
• Update the group ownership of /var/www (which is the Linux default)

and its contents to the WWW group:
sudo chown -R root:www /var/www

• Update the directory permissions of /var/www and its subdirectories
to add group write permissions and to set the group ID on future
subdirectories.

• Recursively, change the file permissions of /var/www and its subdirectories
to add group write permissions.

Testing the LAMP web server
We can test the LAMP web server using the following:

• Create a simple PHP file in the Apache document root using the following
command:
echo "<?php phpinfo(); ?>" > /var/www/html/phpinfo.php

• Access this file from the browser using the public DNS address:
http://YOUR_DNS_NAME/phpinfo.php. You should see the default
PHP Info page.

http://YOUR_DNS_NAME/phpinfo.php

Chapter 4

[125]

Summary
In this chapter, we got an overview of Amazon CloudWatch and created a custom
metric for it. Later, we moved to CloudFormation and have seen example of how to
use the CloudFormation service. Finally, we saw how to create a batch processing
architecture with an example.

Later, we saw how to host the LAMP stack on a single EC2 instance with minimal
configuration. In this way, you can host your normal web application using different
services of AWS as per your experience and convenience.

In the next chapter, you will learn about high availability, disaster recovery, and
AWS Private Cloud (Amazon VPC). Users will come to know how to leverage the
benefits of the AWS platform to build a private Cloud in it.

[127]

High Availability, Disaster
Recovery, and Amazon VPC

The AWS Cloud offers a low-cost margin for maintaining a convoy of disaster
recovery servers and data storage resources. With the AWS Cloud, you can take
benefit, of geo-distribution and imitate the environment in other locations within
minutes. Imagine that your hardware fails because of some unknown reason.
Suppose that outages occur because of failure, or some catastrophe strikes your web
application. What if you will be slammed with more than the expected number of
requests per second for one day or one hour? What if, with time, your application
software stops working? By being a cynic, you end up thinking about revival
strategies in the blueprint stage, which helps in creating a superior system.

Virtual Private Cloud (VPC), unlike EC2, presents you with a virtual private
network with power over routing tables, DHCP selection sets, and more. This has
greater benefits than EC2. While VPC is a unique product that is specific to AWS and
appears to lock you into the AWS infrastructure/platform, the model that VPC takes is
similar to running your own dedicated hardware on AWS or in your data center.

In this chapter, we will cover the following topics:

• Disaster recovery circumstances with AWS
• Data replication
• Architecting with Amazon VPC

High Availability, Disaster Recovery, and Amazon VPC

[128]

Disaster recovery circumstances with
AWS
Disaster recovery (DR) is about preparing for and recuperating from a disaster. Any
occurrence that has a negative influence on your production line's continuity / down
time over Cloud or finances could be labeled a disaster. This could be hardware or
application failure, a network problem, a power problem, physical disasters such as
fire or flooding, human blunders, or other inconsequential disasters.

To reduce the impact of a disaster on the trade, companies devote time and
resources to map, organize, practice, manuscript, instruct, and modernize processes
to deal with such problems. The amount of speculation for the disaster recovery
scheduling of a meticulous system can vary noticeably, depending on the cost of a
prospective outage.

Recovery time objective and recovery point
objective
There are two collective industry standings for cataclysm design:

• Recovery time objective (RTO): This is the duration of time and the service
level to which a production method has to be restored after a debacle to
evade intolerable penalty allied with a rupture in business continuity. For
instance, if a disaster occurs at 01:00 P.M. and the RTO is 9 hours, the DR
progression would guarantee recovery to the adequate service level
by 10:00 PM.

• Recovery point objective (RPO): This depicts the satisfactory sum of data
loss considered in time. For example, if the RPO was 2 hours, after the system
was up again, it would surround all data up to 11:00 A.M. because the failure
occurred at noon.

There are four DR scenarios that compare AWS Cloud infrastructure and services
with traditional DR methods:

• Backup and restore
• Pilot light for modest recovery into AWS
• Warm standby solution
• Multisite solution

Chapter 5

[129]

These are just examples of achievable approaches, and variations
and combinations of these solutions are definitely possible.

Let's talk about these DR scenarios one by one in detail.

Backup and restore
Data is often backed up to tape and sent off-site. In such cases, recovery time will be
longer. Amazon S3 will be an ideal solution to back up your data, as it is designed
to deliver 99.999999999 percent durability of objects over a prearranged year time.
Moreover, the AWS Import/Export service empowers you to move large quantity of
data by shipping storage devices straight to the AWS data center. The AWS Storage
Gateway service can apprehend snapshots of your on-premise data and copy it to
Amazon S3 as backup. You can use even EBS volumes from snapshots.

High Availability, Disaster Recovery, and Amazon VPC

[130]

From the preceding figure, one can understand how to transfer data from your
in-house data center to the AWS Global Infrastructure. Recovery of your data in
a disaster scenario needs to be foolproof, swift, and consistent. The client should
guarantee that systems are configured appropriately to handle custody of data
and security of data, and have tested their data recovery processes before failure
takes place.

Pilot light recovery in AWS
The word "pilot light" came from the gas heater. Like in a gas heater, a small flame
will be always on and can swiftly ignite the entire heating system as needed. This
scenario is similar to a backup and restore scenario, but the critical core elements
of your system are already configured and running in AWS all the time. When
the requirement comes for recovery, you can swiftly provision a production
environment for the critical core.

Chapter 5

[131]

The pilot light method will give you a quicker recovery time than the "backup and
restore" scenario, as the core elements of the system will be already running and will
continue to be up to date.

There are basically two phases:

• Preparation phase: In this phase, you will be replicating/mirroring your data
continuously in a period of time and testing your components.

High Availability, Disaster Recovery, and Amazon VPC

[132]

• Recovery phase: In this phase, you will simply switch from the primary
environment to the pilot environment until your primary environment is up
and running.

Warm standby solution
A warm standby solution broadens the pilot light method's fundamentals and
preparation. It cuts the recovery time in advance because some services will always
be running, unlike pilot light. By identifying your most critical components, you
would fully duplicate those components on the AWS infrastructure and always have
them up and running.

These instances can be running on a basic required size of AWS EC2 instances all the
time. The warm standby model will not be scaled as production components who
can load more traffic, but it will be like fully functional model. The instance may be
used for non-production work, such as testing, quality assurance, internal exercise,
and so on. At the time of disaster, this protocol model can be achieved by adding
more instances to the load balancer or by resizing the small-capacity servers to run
on larger EC2 instance types on AWS. However, resizing is not recommended as you
may have to face downtime.

Chapter 5

[133]

There are two phases:

• Preparation phase: In this phase, the AWS standby solution will run
continuously with production components.

High Availability, Disaster Recovery, and Amazon VPC

[134]

• Recovery phase: In case of failure, the standby environment will be scaled up
automatically to serve production load and DNS entries will get changed to
route traffic. So, you should create your environment in such a way that if a
component goes from your infrastructure, the secondary component should
take its place to come up with a full working infrastructure from the standby
mode within moments.

Chapter 5

[135]

Multisite solution
You can say that a Multisite kind of solution is an "Active-Active" approach
configuration, as it goes in AWS, as well as on present in-house infrastructure; that
is, both the infrastructures will be up and running and both will share the load. The
data replication method will be determined by the retrieval point you pick. There are
dissimilar replications methods used by AWS.

A weighted DNS service, such as Amazon Route 53, can be expected to route your
traffic to diverse sites. By doing this, your ratio of traffic will go to AWS and the
residue will go to your on-site infrastructure, which can be primary or subordinate,
because Route 53 also provides latency and failover routing policies. In a disaster
situation, you can adjust the DNS weighting and send all traffic to the AWS servers
or vice versa.

• Preparation phase: In this phase, the AWS DNS service named Route 53 will
route the some portion of the traffic to the AWS site, and other traffic will be
on your on-premise infrastructure.

High Availability, Disaster Recovery, and Amazon VPC

[136]

• Recovery phase: In case of breakdown, the DNS service will be slashed
to route the traffic to catastrophe zone and route all traffic to the available
infrastructure.

Chapter 5

[137]

Replication of data
When you are replicating data to an isolated locality or let's say in diverse region,
there are a few key concerns:

• Distance between the application sites: Large distances are characteristically
subject to more latency or jitter.

• Bandwidth availability: How broad and variable are the interconnections
links?

• Data rate required by the web application: In real time consequences, data
rate should be always lower than the available bandwidth of network.

• Replication: The replication function should be working in parallel with
each component.

High Availability, Disaster Recovery, and Amazon VPC

[138]

There are two elementary approaches when you are replicating the data.
They are as follows:

• Synchronous replication: Data is atomically simplified in multiple positions
(multiple data centers which will be different by geographical locations), as
shown in preceding diagram. Synchronous replication impacts will be huge,
like a craving on network performance and availability.

• Asynchronous replication: Data will not be updated in multiple
locations automatically. It will be relocated as your Cloud provider's
network performance, available bandwidth permits it, and your web
application will continue updating or putting data that may not be fully
replicated until that time.

Several database systems endure asynchronous data replication where particular
database systems do not. The database replica can be discovered tenuously, and
the replica does not have to be utterly in sync with the primary database instance.
This can be good enough in many real-time circumstances, for example, as a
backup of resource data or reporting/read-only use cases. In AWS distributed
infrastructure, AZs inside an region are well linked with each other, but physically
apart. For example, when you are deploying your database on AWS infrastructure
using the Multi-AZ mode, the Amazon Relational Database Service (RDS) will
practice synchronous replication to duplicate data in a second accessible that is any
available AZ. This will undertake that data will not be lost if the prime AZ becomes
inaccessible due to a disaster.

Furthermore, AWS regions are absolutely independent of each other, and there is
no technical or functional discrepancy in the way you approach them and use them.
This will enable customers to form disaster recovery practices that extend overseas,
minus the clashes or costs that this would usually incur. Clients can back up their
data and systems (virtual machines) to two or more AWS regions, allowing service
restitution even in the face of large-scale disasters. Clients can use all AWS regions
to serve their customers over the globe with reasonably low complexity in their
operational progressions.

Chapter 5

[139]

Architecting with Amazon VPC
Amazon VPC lets you envision a logically isolated sector of the AWS Cloud, where
you can spin AWS resources in a virtual network that you express. Nowadays, users
adopt default VPC in which all the instances can be launched without the creation of
new VPC. Essentially, Amazon VPC is an arrangement of the following components:

• A private, isolated segment on the AWS Cloud where you can launch AWS
resources on a virtual network for which you gain full control is Dedicated
Instances; here, no other person's data can be hosted

• A virtual network topology that resembles the established network in your
data center

• Complete control, incorporating your own IP address range, subnets, route
tables, Access Control List (ACL), and network gateways

The overall VPC is envisioned to include several basic features. It extends up to
two AZs, so that you can dispense your applications across these AZs to architect
your application's durability and high availability based on the traffic and number
of users. The recommended approach is to use at least three AZs for a proper data
replication in a cluster. With two AZs, if a single AZ is down, it can take the majority
of a cluster down as well. Three AZs can survive a failure of a single AZ, which is
not the case with two AZs.

Within every AZ, there are two subnets. The public subnets can route unswervingly
to the Internet. The private subnets will be able to communicate with any other
subnet surrounded by the VPC or Network Address Translation (NAT) instances,
but there will be no direct contact between private subnets and the public internet.
AWS recommends using a NAT instance to allow the instances in the private subnets
to connect to the Internet.

High Availability, Disaster Recovery, and Amazon VPC

[140]

Furthermore, Amazon VPC provisions both hardware and software VPN tunnels
at the data center level, and also client-based tunnels via software correspondences
such as OpenVPN. VPC permits control over many tiers of security, and at the same
time, it's easy to construct. To start with VPC, perform the following steps from the
AWS Management Console:

1. Choose the VPC service and click on Start VPC Wizard.

Chapter 5

[141]

2. For this exercise, you'll produce a VPC with a single, public-facing subnet
and then manually insert specific rules that automatically set up the second
wizard. Choose the initial wizard substitute as VPC with a Single Public
Subnet, and then click on Select.

3. In the VPC name textbox, provide the name of your choice and enter
10.0.0.0/16 as the IP range in the IP CIDR block box. This value practices
the Classless Inter-Domain Routing (CIDR) standards so that your VPC will
have a private IP address space ranging from 10.0.0.0 to 10.0.255.255. In the
Hardware tenancy drop-down list, confirm that Default is selected. This will
run your VPC on common hardware. Finally, select Yes from Enable DNS
hostnames and click on the Create button.

4. Review your configurations before finishing. The public subnet will have a
default IP address range of 10.0.0.0/16, which is not routable on the public
Internet, and the wizard will set up an Internet gateway with a public IP
address. Nevertheless, the private subnet won't communicate with the
Internet until you overtly permit it to do so. If you check that alternative,
then AWS assures that no other account will be located on the same
hardware and you will be the only one who will own that resource. But
remember, this alternative will cost a flat USD 10/hour per region, so don't
choose it unless you actually want it!

High Availability, Disaster Recovery, and Amazon VPC

[142]

5. Finally, click on Create VPC.

6. It may take some time for the wizard to finish the job. Once the wizard has
done its job, you will see the following screen:

Chapter 5

[143]

7. Click on the Subnets link and note the Availability Zone option chosen by
the wizard. Note it as you will need it in subsequent stages.

Launching an instance in the VPC
Now, let's see how we can launch an instance in VPC:

1. Navigate to the VPC dashboard and click on the Launch EC2 Instances
button. This will move you to the AWS EC2 tab in the console. Once there,
just click on Launch EC2 Instances.

High Availability, Disaster Recovery, and Amazon VPC

[144]

2. Pick the initial preference Basic 64-bit Amazon Linux AMI. The genuine
AMI ID in the wizard may be different from the one in the screenshot, as the
AMI is modernized regularly by AWS.

AMI provided by AWS

3. You are going to launch an instance into the VPC from which you can
learn about the working of VPC. Alter the instance type to t2.small or
t2.micro, or choose from the several additional instance types provided
in the Amazon VPC.

Instance types

Chapter 5

[145]

4. In the Configure Instance Details page, remember that the AZ will be auto
picked by the subnet, and there is only one special in the drop-down list
because you've only formed a single public-facing subnet. Provide 10.0.0.9
as the IP address.

The preceding screen presents two essential features that are exclusive to VPC, at
least when compared to public EC2 instances. The first one is the static IP address
that you just inserted. In the public-facing instance, you can appoint Elastic IP
addresses; nevertheless, those addresses are either public-facing only (but here, this
address is a private, non-routable address from Internet), or Elastic IPs are enclosed
after the instance takes off (the preliminary address on a public instance will be
appointed via DHCP).

High Availability, Disaster Recovery, and Amazon VPC

[146]

In addition, this static address factors the way that you presume a static address to
work as typical EC2 instances.

1. Note, that we are allotting the address "from the outside" of the VPC
network. If you were to login to the server and assign the network address at
the OS level, AWS can appoint the address as in the illustration to 10.0.0.9.
At last, click on Next to navigate to the next phase.

2. VPC security groups differ from "public" security groups. Among other
things, these security groups control both inbound and outbound traffic
as standard EC2 security groups. "Public" groups barely limit the inbound
traffic. So, let's fashion a new security group that will be the default optimal
on given screen. Add a rule for SSH if not present and also for All ICMP
protocols. Don't neglect to click on Add Rule to employ your alterations and
open whichever port you wish to unlock. Then, click on Review and Launch.

Chapter 5

[147]

3. If you already have a key pair, practice it. If you don't have it, you have
already studied how to generate and practice it.

4. Evaluate the surroundings and spin the instance by clicking on the
Launch button.

5. Next, ensure one instance is running in the VPC environment that has an
IP address 10.0.0.9. In order to approach that instance over the public
Internet, you have to give that instance a public IP address because the
specified IP address is private only. To allocate a public IP address in VPC,
you must to assign and subordinate an Elastic IP Address for VPC from
Elastic IP wizard.

Navigate to the Elastic IP wizard on the left corner in EC2 Management Console
and click on the Allocate New Address button. Then, select VPC, click on Yes,
and click on Allocate. Subordinate the IP address to the VPC instance that you
just created by clicking on the Assign Address button and picking the instance
you started (it will present you the all instances which will be accessible in your
EC2). You must select either the instance or the network interface. Finish the job by
selecting Yes and clicking on the Associate button. If you don't see the Elastic IP that
you just assigned from Elastic IP wizard, crosscheck the Viewing filter and change it
to ALL or VPC Addresses.

High Availability, Disaster Recovery, and Amazon VPC

[148]

Creating a private subnet
You have successfully created the public subnet. So, for the next stage you have
to create a private subnet that will be communicated to public subnets via a NAT
instance. To start with a private subnet creation, perform the following steps:

1. Let's create a private subnet, let's say a "10.0.1.0" subnet that will not
straightforwardly connected to the public Internet. Check the first digit in the
third octet of the IP address, which will be other than 0 for the public subnet.
Going back in the VPC tab, click on Subnets and select Create Subnet.

2. Provide 10.0.1.0/24 as the IP address. Technically speaking, the AZ could
be different from formerly created one; nevertheless, using multiple AZs
doesn't mark as an irrelevant deal when you are modestly dividing "public"
from "private". In a fully-developed production environment, you will
be tending to a total of four subnets (two sets of public and private pairs)
dispensed throughout manifold AZ.

3. Now, it's time to launch instances into public or private subnets, as preferred.
Insert public facing instances, for example web servers, into the public-facing
subnet 10.0.0.0/24. Insert backend instances that should not be accessible
from the Internet directly, for example, DB servers, into the private subnet
10.0.1.0/24.

Spinning a database instance in the private
subnet
Liftoff added Amazon Linux server. However, this time spin an instance with the
private subnet (10.0.1.0/24) and provide it an IP address of 10.0.1.10. Define the
server like the backend DB Server and allocate the same key pair to it as the publicly
created instance. You can fashion a new Security Group, but open up port 22 for
SSH and all ICMP ports identical you did previously in the public subnet.

The instance you just launched in the private subnet only has a private IP address.
So, the question is, how can you connect to the server via SSH from the Internet
in order to tenuously administer it? (I'm absolutely ignoring the statistic that in a
tangible production use case, you shouldn't link straightforwardly from the outer
world Internet). Three components can enable RDP connections in a public subnet:

Chapter 5

[149]

Port forwarding from an instance:

• An SSH gateway instance
• A VPN tunnel

A naive swift question, can't you just allocate an Elastic IP address to the backend DB
server and access it from the Internet? Even though it seems to be a logical solution,
it won't work. You can try to allot an address to verify this point yourself. The
purpose is that the route table connected with this subnet does not permit traffic to
or from the Internet.

High Availability, Disaster Recovery, and Amazon VPC

[150]

You can fill details in the preceding screen to get the succeeding one, which is for the
public subnet. Look at that additional line that indicates the Internet gateway as a
considerable route:

You could switch route tables, at which point the Elastic IP address would start to
acknowledge Internet traffic. Of course, we don't need to do that, specifically since
this subnet is private one. This subnet is so quarantined that servers on it can't even
extend to the Internet. This server would certainly not be proficient to download an
update from the Internet, as it will incapable to correspond with any Internet-based
download servers. For the most part, that's closely what you desire.

Consequently, you can determine a NAT instance in the public subnet and route
outbound traffic over it via a special route table. Indeed, that's what the wizard does
if you select the second option (both a public and private subnet).

Chapter 5

[151]

Creating a Remote Access Software VPN to
your VPC
You can practice with any VPN software that appears recognizable to you, such as
Windows Server 2003/2008 incorporated clarifications, OpenVPN, or OpenSwan.
As per my understanding for connection, you can practice OpenVPN, which is
permitted for two parallel VPN connections.

Launching an OpenVPN instance
You're working to construct an OpenVPN employment from an AMI image for now,
which can be done as follows:

1. Start with the cheapest N. Virginia region, click on the AMIs tab in the EC2
tab. Choose Amazon AMIs and then search for openvpn. In this screenshot,
you will see an image for version 2014.03.2 with ami-id ami-76817c1e.
Nevertheless, this might not currently be the newest version, so pick
accordingly by name. Be assured that you are working to lift off this AMI
into the VPC by the public subnet.

2. Use 10.0.0.99 as the static IP address and label it like the OpenVPN
server. Confirm that you have configured a new Security Group with
the following rules:

High Availability, Disaster Recovery, and Amazon VPC

[152]

3. Acknowledge the settings and spin the instance. Voila! You are
approximately done by 70 percent. Disable source/destination checking on
the VPN instance. Each EC2 instance performs source/destination checks
by default. This means that the instance must be the source or destination
of any traffic it sends or receives. However, a NAT instance must be able to
send and receive traffic when the source or destination is not itself. Therefore,
you must disable source/destination checks on the NAT instance. To do this,
first right-click the OpenVPN instance and choose the Change Source/Dest.
Check selection, as shown here:

Chapter 5

[153]

4. Then, click on the Yes, Disable button to disable the check for the instance:

The Source/Destination Check popup

5. Now, assign a new Elastic IP address to the OpenVPN server. Verify that
you are able to ping the OpenVPN instance and SSH into the OpenVPN
server using SSH client. For this instance, you should log in as the root user.
OpenVPN will query you tons of subjects for authorization and all. Agree
to the terms and then select the defaults for the rest. Once it's finished, you
want to design a password for the openvpn user. To do so, type the following
command on the CLI:
PROMPT> passwd openvpn

6. Then, enter a password; it won't display the characters as it's a default
Linux behavior. It will ask one more time to confirm that you are typing the
accurate one, as shown in the following screenshot. Retype and memorize the
password for further use.

Password confirmation

High Availability, Disaster Recovery, and Amazon VPC

[154]

Downloading the OpenVPN client
You can download the OpenVPN client by performing the following steps:

1. Provide the Elastic IP address for the VPN server in the browser
(acknowledge security exclusions if you get any). You should now see the
login window. Log in as the openvpn user and enter the password.

2. Now, download and ordain the client relevant to your platform.

Chapter 5

[155]

Configuring the OpenVPN server
To configure and connect OpenVPN server, follow these steps:

1. Connect to the OpenVPN server administrator boundary using a browser.
The address will be http://<Elastic IP>/admin.

2. Acknowledge the terms and conditions and click on Agree. Click on Server
Network Settings and provide your server's public IP address, as shown in
the following screenshot:

High Availability, Disaster Recovery, and Amazon VPC

[156]

3. Permit access to the private subnet in the VPC. Connect on VPN Settings
to insert the private subnet under the Routing division, which will be
10.0.1.0/24 in your illustration:

You can associate to it by SSH if you require. If the page is visible on a browser,
it means you have done this successfully! You have effectively created a VPC
environment.

Summary
In this chapter, you started with the vital steps and logic that should be implemented
as a disaster recovery plan. Then, we discussed data replication and proposed AWS
disaster recovery configuration. Finally, we saw how to create and configure a VPC
within a AWS public Cloud infrastructure.

In the next chapter, you will come to know how to setup SDKs and IDE toolkits that
can be used during programming with different AWS services.

[157]

Tools for AWS and Setup
Guidelines

There are several interfaces available to make user interaction with AWS easy and
effective. To start with tools for AWS, you need to understand what these tools
are and how they work with AWS. Java is widely used with AWS and the most
important factor is that it is free to download and install. There are SDKs and
libraries for Ruby, Python, and PHP that you can find from following URLs:

• http://aws.amazon.com/sdk-for-ruby/

• http://aws.amazon.com/sdk-for-python/

• http://aws.amazon.com/sdk-for-php/

There are four interfaces that are commonly used to interact with AWS:

• AWS Management Console
• Eclipse plugin
• Command-line interface
• API

We will cover the following topics in this chapter:

• AWS SDK
• AWS Toolkit for Eclipse
• Configuring the AWS Toolkit

http://aws.amazon.com/sdk-for-ruby/
http://aws.amazon.com/sdk-for-python/
http://aws.amazon.com/sdk-for-php/

Tools for AWS and Setup Guidelines

[158]

Working with AWS SDKs and IDE toolkits
A Software Development Kit (SDK) or "devkit" is typically a set of software
development tools that permit the development of applications for a convinced
software package, software context, hardware stage, computer classification, video
game console, OS, or parallel development platform.

We can use APIs to bridge the gap between hardware and applications. Communal
tools incorporate debugging services and other utilities that are repeatedly used in
an Integrated Development Environment (IDE). Also, SDKs commonly involve
mockup code and associate methodical notes or supplementary documentation to
refine points made by the main orientation material.

SDKs may have enclosed licenses that make them unsuitable to develop software
projected to be advanced under a mismatched license. For design, a proprietary
SDK will probably be inappropriate with free software development, whereas a
GPL-licensed SDK can be incompatible with exclusive software development.
LGPL SDKs are characteristically user-friendly and comprehensive for
privately-owned development.

As shown in the following screenshot, you will be able to realize the AWS SDK for
Java on the AWS website. If you click on it, it'll be downloaded on your system.

Chapter 6

[159]

Let's understand each folder and the internal files:

• Documentation: This folder contains all the content needed for reference.
It has the syntax, package, structure, and description of each class/method.
Using this documentation, we can understand the underlying class/method
that we can use in our own library.

• Lib folder: This folder contains the .jar files that are necessary to start the
development of AWS using your Java code. It contains other .jar files like
the following:

 ° aws-java-sdk-<version>.jar: This contains all the classes required
for AWS development, for example, class for AWS authentication
and so on. Generally, people use dependency management tools,
such as Gradle, Maven, or Ivy, to fetch the SDK jars. It is commonly
used to execute all command-level operations from the command
prompt. It can only be executed once they are configured in
environment variables.

 ° aws-java-sdk-<version>-sources.jar: While creating code, if you
want to attach source files for reference, you can only do that using
this JAR.

There is one javadoc.jar file that stores the documentation for all AWS
classes. Since it's optional, it's upon developers whether they need to keep
them for reference.

• Samples: This folder contains the samples programs for quick understanding
of code and its nature. In general, it's not easy to adapt new classes without
understanding their basic flow. These codes will give you a hands-on
exercise. The basic examples are as follows:

 ° Amazon-DynamoDB

 ° Amazon-EC2SpotInstances-GettingStarted

 ° Amazon-EC2SpotInstances-Advance

 ° Amazon-Kinesis

 ° Amazon-Kinesis-Application

 ° Amazon-s3

Tools for AWS and Setup Guidelines

[160]

 ° AmazonS3TransferProgress

 ° AmazonSimpleEmailService

 ° AmazonSimpleQueueService

 ° AwsCloudFormation

 ° AwsConsoleApp

 ° AwsFlowFramework

• Third-party: This folder contains the third-party APIs that can be utilized in
code structuring. Some third-party APIs are as follows:

 ° aspectj-1.6
 ° commons-codec-1.3
 ° commons-logging-1.1.1
 ° freemarker-2.3.18
 ° httpcomponents-client-4.2.3
 ° jackson-annotations-2.1
 ° jackson-core-2.1
 ° jackson-databind-2.1
 ° java-mail-1.4.3
 ° joda-time-2.2
 ° spring-3.0
 ° stax-api-1.0.1
 ° stax-ri-1.2.0

stax-api-1.0.1 and stax-ri-1.2.0 are not included in SDK v1.8.10.1

You can also add your own component, such as jQuery or others, for useful
purposes and strong adaptability. This was all about the AWS SDK structure.
While executing examples, you will see its usage and get an in-depth
understanding of flow and its components.

Chapter 6

[161]

• The AWS Toolkit: The AWS Toolkit for Eclipse is an open source
plugin for the Eclipse Java IDE that makes it easier for developers
and code integrators to develop, debug, integrate, migrate, and deploy
Java-based applications that use the AWS resources platform. There are
some extraordinary functions/features that make the Amazon platform
the best option for developers:

 ° AWS Explorer: This empowers you to correlate with numerous
AWS services from the Eclipse IDE. The AWS Explorer provisions
managed data services such as Amazon Simple Storage Service,
Amazon SimpleDB, Amazon Simple Notification Service, and
Amazon Simple Queue Service. AWS Explorer is further proposing
to introduce Amazon Elastic Compute Cloud management and
deployment functionality to the AWS Elastic Beanstalk via SDK
or API. AWS Explorer provides various AWS accounts; you can
undoubtedly transform the capitals presented in AWS Explorer
from one account to alternative. AWS Explorer also empowers you
with additional functionality such as the capability to design and
accomplish key pairs and security groups.

The AWS Toolkit for Eclipse will install the newest version of the AWS SDK for
the platform you have designated. From Eclipse, you can directly manage, modify,
construct, and deploy any of the illustrations encompassed in the SDK packages.
You can download and install it using the following steps:

1. Go to URL aws-amazon.com/sdk-for-java.
2. As shown in the following screenshot, click on AWS Toolkit for Eclipse:

aws-amazon.com/sdk-for-java

Tools for AWS and Setup Guidelines

[162]

3. Another way to configure this is to download Eclipse Juno/Luna from the
link https://www.eclipse.org/downloads/.

4. Start Eclipse, go to Help, and then click on Install New Software.
5. In the Work with box, type http://aws.amazon.com/eclipse, and then

press the Enter key.
6. In the list that appears, expand the AWS Toolkit for Eclipse option.
7. Select AWS Toolkit for Eclipse to download it.
8. Click on Next and the Eclipse wizard will take you through the other

installation procedures by default.

To access AWS through the Eclipse Toolkit, you have to configure the Eclipse Toolkit
with your access key ID and secret access key that should be available in your AWS
account. In addition to allowing the Eclipse Toolkit to admit your account, your
access keys are used to allow web services-based requirements to AWS. Allowing
web services requests ensures that only approved programs can make such requests.
Moreover, by associating access keys with each web services request, AWS will be
able to track service usage for billing and monitoring.

The keys will have a combination of an access key ID and secret access key,
which will be used to sign programmatic logical request that you will compose
from application source code to AWS for accessing resources. If you don't have
access keys, you can create the keys from the AWS Management Console. To do
so, go to Security Credentials and select the Access Key ID option, as shown in the
following screenshot:

https://www.eclipse.org/downloads/

Chapter 6

[163]

A better way would be creating an IAM user or group with limited privileges (only
those needed by an app developed) and use their access keys instead. This will also
allow us to later mark the access keys as "inactive" or delete them when they are not
needed any more. Using an account's root credentials for app development provides
it with access to all AWS services and these credentials can't be easily revoked later.
Keep the credentials confidential in order to guard your account, and never e-mail
it. Do not share it with a third person from your organization, even if investigations
come from AWS or from any other channel.

To add your access keys in the Eclipse Toolkit, follow the procedure given here:

1. Open the Eclipse AWS Toolkit Preferences dialog box and click on AWS
Toolkit located in the sidebar.

2. Type your access key ID in the Access Key ID box.
3. Type your secret access key in the Secret Access Key box.
4. Click on Apply or OK to store your access key information.

Here is an example of a configured AWS Toolkit Preferences screen with the
default account:

The preceding dialog box enables you to add access information for more
than one AWS accounts by selecting the designated profile. Multiple accounts
enable developers and administrators to split resources that will be used for the
development stage from resources that are used in the production stage.

Tools for AWS and Setup Guidelines

[164]

To add another set of access keys, perform the following steps:

1. On the AWS Toolkit Preferences screen, go to the Profile Details,
and click on Add Account button.

2. Add your account particulars to the Account Details section.
3. Pick a suitable name for Account Name and enter your access key

information in the Access Key ID and Secret Access Key boxes.
4. Click on Apply or OK.
5. You can repeat the preceding steps as practice for as many sets of

AWS account intelligence that you require.

The Eclipse Toolkit can also achieve Amazon EC2 key pairs from an AWS
account. Nevertheless, you will have to associate private keys to use in the
Eclipse Toolkit manually. To observe Amazon EC2 key pairs in the Eclipse
Toolkit, follow the next steps:

1. Open the Eclipse Preferences dialog box and click on AWS Toolkit in the
sidebar to view the supplementary classifications of the Eclipse Toolkit
surroundings and configure it.

2. Go to Key Pairs. Eclipse will display a list of available key pairs in that
window. If a key pair has a red "X" sign next to it, you must create an
association of a private key with the key pair to practice it with the
present use case.

Chapter 6

[165]

3. Right-click on the key pair and select Select Private Key File from the
context menu. Go to the private key file and select it to subordinate it
with your key pair, as shown here:

To employ the web application, you have to perform the following steps:

1. On the Eclipse toolbar, click on the AWS icon, and then select New AWS
Java Web Project.

2. In the new AWS Java Web Project dialog box, in the Start from: option of the
dialog box, set Travel Log as Sample Java Web Application and give a name
myTravelLog in the Project name box.

3. Click on the Finish button. The toolkit will create the project and the project
will be presented in Project Explorer.

If you aren't able to see Project Explorer in Eclipse, go to the Window
menu in Eclipse, click on Show View, and choose Project Explorer.

Tools for AWS and Setup Guidelines

[166]

Now you are ready to start.

The AWS Java Web Project dialog box will allow you to choose the region in which
your web application will be deployed to and run from. Here, I am going to select
US East (Virginia), as it is the cheapest one in my case.

Chapter 6

[167]

After selecting the proper Region, you have to proceed with the selection of
container in the following manner:

1. From Project Explorer, navigate to myTravelLog | Run As | Run on Server.
2. In the Run on Server dialog box, select Manually define a new server and

click on AWS Elastic Beanstalk for Tomcat 7 from the catalog of specified
server choices.

3. Enter an appropriate name, such as TravelLogServer, into the server's
hostname box or provide a specific name of your choice.

4. Finally, choose Always use this server when running this project and
select Next.

Tools for AWS and Setup Guidelines

[168]

5. In the Run On Server box, supply an application name, such as
myTravelLogApp, and an environment name, such as myTravelLogEnv.
Then, click on Next. This is shown in the following screenshot:

Chapter 6

[169]

6. Go to Run On Server | Advanced configuration. The Advanced
configuration dialog box allows you to state further parameters for your
web application reference, such as IAM role, CNAME, Announcement
email address, and so on.

7. Before deploying your application to AWS Beanstalk container, the toolkit
will display a dialog box where you can fix a Version Label where you can
specify the version number. The AWS Toolkit will produce a distinctive
version label which is time stamped but still editable.

8. Click on OK.

9. While your application is deploying, the AWS Toolkit will display a progress
status, as shown in the following screenshot:

Tools for AWS and Setup Guidelines

[170]

10. When the deployment is complete, you will be able to see the following
screen. This is the user interface for the Travel Log application that will be
running on your Amazon EC2 instance.

So, the preceding example was about Elastic Beanstalk deployment using
AWS SDK Toolkit. Let's see one more example with the NoSQL database
called DynamoDB from AWS to get more hands-on experience.

In Eclipse, you can see a new icon . This is the AWS Toolkit for Eclipse
icon. The default Eclipse perspective will be Java; to open the perspective
to work with DynamoDB, go to Window and select the Open Perspective
option. It must show the first two perspectives, as shown here:

Chapter 6

[171]

11. Double-click on AWS Management to start working. While working in
the AWS Management Console, we must log in with our AWS username
and password. But for the Eclipse plugin, we need to specify a few more
attributes for authentication. We can specify our account details by clicking
on the AWS Eclipse Toolkit icon and selecting the Preferences option.

12. The pop-up window that appears will ask for the following details,
which we can fetch from security page in the AWS Management Console.

13. Once the configuration is successful, all the AWS components will be loaded.
You can right-click on corresponding service and select refresh to get the
latest data. The icon in the top-right (with US flag) is the region that you have
currently selected. If the DynamoDB table is created in the US East (Virginia)
region using AWS management console, and if you have selected the US
West (Oregon) region here in Eclipse, then you will not be able to see that
table in your perspective.

Tools for AWS and Setup Guidelines

[172]

14. You can change the region with a single click on the drop-down with
the flag on top-right.

15. Once the desired region is selected, right-click on Amazon DynamoDB and
choose Create Table option.

Chapter 6

[173]

16. The Create Table option will open the following window and ask for the
mandatory parameters to be passed while creating a table.

17. Since the index has to be created along with the table, you need to specify
(if any) the secondary indexes here itself.

18. After that, the table will be created and it becomes active.

Tools for AWS and Setup Guidelines

[174]

19. Double clicking on the table name will open the following tab. There
will be five icons (just after the table name) in the tab. We will look at the
functionalities of each icon later. Now, you need to focus only on the last
icon, which is used to add attributes to the table.

20. Clicking on the "Add attribute" column icon will open the following window
that asks us to enter the name of the attribute to be created (it will not ask for
the type):

21. After adding the necessary attributes, click on the grid to insert a value.
By default, all attributes will be treated as string type; to change its number
type, just click on the button a (as shown in the Publisher column) in the
following screenshot:

22. Clicking on the button a will open a drop-down from which we can choose
whether we want the field to be a string or number. You might ask, "How
can I insert a set data type?" The answer lies in the next screenshot:

Chapter 6

[175]

23. To change an attribute type from normal type to a set, just click on the icon
with ellipses (…). It will open an Edit values window that asks whether we
need to make this attribute a string or a string set. Click on <new value> to
add new value to this set.

24. After inserting all the necessary attributes for an item, click on the grid below
the item. The item with attribute values entered will appear in red color,
which means the item is not saved into the table.

25. Let's discuss the DynamoDB utility icons. The first icon is used to run
a scan on the DynamoDB table, the second icon is used to pause the scan,
the third saves the items into the table, and the fourth icon is used to export
table data into a CSV file. The last icon is used to add an attribute to the
DynamoDB table.

Tools for AWS and Setup Guidelines

[176]

26. Now, let's see how to scan a table using the Eclipse plugin. Clicking on the
Add scan condition icon (in the previous screenshot) will open the following
options. In the textbox next to the Attribute check box, enter the attribute
name to be queried and select the comparison operation to be performed.
Then, enter the selection criteria and click on the scan icon (first one). It will
retrieve the result as follows:

Working with tools and code libraries
You have installed and configured the Eclipse plugin and AWS SDK tools in
previous sections of this chapter. Let's continue with the DynamoDB example here.

In this section, you are going to do some hands-on DynamoDB by interacting
through Eclipse plugin and AWS SDK tool. Along with AWS Management Console,
DynamoDB supports lots of tools and libraries, which is also applicable for other
AWS services. Another important DynamoDB tool is DynamoDB Local. You can
easily create tables, indexes, attributes, and items. After doing all of these offline,
you can commit or save to AWS DynamoDB, thanks to DynamoDB Local.

If you are going to deploy a web application (let's say, a JSF application) and
decide to use DynamoDB as the database, one of the biggest challenge would
be integrating DynamoDB with Java. This is where the SDK comes into picture.
By importing and including certain DynamoDB libraries, you can play with
DynamoDB using simple Java code.

Chapter 6

[177]

Creating an SDK project
If you have already installed the Eclipse plugin, you will be able to see the
credentials file created and you will be ready to work on the SDK plane.

1. Clicking on the AWS Eclipse Toolkit icon will provide us with the option to
create new AWS project, as shown here:

2. Now, we need to select New AWS Java Project. Clicking on this option
will open the window shown in the next screenshot. Clicking on this option
for the first time will present a few sample codes from AWS and will ask
whether we want these sample codes to be part of the project.

3. It is recommended that you check the Amazon DynamoDB Sample
check box for the first time to understand the syntax of DynamoDB
table operations.

4. Once done, select the AWS account that is already configured or configure
a new AWS account.

Tools for AWS and Setup Guidelines

[178]

5. Click on the Next button to proceed.

Clicking on the Next button will create a new project with the name
specified in the previous window. The project structure is shown in
the next screenshot.

6. In the src folder of the project, the credentials file will be made available by
default. The sample DynamoDB code will also be available in the default
package of this src folder in a file named AmazonDynamoDBSample.java.

Chapter 6

[179]

7. Since the sample code is provided by AWS, I don't want to get into trouble
by providing the code here. So, we will see what that sample code does.
First and foremost, it creates a table named my-favorite-movies-table in the
US_WEST_2 region. Once we have run this code, we need to open AWS
Explorer and refresh Amazon DynamoDB, as shown here:

Make sure that you're selecting the correct region (US_WEST_2) in the
AWS Explorer; otherwise, you cannot see the table being created.

8. Double-click on the table name to open the following window that shows
the content of the table:

I hope that there is nothing I need to explain about the table's attribute
names and types. In this table, name is the only key attribute.

The sample code provided will not have code for creating any indexes. First, you will
create a new class named AwsSdkDemo in the same project.

In this DynamoDB class (AwsSdkDemo), you are going to perform the following
DynamoDB operations:

• Initialize our AWS credentials
• Define the table attributes

Tools for AWS and Setup Guidelines

[180]

• Define the key schema (of table and indexes)
• Define the provisioned throughput
• Create a table with the preceding parameters
• Describe the table
• Add (insert) items into the table

Java SDK operations
There are five user-defined private functions that are being invoked in the
following code (you will learn each and every function in detail later):

public class AwsSdkDemo {
static AmazonDynamoDBClient client;
initializeCredentials();
String tableName = "dynamodb_table";
if (Tables.doesTableExist(client, tableName)) {
 System.out.println("Table " + tableName + " already EXISTS");
}
else {
 ArrayList<AttributeDefinition> attributeDefinitions =
getTableAttributes();
 ArrayList<KeySchemaElement> keySchemaElements =
getTableKeySchema();
 ProvisionedThroughput provisionedThroughput =
getProvisionedThroughput();

 CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchemaElements)
 .withProvisionedThroughput(provisionedThroughput);
 CreateTableResult result = client.createTable(request);

 Tables.waitForTableToBecomeActive(client, tableName);
 TableDescription tableDescription = client.describeTable(
new DescribeTableRequest()
 .withTableName(tableName))
 .getTable();

 System.out.println("Created Table: " + tableDescription);
 putItems(tableName);
}}

Chapter 6

[181]

The first method initializeCredentials is for loading our AWS credential
and to authenticate ourselves to AWS in order to the program for performing
the DynamoDB operation.

If we wish to perform DynamoDB operations, it must be done through the
following client:

static AmazonDynamoDBClient client;

The following block will initialize the table name to the local variable. Then, the if
condition will check whether there an existing table with the same name (in the client
configured region) and return the Boolean value. If a table already exists, then the
syso message will be printed. The code is as follows:

String tableName = "Tbl_Book";
if (Tables.doesTableExist(client, tableName)) {
 System.out.println("Table " + tableName + " already EXISTS");
}

The following block will create CreateTableRequest with attributes such as
tablename, attribute definitions, key schema, provisioned throughput, and indexes:

CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchemaElements)
 .withProvisionedThroughput(provisionedThroughput);

The following line will submit the table creation request through the
DynamoDB client:

client.createTable(request);

The following line of code will pause further execution of the code until the table
becomes active (most probably used before putting items in the table):

Tables.waitForTableToBecomeActive(client, tableName);

The following code will request you to describe the table name passed as a
parameter to the client:

client.describeTable(new DescribeTableRequest()
 .withTableName(tableName))
 .getTable();

Tools for AWS and Setup Guidelines

[182]

The following code will update a table with the passed UpdateTableRequest
instance:

client.updateTable(updateTableRequest);

The default location of the credential file is $USER_HOME/.aws/credentials. But we
have to keep your credentials file at $USER_HOME/.aws/config so that the SDK will
easily identify it. Take a look at the following code:

private static void initializeCredentials() throws Exception {
AWSCredentials credentials = null;
try {
 credentials = new
ProfileCredentialsProvider().getCredentials();
 client = new AmazonDynamoDBClient(credentials);
 Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 client.setRegion(usWest2);
} catch (Exception e) {
 throw new AmazonClientException(
 "Invalid location or format of credentials file.",e);
}
}

Now, let's take a look at what was done in the code snippet:

• The first line of try block will load the default AWS credentials
• The next line will configure the DynamoDB client with the loaded credential
• The third line will initialize the region to US_WEST_2, which is Oregon
• The last line of try block will set the region for DynamoDB client to

US-WEST-2

If there is an improper location of the credential file, the following exception
will be thrown:

private static void initializeCredentials() throws Exception {
AWSCredentials credentials = null;
try {
 credentials = new
ProfileCredentialsProvider().getCredentials();
 client = new AmazonDynamoDBClient(credentials);
 Region usWest2 = Region.getRegion(Regions.US_WEST_2);

Chapter 6

[183]

 client.setRegion(usWest2);
} catch (Exception e) {
 throw new AmazonClientException(
 "Invalid location or format of credentials file.",e);
}
}

The following function will prepare ArrayList that adds all AttributeDefinition
to it. Each AttributeDefinition will take two parameters: the attribute name and
the attribute type, as shown in the code. In the following code, you are defining the
two attributes:

private static ArrayList<AttributeDefinition> getTableAttributes() {
 ArrayList<AttributeDefinition> attributeDefinitions = new
ArrayList<AttributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("hashKey")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("rangeKey")
 .withAttributeType("N"));
 return attributeDefinitions;
}

The following method will return ArrayList of the type KeySchemaElement. Inside
this function, you are instantiating an ArrayList of the type KeySchemaElement.
To this ArrayList, we are adding two KeySchemaElement. The first element is for
setting the attribute hashKey as key type HASH and the second element is for setting
the attribute rangeKey as key type RANGE. Finally, you are returning this ArrayList.
The code is as follows:

private static ArrayList<KeySchemaElement> getTableKeySchema() {
 ArrayList<KeySchemaElement> ks = new
ArrayList<KeySchemaElement>();
 ks.add(new KeySchemaElement()
 .withAttributeName("hashKey")
 .withKeyType(KeyType.HASH));
 ks.add(new KeySchemaElement()
 .withAttributeName("rangeKey")
 .withKeyType(KeyType.RANGE));
 return ks;
}

Tools for AWS and Setup Guidelines

[184]

In the following function, you will try to put items (item1 of type Map<String,
AttributeValue>) into the table (whose name is taken as input parameter). As
discussed in previous example (the getTableKeySchema method), every item must
have primary key attributes (the hashKey and rangeKey attributes) so that both the
items have them.

In the first item (item1), including primary key attributes, you are adding
two more attributes—namely numberSet (the NumberSet type) and stringSet
(the StringSet type). In order to add the attributes, you must call the correct
method of the AttributeValue class, depending on the type of attribute you
need to put. The code is as follows:

private static void putItems(String tableName) {
 Map<String, AttributeValue> item1 = new HashMap<String,
AttributeValue>();
 item1.put("hashKey", new AttributeValue().withS("hash1"));
 item1.put("rangeKey", new AttributeValue().withN("1"));
 item1.put("stringSet", new AttributeValue()
 .withSS(Arrays.asList("string1", "string2")));
 item1.put("numberSet", new AttributeValue()
 .withNS(Arrays.asList("3","2","1")));
 PutItemRequest putItemRequest = new PutItemRequest()
 .withTableName(tableName)
 .withItem(item1);
 client.putItem(putItemRequest);
}

The following method will return the ProvisionedThroughput instance with the
populated read and write throughput capacities for your table. The long number
(2L) here means the maximum read or write data size per second. This is usually
measured in KBps. So, here, you are restricting the read-write speed to 2 KBps.
The code is as follows:

private static ProvisionedThroughput getProvisionedThroughput() {
 ProvisionedThroughput provisionedThroughput = new
ProvisionedThroughput()
 .withReadCapacityUnits(2L)
 .withWriteCapacityUnits(2L);
 return provisionedThroughput;
}

Chapter 6

[185]

DynamoDB Local
DynamoDB Local is a local client-side database that emulates DynamoDB database
in our local system. This is very helpful when developing an application that uses
DynamoDB as the backend. After writing a module, in order to test whether the code
works fine, you need to connect to Amazon and run it. This will consume a lot of
bandwidth and a few dollars. To avoid this, you can make use of DynamoDB Local
and test the code locally. Once the testing is done, you can make your application use
the AWS DynamoDB service. This requires only three steps:

1. Download DynamoDB Local from http://dynamodb-local.s3-website-
us-west-2.amazonaws.com/dynamodb_local_latest.

2. Start the DynamoDB Local service (should have JRE6 or later).
3. Point the code to use DynamoDB Local port.

There is no need to discuss more on how to download a file from the Internet.
So, let's go to next point. The downloaded file might be a zipped one (tar.gz, .zip,
or .rar). You need to extract it to a location. I have extracted it to C:\dynamodb, as
shown here:

Starting DynamoDB Local is very easy. First, you need to change the working
directory using the cd command, and then you can start DynamoDB Local on port
8888 using the following command:

java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -port
8888

Even the command java -D java.library.path = ./
DynamoDBLocal_lib -jar DynamoDBLocal.jar is enough to
start DynamoDB Local, but it starts it on port 8000, which is occupied
by my PC. That's why I use port 8888.

http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest

Tools for AWS and Setup Guidelines

[186]

The following screenshot shows the output you'll get:

Once DynamoDB Local has started, it's easier to configure the client. You need
to make changes in three lines of your initializeCredentials method. You
need to insert a new line pointing to the DynamoDB localhost and port using the
client.setEndpoint() method, as shown in following code snippet. Then, you
need to remove other client-related setters such as setRegion, and so on. The code
is as follows:

private static void initializeCredentials() throws Exception {
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider()
 .getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Invalid location or format of credentials file.",e);
 }
 client = new AmazonDynamoDBClient(credentials);
 client.setEndpoint("http://localhost:8888");
 //Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 //client.setRegion(usWest2);
}

Chapter 6

[187]

If you run the AwsSdkDemo class now, it will give the following output in the console
(where DynamoDB Local started):

DynamoDB local stores all these data in local SQLite database.

Command-line interface
You can't beat the classics. Can you? So, let's look into the basics of DynamoDB.
As the Command-line interface (CLI) provides good flexibility, it'll make life
simpler for advanced programmers by reducing the number of clicks. This saves
the time spent in writing commands and programs for redundant outputs.

To get the AWS CLI, go to the link mentioned in the following screenshot:

Tools for AWS and Setup Guidelines

[188]

Go to https://s3.amazonaws.com/aws-cli/AWSCLI64.msi to download the
AWS CLI setup. If you have Linux or OS X, steps will be slightly different. You can
check this from the AWS documentation directly. Once installation is complete,
go to the following path (in my case, it is C:\Program Files\Amazon\AWSCLI) in
the command prompt—the path might differ based on the platform. Run the aws
configure command to configure CLI with our AWS credentials.

Hit the Enter key and you will be asked for the following four options:

If you feel that any of the parameters have changed at all, type in aws configure
again and provide the necessary details. It is also possible to leave certain
parameters empty.

As shown here, running the aws configure command will replace the old
parameters with the newer parameters:

https://s3.amazonaws.com/aws-cli/AWSCLI64.msi

Chapter 6

[189]

Now, you will see one of the simplest DynamoDB commands: table creation. You
are going to create the same table (but without secondary indexes) you created using
AWS Management Console with the help of the following command:

aws dynamodb create-table --table-name Tbl_Book --attribute-definitions
AttributeName=BookTitle,AttributeType=S AttributeName=Author,AttributeTyp
e=S --key-schema AttributeName=BookTitle,KeyType=HASH AttributeName=Autho
r,KeyType=RANGE --provisioned-throughput ReadCapacityUnits=2,WriteCapacit
yUnits=2

This will give the following output in your console:

The returned JSON will describe the table created.

Tools for AWS and Setup Guidelines

[190]

In the following screenshot, we can see two operations. First is retrieving all the table
names in the configured region using the aws dynamodb list-tables command.
The second command is for describing a table using the aws dynamodb describe-
table --table-name Tbl_Book command.

The following screenshot shows how an item can be inserted into DynamoDB table:

Chapter 6

[191]

This command purely depends on the OS in which AWS CLI is installed.
For Windows 8, the command is as follows:

aws dynamodb put-item --table-name Tbl_Book --item {\"BookTitle\":{\"S\":
\"SCJP\"},\"Author\":{\"S\":\"Kathy\"}, \"Language\":{\"S\":\"English\"},
\"Editions\":{\"NS\":[\"1\",\"2\"]}} --return-consumed-capacity TOTAL

For other platforms, if the command is throwing an error, you just need to replace
\" with ". Then, it will work fine. Otherwise, type aws dynamodb put-item help to
retrieve the format in which the request has to be made.

Summary
In this chapter, you learned about the features and uses of AWS code library and
SDK. You have set up SDK and Eclipse Toolkit for your AWS account in Eclipse.
Then, you performed Beanstalk deployment and understood the idea behind the
Beanstalk service. After that, you looked into an example for DynamoDB from
CLI by taking the example of a table. Then, you performed item operations on
DynamoDB. After that, you had a look at the various tools and libraries for database
services such as DynamoDB Local.

In the next chapter, you will learn about the AWS API and how to leverage the
benefits of AWS APIs. You will see REST-based API examples and the best use
cases of API at application level for developers.

[193]

Interacting with AWS
Using API

There are several interfaces available to make user interaction easy and effective.
There are four interfaces that are commonly used to interact with AWS:

• AWS Management Console: This is one of the most commonly used
interfaces in AWS services because of its simplicity. End users prefer
management console because this doesn't require any software to start
with, just an Internet connection and a browser are sufficient.

• Eclipse plugin: As a commonly used open source IDE, this provides a plugin
to work with AWS. Nowadays, plugins are available for people who are
using Visual Studio.

• Command-line Interface: This provides good flexibility, which makes life
simple for the advanced programmers or system administrators by reducing
the number of clicks. They can use the extra time to write some commands
(automation scripts in Bash or PowerShell) and program to do certain
redundant jobs.

• API tools: These serve as the client interface to the Amazon EC2 web service.
For simplicity, we can call them SDKs of AWS services.

AWS consists of real web services; they all are restricted over HTTP with different
abstraction levels, like the different APIs. Some AWS services can be controlled using
the REST API, some using the Query API, some by the SOAP API. Most often, a
mixture is allowed on AWS for developers who can use any method from it as per
knowledge and business/architecture requirements.

Interacting with AWS Using API

[194]

We will discuss the following topics in this chapter:

• REST-based APIs
• Authenticating requests using REST APIs
• AWS EC2 service API
• AWS DynamoDB service API

As a part of our discussion in this chapter, we will learn about all of these topics.
Before that, we should have our security credentials in hand. We can access them
from the security page in the AWS Management Console.

REST-based APIs
The REST interfaces presented by AWS use only and only the standard components
of HTTP request messages to characterize the API action that is being performed.
The HTTP standard components can be:

• HTTP method: This specifies the action that request will perform
• Universal Resource identifier (URI): This can be the path and query

elements that signify the resource on which the action will be performed
• Request headers: This will be a part of a set of metadata that supplies more

information about the request itself or about the requester
• Request body: This is the data on which the service will be performing

some action

Web services that employ these mechanisms to explain operations are frequently
termed RESTful services, a classification for services that use the HTTP protocol
as it was originally intended.

Authenticating requests using REST APIs
When you are going to access Amazon S3 or other AWS services using REST, you
must provide the following items in your request so the request can be authenticated:

• AWS access key ID: Every request must hold the access key ID of the
uniqueness you are using to send your request

• Signature: Each request must contain a valid request signature
• Time stamp and date: Each request must contain the date and time the

request was created

Chapter 7

[195]

The general steps for authenticating a request are as follows:

1. Create a request that contains the following components:
 ° Access key ID
 ° Action
 ° Timestamp
 ° Parameters

2. Check the signature using your secret access key, as shown here:

3. Send the request to AWS service by including your access key ID and the
signature in your request.

4. AWS will retrieve your Access key ID to check your secret access key.

Interacting with AWS Using API

[196]

5. AWS will compute a signature from the request data and the secret access
key using the similar algorithm that you used to analyze the signature you
sent in the request.

6. If the signature generated by AWS matches the one you have sent with the
request, the request is considered as an authentic request.

This way, AWS is working for the authentication of a user and requests raised by
user. After the authentication, you can proceed with API tools installation
and configuration.

Getting started with API tools
There are multiple AWS services that have API available for use. In this chapter, you
will learn about the basics of EC2 API and DynamoDB API in depth. To start with
EC2 API, you will need the X.509 certificate (you can find it under the AWS Access
Identifiers page, in the X.509 Certificates section). Once this is done, you will need
to download that certificate and the private key file. If you are a new to AWS, you
should use IAM roles. We will go here with X.509 certificate.

To start with EC2 APIs, you should have basic knowledge of the following:

• XML
• Web services
• HTTP requests
• One or more programming languages, such as Java, PHP, Perl, Python,

Ruby, C#, or C++

Chapter 7

[197]

There are basic terms that will be frequently used in the API:

• Endpoints: This is simply a URL that will serve as an entry point for
a web service.

• Available libraries: These libraries offer basic functions that without
human intervention take care of tasks such as cryptographically signing
your requests, retrying requests, and handling error responses so that it
will be easier for you to get started.

• Eventual consistency: The Amazon EC2 API follows an eventual consistency
model, due to the distributed personality of the system supporting the API.
This means that the result of an API command you run that will affect your
Amazon EC2 resources might not be immediately visible to the subsequent
commands you run.

Installing API tools
To install API tools, follow the given steps. I am doing this on an Ubuntu machine,
but for RedHat or OS X users, the command will vary:

1. Run the following command:
sudo apt-get install ec2-api-tools

If you do not have the latest Ubuntu release, the packages may be a bit old.
So, add repository details by following commands:

sudo apt-add-repository ppa:awstools-dev/awstools

sudo apt-get update

sudo apt-get install ec2-api-tools

2. Set the environment variables your shell profile by adding the following
lines to your ~/.bashrc file if you use Bash as your shell:
export EC2_KEYPAIR=<your keypair name> # name only, not the file
name

export EC2_URL=https://ec2.<your ec2 region>.amazonaws.com

export EC2_PRIVATE_KEY=$HOME/<where your private key is>/pk-
XXXXXXXXXX.pem

export EC2_CERT=$HOME/<where your certificate is>/cert-
XXXXXXXXXXXX.pem

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk/

Interacting with AWS Using API

[198]

3. You are set up the API tools configuration. Now, you have to create
one "keypair" that will be used to connect the instances using SSH. You
can use the ec2-add-keypair utility to create the key and register your
key with Amazon:
ec2-add-keypair uchit-keypair

4. This will print out the private key that you will have to save in a file:

cat > ~/.ec2/id_rsa-uchit-keypair

Running your first instance
To start an EC2 instance using API, you can use the following to create new instance
using AMI. You should know the required AMI ID to launch you instance from that
ID. To search AMI, you can use the following command:

ec2-describe-images –a

It will give you the whole list of AWS AMIs. To launch any instance with a specific
AMI ID, you can use following command for reference:

ec2-run-instances ami-e348af8a -k uchit-keypair

Example of EC2 API
Here is a sample code to create EC2 instances with Amazon AWS SDK using APIs.
This code will create an instance on AWS with configuration specified by you:

// for connecting to ec2
InputStream credentialsAsStream =
Thread.currentThread().getContextClassLoader().getResourceAsStream("Aw
sCredentials.properties");
Preconditions.checkNotNull(credentialsAsStream, "File
'AwsCredentials.properties' NOT found in the classpath");
AWSCredentials credentials = new
PropertiesCredentials(credentialsAsStream);

AmazonEC2 ec2 = new AmazonEC2Client(credentials);
ec2.setEndpoint("ec2.eu-west-1.amazonaws.com");

// to create ec2 instances
RunInstancesRequest runInstancesRequest = new
RunInstancesRequest()

Chapter 7

[199]

 .withInstanceType("t1.micro")
 .withImageId("ami-62201116")
 .withMinCount(2)
 .withMaxCount(2)
 .withSecurityGroupIds("tomcat")
 .withKeyName("uchit")

To create an EC2 instance, you need to provide configuration parameters as
described in the preceding code.

Use the following code for creating an instance:

.withUserData(Base64.encodeBase64String(myUserData.getBytes()))
;

RunInstancesResult runInstances =
ec2.runInstances(runInstancesRequest);

// to tag ec2 instances
List<Instance> instances =
runInstances.getReservation().getInstances();
int idx = 1;
for (Instance instance : instances) {
 CreateTagsRequest createTagsRequest = new CreateTagsRequest();
 createTagsRequest.withResources(instance.getInstanceId()) //
 .withTags(new Tag("Name", "ec2-api-test" + idx));
 ec2.createTags(createTagsRequest);

 idx++;
}

Now, let's discuss DynamoDB APIs with some more details. To start with
DynamoDB API, you need to learn the data format that will be used in it.

Data format for DynamoDB
DynamoDB uses the JSON format to send the request and receive the response from
the DynamoDB endpoint. One important rule is that the DynamoDB endpoint gets
this JSON request and parses it into native format (which is not JSON). For example,
JSON supports the date data type but DynamoDB does not support date. So, the
request JSON should not have incompatible data type.

Interacting with AWS Using API

[200]

In order to avoid this frustration, DynamoDB has already listed the allowed data
types and its representations as follows:

• S to denote string data type
• N to denote number data type
• B to denote binary data type
• SS to denote string set data type
• NS to denote number set data type
• BS to denote binary set data type

There are also Boolean, null, lists, and maps for document storage. In the following
example requests, all the attribute names and the values will be placed within
double quotes. This clearly means that all request parameters are sent as strings.
While sending binary data, we need to first encode it with Base64 encoding and pass
the encoded value as string. DynamoDB endpoint parses it by looking whether it
belongs to any of the preceding data types. If it is proven negative, then DynamoDB
will not process this request and sends response to the client that the JSON or request
is invalid. I recommend that you explore the JSON syntax and its advantages, and
then proceed through the rest of the chapter.

HTTP requests
As discussed, only the request and response are in JSON format. In both the client-
side and the server-side, these JSON data (request and response) are parsed by
SDK or browser (on the client side) and DynamoDB (on the server side). The SDKs
and the CLI take care of secure request authentication and users are encouraged to
leverage them. We can perform almost all kinds of DynamoDB operations through
HTTP requests. All the possible operations are listed and we will discuss details in
the last section of this chapter. Now, let's see the HTTP request structure.

Chapter 7

[201]

I have used Postman (an extension of Google Chrome) to perform REST operations.
Other than that, other software like cURL are also available for the same.

In the preceding screenshot, we need to understand the use of the three sections
(on the right-hand side). The first section has a textbox, drop-down (with POST
selected), and two buttons (URL params and Headers). This section is used to
specify the information about endpoint URL and request method.

Clicking on the Headers button will open the second section, which is used
to specify the header information. Here we are adding six header elements
(as shown in the preceding screen).

Interacting with AWS Using API

[202]

The third (last) section is used to provide request body for the request. We can
provide this as XML, text, or JSON. Whichever data format we choose, the body
must be of the correct type. If we choose the wrong data format (or incorrect body
content), the request will not reach the endpoint and it will result in the error, which
we will discuss in the next section.

Request header
The DynamoDB "POST" request must have the following headers:

• Host: The host specifies the URL where the DynamoDB REST server
(or endpoint) is located. All requests will be redirected to this server.
Our database is located at "us-west-2" region, so we should specify the
host as dynamodb.us-west-2.amazonaws.com. Instead, we can directly
specify it in the address bar.

• x-amz-date: This header element is used to specify the timestamp of the
request in ISO date time format. I have run this request on June 15, 2014 at
4:35 A.M. (GMT), so I have filled it with 20140615T043554Z.

• x-amz-target: This header element is used to specify what kind of
DynamoDB operation has to be performed. To put it in another way, this
element give a hint to the endpoint about what is written in the request
body. It will usually be in the format of "DynamoDB_<API-Version>.<Table-
operation>", for example, DynamoDB_20120810.CreateTable.

• Authorization: This is a complex header element. It has lot of
parameters, so we will observe what is written in the preceding
screenshot without missing anything. AWS4-HMAC-SHA256 Credenti
al=AKIAIJAN5EPLHLEGAK3A/20140615/us-west-2/dynamodb/aws4_
request,SignedHeaders=host;x-amz-date;x-amz-target,Signature=66
534aa47c45417eaac116e94abce8185cfcdea5d206981ee76a09967620ca76.
We will discuss this in detail later.

• Content-Type: This header element is used to specify the JSON version of
the request.

• Content-Length: This header element is used to specify the characters in the
request body.

• Connection: This header element is used to specify whether the request has
to be kept alive even after execution or terminate after some time.

The first parameter specified is the Amazon algorithm AWS4-HMAC-SHA256, which is
used to hash the security parameters.

Chapter 7

[203]

The second parameter is the Credential parameter in the format access key ID,
current date in YYYY-MM-DD format, region where the table is available, service
name, and the termination string aws4_request. Each of these parameters are
separated by the / symbol. For example, Credential=AKIAIJAN5EPLHLEGAK
3A/20140615/us-west-2/dynamodb/aws4_request.

The third parameter is the header elements that have to be added to the request, and
each element is separated by the ; symbol. For example, SignedHeaders=host;x-
amz-date;x-amz-target.

The last parameter is the most important parameter: the Signature parameter. Sig
nature=66534aa47c45417eaac116e94abce8185cfcdea5d206981ee76a09967620
ca76. Finding or calculating this parameter is very complex. You can have a look at
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
for further information.

Request body
The header is used for authentication and to provide metadata for the REST
operation. The request body specifies what will be performed. For example, the
header specifies that we need to perform table creation, but the table name, attribute
configurations, and so on must be specified in the request body.

In most of the DynamoDB operations, the request header will remain same (except
in places like x-amz-target, where it will change based on the operation we need to
perform), but the request body will change for every request. So, we will discuss this
in the last section of this chapter.

Response header
Response header generally has six parameters. Three of those parameters are
common, such as Content-Type, Content-Length, and Date. The other three
parameters are as follows:

• HTTP/1.1: This header will have the status of the response (to a request) from
the server. If it is 200, it means success. 4xx means client-side error and 5xx
means server-side error. This will be covered in detail in the next section.

• x-amzn-RequestId: This returned request ID can be used for debugging
the request.

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Interacting with AWS Using API

[204]

• x-amz-crc32: This is the checksum returned by the DynamoDB server. We
need to calculate the checksum of the returned data with this number. If the
checksum doesn't match, it means somebody has done something nasty and
data loss has occurred during data transfer. Then, we must run the request
once again. In SDK, this retry happens automatically. If requests are sent
over HTTPS, then man-in-the-middle attack is not an issue and the checksum
serves to simply validate the output correctness, as they usually do. If
requests are not sent over HTTPS, then having a checksum does nothing to
prevent a man-in-the-middle attack.

Operations in DynamoDB
Most DynamoDB REST API supports all the possible operations. The possible
operations are as follows:

• CreateTable
• PutItem
• UpdateItem
• GetItem
• Query
• Scan
• DeleteItem
• DescribeTable
• UpdateTable
• DeleteTable
• ListTables
• BatchGetItem
• BatchWriteItem

For all of these operations, only two things will change: the request body and
x-amz-target that specifies what kind of table operation has to be performed. This
attribute is same as that of the name of the operation (as shown in preceding bullet
list). For example, for performing the DescribeTable operation, x-amz-target is
DynamoDB_20120810.DescribeTable itself).

Chapter 7

[205]

CreateTable
To perform the CreateTable operation, the request JSON will be as follows:

{
 "AttributeDefinitions": [
 { "AttributeName": "BookTitle", "AttributeType": "S" },
 { "AttributeName": "Author", "AttributeType": "S"},
 { "AttributeName": "PubDate","AttributeType": "S"},
 { "AttributeName": "Language", "AttributeType": "S"},
 { "AttributeName": "Edition", "AttributeType": "N" }],
 "TableName": "Tbl_Book",
 "KeySchema": [
 {"AttributeName": "BookTitle", "KeyType": "HASH"},
 { "AttributeName": "Author", "KeyType": "RANGE"}],
 "LocalSecondaryIndexes": [
 { "IndexName": "Idx_PubDate", "KeySchema": [
{"AttributeName": "BookTitle", "KeyType": "HASH" },
{ "AttributeName": "PubDate","KeyType": "RANGE" }],
 "Projection": { "ProjectionType": "KEYS_ONLY" } }],
 "GlobalSecondaryIndexes": [
 { "IndexName": "Idx_Pub_Edtn", "KeySchema": [
{"AttributeName": "Language", "KeyType": "HASH" },
{ "AttributeName": "Edition","KeyType": "RANGE" }],
 "Projection": { "ProjectionType": "KEYS_ONLY" } }],
 "ProvisionedThroughput":
 {"ReadCapacityUnits": 2, "WriteCapacityUnits": 2}
}

The preceding code will create the table Tbl_Book with same schema that we have
discussed in former chapters. The response to this request is same as that of the
DescribeTable operation.

PutItem
The following code will put an item into the table Tbl_Book:

{
 "TableName": "Tbl_Book",
 "Item": {
 "BookTitle": {
 "S": "SCJP"
 },

Interacting with AWS Using API

[206]

 "Author": {
 "S": "Kathy"
 },
 "Publisher": {
 "S": "TMH"
 },
 "PubDate": {
 "S": "28-Dec-09"
 },
 "Language": {
 "SS": [
 "English",
 "German"
]
 },
 "Edition": {
 "N": "1"
 }
 },
 "Expected": {
 "BookTitle": {
 "ComparisonOperator": "NULL"
 },
 "Author": {
 "ComparisonOperator": "NULL"
 }
 }
}

Here, we might be questioning the use of the new field in the JSON called Expected.
By default, if SCJP (BookTitle) and Kathy (Author) are already available in the
table, then the older items will be replaced with the newer ones. To prevent the
newer item overwriting the older one, the ComparisonOperator must be set to NULL.

UpdateItem
The following code (put in request body) will update the item's (whose BookTitle
is SCJP and Author is Kathy) Language attribute set to hold English, German and
Latin. This updating will happen only if the older value of the Language set is
English and German. This is the use of Expected.

{
"TableName": "Tbl_Book",

Chapter 7

[207]

"Key": {
 "BookTitle": { "S": "SCJP" },
 "Author": { "S": "Kathy" } },
"AttributeUpdates": {
 "Language": {
 "Value": { "SS": ["English","German","Latin"]},
 "Action": "PUT" } },
"Expected": {
 "Language": {
 "ComparisonOperator":"EQ",
 "AttributeValueList": [{ "SS": ["English","German"]}] }},
"ReturnValues": "ALL_NEW"
}

The following code will increment the Edition attribute value of the item whose
BookTitle is SCJP and Author is Kathy.

{
"TableName": "Tbl_Book",
"Key": {
"BookTitle": { "S": "SCJP" },
 "Author": { "S": "Kathy" } },
"AttributeUpdates": {
 "Edition": {"Action": "ADD","Value": {"N": "1"} } },
"ReturnValues" : "NONE"
}

GetItem
The following code will retrieve the item's (BookTitle, Language, and Edition)
attributes whose BookTitle is SCJP and Author is Kathy.

{
 "TableName": "Tbl_Book",
 "Key": {
"BookTitle": { "S": "SCJP" },
 "Author ": { "S": "Kathy" } },
 "AttributesToGet": ["BookTitle","Language","Edition"],
 "ConsistentRead": true,
 "ReturnConsumedCapacity": "TOTAL"
}

Interacting with AWS Using API

[208]

The preceding code will return the ConsumedCapacity value and result of the
operation as follows:

{
 "ConsumedCapacity": {"CapacityUnits": 1,"TableName":
"Tbl_Book" },
 "Item": {
 "BookTitle": { "S": "SCJP"},
 "Language": {"SS": ["English","German"] },
 "Edition": { "N": "1" }}
}

Query
The following code will perform the Query operation on the index items, with
PubDate between 2009-12-28 and 2012-07-28 and BookTitle as SCJP:

{
 "TableName": "Tbl_Book",
 "IndexName": "Idx_PubDate",
 "Select": "ALL_ATTRIBUTES",
 "Limit": 30,
 "ConsistentRead": true,
 "KeyConditions": {
 "PubDate": {
 "AttributeValueList": [
 {
 "S": "2009-12-28"
 },
 {
 "S": "2012-07-28"
 }
],
 "ComparisonOperator": "BETWEEN"
 },
 "BookTitle": {
 "AttributeValueList": [
 {
 "S": "SCJP"
 }
],
 "ComparisonOperator": "EQ"
 }
 },
 "ReturnConsumedCapacity": "TOTAL"
}

Chapter 7

[209]

Even though we specified the item limit of the query as 30, there are only two
items satisfying these conditions, so it returns those items, as shown in the
following code snippet:

{
"Count": 2,
"Items": [
 {
 "BookTitle": {"S": "SCJP"}, "Author": {"S": "Kathy"},
 "Publisher": {"S": "TMH"},"PubDate": {"S": "2009-12-28"},
 "Language": {"SS": ["English", "German"]}, "Edition":
{"N": "1"}},
 {
 "BookTitle": {"S": "SCJP"}, "Author": {"S": "Khalid A M"},
 "PubDate": {"S": "2010-10-28"},"Language": {"SS": ["English"]}}],
 "ConsumedCapacity": {"TableName": "Tbl_Book","CapacityUnits":
1}}

The following code returns the number of items satisfying the condition
(BookTitle equals SCJP):

{
 "TableName": "Tbl_Book",
 "Select": "COUNT",
 "ConsistentRead": true,
 "KeyConditions": {
 "BookTitle": {
 "AttributeValueList": [{"S": "SCJP"}],
 "ComparisonOperator": "EQ"}}
}

Here is the response for the preceding HTTP request:

{
 "Count":'3
}

Scan
The following code will scan the Tbl_Book table and return all the items.
The response will look exactly like that of Query operation. So, we are skipping
the explanation (to save paper). Here is the code:

{
 "TableName": "Tbl_Book",
 "ReturnConsumedCapacity": "TOTAL"
}

Interacting with AWS Using API

[210]

The following code will apply a scan filter (Publisher must be TMH) to the scan
operation.

{
 "TableName": "Tbl_Book",
 "ScanFilter": {
 "Publisher": {
 "AttributeValueList": [{"S": "TMH"}],
 "ComparisonOperator": "EQ"}},
 "ReturnConsumedCapacity": "TOTAL"
}

DeleteItem
The following code will delete the item whose BookTitle is SCJP and Author is
Kathy. Response to this request will display the deleted item attributes and its
values. The code is as follows:

{
 "TableName": "Tbl_Book",
 "Key": {"BookTitle": { "S": "SCJP" },"Author": { "S": "Kathy" }
},
 "ReturnValues": "ALL_OLD"
}

DescribeTable
The following code will display all the table schema of the table with name
Tbl_Book. As hinted in the CreateTable operation, the response of the DescribeTable
and CreateTable requests will be almost similar (except the TableStatus). After
performing the CreateTable request, the TableStatus variable will have the
CREATING status. So, if we describe the same table after some point of time
(after the table has become active), its status will become ACTIVE.

To give table name, use the following code snippet:

{
 "TableName":"Tbl_Book"
}

Chapter 7

[211]

Here is the output of DescribeTable operation with TableStatus as ACTIVE:

{
 "Table": {
 "AttributeDefinitions": [
 { "AttributeName": "BookTitle", "AttributeType": "S" },
 { "AttributeName": "Author", "AttributeType": "S"},
 { "AttributeName": "PubDate","AttributeType": "S"},
 { "AttributeName": "Language", "AttributeType": "S"},
 { "AttributeName": "Edition", "AttributeType": "N" }],
 "CreationDateTime": 1.363729002358E9,
 "ItemCount": 5,
 "KeySchema": [
 {"AttributeName": "BookTitle","KeyType": "HASH"},
 {"AttributeName": "Author","KeyType": "RANGE"}],
 "LocalSecondaryIndexes": [
 { "IndexName": "Idx_PubDate", "KeySchema": [
 {"AttributeName": "BookTitle", "KeyType": "HASH" },
 { "AttributeName": "PubDate","KeyType": "RANGE" }],
 "Projection": { "ProjectionType": "KEYS_ONLY" } }],
 "GlobalSecondaryIndexes": [
 { "IndexName": "Idx_Pub_Edtn", "KeySchema": [
 {"AttributeName": "Language", "KeyType": "HASH" },
 { "AttributeName": "Edition","KeyType": "RANGE" }],
 "Projection": { "ProjectionType": "KEYS_ONLY" } }],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday":0,
 "ReadCapacityUnits":5,"WriteCapacityUnits":5},
 "TableName": "Tbl_Book", "TableSizeBytes": 0,
 "TableStatus": "ACTIVE" }
}

UpdateTable
The following request will update a table's provisioned throughput capacity (both
read and write) to 5:

{
 "TableName": "Tbl_Book",
 "ProvisionedThroughput": {"ReadCapacityUnits":5,
"WriteCapacityUnits":5}
}

Interacting with AWS Using API

[212]

DeleteTable
To delete a table, use the following request:

{
 "TableName": "Tbl_Book"
}

Here is the response for the DeleteTable request, displaying information about the
table being deleted:

{
 "TableDescription": {
 "ItemCount": 5,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,"WriteCapacityUnits": 5},
 "TableName": "Tbl_Book", "TableSizeBytes": 0,
 "TableStatus": "DELETING"}
}

ListTables
The following code lists three tables whose names start with Tbl_Book
(should be placed after Tbl_Book, that is, Tbl_Library because L comes after B).

{
 "ExclusiveStartTableName": "Tbl_Book ", "Limit": 3
}

We have only two tables in our account, so the response will have only two table
names in the array:

{
 "LastEvaluatedTableName": "Tbl_Library",
 "TableNames": ["Tbl_Book","Tbl_Library"]
}

BatchGetItem
The following code tries to fetch three items from Tbl_Library and one item from
Tbl_Book:

{
 "RequestItems": {

Chapter 7

[213]

 "Tbl_Library": {
 "Keys": [
 {"Name":{"S":"Library of Congress"}},
 {"Name":{"S":"National Diet Library"}},
 {"Name":{"S":"Royal Danish Library"}}],
 "AttributesToGet": ["Country","City"]},
 "Tbl_Book": {
 "Keys": [
 {"BookTitle": { "S": "SCJP" }, "Author ": { "S": "Kathy" } }],
 "AttributesToGet": ["BookTitle","Language","Edition"]}},
 "ReturnConsumedCapacity": "TOTAL"
}

The response of BatchGetItem operation is as follows:

{
 "Responses": {
 "Tbl_Library": [
 {
 "Name":{"S":"Library of Congress"},
 "Country":{"S":"United States"},"City":{"S":"Washingt
onDC"} },
 {
 "Name":{"S":"National Diet Library"},
 "Country":{"S":"Japan"},"City":{"S":"Tokyo"} },
 {
 "Name":{"S":"Royal Danish Library"},
 "Country":{"S":"Denmark"},"City":{"S":"Copenhagen"} }]
 "Tbl_Book": [
 {
 "BookTitle": { "S": "SCJP" },
 "Language": { "SS": ["English","German"] },
 "Edition": { "N": "1" } }]},
 "UnprocessedKeys": {},
 "ConsumedCapacity": [
 {"TableName": "Tbl_Library","CapacityUnits": 3},
 {"TableName": "Tbl_Book","CapacityUnits": 1}]
}

Interacting with AWS Using API

[214]

BatchWriteItem
The following request tries to write two items into Tbl_Library and one item
into Tbl_Book. It is also possible to send DeleteRequest in place of PutRequest
simultaneously for a table. The code is as follows:

{
 "RequestItems": {
 "Tbl_Library": [
 {
"PutRequest": {
 "Item": {
 "Name":{"S":"Harvard University Library"},
 "Country":{"S":"United States"},
 "City":{"S":"Massachusetts"} } } },
 {
"PutRequest": {
 "Item": {
 "Name":{"S":"Vernadsky National Library"},
 "Country":{"S":"Ukraine"},
 "City":{"S":"Kiev"} } } }]
 "Tbl_Book": [
 {
"PutRequest": {
 "Item": {
 "BookTitle": { "S": "SCJP" },
 "Author": { "S": "Brendon" },
 "Language": { "SS": ["English"] },
 "Edition": { "N": "5" } }} }]},
 "ReturnConsumedCapacity": "TOTAL"
}

The response for the BatchWriteItem request is as follows:

{
 "UnprocessedItems": { },
 "ConsumedCapacity": [
 {"TableName": "Tbl_Library","CapacityUnits": 2},
 {"TableName": "Tbl_Book","CapacityUnits": 1}]
}

Chapter 7

[215]

Summary
In this chapter, we learned how you can use SDK for performing an EC2 instance
launch and DynamoDB operations. You also learned about things that you had
not come across in the previous chapters (for example, BatchWriteItem and
BatchReadItem for an instance).

In the next chapter, you will learn how to migrate and host existing/new app
on AWS and how to identify appropriate services for the app. You will also
learn how to use the Elastic Beanstalk container service, AWS CloudTrail, and
CloudFormation, and how to perform Auto Scaling based upon the requirements
of the end user traffic.

[217]

Amazon Beanstalk,
CloudTrail, and Data
Warehouse Services

AWS provides application management and deployment services that help you
build, deploy, and scale your applications instantly. You can use application
management and deployment services to influence other AWS services without
having to manage each of them discretely and manually.

In this chapter, you will learn about the following topics:

• Application deployment using AWS Elastic Beanstalk
• Getting started with Amazon Redshift
• Interacting with AWS CloudTrail
• Migrating an application to the Cloud

So, let's start with Amazon Elastic Beanstalk first.

Application deployment using AWS
Elastic Beanstalk
To start with AWS Elastic Beanstalk, first you have to learn some of the basics
of AWS SDK and toolkit. If you don't want to go with Eclipse, you can go ahead
with the AWS Management Console to get the GUI feel. The AWS Toolkit for Eclipse
will install and configure the modern form of the AWS SDK for the platform you
have selected.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[218]

To start with Elastic Beanstalk using AWS SDK, you need the following things
installed on your system:

• Eclipse (install client PC)
• AWS Toolkit for Eclipse
• AWS SDK for Java
• AWS IAM credentials (access key ID and secret access key)

From Eclipse, you can easily manage, customize, build, and deploy any of the
illustrations incorporated in the SDK packages. The steps are as follows:

1. Go to http://aws.amazon.com/sdk-for-java/. Click on AWS Toolkit for
Eclipse, as in the following screenshot:

2. There is another way to configure Eclipse Download Eclipse Juno/Luna+,
from https://www.eclipse.org/downloads/.

3. Start Eclipse.
4. Go to Help | Install New Software.
5. In the Work with box, type http://aws.amazon.com/eclipse, and then

press the Enter key.
6. In the list that emerges, expand AWS Toolkit for Eclipse.
7. Add a check mark next to AWS Toolkit for Eclipse to download.
8. Click on Next and the Eclipse wizard will take you through the steps of the

installation processes by default.

http://aws.amazon.com/sdk-for-java/
https://www.eclipse.org/downloads/

Chapter 8

[219]

To start AWS through Toolkit for Eclipse, you have to configure the Eclipse Toolkit
with your access key ID and the secret access key that should be available in your
AWS account. Apart from allowing Toolkit for Eclipse to start your account, your
access keys can also be used to sign the web services-based requirements to AWS.
Allowing web services requests ensures that only approved programs can make such
requests. Moreover, by associating access keys with each web services request, AWS
will be able to track service usage for billing and monitoring purposes.

The access keys have a combination of an access key ID and secret access key, which
will be used to sign programmatic logical request that you will compose from the
application source code to AWS to access assets. If you don't have access keys, you
can obtain the keys from the AWS Management Console too. For that, go to Security
Credentials and select Access Key ID from, as shown in the next screenshot:

Do not issue or use root account credentials. Always use IAM
credentials for safety and security.

Keep your credentials confidential in order to protect your account and never e-mail
it. Do not distribute it to any other individual from your organization, even if a query
comes from AWS or from any other channel.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[220]

To configure your access keys in the Eclipse Toolkit, perform the following steps:

1. Open Eclipse's Preferences dialog box and click on AWS Toolkit located
in the sidebar.

2. Type your access key ID in the Access Key ID box.
3. Type your secret access key in the Secret Access Key box.
4. Click on Apply or OK to store your access key information.

Here is an example of a configured AWS Toolkit Preferences screen with the
default account:

The AWS Toolkit Preferences dialog box lets you include access information
for multiple AWS account by choosing a profile. These accounts can be active if
they empower developers and administrators to separate resources used in the
development stage from those used in the production stage.

To supplement another set of access keys, perform the following steps:

1. On the AWS Toolkit Preferences screen, go to Preferences dialog box, and
click on the Add Account button.

2. Add your new account details in the Account Details section.

Chapter 8

[221]

3. Pick an evocative name as the Account Name and enter your access key
details in the Access Key ID and Secret Access Key boxes.

4. Click on Apply or OK to save your access key details. One can reiterate this
procedure for as many sets of AWS account information as required.

Toolkit for Eclipse can also obtain your Amazon EC2 key pairs from the AWS
account. However, you have to associate private keys with them to practice them in
Toolkit for Eclipse manually. To examine your Amazon EC2 key pairs in Toolkit for
Eclipse, follow the steps given here:

1. Open the Eclipse Preferences dialog box and click on the triangle next to
AWS Toolkit in the sidebar to display further categories of Toolkit for
Eclipse settings and configure them.

2. Go to Key Pairs., Eclipse will display a list of your available key pairs in that
window. If a key pair has a red "X" mark next to it, you will have to link a
private key with the key pair to use it with your current illustration. This is
shown in the following screenshot:

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[222]

3. Right-click on the key pair and click on the Select Private Key File option
from the context menu:

4. Navigate to the private key file and choose it to acquaint it with your
key pair.

To deploy the web application, you have to perform the following steps:

1. On the Eclipse toolbar, click on the AWS icon, and click on New AWS Java
Web Project.

2. In the New AWS Java Web Project dialog box, go to the Start from area of
the dialog, click on Travel Log (which is a sample Java web application),
and provide a name (such as myTravelLog) in the Project name box.

The application code can be downloaded from the Packt
Publishing website.

3. Click on the Finish button. The Toolkit will generate the project and the
project will be visible in Project Explorer.

Chapter 8

[223]

If Project Explorer isn't visible in Eclipse, navigate to Window | Show View |
Project Explorer. This is shown in the following screenshot:

The AWS Java Web Project dialog box will permit you to select the region in which
your web application will be deployed and run. Here, I am going to choose US East
(N. Virginia) as it is the cheapest one in my case:

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[224]

1. In Project Explorer, right-click on the myTravelLog application and navigate
to Run As | Run on Server. You can use the sample code which is provided
to run and test your deployment.

2. In the Run on Server dialog box, click on Manually define a new server and
choose AWS Elastic Beanstalk for Tomcat 7 from the list of specified server
preferences.

3. Enter a name, such as TravelLogServer, into the Server's hostname box or
give a name of your choice.

4. Finally, select Always use this server when running this project and
click on Next.

Chapter 8

[225]

5. In the Run On Server box, set the application name as myTravelLogApp and
the environment name as myTravelLogEnv for your reference. This is shown
in the following screenshot:

6. Click on Next.

7. Go to Run On Server | Advanced configuration to stipulate further
parameters for your web application deployment reference, such as IAM
role, CNAME, notification email address, and so on.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[226]

8. Before deploying your application to the AWS beanstalk container, the
Toolkit will display a dialog box in which you can set a Version Label to
give your deployment a version number. The AWS Toolkit will generate a
distinctive version label based on the present time.

9. Click on OK.

10. While your application is deploying, the AWS Toolkit will show a progress
status, as shown in the following screenshot:

Chapter 8

[227]

When the deployment is complete, you will be able to see the next screen. This is
the user interface for the "Travel Log" application, which will be running on your
Amazon EC2 instance. But you don't need to bother about your EC2 instance, as you
have deployed your application from Elastic Beanstalk.

So, the preceding example was with Elastic Beanstalk deployment using AWS
SDK Toolkit. Now, let's move to another awesome service from Amazon for
data warehouse.

Getting started with Amazon Redshift
Redshift came with AWS with the preliminary screening beta release in November
2012 and the full version was made available for acquisition on February 15, 2013.
We will look more at the how and why of Redshift's performance. It has to do with
how the data is being stored in a columnar data store and the work that has been
done to reduce the complexity of computation.

Amazon Redshift can be considered a traditional data warehouse platform, but
unlike traditional data warehouse platforms, Amazon Redshift is elastic and scalable.
There are savings on the hardware side and on some of the human resources
essential to run both the hardware and large-scale databases locally. Don't be under
the impression that all management and maintenance tasks are taken away just by
moving data to a hosted platform; it is still your job to complete? The hardware,
software patching, and disk management (all of which are no lesser tasks) have been
taken on by AWS.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[228]

Disk management, principally the programmed recovery from disk failure, and even
the capability to instigate querying a cluster that is being restored (even before it is
completed) are all prevailing and convincing things AWS has done to condense your
workload and having intense up-time.

I am sure that by now you are speculating, why the name Redshift? If you predicted
that it is with relation to the term from stargazing and the effort that Edwin Hubble
ensured to describe the association of the astronomical phenomenon recognized as
Redshift and the growth of our universe, you would have predicted correctly. The
capability to do online resizing of your cluster as your data incessantly expands
makes Redshift a very suitable name for this expertise.

Configuration options
There are two types of nodes you can select from when producing your cluster.
The simple configuration of the huge Redshift (dw.hs1.xlarge) node is as follows:

• CPU with two virtual cores (Intel Xeon E5)
• 15 GB RAM
• Storage holds three HDD with 2 TB of storage
• Network type will be moderated
• Disk I/O will be moderated

The elementary configuration of the extra-large Redshift (dw.hs1.8xlarge)
node is as follows:

• CPU with 16 Virtual Cores (Intel Xeon E5)
• 120 GB RAM
• Storage holds 24 HDD with 16 TB storage
• Network with 10 GB Ethernet
• Disk I/O performance will be very high

The hs in the identification is the title AWS has used for great density storage.

An imperative point to note is that if you are involved in a single-node formation,
the lone possibility you have is the smaller of the two possibilities. The 8XL extra-
large nodes are only available in a multi-node configuration. We will look at how
data is coming in the nodes and why multiple nodes are significant, in a later
chapter. For fabrication purposes, we should have at least two nodes. There are
performance motives as well as data protection explanations for this that we will
discuss later.

Chapter 8

[229]

The large node cluster provisions up to 64 nodes for an overall capability of anything
around 2 to 128 TB of storage. The extra-large node cluster provisions from 2 to 100
nodes for a total volume of whatever between 32 TB and 1.6 PB. For the perseverance
of conversation, a multi-node configuration with two large instances would have 4 TB
of storage available and, consequently, would also have 4 TB of accompanying backup
space. Before we get too ahead of ourselves; a node is a single host containing of one of
the preceding configurations. When I talk about a cluster, it is a group of one or more
nodes that are running together, as shown in the following figure.

It's time now to get into some of the particulars and specifics to get up and running.
As with most of the AWS products you have used in the past, there are just a few
introductory things to take care of. Although the keys of your AWS account are not
definitive to Redshift, be sure to hang on to both your public and secret key values
from your AWS account. Those keys will be labeled "Access Key" and "Secret Key".
You can view the Access Key public slice from the user security credentials on the
Security Credentials tab. Once you have created your private key and secret key,
the procedure to make the cluster is a console-driven step that you can start from the
Amazon Redshift Management Console.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[230]

Cluster configurations
You can see that for most access requests for data you have to request via your
transaction on Amazon Redshift, the evasion mode is one which provides this
property. Creating objects will necessitate conceding permissions as well as granting
permissions to use cluster management. Depending on the environment that you are
approaching from, this may be annoying from time to time; nevertheless, bearing
in mind the fact that you are tenuously hosting your data, I for one am glad with
the superfluous steps required to access data. The prominence of data security,
as a wide-ranging statement, cannot be excessive. You are answerable for your
establishment's data as well as its image and reputation. The point that data has been
wrongly retrieved has nothing to do with the position of the data (remote or local)
if you use Amazon or some other benefactor, but rather it is dependent on the rules
that have been set up to permit access to the data. Do not take your security group's
formation lightly. Only open access to the resources or systems you really require
and can maintain strict database rules on access.

To be honest, this must be something you are already doing (regardless of where
your data is physically located). However, if you are not, take this as the chance to
impose the required security to safeguard your data. You will have to supplement
your IP ranges to permit access from the systems that you will be using to access
your cluster. In short, you should augment the EC2 security group that contains the
EC2 instances (if there are any) that you will be connecting from, as shown in the
following screenshot. You will also require a parameter group. A parameter group
relates to each database inside the cluster, so the decisions you choose reflect as
global settings. If there are resources that you would like to regulate in these settings,
you should to create your own parameter group. The creation of the new group may
be done before you create your cluster. If you don't want to alter the default values,
feel free to just use the parameter group that is already created. You can define the
Amazon Redshift service and database versions for cluster in the Cluster Version
field of the console. The first two sectional parts of the number are the cluster
version, and the last part is the precise revision number of the database in the cluster.

Chapter 8

[231]

In the following example, the cluster version is 1.0 and the database revision number
is 757. It can be vary based on versioning and latest editions of apps and databases.

In the following screenshot, you can see some of the high-level management
functions related to backups, security groups, and so on.

You will essentially need to reflect as you bring your data and procedures to the
Redshift environment, so you can start discovering it in a more precise way.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[232]

Interacting with AWS Trail
AWS CloudTrail is a web service that records AWS API calls for the AWS account
and conveys log files to you. The recorded information contains the individuality of
the API caller, the time of the API call, the root IP address of the API caller, the given
parameters, and the reaction essentials returned by the AWS service.

Features and benefits
To start with AWS CloudTrail, let's have a look at following features and benefits:

Increased visibility: CloudTrail offers improved visibility of user action by
recording AWS API calls.

Durable and inexpensive log file storage: CloudTrail employs Amazon S3 for log
file storage and deliverance; consequently, log files are stored indestructibly and at
an affordable price.

Easy administration: CloudTrail is an entirely managed provision; you can turn on
CloudTrail for the account using the AWS Management Console, the CLI, or the SDK
and start receiving CloudTrail log files in the Amazon S3 bucket that you state.

Timely delivery: CloudTrail characteristically carries events within 15 minutes
of the API call.

Log file aggregation: CloudTrail can be cumulatively configured to log files across
manifold accounts and regions so that log files are distributed to a single bucket.

You have gone through the basic overview of the AWS CloudTrail, so it's time for
some real time example.

You can influence numerous AWS offerings to achieve a straightforward, scalable,
and robust architecture to index AWS CloudTrail logs in AWS CloudSearch. You
can start by configuring CloudTrail to transport SNS notification as soon as a new log
file becomes available. Every notification is positioned into an Amazon SQS queue
and taken by a simple AWS Elastic Beanstalk application with the worker role. An
application will retrieve each file from the S3 bucket, extract logs, and add each log
to a CloudSearch domain.

Chapter 8

[233]

To start with AWS CloudTrail, follow the steps given here:

1. Go to the CloudTrail console and click on Get Started
2. Select Yes for Create a new S3 bucket and enter the desired bucket name.
3. Click on Save. CloudTrail will create bucket for you and will set the required

policies automatically.

You need to activate CloudTrail for each AWS region.

4. Click on Advanced and create an SNS notification in the CloudTrail console.
5. For SNS topic (new), give a name like CloudTrail-notification. Ensure

that the SNS notification for every log file delivery? option is set to Yes.

If you are working on CloudTrail in multiple AWS regions,
you should generate at least one SNS topic per region.

6. Follow the diagram here for reference on how to create new SNS topic:

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[234]

Once you are done with SNS topic creation, you have to create the AWS CloudSearch
domain. Amazon CloudSearch creates it directly and it is inexpensive to set up,
handle, and scale a common search solution for your application. It's simple to
produce and configure a CloudSearch domain from the AWS Management Console.
You can even create CloudSearch domain from the script. For that, you have to setup
AWS CLI first, and then you can execute the given script as a code here. The script
will take around 10 minutes to complete and your domain(s) will be ready. The
script will create the domain and configure a default domain named cloudtrail-1
which will be created in the "us-east-1" region.

Now, you have to create AWS SQS for queuing notifications. By integrating Amazon
SNS with Amazon SQS, all the notifications delivered are recorded in an Amazon
SQS queue where they are processed by an Elastic Beanstalk app that indexes these
logs in CloudSearch. To create a queue from the AWS Management Console, follow
these steps:

1. In the AWS SQS console, click on Create New Queue and specify the
following parameters:

 ° Queue Name: CloudTrail-sqs
 ° Default Visibility Timeout: 1 minute
 ° Message Retention Period: 14 days (maximum)
 ° Receive Message Wait Time: 20 seconds

2. Finally, click on Create Queue.

Chapter 8

[235]

3. Next, click on Queue Actions.
4. Click on Subscribe Queue to an SNS Topic.
5. To select a topic, select the SNS topic that you created in the

CloudTrail console.
6. Click on Subscribe. The AWS Console will set up the required security

policies without human intervention.

7. After some time, you should see that messages are starting to reach your
destination (SQS queue).

Now, it's time to set up a single-file app written in Python using the Flask
framework, for example, you will create the AWS Elastic Beanstalk worker role
mode. A worker is basically an HTTP request handler so that Beanstalk deals with
messages buffered via AWS SQS. Messages put in the queue will be forwarded via
HTTP POST to a configurable URL on the AWS Elastic Beanstalk hosted app.

As the app wants to subject AWS API calls to Amazon S3 and AWS CloudSearch,
you will also use an IAM role for EC2 to permit the app to construct secure API
requests from your instances without supervising the security credentials that the
app uses. Let's initially create the required role in the console. The steps to create an
IAM role are as follows:

1. Go to the IAM console.
2. Click on Roles in the navigation pane.
3. Click on Create New Role. Provide the role name, such as

cloudsearch-index, and click on Next Step.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[236]

4. Then, click on the Select button for Amazon EC2 under AWS Services Roles.
5. On the Set Permissions page, scroll down and click on Custom Policy

and select Select.
6. Copy and paste the policy and give it a name.
7. Click on Next Step, and then click on Create Role.

This configuration results in a policy are shown in the following code. You can even
check out code_3632EN_08_01.txt in the code bundle:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "cloudtrailworkerrole",
 "Effect": "Allow",
 "Action": [
 "cloudsearch:DescribeDomains",
 "cloudsearch:ListDomainNames",
 "cloudsearch:document",
 "s3:GetObject",
 "s3:ListBucket",
 "sqs:ChangeMessageVisibility",
 "sqs:DeleteMessage",
 "sqs:ReceiveMessage",
 "cloudwatch:PutMetricData"
],
 "Resource": [
 "*"
]
 }
]
}

Now, it's time to use the console to launch the AWS Elastic Beanstalk application. You
can download the source code from the Packt Publishing website. The given sources
file .ebextensions/cloudtrail.config holds the CloudSearch domain name and
region details. You can alter this file or later just modify PARAM1 and PARAM2 which is
in Elastic Beanstalk. Check out 3632EN_08_02.txt from code bundle:

option_settings:
 "aws:elasticbeanstalk:application:environment":
 PARAM1: cloudtrail-1
 PARAM2: us-east-1

Chapter 8

[237]

It is recommended to deploy the Beanstalk app in an EC2 VPC environment to get all
the benefits of micro instances when you are using it first time, and it's good for the
production environment also.

Now, go to the AWS Elastic Beanstalk console and click on Create a New
Application. Deploying the Elastic Beanstalk is pretty simple. Here are the
required parameters:

• Environment tier: Worker
• Predefined configuration: Python
• Environment type: Load balancing, Auto Scaling

To start AWS Elastic Beanstalk, follow the steps given here:

1. Click on Browse and upload the app .zip file you downloaded from the
Packt Publishing website.

2. Click on Next and give a name to the Environment. The default name
will be cloudtrail1-env.

3. Click on Next and select Create this environment inside a VPC.
4. Click on Next.
5. In the Configuration Details page, use following configuration:

 ° Instance type: t2.micro
 ° Application health check URL: /
 ° Instance profile: cloudsearch-index

6. For Worker configurations, use following settings:
 ° Worker queue: CloudTrail-sqs
 ° HTTP path: /sns/
 ° MIME Type: application/json

7. For VPC security group, you can use the default provided by AWS.

After some time, the app status will turn green and your configured CloudSearch
domain will be populated.

After some time, AWS CloudTrail logs are directly "searchable" in AWS
CloudSearch. You can use the AWS console to ask simple requests. In the AWS
CloudSearch Console, pick your AWS CloudSearch domain and click on Run a
Test Search in the navigation pane. From the drop-down menu, select the
Structured query parser.

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[238]

CloudSearch will display facets on the right-hand side column,
which will assist you to explore the data.

Here is a screenshot for your reference:

This example explains how you can generate a simple architecture designed to
handle AWS CloudTrail logs as soon as they are produced and take them to real-
time indexing tools like CloudSearch.

Case study: migrating applications to
the Cloud
Now let's try to understand some migration scenarios for the Cloud. Consider the
example of some company named "ComapnyACloud.com" that wants to shift its
web application to the AWS Cloud. Here is the reference diagram that explains the
architecture of the web application.

Chapter 8

[239]

This company is a leading marketing product-based company which conveys the
best marketing products to its customers over the globe. This company's application
has a predictive spike for load on its architecture cyclically. The application is hosted
at the company's datacenter now.

Application architecture

Using a three-tier architecture, the company is deploying a frontend load balancer,
which is managing traffic across two web servers—each running on a separate box.
The backend business logic is implemented in Java and uses Tomcat as app container
and application server. On the database side, it consists of a master MySQL server
and two slave servers for superior performance.

Motivation for migration

There are mainly three reasons for migration:

• To scale out application without using new hardware
• To cut down administration by auto deployment
• Do scaling for additional capacity when required

Amazon Beanstalk, CloudTrail, and Data Warehouse Services

[240]

After the migration phase, you can user Route 53 service on top of ELB as
DNS service.

Cloud assessment for migration

The team efforts that they could free up the present and existing infrastructure for
further internal, ongoing, and forthcoming projects, or withdraw a maintenance
treaty and reduce the operating cost by 40 percent. At the time of technical
assessment, the technical team experienced that the app is compatible with Cloud
using AWS EC2 with Linux instances.

Data Migration

During the migration phase, the technical team decided to transfer all the static
content or part of the app (images, JS, CSS, video, audio, and static HTML content)
to AWS S3 buckets. After that, they will align the bucket with AWS Cloud to give
their users the content with low latency. Furthermore, they will transfer all their tape
backups to S3 and Glacier. You can configure your database with RDS service and
fetch data from the S3 bucket using any query tool or EC2 instance itself.

App migration

During the application migration phase, the development team launched both small
and large instances for their web servers and Tomcat containers that hold app. The
team has altered their build and deployment scripts to use the Cloud as an endpoint.

• While migrating an application, the company should be ready to change
AWS-specific code as well

• The application logic needs to decouple so that the application can scale

The co-related infrastructure was not deployed instantly. The company has engaged
a hybrid migration strategy for the migration. For a short term, the load balancer
was routing traffic to the servers in the Cloud in as well as to the physical servers
with its surviving infrastructure. After ensuring that the servers in the Cloud were
presenting at the desired levels, the in-house servers were discharged one by one; the
load balancers were updated on AWS, and all of the web traffic was being served up
by the EC2 instances running in the Cloud. At last, once testing has been completed
and the DNS has been switched to point to the Cloud-based web servers.

Chapter 8

[241]

Leveraging the Cloud

Once the company has shifted its app to the Cloud, they started thinking about
leveraging some of the progressive features of the AWS Cloud. So, they configured
Auto Scaling by employing multiple AZs.

This way, the company was able to shift its existing app to the AWS Cloud. With
least effort, the team was not only able to free up their physical hardware for other
projects, but also diminished the operational expenditure by 30 percent.

Summary
In this chapter, you have learned about some of the helpful deployment and
migration services. In the first section, you learned about AWS Beanstalk and its
usages. Beanstalk is basically for those who don't want to worry about underlying
resources for their applications. You can directly come with your code to Redshift
and within a moment, your code will be deployed and running.

You also learned about application deployment using the AWS Elastic Beanstalk
service via SDK and code libraries. We also discussed the basics of Redshift, how to
create cluster of nodes, and how Redshift is helpful in Warehousing services. Next,
you learned about AWS CloudTrail with a real-time example and AWS CloudWatch.
Finally, we discussed a case study for app migration from in-house infrastructure to
the AWS Cloud.

In the next chapter, you will learn how to bootstrap AWS EC2 instances with
preconfigured commands for environment setup and how to use Chef for
automation and deployment. Also, you will come to know that how the AWS
CloudFormation service can work seamlessly with the application, and how SWF
and OpsWorks service can be used with the AWS infrastructure.

[243]

Bootstrapping and
Auto-configuration

Designing your instance deployment is like allowing your instances to ask you
difficult questions about their existence at boot, for example, "Why am I created and
what will be my role?" Each and every instance should have a specific part to play
in the infrastructure and deployment environment, such as database servers, replica
servers, web servers, cache server, and so on. These role features can be passed to
the instance when you are booting or spinning up the instances from an AMI at
runtime on air. At the time of booting the instance, we will download and configure
necessary scripts and codes, as per the role requirements, and work automatically as
defined in the scripts. In this chapter, we will cover following topics:

• Black belt booting
• Bootstrapping instances with AWS CloudFormation
• Bootstrapping Amazon instances with Chef
• Continuous integration and deployment
• Workflow execution of Amazon SWF
• Working with AWS OpsWorks

Here are the advantages of bootstrapping your instances:

• Reconstruct the development, test, and production environment with little
snaps and nominal struggle

• Added control over your abstract Cloud-based capitals
• Reduce human-induced deployment mistakes
• Generate a self-healing and self-discoverable working environment that can

withstand hardware failure

Bootstrapping and Auto-configuration

[244]

There are a number of advanced methods that give further supremacy and elasticity
when bootstrapping AWS EC2 instances. For example, various organizations
preserve a progression of generic instances and customize the AMIs upon launch.
Widespread techniques are the following:

• Without human intervention, check for updates on each boot
• Look in a known place, such as in a S3 bucket, for data or a script to inform

the instance which packages have to be loaded
• Pass user data to the instance to achieve each one of these, or perhaps as a

substitute of the other advances

Black belt booting
There are a number of cutting-edge technologies that compromise on supplementary
power and flexibility when booting Linux occurrences. For example, some official
DOMs preserve sequences of standard instances and modify the imaginings upon
promotion. Some common practices are as follows:

• Spontaneously check for updates upon every boot
• Look in a well-known place, such as in a Simple Storage Service (S3) bucket,

for data or a script to tell the instance to load packages
• Permit user data to the instance to achieve each of the preceding goals, or

perhaps as an alternative of the other approaches.

Before getting started with user data in instances, let's try to remember how to
launch instances first. Instances are launched from AMIs. As soon as they are
launched, they enter the pending state. An instance's hardware for the host computer
is determined by the instance type chosen at launch time. The instance gets booted
(where the billing starts) via the AMI chosen at launch time. It enters the running
state as soon as it is ready. Billing continues as long as the instance is running.

Instances can be launched using multiple methods:

• Via the Amazon EC2 console with a chosen AMI
• Via the Amazon EC2 console with the created Amazon EBS snapshot
• From a backup of instance called AMI

Chapter 9

[245]

• Via the Amazon EC2 console with an AMI that you purchased from the AWS
Marketplace

• Launching an AWS Marketplace instance
• Via AWS CLI with a chosen AMI
• Using Amazon EC2 through the AWS CLI
• Via Amazon EC2 CLI with a chosen AMI
• Launching an instance using the Amazon EC2 CLI
• Via AWS tools for Windows PowerShell with a chosen AMI

When creating a new Linux EC2 instance on AWS, you're able to pass extra
data to the server to be used during the boot progression. This can be a
straightforward bash script or the URL(s) of a number of scripts. Alternatively,
the data can be made trouble-free using a list of parameters that you require that
instance to be familiar with.

Now, if you write a script or the URL for a script as user data to your new instance,
then it will run it you and you don't need to worry about it. On the other hand, if you
pass it a catalog of parameters (for example, you may provide it the endpoint URI
for your RDS instance so the database settings for your web application can be set
up appropriately), you have to know how to read the user data. Along with reading
the user data, you can also read in the metadata about your new instance, such as its
AMI-ID or the public hostname of your instance. Reading the metadata can be done
by querying a straightforward API.

The base URI of all your queries can be http://172.254.160.254/. This can
be followed by the API version, or you can utilize the latest to obtain the most
recent API. Then, the query includes the category of data you desire to retrieve
(for example, metadata), followed by the category you desire to query. For example,
the URI you would use to acquire the local hostname of your instance would be like
this: http://172.254.160.254/latest/meta-data/local-hostname.

Even as the API is intended so that only your instance can interpret your user data,
the requests are not encrypted. So, it is a good idea to avoid storing passwords or
encryption keys using this technique. If a hacker was intelligent enough to expand
admission to your EC2 instance via a non-honored user, they would still be able to
read all the user data along with the supplementary metadata for your instance.

Bootstrapping and Auto-configuration

[246]

Let's see an example of how your user data script will work in an EC2
instance launch:

1. Log in to your AWS EC2 Management Console via a browser and click
on the Launch Instance button. You will be redirected to the AMI selection
page, as shown here:

2. Select any Linux AMI. You will be redirected to the instance type
selection page.

Instance type selection page

Chapter 9

[247]

3. After selecting the instance type, you will be redirected to the instance
configuration page. At the bottom of that page, there is one option called
Advanced Details.

4. Click on Advanced Details and you will see the User data box where you
can write your own scripts, commands, or URI:

5. Select the As file option. Create one file at your local machine called
install-lamp.txt and append the following content in it:
#!/bin/bash
set -x
export DEBIAN_FRONTEND=noninteractive
apt-get update && apt-get upgrade -y
tasksel install lamp-server
echo "Please remember to set the MySQL root password!"

Bootstrapping and Auto-configuration

[248]

6. Finally, the result will look like this on your EC2 console:

7. Launch your instance as you did in previous chapters.
Once you are done with that, hit the URL in browser to get the
Apache home page.

Chapter 9

[249]

8. You can check for the Apache service even from CLI:

9. Even after logging in to the host successfully using SSH, you can check
other services for LAMP stack. To check the MySQL service, use the
following syntax:
mysql –u root

You will get the following output, which means MySQL is working properly:

10. Check whether PHP is installed properly or not using the next command:

php –version

You will get the following output for the PHP version:

This way, you can use user data for dynamic configuration of your EC2 instance. You
can check or debug for error when it fails by checking /var/log/cloud-init.log.

Bootstrapping and Auto-configuration

[250]

Bootstrapping instances with AWS
CloudFormation
Amazon CloudFormation is a method to initiate environments easily. When you
begin a CloudFormation environment, you will be able to launch precise AMIs with
specific key pairs on predefined instance sizes and behind your AWS load balancers.
If any segment of your environment fails to launch, the environment rolls itself over,
terminating all the segments along the way. You're going to use a tool that analyzes
your running environment and creates a CloudFormation template for you.

The tool that you are about to use will give you a template that will be stored in
Amazon S3. Create a bucket to save the template. You'll use CloudFormer, which is
a prototype tool that is designed to help you build these templates. You'll be able to
twist the template in order to eliminate any unrelated instances. The CloudFormer
tool is intended to create a starting point for your template. Once created, you can
customize the template in every manner. CloudFormation and CloudFormer are
both accessible via the AWS Console. Follow the next steps to start with Amazon
CloudFormation:

1. Select the CloudFormation service from the listed AWS services and click on
the Create New Stack button.

2. Select the CloudFormer sample template from the listed templates and name
it AWSCloudFormer before clicking on the Continue button:

Chapter 9

[251]

3. Accept the terms and go to the Review page.
4. The console will display CREATE_IN_PROGRESS for a while. While it's

getting completed, go to the Outputs tab and mark the URL address of the
CloudFormer tool.

5. Now, try to connect to the running tool and start the wizard.

The wizard app provides no HTTPS and no authentication, so it can
be used by any user anywhere in the world. Therefore, I recommend
you to run through it as quickly as possible to complete the process.

6. Click on Create Template and add an explanation that classifies which
template this is.

7. You'll be asked to select resources on a series of screens.
8. Select the load balancer that is associated with your environment, if any:

Bootstrapping and Auto-configuration

[252]

9. Choose your Auto Scaling group, if any:

10. Next, choose the launch configuration.
11. Select the Security Group that suits you and your environment.
12. Click on Continue for all the remaining steps.
13. The tool will generate a template and then suggest a S3 bucket to store it in.
14. Use the bucket that you fashioned at the beginning and click on the Save

Template button.
15. You'll stop on the following screen, as this is the last one. Launch the

stack now.

16. At this point, you can simply click on Launch Stack to test.

Bootstrapping Amazon instances using
Chef
Nowadays, the majority of the topmost Cloud computing players present an
easy-to-use UI to build your IT infrastructure on the Cloud. Nevertheless, unlike
provisioning once on on-premise infrastructure, you may have to dynamically
provision a number of virtual machine (VM) instances, a small number of instances
of dynamic storage and several SaaS-based services. Software releases require to be
pushed on a regular basis (weekly, daily, or hourly in various cases).

Chapter 9

[253]

A way to do away with this is to create VM images for all changes and produce
a new VM instance to push it. It will be difficult and it affects the frontend of the
delivery. Also, what about the storage, databases, network configuration, and the
underlying architecture? As your practice of Cloud infrastructure for development,
QA, staging, and production environments grow, it becomes an operational
challenge to supervise the complete infrastructure. The following operational tasks
can become a problem for a system administrator:

• Spawning new instances
• Configuring newly created instances with storage, services, firewall,

and preconfigured app/software
• Integrating monitoring and management services and removing instances
• Ensuring all (working) available instances in a layer (web/app) are in

identical state

This is when you need a configuration management system that essentially
provides capabilities to deploy, update, and refurbish your entire app infrastructure
using predefined and automated events. In an ideal world, you wish for automatic
stipulation of the complete environment from the base to running industry services
entirely from a predefined pattern, counting the network configuration.

Chef is an infrastructure automation framework that makes it easy to set
up, configure, deploy, and supervise servers and apps to all environments
(physical, virtual, Cloud, and hybrid).

With Chef, you can write the code for your infrastructure. These are called recipes
and you can use the recipes to create more complex infrastructure. Once automated,
you will be holding a blueprint for your working infrastructure with automation,
which allows you to construct or reconstruct automatically in a few moments.

Apart from Chef, there are other tools that support Cloud environments, such as
Puppet, Ansible, or Salt. AWS also provides management and deployment services
such as OpsWorks, which is an app management service that makes it simple
for DevOps to model and supervise the complete app from end user facing load
balancers to backend databases. Amazon OpsWorks supports Chef as its backend to
provision resources as per the demand or deployment scenarios.

Bootstrapping and Auto-configuration

[254]

Using Chef, you can perform the following operations:

• Deal with servers by writing recipes for their configuration and management
• Provide firm integration with apps, various databases, and more

(such as network configuration and behavior)
• Create replica of development, QA, or preproduction environments

Before jumping into the sea of Chef, you should go through the terms used regularly
in Chef. Chef consists of three main fundamentals: a server, one (or more) nodes, and
at least one workstation.

The server works as a hub that is accessible to all nodes. All Chef client nodes should
be registered using the Chef server. The server consists of all the cookbooks, recipes,
roles, environment configuration, and policies.

The workstation is the development appliance from which configuration elements
like cookbooks, recipes and policies are defined. Configuration essentials are
corresponding with the chef-repo and uploaded to the server with the Knife
command utility.

Nodes includes chef-client, which carries out all the infrastructure automation.

Have a look at the following flow diagram:

Chapter 9

[255]

There are three types of Chef servers:

• Hosted Chef: This is an adaptation of the Chef server that is hosted by Chef.
It is on Cloud with great scalability and can use services with resource-based
access control. There is no need to run a supplementary server and
supervise it.

• Enterprise Chef: This is similar to Hosted Chef, but the Chef server is
situated on premise.

• Open Source Chef: This is a free version of the Chef server that you will be
using in this chapter.

From all the possible ways of using Chef, setting up a personal Chef
server is the least recommended approach but we will go through
Open Source Chef to understand all the functionalities. Chef Solo or
Chef Zero (http://goo.gl/B7guas) would be so much easier to run.

Common technical terms that are the fundamentals of Chef are as follows:

• Recipe: This is the configurable aspect within an organization of Chef.
Recipes are used to set up, configure, and deploy applications in any
given environment.

• Cookbook: This is the primary element of configuration and rule
distribution. Every cookbook characterizes circumstances, such as the
entire environment needed to set up and configure MongoDB.

• Knife: This is a command-line utility that offers an interface flanked by
chef-repo and the Chef server.

• chef-repo: This is positioned on the workstation and includes cookbooks,
recipes, and roles.

• Workstation: This is a system that is configured to execute Knife commands
to coordinate with the chef-repo and cooperate with a single server.

• Node: This is any substantial, virtual, or Cloud system that is configured
to be preserved by a chef-client.

• run_list: This is a prearranged catalog of roles and/or recipes that are
executed in an accurate order.

• chef-client: This is an agent that executes locally on each node.

http://goo.gl/B7guas

Bootstrapping and Auto-configuration

[256]

Now it's time to set up Chef on AWS to understand how Chef works with EC2.
Follow the steps given here for installation and configuration (they are performed
on Ubuntu):

1. Download the Chef server from http://downloads.getchef.com/ and
choose the suitable version, as shown in following screenshot:

2. Spin up a new EC2 instance that consists of Ubuntu OS from the AMI
selection page in your AWS account and SSH to the server with the key
file and username Ubuntu:
switch to your home folder

cd ~

Download the Chef Server Package using below command

wget https://opscode-omnibus-packages.s3.amazonaws.com/
ubuntu/12.04/x86_64/chef-server_11.0.10-1.ubuntu.12.04_amd64.deb

Install the Chef Server using below command

sudo dpkg -i chef-server*

reconfigure the service for your machine to configure all the
services of chef

sudo chef-server-ctl reconfigure

After performing the preceding steps, you can access the web interface by
typing https:// from your browser. As the SSL certificate is signed by an
authority not recognized by the browser, you will obtain a warning.

http://downloads.getchef.com/

Chapter 9

[257]

3. Click on the Proceed anyway button. Make sure that the port 443 is open in
the security group allied with the server.

4. Log in with the given default admin credentials with username admin
and password p@ssw0rd.

5. You will be asked to change the password after the first login.

You have set up the Chef server, and now it's time to set up the workstation.
It can be on the same machine or on a different machine. Follow the next few
steps to set up the workstation:

1. Install Git as Chef commonly uses it. You can use any other VCS tool too.
The commands are as follows:
sudo apt-get update

sudo apt-get install git

Download and run the client installation script from the Chef
official website.

curl -L https://www.opscode.com/chef/install.sh | sudo bash

2. Clone the chef-repo skeleton directory using the following commands:
cd ~

git clone https://github.com/opscode/chef-repo.git

Bootstrapping and Auto-configuration

[258]

3. The preceding command will produce a directory called chef-repo in your
home location. At this location, the complete configuration will be saved.

4. Make a .chef directory within chef-repo to keep the authentication and
configuration files. The command is as follows:
mkdir ~/chef-repo/.chef

5. Log in to the Chef server with the admin identification and click on the
Clients tab in the top navigation bar.

6. Click on the Edit button linked with the chef-validator client. Regenerate the
private key by selecting that check box and clicking on Save Client.

Chapter 9

[259]

7. Copy your newly generated private key and save it as the chef-validator.
pem file in the ~/chef-repo/.chef location.

8. In the same way, click on the Users tab in the navigation bar and click on the
Edit hyperlink related to the admin user to regenerate the private key, as
shown here:

9. Copy the private key and save it in the admin.pem file in the ~/chef-repo/.
chef location.

10. Now, it's time to configure the Knife tool that will provide an interface
between a local repo and the Chef server. Use the following command to
initialize the Knife command utility:
knife configure –initial

Bootstrapping and Auto-configuration

[260]

11. The previous command will prompt you for the path of the .pem files that
you configured previously, server URL, username, and password.

12. To make sure that everything is fine, run the following command to list all
the registered users:

knife user list

It will show the following output with the registered users:

The bootstrapping process includes configuring a Chef client on a given node.
The Chef client will talk with the Chef server to obtain directions for its individual
configuration. After the client obtains the policy or let's say recipe, it will apply to
the node to make sure the client is configured as per the given directions from the
Chef server.

Knife-ec2 is an authorized Chef Knife plugin for EC2. This plugin will offer Knife
the skill to create, bootstrap, and direct EC2 instances.

1. To install Knife-ec2 on your workstation, use the following commands one
by one with sudo:
apt-get install gcc g++ make autoconf

apt-get install libxml2 libxml2-dev libxslt1-dev

/opt/chef/embedded/bin/gem install nokogiri -v '1.5.2' -- --with-
xml2-lib=/usr/lib/i386-linux-gnu --with-xml2-include=/usr/include/
libxml2 --with-xslt-lib=/usr/lib/i386-linux-gnu --with-xslt-
include=/usr/include/libxslt

/opt/chef/embedded/bin/gem install knife-ec2 –V

Chapter 9

[261]

2. The plugin will give the following subcommands. You can use the --help
flag to discover definite command options, for example, look at the
following commands:
knife ec2 server create

knife ec2 server delete

knife ec2 server list

3. On the workstation, generate or download the desired cookbooks and
upload them to the Chef server. If you want a specific version, you can
explicitly specify that. You can use following commands to download
specific cookbooks that are available in the OpsCode repository:

cd ~/chef-repo/cookbooks/

#clone the repositories from Opscode github by cloning repos

git clone https://github.com/opscode-cookbooks/apt/

git clone https://github.com/socrata-cookbooks/java

git clone https://github.com/opscode-cookbooks/openssl

git clone https://github.com/opscode-cookbooks/tomcat

upload the cookbooks to the chef server using below commands

knife cookbook upload java apt

knife cookbook upload openssl tomcat

Now, you have to specify how these cookbooks will be executed. For that, you have
to create a role for it. A role is a method to describe definite patterns and processes
that should be present at nodes in an organization for a single purpose. Each role
consists of one or more attributes and a run list. Each node can have zero or multiple
roles associated with it.

1. You will generate a webapp role and then utilize it to bootstrap an EC2
instance on AWS:
Create webapp role

knife role create webapp

The preceding command will open up the default editor (can be Notepad)
and you can edit the file contents as shown here:

{
"name": "webapp",
 "description": "Install and configure Java and Tomcat",
"json_class": "Chef::Role",
"default_attributes": { },
"chef_type": "role",

Bootstrapping and Auto-configuration

[262]

"run_list": ["recipe[apt]", "recipe[tomcat]],
"env_run_lists": { },
"override_attributes": { }
}

2. Try to log in with the Chef server and navigate to the Roles tab; you should
see the role you created:

3. Now, you are ready to bootstrap an EC2 instance with the webapp role using
the following command:
knife ec2 server create -I ami-3c39686e -r "role[webapp]" -Z ap-
southeast-1b --groups default -S chef -i demo1.pem -f m1.medium -A
'AKIXXXXXXXXXXXXXXXXXX' -K "XXXXXXXXXXXXXXXXXXXXXXX" --region ap-
southeast-1 --ssh-user Ubuntu

An m1.medium EC2 instance will be created in the ap-southeast-1b zone
with the specified group and key name. The webapp role will be functional
to the instance as well. When the webapp role will run in alignment with the
node, the configuration information of that node will be compared adjacent
to the attributes of the role, and then the contents of the role's run list are
applied to the node's configuration details. When a chef-client will run, it
merges its individual attributes and run lists with those enclosed within
each assigned role.

Chapter 9

[263]

4. On the Chef server, you can list the nodes and see the node with the
webapp role.

In this way, you can use Chef to bootstrap EC2 instances.

Continuous integration and deployment
Continuous integration (CI) is a development practice that requires developers to
integrate code into a shared repository several times a day. Each checking is verified
by an automated build, allowing them to identify problems early. By integrating
early, you can detect errors quickly and locate them more easily.

Based on your business requirements, you can select various tools for CI pipeline
creation. For this chapter, I am describing the tools and flow for one of my clients'
best working architecture. To understand the flow of CI, go though the following
diagram and explanation that discusses the CI pipeline:

• Jenkins: This is an open source CI tool that supports the distributed build
environment. When a developer commits the code, Jenkins is responsible for
validating the build.

• Promotional workflow: This feature of Jenkins distinguishes good quality
builds from bad quality builds. To put it simply, promotional build is the
build that is selected for QA. If testing is successful, then it is passed to
stage and production release. A user will have to log in to Jenkins to use
promotional UI.

• Gerrit: This is a web-based code review system that facilitates code reviews
for projects using the Git version control system.

Bootstrapping and Auto-configuration

[264]

• Nexus: This is an open source artifact repository management tool. When a
build is successful and Jenkins passes it, the last step in each Jenkins job is to
upload final artifact to Nexus.

Continuous delivery (CD) makes it possible to continuously adopt software in
line with user feedback, shifts in the market, and changes to business strategy.
Test, support, development, and operation work together as one delivery team to
automate and streamline the build, test, and release processes. In following diagram,
you can understand the flow of the process from IDE to source control, source
control to Continuous Integration server, from Continuous Integration server to
build tools, build tool to provisioning tool and provisioning tool to end server.

Chapter 9

[265]

Maven
Ant

Gradle

Build Tool

Continuous
Integration

Hudson
Jenkins

TeamCity

Source
Control

GIT
Subversion
Clearcase

Eclipse
IntelliJ

NetBeans

IDE

Repository
Manager

N

The Central Repository

Provisioning
Tool

Puppet
Chef

Capistrano

Server

Server Server

You can use the preceding tools to start as CI/CD best practices.

Automation with Amazon SWF
AWS Simple Workflow (SWF) from Amazon is an inimitable workflow as compared
to conventional workflow products such as JBPM and OS Workflow. AWS SWF is
tremendously scalable and engineer-gracious (flow is defined with Java code), while
it comes with boundaries and lots of gotchas.

The very first thing to know is that it's almost impossible to build a SWF app
properly without Flow Framework. Although the low-level SWF RESTful service
API is public and available in SDK, for the majority workflow with parallelism,
timer, or notification, think about the potential of how each event can interlace with a
different event. It's easy to write down exact code with low-level API to wrap all use
cases. For this reason, SWF is fairly distinctive in comparison with other thin-client
AWS technologies.

Bootstrapping and Auto-configuration

[266]

There are basic concepts with respect to SWF that you need to understand to learn
about the flow and workings of SWF:

• Workflow starters: This can be any app that can kick off workflow
executions.

• Activity workers: This is a procedure or thread that carries out the activity
jobs that are a fraction of the workflow. An activity task is one thread in
the workflow. To exercise an activity task, you have to register it using the
Amazon SWF console or the RegisterActivityType action.

• Deciders: This is an accomplishment of a workflow's synchronization logic.
Deciders manage the flow of activity jobs in a workflow execution.

The workflow execution of Amazon SWF
To start with the flow, you have to follow the next few steps:

1. Write activity workers that employ the processing steps in the workflow.
Write a decider to put into practice the harmonization logic of workflow.

2. Register activities and workflow with Amazon SWF. You can do this
programmatically or through the AWS Management Console.

3. Initiate activity workers and a decider. These actors can start on any compute
system that can contact an Amazon SWF endpoint. For example, you could
use any compute service in the Cloud, such as Amazon EC2 or servers in
your data center. The decider and activity workers will start polling Amazon
SWF for tasks.

4. Initiate more than one executions of workflow. Executions can be initiated
either programmatically or via the SWF Management Console. Each one runs
separately and you can endow each one with its own set of input data. When
an execution is in progress, Amazon SWF schedules the preliminary verdict
task. In reaction, the decider commences generating decisions that embark
on activity tasks. Execution persists in anticipation of your decider making a
decision to shut the execution.

Chapter 9

[267]

You can view the workflow execution from the AWS Management Console. You can
pass through a filter and view absolute particulars of running over and above the
completed executions.

1. To start with SWF programming, please go through the following code
base to understand the logic and flow. The first file, app.config, which
will define the region and profile to bring into play:

2. Another file called main, which does the setup initially, launches deciders
and workers. It also initiates the workflow process.

Bootstrapping and Auto-configuration

[268]

3. In the following code snippet, Activity1A and Activity1B are serviced by
one set of workers. Activity2 is serviced by an additional set of workers.

Chapter 9

[269]

Now, you have to write code to register your workflow and activities. Go through
the following steps:

1. To register a domain, go through the following code:

2. To register your activity, use the following code snippet:

Bootstrapping and Auto-configuration

[270]

3. Finally, you have to register your workflow. To do that, follow the code
snippet shown here:

4. That's it for now to register your workflow and activities.

Chapter 9

[271]

5. Now, you have to write a code to start your workflow. Go through the
following code snippet to start the workflow.

6. To define your worker, you have to write the following code:

Bootstrapping and Auto-configuration

[272]

7. Finally, you have to define the decider and schedule your activity for
execution flow. To schedule an activity, go through following code snippet:

8. To initialize the decider, follow the code snippet shown here:

Chapter 9

[273]

Bootstrapping and Auto-configuration

[274]

9. Once you have run the previous snippets, you will get the following outputs
on your CLI console.

10. Initially, domain and activity will be created and workflow will be registered:

11. Then, polling for activity task will start:

12. Next, polling for the decision task will start:

Chapter 9

[275]

You can check this on your AWS SWF console for a better understanding of the
output. You can download the whole code from the Packt Publishing website
to run the preceding example code.

Working with AWS OpsWorks
AWS OpsWorks is a new service from Amazon that present high-level tools to
handle your EC2-based deployment. AWS OpsWorks has some new terms
and key theories:

• A stack is known as the highest level container. It combines custom
configuration with one or more apps. To deal with a simple to-do list site,
you'd produce a todo stack, even though you might prefer to have split up
todo-production and todo-staging stacks.

• Each stack has at least one layer. Consider these as classifications for different
server roles. A simple static website might have a solitary Nginx layer. A
typical web app might have a software load balancer layer, a Rails layer, and
a DBMS called MySQL layer as substitutes. AWS OpsWorks describes ample
number of incorporated layers (for example, Rails, HAProxy, PHP, Node,
Memcached, MySQL, and more), but you can also classify your individual
layer.

• Apps are your code base and are sourced from any SCM repository, an S3
bucket, or even an exterior web. A classic Rails site might have a single app
working, but you can characterize various apps if you'd akin to configure,
extent, and monitor them collectively.

• Finally, you characterize EC2 instances and allocate each to one or more
configured layers. You can initiate instances yourself, or configure them to
initiate and stop on a schedule or in retort to load patterns.

Bootstrapping and Auto-configuration

[276]

The following diagram shows the AWS OpsWorks fundamentals:

OpsWorks proposes further elasticity and control power, permitting you to adapt the
types of servers you make use of and the layers or services that build up your app.

By focusing on the widely used AWS services, AWS EC2 instance types, and
architectures, it can present superior automation and additional robust tools for
configuration, authorization, scaling, management and monitoring. Even Amazon
CTO, Dr. Werner Vogels, described it as follows:

Higher-level Services Do it yourself

Convenience Control

AWS Elastic
Beanstalk

AWS
OpsWorks

AWS
CloudFormation

Amazon EC2 +
CloudWatch +
Auto Scaling +
Custom AMIs

Let's try to understand AWS OpsWorks using an example to get a deeper insight into
its workings. After this example, you should be able to deploy "Todo Sample App"
to AWS using OpsWorks, with your app and database running on various system
instances.

Chapter 9

[277]

The following are some prerequisites that should be fulfilled before
proceeding further:

• Provide the RAILS_SECRET_TOKEN environment variable in the
config/secrets.yaml file for your app servers.

• The mysql2 gem is required to interface with a MySQL database.
• The unicorn gem is required to use Unicorn as our app server.

Let's start with the following example implementation now.

Creating an OpsWorks stack
To create an OpsWorks stack, follow the steps given here:

1. Log in to the AWS and navigate to the AWS OpsWorks Console.
2. Click on Add Stack and supply the required information:

3. Once you've filled out the form, click on Create Stack.

You are done with stack creation.

Bootstrapping and Auto-configuration

[278]

Creating the Rails App Server layer
To create the Rails App Server layer, perform the given steps:

1. To start, click on Add a layer. You will be taken to the following page.
Configure the required details of version and proceed further.

2. Once you're all done, click on Add Layer. You'll be redirected to the next
page called Layers.

3. It's time to add the database layer.

Chapter 9

[279]

Creating the database layer
To add the database layer, follow the given steps:

1. On the Layers screen, click on + Layer.
2. Choose MySQL from the drop-down menu:

For this demo example, we are going to utilize a MySQL layer.
You could replace it with an RDS layer if you want to.

Bootstrapping and Auto-configuration

[280]

Adding instances
You've completed layers for your app servers and database machines, but you do
not have app servers or a database up and running yet. Next, we have to create an
instance of each:

1. From the Layers part, click on Add instance in the Rails App Server layer.

Deploy App page

2. Click on Add Instance once you're done, and then click on Start to start the
instance setup progression.

Chapter 9

[281]

3. From here, or from the Layers page, click on Add an instance under MySQL.

4. Click on Add Instance to produce the instance and click on Start to
commence the instance setup.

Bootstrapping and Auto-configuration

[282]

5. While instances are set up, let's include your app. Click on the Apps link on
the sidebar, and then click on Add an app.

For this demo example, you're using the Git repository at
https://github.com/awslabs/todo-sample-app.
git as our app source, and using the opsworks branch to
guarantee that you're deploying the identical code.

https://github.com/awslabs/todo-sample-app.git
https://github.com/awslabs/todo-sample-app.git

Chapter 9

[283]

6. You can give any name to the app. However, the TodoApp name will be
equal with fields we will fill out afterward, so if you do modify the name,
make sure that you employ that novel name going ahead wherever we
utilize TodoApp.

7. To create a value for the RAILS_SECRET_KEY environment variable, you can
employ the following command surrounded by your replica of the repo:
rake secret

8. Click on Add App once you are done.

Bootstrapping and Auto-configuration

[284]

It looks like your instances are ready and set up, so it's time to deploy the app:

1. Click on the Deployments link on the sidebar and click the Deploy an App
button. You will get the following screen:

Chapter 9

[285]

2. As you have not done so yet, keep in mind to select Yes for the Migrate
database setting. You will also require the following custom JSON to make
sure that the mysql2 adapter is used as projected:
{
 "deploy":
 {
 "todoapp":
 {
 "database":
 {
 "adapter": "mysql2"
 }
 }
 }
}

3. Click on Deploy and you are done.

You almost certainly don't wish to be filling in the custom JSON for the adapter
option with each deployment. Thankfully, you can shift this custom JSON into your
stack settings to have it go with each deployment.

1. Click on the Stack link on the sidebar, open Stack Settings, and click on Edit:

Bootstrapping and Auto-configuration

[286]

2. Append the custom JSON that you used for your deployment before and
click on Save.

3. To see the app in action, click on your app server's name on the deployment
screen. Click on the link to Public DNS, and you should notice the front
page of the app:

4. You can insert tasks, mark them finished, and delete them as per your
requirements:

Delete Create a Ruby on Rails Application

Create an OpsWorks Stack

Deploy My App to OpsWorks

Use a CDN to Cache the Ruby on Rails Asset Pipeline

Add New Task

Mark Incomplete

Mark Incomplete

Mark Incomplete

Delete

Delete

Mark Complete Delete

That's it. You are done with a basic example of OpsWorks.

Summary
In this chapter, you learned about bootstrapping and user data for EC2 instances.
Later on, you went through instance bootstrapping using CloudFormation. Then,
you used Chef for continuous deployment on AWS. You also learned about
continuous integration and deployment fundamentals. We discussed the process
of getting a basic Ruby on Rails app up and running on AWS with the OpsWorks
service. At last, we saw AWS Simple Workflow service to understand its process
and deployment flow.

In the next chapter, you will learn how to do programming for AWS billing that can
be accessed from the application and how to perform cost allocation reporting. You
will also learn about the cost control architecture designs to cut down the cost.

[287]

AWS Billing and Amazon
CDN Service

In this chapter, you will learn how to program for AWS billing, which can be
accessed from the application, and how to do cost allocation reporting. Also, you
will learn cost control architecture designs to cut down the cost. Here is the list of
topics that will be covered in the chapter:

• Programmatic AWS billing
• Cost allocation reporting
• Cost control architectures
• CDN service from AWS

Programmatic AWS billing
If you are a hardcore/frequent user of AWS, then managing and monitoring the
billing manually for your account will be very difficult. Therefore, AWS provides a
provision for storing granular information (hourly, weekly, monthly, and so on) in
our S3 location as a CSV file. In this way, a user can programmatically access this
report through SDK or CLI. There are a few steps involved in this billing operation:

1. Spinning-on complete billing reports
2. Choose the in-depth billing reports as you want
3. Referencing complete billing report data
4. Controlling access to billing report files

AWS Billing and Amazon CDN Service

[288]

Turning on detailed billing reports
We should first enable detailed billing. The good news is that this operation is free.
However, while enabling this, we should have a dedicated S3 bucket to store this
report. Standard storage charges apply for this S3 bucket. So, the first step is to create
a bucket. For this purpose I have already created a bucket with name prabhakar-
billing. The second step is to access the billing dashboard by clicking on the Billing
& Cost Management option in the AWS header.

This will take us to the billing management page. In this page, we need to click on
the Preferences tab.

For programmatic billing, we need to check the third check box (Receive Billing
Reports check box). Enabling this will ask us to provide the S3 bucket name in
which the billing details will be stored.

In order to check whether the correct permissions are there for AWS resources to
write their reports into this bucket, click on the Verify button. This should return a
green tick.

Chapter 10

[289]

Select the detailed billing reports you want to
receive
Once the bucket permissions are validated, the page will list the following reports.
Based on what kind of granularity is needed, we can choose one or more of the
options. The following reports will have billing reports starting from the point when
detailed billing is enabled:

Here are the billing conventions and details:

• Monthly report: This inclines AWS convention for all product aspects used
by an account and its IAM users on monthly basis. It can be transferred from
the Bills page of the Billing and Cost Management console.

• Detailed billing report: This tilts AWS convention for every merchandise
measurement used by an account and its IAM users on hourly basis.

• Cost allocation report: This comprises the identical data as the
monthly report, but also contains whichever charge provision tags
that you've produced.

• Detailed billing report with resources and tags: This holds the data
such as the thorough billing report, contains any charge provision tags
you've fashioned, and has ResourceID values for the AWS resources
used by your story.

AWS Billing and Amazon CDN Service

[290]

Referencing your detailed billing report data
The size of the CSV file grows bigger as we start using more and more AWS
resources. After some point, the file will become too big to be read using simple MS
Excel software. So, we have to read those reports using SDK, CLI, the S3 REST API,
or any other tool that knows how to process CSV files.

Cost allocation reporting
The cost allocation report (as already discussed) will have the detailed billing cost
information about the tag created by us. Now, the question is, what is a tag? Tag is
an indicative name that we give to our AWS resources. For example, the following
screenshot shows two instances that perform almost same function. If the user wants
to know for which function the billing cost is more, the best way is to provide the
same tag name to both the instances. This is the function of tagging resources.
In an nutshell, the cost allocation report will provide the billing information grouped
by tag name.

AWS allows us to have up to 10 tags for each resource. The following screenshot
shows two more tags with the keys Purpose and Month added to first resource.
In this way, we can easily get the aggregated billing for each tag. This tagging is
possible in almost all the AWS resources.

Chapter 10

[291]

In the Report column of the Billing Preferences page (already discussed in the Select
the detailed billing reports you want to receive section), there is a button in bottom-right
labeled Manage report tags. It will open the following page:

By default, none of the tags will be active. We can enable the check box
corresponding to the tag for which we need cost allocation report. After enabling the
proper tag, click on the Save button. Now, these tags will be ready for report.

AWS Billing and Amazon CDN Service

[292]

Cost control architectures
AWS billing and cost management can easily integrate with IAM service.
This allows us to specify which user (specifically in our organization) can have
access to our billing data. In the following section, we will see how to give
permission to IAM user 016883241246.

Controlling access to your billing report files
Even though the report (S3 bucket) can be made public and readable by everyone,
for security reasons, it's better to restrict access to wrong hands. We can restrict
access to the report bucket using the following code, which restricts access only to
the specified IAM user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "016883241246"
 },
 "Action": [
 "s3:GetBucketAcl",
 "s3:GetBucketPolicy"
],
 "Resource": "arn:global:s3:::prabhakar-billing"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "016883241246"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:global:s3:::prabhakar-billing/*"
 }
]
}

Chapter 10

[293]

The preceding code will restrict permission to other users. This will keep our reports
foolproof. Even for cost reduction, you can follow the next statements that highlight
some of the common techniques to save money:

• Shutting down unused/idle instances
• Using Reserved and Spot instances
• Removing unnecessary EIPs and EBS volumes

So far, we have seen about cost reduction and billing things on AWS. Now, we are
moving to the next important service on AWS platform—Amazon CloudFront.

CDN service from AWS – CloudFront
The success of certain networking web applications and online training providers
depends on how well they can deliver their content to the users. The content can be as
small as a 1 byte picture or as big as custom software, or training session videos that
can be in the range of several GBs. If the users are located in single region (let's say
Asia), then our server can be located in any of the Asian locations, whichever is closer
to the users. But if the users are located across the globe, then the user located further
away will feel some latency while accessing the content. The same (increase in) latency
problem will occur if more number of users are accessing the content simultaneously.
So, this requires the companies to host their sites in different regions and perform sync
across those servers, which is complicated in both design and management.

For this kind of scenario, the companies usually go for Content Delivery Network
(CDN) providers. Each provider has their own SLA and provides service over only
few or all regions. In this chapter, we are going to discuss one such CDN provider
Amazon, which provides the CloudFront service that provides CDN services. It
easily integrates with other AWS services and helps distribute the content to end
users with low latency and high data transfer speed.

How CloudFront works
In case of networking sites, whenever a picture is uploaded, all the users tagged in
the picture will be notified. Assuming that the user has uploaded the picture from
Boston and it got uploaded to the server located at Massachusetts, whenever the user
is accessing it from Washington, the image will be served to the user through many
server hops (the image is transmitted to New York first, then to Philadelphia, and
finally, to Washington).

AWS Billing and Amazon CDN Service

[294]

For 435 miles, it took three hops. But if the user is located in another continent and
the data transfer is between the U.S. server and an other continent, then it will add
more hops and latency of a few seconds. This is where CloudFront comes into the
picture. Irrespective of whether the users are located across regions, or are only in
single region, CloudFront will serve it faster. Before diving deep into CloudFront,
let's have a look at a few CloudFront nomenclatures:

• Origin servers: This is the server whose files are to be delivered using
CloudFront. CloudFront supports two broad categories of origin servers.
The first is from the S3 bucket and the second is from the HTTP server. There
is support for the HTTP server running in EC2 as well as the custom server
managed by the company (such a server is termed as custom origins). If
the files are available in S3, then we can granularly control (make the file
available publicly or privately) the access of the individual files.

• Objects: This is the word representing the files that are to be distributed
using CloudFront. It can be any static/dynamic content such as images,
videos, files, or HTML pages.

• Distribution: This is a collection of one or more origin servers. Every
distribution has a unique domain name, which will be randomly assigned
by CloudFront, if we have purchased a domain name from Route 53 or any
other provider.

• Edge locations: This is a collection of servers where CloudFront caches
copies of objects in geographically dispersed datacenters. CloudFront does
this to serve the objects faster simultaneously to users accessing it from
multiple regions.

• Expiration time: This is the time after which the cached data at the edge
location is cleared. The default value is 24 hours, minimum value is 0
seconds, and the maximum value (limit) is almost infinity.

The following figure explains the overall working of CloudFront. The first step is
configuring the origin server to the distribution (by specifying the S3 bucket names
or HTTP server location). The second step is to put the objects (videos, images, and
so on) into the origin server. For the S3 bucket, we can control each object granularly.
In the third step, the developer has to create a CloudFront distribution. As soon as
the distribution is created, the user will be notified with the CloudFront DNS for the
distribution. If the following distribution belongs to an S3 bucket (which has a file
named 1.jpg), then the file can be accessed in two ways: by just appending /1.jpg
to the CloudFront DNS or by https://<region-identifier>/<bucket-name>/1.
jpg (provided the file is public).

Chapter 10

[295]

In the final step, we need to specify the regions where edge locations will be created
for faster access speeds. This can be simply the U.S. and Europe; the U.S., Europe,
and Asia, or all edge locations. Depending on how the users are distributed across
these regions, we need to choose one of these options. The first option is less costly
than the third one.

The next figure explains how objects will be served to the end user from edge
locations. First of all, the origin server will be located in one, or many, regions as
per company preferences. If we choose the distribution objects to be made available
in all edge locations, then whenever the object is requested by a user near an edge
location, CloudFront will try to fetch it from the edge location (cache). If the object is
not found in the edge location, then the object is fetched (by edge location) from the
origin server and stored in the edge location (until the expiration time). For further
requests from users near this edge location, it will be served directly from the edge
location. This process happens for every expiration period. This reduces the number
of hops involved in serving the objects.

AWS Billing and Amazon CDN Service

[296]

By default, the expiration time is 24 hours. So, the first user request after 24 hours
will refresh the edge location cache (by fetching latest object from origin server,
if the file in edge location is not latest) and serve the user request.

Chapter 10

[297]

Getting started with CloudFront
To start with CloudFront, all we need is either an EC2 instance with an application
running in it or a S3 bucket, whose files are going to be delivered using CloudFront.
CloudFront is an easy service to configure and start with. As shown in the following
screenshot, it is available in the management console under the Storage & Content
Delivery category. Just click on the CloudFront icon in the management console.

AWS Billing and Amazon CDN Service

[298]

Clicking on the CloudFront icon will take us to the following Distributions page.
Since this is the first time we are accessing CloudFront, it will show a Create
Distribution button. Click on this button to start creating our first distribution.

In the Distributions page, Create Distribution will be visible only when no
distribution exists for the account. If some distributions are already created, then the
details such as domain name, status, and state of the distributions are shown. There
are only two steps involved in creation of a distribution:

1. Choose a proper delivery method. The delivery method can be either web or
RTMP. The web method is useful for non-streaming content such as images,
HTML pages, or files. On the other hand, RTMP is for streaming content
such as video. RTMP allows the video to be streamed even while the video
download is in progress. Here, for the sake of simplicity, we click on the Get
Started button of the Web method:

Delivery methods

Chapter 10

[299]

2. Configure the distribution. There are three broad configuration categories
involved in this step. The first step is to specify the origin settings. Here,
there will be two text boxes:

3. The first text box asks us to provide the URL of the origin server.

4. Click in the Origin Domain Name field and specify the domain name for
your origin—the Amazon S3 bucket or web server from which you want
CloudFront to get your web content. The drop-down list enumerates the
AWS resources associated with the current AWS account. To use a resource
from a different AWS account, type the domain name of the resource. For
example, for an Amazon S3 bucket, type the name in the format bucketname.
s3.amazonaws.com. The files in your origin must be publicly readable.

AWS Billing and Amazon CDN Service

[300]

5. Enter a description for the origin. This value lets you distinguish multiple
origins in the same distribution from one another. The description for each
origin must be distinctive surrounded by the supply.

If you need to restrict users to permanently access your Amazon S3 content by means
of CloudFront URLs and not Amazon S3 URLs, select the Yes radio button. This is
beneficial when you're using signed URLs to limit admittance to your content. In the
Help section, you can see Serving Private Content through CloudFront option. In
Help section with CloudFront, you can do following things:

1. To involve that users permanently access your Amazon S3 content by
means of CloudFront URLs, you allocate a distinct CloudFront user—an
origin access individuality—to your origin. You can either produce new
origin access individuality or reprocess a prevailing one. Supplementary
configuration is essential. In the Help section, you can check and see the
Serving Private Content through CloudFront option. Enter a comment that
you can use to identify the new origin access identity later, for example,
"Static content for example.com".

2. If you want CloudFront to automatically grant read permission to the origin
access identity when you create the distribution so that CloudFront can
access objects in your Amazon S3 bucket, click on Yes, and then Update My
Bucket Permissions. Whichever option you choose, you should review the
permissions on the bucket.
The default cache behavior only allows a path pattern of * (forward all
requests to the origin specified by origin). To change the behavior or the
routing for other requests (for example, *.jpg), add more cache behaviors
after you create the distribution.

3. If you want CloudFront to allow viewers to access your web content using
either HTTP or HTTPS, specify it. If you want CloudFront to redirect all
HTTP requests to HTTPS, specify that too. If you want CloudFront to require
HTTPS, specify HTTPS Only.

4. Select the list of HTTP methods you want to allow for this cache behavior.
5. Select whether you want CloudFront to forward the headers sent in viewer

requests and to cache your objects based on header values.

Chapter 10

[301]

6. Choose Use Origin Cache Headers if your origin server is totaling a
Cache-Control header to control how long your objects will remain in the
CloudFront cache. Choose Customize to postulate a lowest time that objects
halt in the CloudFront cache irrespective of Cache-Control headers.

The minimum amount of time for an object is in a CloudFront cache;
beforehand, CloudFront forwards additional demand to your origin to
govern whether a modernized version is obtainable. The default time is 24
hours. To alter the time that an object is in the cache, shape your origin to
enhance a Cache-Control max-age directive.

7. Choose whether you want CloudFront to include all user cookies in the
request URLs that it forwards to your origin, only selected cookies, or no
cookies. If you choose Whitelist, enhance the names of the cookies to the
Whitelist Cookies arena.

8. Choose whether you want CloudFront to contain query strings in the request
URLs that it forwards to your origin. If you want the reappearance dissimilar
forms of an object based on the query string, select Yes.

9. If you want to use Microsoft Smooth Streaming for on-demand streaming,
click on Yes.

AWS Billing and Amazon CDN Service

[302]

10. Choose whether you need CloudFront for users to access your content
using a signed URL or not. If you choose to limit viewer access, users would
require to use signed URLs to access your content.

11. Choose the price class linked with the maximum price that you need
to pay for CloudFront service. If you choose a price class as a first priority,
some of your users may face difficult latency.

12. If you want to use your own domain name instead of the CloudFront domain
name for the URLs for your files, stipulate up to 100 CNAMEs. Separate
CNAMEs with commas or place each one in a new line. You also need to
create a CNAME record with your DNS service to course queries for www.
example.com to u1234.cloudfront.net.

13. In the Default Root Object text box, stipulate the title of the object that you
need CloudFront to return (for example, index.html) when a viewer appeal
points to your root URL (http://www.example.com) as an alternative of a
specific object in your delivery.

Chapter 10

[303]

14. Choose whether you require CloudFront to log all viewer requests for files in
your distribution. You will be charged for access logs additionally.

15. Click in the field and define the Amazon S3 bucket in which you need
CloudFront to save web access logs. To practice a bucket from a diverse
AWS account, provide the bucket name in the following format:
bucketname.s3.amazonaws.com.

The prefix for the names of log files (for example, myCDN/) is optional.
The slash after the prefix is optional but recommended to simplify
browsing your log files.

16. Select whether you want CloudFront to include cookies in access logs.
When the distribution is enabled, CloudFront processes viewer requests
for the content associated with this distribution. When the distribution is
disabled, CloudFront does not accept any requests for the content associated
with this distribution.

AWS Billing and Amazon CDN Service

[304]

17. Clicking on the Create Distribution button will start the distribution
creation and take us to the CloudFront Distributions page. In the following
screenshot, we can see that the random domain name assigned to the
distribution is d1o5k7ird1xt97.cloudfront.net, the status is In Progress, and
the state is Enabled:

This creation of CloudFront distribution will take some time (10-15 minutes). Right
now, the distribution is available in all the edge locations across the world. If the
users accessing these objects are only located in the U.S. and Europe, then we are
unknowingly placing the objects in edge locations (Asia and many other regions),
which would never be accessed by the users. This will add more cost and more read
operations from our origin servers. In order to avoid this over-billing, it is possible to
choose one of the three options (or price classes) for the distribution. If we feel that
the user is located only in the U.S. and Europe, then it's better to select first option,
which is cost-effective. Even if few requests for the objects come from other locations,
it will be served directly by the U.S./European edge location.

Chapter 10

[305]

Meanwhile, we will have a look at the S3 bucket acting as the origin server for
our distribution. The following screenshot shows the content of the my-s3-for-cdn
bucket. It has a file named as 1.jpg, which will act as the index or welcome object.
For example, this file can be accessed by giving two URLs:

1. First, by simply entering the CloudFront domain name, which is
http://d1o5k7ird1xt97.cloudfront.net/ in our case.

2. Second, by appending 1.jpg with the CloudFront domain name, which is
http://d1o5k7ird1xt97.cloudfront.net/1.jpg in our case. One URL is
given in following screenshot for your reference.

3. If the status of the distribution changes to Deployed, then we can be
sure that our distribution is now made available. If we want to change
any of the distribution parameters, all we need to do is select the distribution
and click on the Distribution Settings button. This will allow us to
specify all the parameters, which we have discussed so far, and perform a
redeployment. Again, the status of the distribution will become In Progress
and it will be Deployed.

AWS Billing and Amazon CDN Service

[306]

It is not possible to delete a distribution when it is enabled.
That is the reason why the delete button is disabled for our
distribution. In order to delete the distribution, we must
first disable it and then we can delete it.

4. Copy the domain name and paste it in the browser. You will be able to see
the picture 1.jpg (which is available in the S3 bucket, origin server, and
we have set it as root object). Even if we append 1.jpg to the domain name,
we will see the same picture:

So, you see the output as a clear image that is coming from the CDN network.

Even when we are changing any of the distribution parameter and the
distribution is in the In Progress status, it can serve the user requests.

These were the simplest steps to configure the AWS CloudFront service with
your content.

Chapter 10

[307]

Streaming
For the streaming of content, AWS CloudFront offers the following features:

• On-demand Smooth Streaming: Use CloudFront to distribute video
using the Smooth Streaming format deprived of the requirement to setup,
configure, and control any media servers.

• Live Streaming for Amazon CloudFront using Adobe Media Server 5.0:
This has a provision for both Flash-based and Apple iOS campaigns with
Adobe Media Server 5.0.

• Live Streaming for Amazon CloudFront Using Windows Media Services:
This allows you to distribute live media over HTTP to Microsoft Silverlight
consumers and Apple iOS expedients.

• Live Streaming with Wowza: This offers Live Streaming Support with
Wowza Media Server.

Summary
In this chapter, you learned how to do programming for AWS billing, which can be
accessed from the application, and how to do cost allocation reporting. Furthermore,
we discussed the AWS billing configuration and cost control tips to cut down the
cost. Finally, we discussed the AWS CloudFront service in detail. In the next chapter,
you will come to know about big data and Apache Hadoop on AWS cloud. You will
also learn how to use the EMR and Kinesis services with big data analytics and for
Hadoop solutions.

[309]

Analyzing Big Data with AWS
The data we work with is heterogeneous. Users produce content such as blog posts,
tweets, social media interactions, and images. Servers log messages continuously.
Scientists generate comprehensive data about the ecosphere around us. The Internet,
a vital source of data, is incomprehensibly bulky. This astounding development in
data has affected businesses. Old-fashioned database systems, such as relational
databases, have been pushed to the boundary. These systems are breaking under
the forces of "Big Data." Old-fashioned systems and the data management practices
accompanying them have failed to scale up to Big Data. In this chapter, we will cover
the following topics:

• An introduction to Big Data and Hadoop
• An introduction to Amazon Elastic MapReduce
• Working with Hive
• Amazon Kinesis

To hold the encounters of Big Data, a new strain of skills has emerged. Many of
these new technologies have been grouped under the term NoSQL. In some ways,
these innovative technologies are more complex than traditional databases and, in
some ways, they are modest. These systems can scale to massively large sets of data,
but these technologies need an essentially innovative set of techniques. They are
not one-size-fits-all explanations. Many of these Big Data systems were initiated by
Google, along with distributed filesystems, the MapReduce computation framework,
and distributed locking services. Another prominent contributor to this space was
Amazon, which created its own product; a groundbreaking, distributed key-value
store called DynamoDB. The open source community answered in the following
years with Hadoop, HBase, MongoDB, Cassandra, and many other projects.

Analyzing Big Data with AWS

[310]

Introducing Big Data and Hadoop
Big Data carries with it two key challenges: how to store and work with ample data
sizes and, more importantly, how to comprehend data and improve it. Hadoop
fills a breach in the market by storing and providing computational proficiencies
over considerable amounts of data. It's a distributed system made up of a dispersed
filesystem, and it offers a way to parallelize and execute programs on a cluster
of machines. You've most probably come across Hadoop, as it's been embraced
by technology titans like Yahoo!, Facebook, and Twitter to meet their Big Data
requirements. It's building inroads across all business sectors.

Hadoop is a platform that delivers distributed storage and computational
proficiencies. Hadoop was first developed to answer a scalability concern that
occurred in Nutch, an open source crawler and search engine technology. At that
time, Google had issued papers that termed its novel distributed filesystem, the
Google File System (GFS), and MapReduce, a computational framework for parallel
processing. The successful implementation of these concepts in Nutch led to two
separate projects, the second of which became Hadoop—a first-class Apache project.
Hadoop is a distributed master-slave architecture that consists of the Hadoop
Distributed File System (HDFS) for storage and MapReduce for computational
competences. Properties essential to Hadoop are data splitting and parallel
computation of huge datasets. Its storage and computational proficiencies scale with
the accumulation of hosts in a Hadoop cluster. It can extend volume sizes in PB on
clusters with thousands of hosts to fulfill its Big Data requirements. It is also building
inroads into all business segments.

Introducing Amazon Elastic MapReduce
Amazon AWS provides Hadoop as a PaaS. Establishments and people can
access Hadoop clusters on the fly, run their workloads, and download outcomes.
Provisioning a Hadoop cluster using Elastic MapReduce (EMR) takes a few minutes
and a few steps.

The common steps to form and run workloads on EMR are as follows:

1. The application is developed locally in Java using Hadoop's MapReduce
APIs, Hive (Hive is a data warehouse product that facilitates querying and
managing huge datasets residing in distributed storage) or a language of
the user's choice. Languages not based on Java can be executed in a Hadoop
cluster using Hadoop Streaming.

Chapter 11

[311]

2. The application and the relevant data are stored in Amazon S3. Numbers of
clients for data upload are displayed on web interface can also be used. Data
can be written directly to HDFS on the EMR cluster as sound.

3. From the AWS Management Console, the cluster configuration is stated and
launched. Cluster configuration displays the huge number of machines in the
cluster, the version of Hadoop to use, and supplementary applications that
have to be installed on the cluster. The movements to be achieved once the
cluster is provisioned are also a part of this stage.

4. The cluster will be launched after the data processing is finished, and the
outcomes are either moved into S3 or can be read off HDFS on the cluster.

Provisioning a Hadoop cluster on EMR
Follow the steps given here to start with EMR:

1. The services of importance to us are S3 and Elastic MapReduce:

Analyzing Big Data with AWS

[312]

2. Clicking on the Elastic MapReduce service will take you to the EMR service
management page. It provides a brief outline of EMR and the key stages to
launch a cluster. The Create Cluster button is used to launch the Hadoop
cluster wizard:

3. Before starting the launching process of Hadoop cluster, we have to upload
the data and the equivalent application onto S3.

4. Files can be uploaded to S3 via the Upload button when a specific bucket is
designated. There is a button to form folders inside the bucket.

Chapter 11

[313]

The files show metadata such as size, storage class, and the last altered date and time
of that specific file. Files can be put in the S3 bucket using a number of file manager
programs that are available for S3 or via the web interface as follows (you have to
upload Hadoop JAR from web to S3 bucket):

The following image shows the masteringhadoop bucket with folders and files
in an S3 account:

Amazon EMR delivers a number of model jobs that can be run on the provisioned
clusters. A nice functionality of Hadoop is streaming for word count. The program is
written in Python and counts the words of a text file. The files whose words need to
be counted and the program are already on an unrestricted bucket on S3 and can be
used by anybody to experiment on the EMR cluster. A sample word count example
can be viewed on the following URL:

Analyzing Big Data with AWS

[314]

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-
mapreduce-client-core/MapReduceTutorial.html.

1. Let's continue by going back to the EMR console and clicking on the Create
Cluster button on the console. The Create Cluster page has numerous
subdivisions. Each division configures a specific facet of the cluster.

2. The main division is the Cluster Configuration section, where the cluster
properties are declared. It is shown in the following screenshot of this
section. Some of the components of Cluster Configuration are as follows:

 ° Cluster name: An approachable name for the cluster. This name will
help identify and manage a cluster based on the name

 ° Termination protection: This is set to Yes in the following example.
When turned on, it precludes the cluster from terminating when
failures are met. If the cluster needs to be dismissed, it has to be
overtly set to No before termination

 ° Logging: This can be turned on and an S3 path can be stated to save
the logs. Logs are printed on the /mnt/var/log directory of the
"Master Node". These are copied onto S3 at intervals of 5 minutes

 ° Debugging: By empowering debugging, an index of the log files will
be fashioned in SimpleDB

3. The next division is the Tags division. Up to 10 key-value strings can be
associated with the EMR cluster. These tags are preserved in the underlying
EC2 instances that run the Hadoop cluster.

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Chapter 11

[315]

4. The next divisions configure the software and the hardware of the EMR
cluster we would require.

In the Software Configuration segment:

 ° Hadoop Distribution: The Hadoop distribution to be used in the
cluster can be set here. Amazon has its own Hadoop distribution.
It also supports the Hadoop distribution of MapReduce. Hadoop
versions 2.4.0, 2.2.0, 1.0.3, and 0.20.205 are present. Each version of
Hadoop has different AMIs corresponding to it. In our example, we
will go through Hadoop 2.2.0 that is installed on AMI version 3.0.4 to
be consistent throughout the chapter.

 ° Applications to be installed: By default, Hive and Pig are installed.
HBase, Impala, and Ganglia are three other applications that are
accessible with this sort of Hadoop.

In the Hardware Configuration segment:

 ° Network: A VPC can be used to connect to a private Cloud for
processing subtle data. In the example, we will select a default VPC.

 ° EC2 Subnet: You can choose from all the subnets available within
your region and there is an option to choose a random subnet.

5. There are three types of EC2 instances:
 ° Master: This EC2 instance is answerable for handover tasks to

the diverse core and task nodes. At least one master instance
should be there.

 ° Core: These nodes execute tasks as well as the ones that act as
data nodes.

Analyzing Big Data with AWS

[316]

 ° Task: These nodes can only implement tasks. They do not have
the data node module and are not fragment of the HDFS.

6. The next segment is the Security and Access segment. It permits the user to
set access control on the cluster and specify the keys for access. If you need to
SSH into any of the EC2 instances, you need an Amazon EC2 key pair.

Chapter 11

[317]

7. Setting a role in the EMR role dropdown permits the application using
that role to access other AWS services. Correspondingly, setting a role in
the EC2 instance profile allows EC2 instances within EMR to access other
AWS services:

8. The next segment is about setting the Bootstrap Actions for the cluster. Setup
scripts can be listed here to instruct any distinct configuration that would be
essential before beginning the cluster. The Add bootstrap actions dropdown
has the following options:

 ° Configure Hadoop
 ° Configure daemons
 ° Run if
 ° Custom action

9. The final subdivision is the Steps subdivision. This is the division where jobs
can be acquiesced to the Hadoop cluster. In the example, the dropdown has
options to execute following programs:

 ° A Hive program
 ° A Pig program
 ° A Streaming program
 ° An Impala program
 ° A custom MapReduce Java JAR

Analyzing Big Data with AWS

[318]

We will understand how we can supplement a streaming program from the
AWS EMR samples that are at present obtainable. This subdivision also has
an auto terminate action that terminates the cluster before the last step has
been executed:

10. In the given example, let's choose a Hadoop Streaming program step.
Clicking on the Configure and add button starts the Add step wizard,
as shown in the next screenshot.

11. We will give a user-friendly name for the given step. The Mapper task
is set to the Python program given by the S3 path, s3://us-west-2.
elasticmapreduce/samples/wordcount/wordSplitter.py. The
Reducer is set to aggregate. This is a built-in reducer that sums the values
corresponding to every key. The folder holding the files on which we run
word count is given by the S3 path, s3://us-west-2.elasticmapreduce/
samples/wordcount/input. This is stated in the Input S3 location. The
Output S3 location is indicated by the path, s3://masteringhadoop/
wordcount/output/2014-07-15/15-28-19. The word count output is put in
this folder. Any further arguments can be stated in the Arguments box.

Chapter 11

[319]

12. We can also postulate the steps to be undertaken if a failure is faced. Click on
the Save button and you can review the earlier running of the cluster:

13. The Steps segment now looks like the following screenshot. Click on the
Create cluster button to start provisioning the cluster, as shown here:

Analyzing Big Data with AWS

[320]

14. Clicking on a cluster shows the details of the cluster:

Cluster details

15. When we expand the Steps section, the details are as follows:

16. The link in the right-hand side corner gives details of the jobs being executed
in the step. Clicking on the View jobs link of the current step shows the
particulars about the job and its tasks as shown in the following screenshot.
Three reduce tasks were executed along with 12 map tasks to complete the
program. The attempts by the tasks can be analyze by clicking on the given
View attempts link:

Chapter 11

[321]

17. Expanding cluster details on the EMR dashboard can also display a
swift summary of the cluster. The screenshot of this view is shown in
the following image:

Cluster summary

18. Lastly, when the job is done, the output files can be realized in S3.
The output directory was stated when initiating the job. The following
image of the output directory in S3 is given as follows:

During the software configuration phase, we need to specify the install of Hive
and/or Pig based on the necessity. The subsequent screenshot shows the software
configuration segment of a cluster with Hive and Pig installed. Based on the AMI
selection, a suitable version of Hive and Pig are accessible:

Analyzing Big Data with AWS

[322]

Once the cluster is provisioned with Hive and Pig installed, we can SSH into the
master node. It is essential to get a key-value pair from Amazon and give it to the
cluster. If this is not done, it is not possible to SSH into the cluster instances.

All Hadoop services run under the Hadoop user. By inputting the respective
application names on the CLI of the master node, we can start the Hive (grunt) shell,
as shown in following screenshot:

Hive (grunt) shell

Interactive commands can now be executed using the preceding prompts.
File locations can be identified with s3://<bucket name>/<folder name>
paths to read them off S3.

Hive presents relational and SQL notions into Hadoop via MapReduce. A natural
step in bringing further customers onto Hadoop is to flatten the knowledge curve
by adopting notions they are well acquainted with.

Apache Hive is frequently labeled as a data warehouse infrastructure.
Conventionally, business intelligence is assembled from a data warehouse, a
database that stores data from many foundations contained by an enterprise. This
data store is mainly queried for reporting and analytics. Usually, infrastructure
that makes data warehouses involves RDBMS and the query language (SQL) which
is used to achieve analysis and produce reports. Data warehouse infrastructure
consists of relational data stores and is queried using SQL. Distinct star or snowflake
schemas were used to model these data stores. Apache Hive continues this tradition
of SQL, but changes the essential data store to HDFS. The queries are decoded into
MapReduce jobs. The alternative to SQL used in Hive queries is called HiveQL.

Chapter 11

[323]

Hive structural design
The following image shows the Hive structural design:

Metastore
The metastore is a Hive catalog for system allied metadata. It provisions facts around
the tables, partitions, schemas, and table locations. It can be retrieved via the Thrift
interface making it conceivable to read this data using clients transcribed in various
different programming languages. The data is stored in a relational database system
and uses an Object-Relational Mapping (ORM) layer to read and write data into
the store. The reason behind using an RDBMS for the metastore was to condense the
latency when serving this material to the Hive query compiler.

The ORM layer of the metastore permits a pluggable model, where any RDBMS can
be plugged into Hive. The default RDBMS used is Apache Derby, an open source
relational data store. In practice, establishments use MySQL and other widespread
RDBMS suites to host the metastore. The data in the metastore imposes structure on
otherwise raw HDFS files. This makes it dangerous to defend the metastore from
smashes by consistent backups or replication. The metastore is solitary retrieved
throughout compilation and never when MapReduce jobs are running.

Analyzing Big Data with AWS

[324]

Compiler
The compiler leads a HiveQL query and renders it into MapReduce jobs.
A parser parses the query and constructs an Abstract Syntax Tree (AST). The AST
is tested for types and semantic stabilities. Metadata from the metastore is used to
accomplish this phase. The output of the checks is a Directed Acyclic Graphs (DAG)
operator. A sequence of optimization transformations are then applied on the DAG.
The transformations are immobilized and the output is an optimized operator tree.
Users are permitted to add their transformations by implementing the Transform
interface. The optimized DAG is then translated into a physical plan. The physical
plan is a set of MapReduce and HDFS jobs. A HDFS job is used to read and write
data from HDFS.

The execution engine
The execution engine precedes the plan produced by the compiler and implements
the job firmly in order of their dependencies. The plan is transferred to each task
in the Hadoop cluster via a plan.xml file. This file is dispersed in the cluster using
a side channel like the DistributedCache. Job outputs are deposited in temporary
locations. On the accomplishment of the whole query, if a store place is indicated,
these files are moved to suitable locations as indicated by the Data Manipulation
Language (DML). If a query is deprived of a store position, the outcomes are served
unswervingly from the momentary place.

Supporting apparatuses
The Hive infrastructure has a number of supporting apparatuses:

• The driver is the element that levers query submissions. It is accountable for
organizing the lifecycle of a query by appealing the resources in the accurate
order to finish it. The driver also spawns sessions and keeps track of session
information.

• There are numerous client apparatuses that are used to submit queries
to Hive. The famous ones are the CLI, a web interface, and JDBC/ODBC
connectors.

• Extensibility apparatuses such as the SerDe and ObjectInspector interfaces
are there to assist users assimilate with diverse data types and legacy data.
User-defined Functions (UDFs) and User-defined Aggregate Functions
(UDAFs) are convention utilities that can be transcribed by the user to
deploy Hive's proficiencies.

Chapter 11

[325]

Data types
Hive provides all the primary numeric data types such as TINYINT, SMALLINT, INT,
BIGINT, FLOAT, DOUBLE, and DECIMAL. Along with these primitive data types, Hive
also provisions string data types such as CHAR, VARCHAR, and STRING. Like SQL, the
time pointer data types such as TIMESTAMP and DATE are contemporaneous. BOOLEAN
and BINARY assorted types also exist.

A number of composite types are also available. Composite types can be composed
from other primitive or composite types. The composite types are as follows:

• Structs: These are alliances of data foundations alike to a C-struct. The
dot representation is used to dereference essentials surrounded by a struct.
A field in the column C defined as a STRUCT {x INT, y STRING} can be
retrieved as U.x or U.y. The syntax is as follows:

STRUCT<field_name : data_type>

• Maps: These are key-value data types. Given that the key (surrounded by
square braces) can contact a value, then a value of a map column M that
maps from key x to y can be retrieved by M[x]. The syntax is as follows:

MAP<primitive_type, data_type>

• Arrays: These are lists that can be randomly accessed through their position.
The syntax is as follows:

ARRAY<data_type>

• Unions: There is a union data type available in Hive. It can hold a component
of one of the data types stated in the union. The syntax is as follows:

UNIONTYPE<data_type1, data_type2…>

Hive functions and data types are case insensitive and available
based on Hive versions.

Analyzing Big Data with AWS

[326]

Data model
Hive data is organized as databases. A database is a logical collection of Hive
tables. A database surrounded by Hive, consigns a namespace for its tables. If no
namespace is assigned to Hive tables, they go to the default database. Creating a
database results in the creation of a HDFS directory for the files in the database. This
directory serves as the namespace for the tables. The CREATE DATABASE hadoop;
command constructs a Hadoop database. When we list the HDFS directory structure,
we can check a directory created for this database with the following command:

drwxr-xr-x - uchit supergroup 0 2015-02-28 18:55 /user/hive/warehouse/
hadoop.db

Now let's discuss the terminology behind Hive and its use cases:

• A table is the elementary unit of data storage that is similar to RDBMS.
It groups records of the same type. Records are rows equivalent to typed
columns. A table maps to a single directory within HDFS. Hive also permits
impressive data structures on present data locations via external tables.
Metadata stored inside Hive for each table holds the column types and list
of columns. It also contains other information such as the owner of the table,
serialization and deserialization evidence (Serde) for the columns, data
storage formats, and bucketing related metadata. Databases and tables are
stored in the HDFS location stated by hive.metastore.warehouse.dir.

While postulating the LOCATION for an EXTERNAL table in HDFS,
Hive presumes the data files to be in a directory.

• Partitions are separations of the table based on separate column values.
When partition columns are quantified, all the records consistent to discrete
values or value recipes of the columns are stored in a subdirectory within
the table directory. Partitions are used as filters to stop excessive records
from being processed, decreasing query latency and I/O time. It is true
that partitions also increase the number of files in HDFS and, therefore,
the number of map tasks and in-between outputs. A DROP command on an
EXTERNAL table does not delete the data in HDFS.

• Buckets or clusters are files in the leaf-level directories that are connected
to records that have the equivalent column value hash. A Hive user can
stipulate the number of buckets per partition or per table.

Chapter 11

[327]

Let's take the file worldcitiespop.txt and create a table out of it. The following
Data Definition Language (DDL) query shows how a schema can be executed on
an external table:

CREATE EXTERNAL TABLE hadoop.worldcities_external(code
VARCHAR(15), name STRING, fullName STRING, region INT, population
BIGINT, lat FLOAT, long FLOAT)
COMMENT 'This is the population table'
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION '/user/uchit/worldcitiespop';

For the code, check 3632EN_11_01.txt from the code bundle. The keyword
EXTERNAL is used to specify a present table. There are keywords accompanying
every bit of metadata that is deposited in the Metastore. ROW FORMAT is used to
postulate the serialization and deserialization semantics of a table. If ROW FORMAT is
not indicated or ROW FORMATDELIMITED is designated, a Hive native SerDe is used
to create the table rows. The STORED AS clause postulates the underlying file format
used by the table and LOCATION indicates the place where the table data is stored
within HDFS. When the EXTERNAL keyword is used, no additional HDFS directories
are produced.

It is compulsory in Hive that every table maps to an HDFS directory
containing an EXTERNAL table.

Let's try to create a table that is not external using the DDL query as follows
(for the code, check 3632EN_11_02.txt from the code bundle):

CREATE TABLE hadoop.worldcities(code VARCHAR(15), name STRING,
fullName STRING, region INT, population BIGINT, lat FLOAT, long
FLOAT)
COMMENT 'This is the population table'
PARTITIONED BY (region_p INT)
CLUSTERED BY (code) SORTED BY (code) INTO 2 BUCKETS
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS SEQUENCEFILE;

This table definition states a partition column inside the table. It also specifies the
number of buckets, two, within every partition. The fundamental file format of the
table is the SEQUENCEFILE format. A partition column cannot have an identical name
to any other column. When loading data into the table, the partition column must be
preserved as a separate column.

Analyzing Big Data with AWS

[328]

Using the following DML query, we will colonize the above table using the external
table we fashioned:

set hive.enforce.bucketing = true;
set hive.enforce.sorting = true;
set hive.exec.dynamic.partition = true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.max.dynamic.partitions.pernode=1000;
FROM MasteringHadoop.worldcities_external
INSERT OVERWRITE TABLE MasteringHadoop.worldcities
PARTITION(region_p)
SELECT code, name, fullName, region, population, lat, long, region
WHERE region IS NOT NULL;

You'll find the code snippet in 3632EN_11_03.txt in the code bundle. All partitions
have two buckets that will be organized on the country code.

Indexing on Hive tables
In an RDBMS, indexing is used for faster lookup of data, which in turn transmits to
quicker queries. Hive indexes are alike to non-clustered indexes from old-fashioned
databases. They keep track of mapping amid the data and the relevant HDFS blocks
they exist in. This permits a MapReduce job to check out only the related blocks to
practice queries.

In our example, an index is fashioned using two diverse handlers, the compact and
the bitmap handler. A Hive index is nothing but a table in HDFS. The DEFERRED
REBUILD directive is used to initiate Hive to fill the index at an advanced stage. An
ALTER INDEX command can be supplied to construct the index at a later argument of
time. The code is as follows:

USE hadoop;
CREATE INDEX worldcities_idx_compact ON TABLE worldcities (name)
AS 'COMPACT' WITH DEFERRED REBUILD;
CREATE INDEX worldcities_idx_bitmap ON TABLE worldcities (name) AS
'BITMAP' WITH DEFERRED REBUILD;
DESCRIBE hadoop__worldcities_worldcities_idx_compact__;

Chapter 11

[329]

You'll also find the following code snippet in 3632EN_11_04.txt in the code bundle.
The output of the DESCRIBE operation on the squashed index tables is presented
next. For every partition and bucket, the index table grasps an array of offsets. These
equalizers can be used to unswervingly acquire the block of data. This can be seen in
the following code snippet:

hive> DESCRIBE hadoop__worldcities_worldcities_idx_compact__;
OK
name string
_bucketname string
_offsets array<bigint>
region_p int

Partition Information
col_name data_type comment

region_p int
Time taken: 0.071 seconds, Fetched: 9 row(s)

Bitmap indexes are used when the number of conceivable values taken
by the indexed column is the reduced amount. The index table structure for
a Bitmap index is also related. Nonetheless, the information encoded is diverse.
The _bitmaps field provisions a bit for every record in the table. If the presented
value is contemporaneous in the record, that individual bit is turned on or off.
The index table structure of a bitmap index is as follows:

hive> DESCRIBE hadoop__worldcities_worldcities_idx_bitmap__;
OK
name string
_bucketname string
_offset bigint
_bitmaps array<bigint>
region_p int

Partition Information
col_name data_type comment

region_p int
Time taken: 0.087 seconds, Fetched: 10 row(s)

Analyzing Big Data with AWS

[330]

Amazon Kinesis
As designated by Amazon, Kinesis is a fully managed service for real-time processing of
streaming data at immense scale.

Kinesis can ingest data from countless sources extending from cell phones to large
servers or, in general, "any scheme that is capable of making a put call can be a
foundation of data for Kinesis". Kinesis is supplementary around rapid calculations
and this rapidly computed data can be later deposited into other AWS Services such
as Redshift, DynamoDB, and so on for additional investigation.

Visualize the method in which lumberjacks move lumber. It is pushed in to a rapidly
moving stream, where it floats all the way to the end and is picked up and taken
away to factories for subsequent treatment. In the same way, AWS Kinesis can be
measured as a constantly rolling stream. Cell phone devices, servers who push the
server logs, Facebook comments, and stock market data are fed into the stream and
AWS Kinesis, executing the Kinesis Client Library (KCL) will be at the end the
stream prepared to process the data, as and when it arrives.

Kinesis terminology
The following terms are used most frequently when you are working with Amazon
Kinesis. To start with Kinesis, Amazon uses their pre-build terms. So we will go
though those terms and their definitions.

Streams
An Amazon Kinesis stream is a methodical order of data records. Each record in the
stream has a classification (sequence) number that is allocated by Amazon Kinesis.
The data records in the stream are dispersed into shards.

Data records
A data record is the component of data deposited in an Amazon Kinesis stream. Data
records are composed of a sequence number, partition key, and data blob, which is
an absolute sequence of bytes. Amazon Kinesis does not examine, construe, or alter
the data in the blob in whichever way. A data blob can be up and about to 50 KB.

Producers
Producers place records into Amazon Kinesis streams.

Chapter 11

[331]

Consumers
Consumers acquire records from Amazon Kinesis streams and process them.

Shards
A shard is an exclusively recognized group of data records in an Amazon Kinesis
stream. A stream is made up of multiple shards, each of which delivers a stationary
piece of capability. Every shard can provision up to five read transactions per
second, up to an extreme total of 2 MB of data read per second and up to 1000
records inscribed per second, up to a concentrated total of 1 MB data transcribed per
second. The data aptitude of your stream is a utility of the number of shards that you
stipulate for the stream. The total capability of the stream is the summation of the
capabilities of the aforementioned shards.

Partition keys
A partition key is used to assemble data by shard surrounded by a stream. Amazon
Kinesis isolates the data records that are in the right abode in a stream that is into
manifold shards, by means of the partition key accompanying with every data
record to govern which shard a specified data record fits to. Partition keys are
Unicode strings with a supreme extent boundary of 256 bytes. An MD5 hash
function is used to map partition keys to 128-bit integer values and to map
linked data records to shards.

Amazon Kinesis Client Library
The Amazon Kinesis Client Library is accumulated into your application to empower
fault-tolerant ingestion of data from the Amazon Kinesis stream.

For example, we will form a data visualization model application that establishes
how to practice Amazon Kinesis for real-time data ingestion and analysis. The model
application fashions a data producer that positions pretend visitor counts from
several URLs hooked on an Amazon Kinesis stream. The stream strongly provisions
these data records in the order acknowledged. A data consumer gets these records
from the stream, and then estimates how many visitors initiated from a precise URL.
To conclude, a simple web application samples the outcomes in real time to deliver a
conception of the designs.

Analyzing Big Data with AWS

[332]

To get you started quickly, the sample application uses AWS CloudFormation. AWS
CloudFormation sanctions you to produce sample templates to designate the AWS
resources and any supplementary dependencies or runtime parameters essential
to run your application. The sample application practices the sample template to
produce all the essential resources swiftly, containing producer and consumer
applications running on Amazon EC2 and a table in Amazon DynamoDB to stock
the combined record amounts:

1. Go to AWS CloudFormation service dashboard and give the template URL as
given here (please try with m3.large instance): https://s3.amazonaws.com/
kinesis-demo-bucket/amazon-kinesis-data-visualization-sample/
kinesis-data-vis-sample-app.template.

2. Once you provide the above URL and click Next, you will get the
subsequent screen:

3. Click on Next after specifying the necessary parameters. You will see
the following review screen where you have to click on the check box to
acknowledge that IAM resources will be created on behalf of you. Finally,
click on the Create button:

https://s3.amazonaws.com/kinesis-demo-bucket/amazon-kinesis-data-visualization-sample/kinesis-data-vis-sample-app.template
https://s3.amazonaws.com/kinesis-demo-bucket/amazon-kinesis-data-visualization-sample/kinesis-data-vis-sample-app.template
https://s3.amazonaws.com/kinesis-demo-bucket/amazon-kinesis-data-visualization-sample/kinesis-data-vis-sample-app.template

Chapter 11

[333]

4. After clicking on the Create button, you should see a stack with the status
CREATE_IN_PROGRESS. The stack may take several minutes to create, but
when the status is marked CREATE_COMPLETE, go on to the next step:

Analyzing Big Data with AWS

[334]

5. Once this is done, on the Stream List page, you should see a stream
with two shards and a status of ACTIVE. The stream name initiates
with KinesisDataVisSampleApp-KinesisStream-[RandomString].
Click on the link to the stream to open the stream details page.

6. Review the stream statistics in the following graphs:

Chapter 11

[335]

7. To view the real-time data analysis graph, go to AWS CloudFormation
service dashboard and select your template. After selecting, go to the
Output tab to see the graph like the following one:

This model application establishes the communal stream processing use case of
carrying out a sliding window investigation over a 10-second gap. The data shown
in the overhead visualization imitates the fallouts of the sliding window analysis
of the stream as a constantly modernized graph. To sum up, the data consumer
accomplishes Top-K analysis in excess of the data stream to work out the top three
referrers by amount, which is presented in the table instantaneously underneath the
graph and modernized every 2 seconds.

Summary
We started the chapter by introducing Big Data and Hadoop. After getting an
overview of Hadoop, we created an EMR cluster with example. Then, we learned
about Hive. Hive brings in SQL and RDBMS concepts to Hadoop through its query
language, HiveQL. Finally, you learned about the basics of Kinesis and how to
fashion a sample application with the help of the CloudFormation template on
Amazon Kinesis.

In the next chapter, we will be looking at advanced services administration and
programming with Amazon CloudSearch and Amazon Mechanical Turk. Also,
we will see what kind of security AWS is providing and how to use those security
features at the infrastructure and application level.

[337]

Miscellaneous Features,
AWS Security, and

Troubleshooting
In this chapter, we will discuss advanced services for administration and
programming with CloudSearch and Mechanical Turk. Also, we will try to
understand what kind of security AWS is providing and how to use those security
features in the infrastructure and application level. At the end of this chapter, we
will discuss some common troubleshooting practices. The list of topics that will be
covered in this chapter is as follows:

• Leveraging Amazon CloudSearch and Mechanical Turk
• AWS security features
• Troubleshooting practices

So, let's start our journey in this chapter with the Amazon CloudSearch service.

Amazon CloudSearch
Search is the most perilous unit of many online verticals, such as travel, e-commerce,
classifieds, and so on. If users cannot search applications/products proficiently, they
will not make their buying verdicts appropriately, which, in turn, immensely touches
the revenues of those organizations. Most of the search functionalities are generally
provided by some of the open source or licensed products such as Apache Solr,
FAST, Autonomy, ElasticSearch, and so on.

Miscellaneous Features, AWS Security, and Troubleshooting

[338]

Amazon CloudSearch is a completely managed service from AWS that is easy to
start and manage and makes it easy to scale your searching result for an application.
Amazon CloudSearch has the capabilities to search a large set of data, such as
web pages, documents, forum articles, and product details. You can set up search
capabilities without having prior expertise of search or worrying about hardware
setup and maintenance. As your size of data and traffic varies, Amazon CloudSearch
scales to meet your requirements dynamically. To start with Amazon CloudSearch,
simply execute the following steps:

1. Create and configure a search domain.
2. Upload and index the data for search.
3. Send search requests to the domain.

Let's start with Amazon CloudSearch step by step. So, to start with Amazon
CloudSearch, the steps are as follows.

Creating and configuring a search domain
To create and configure a search domain, follow the subsequent steps:

1. Log in with AWS and select the Amazon CloudSearch service. You will see
the following screen:

Chapter 12

[339]

2. Click on the Create a new search domain button and you will get a domain
creation popup, as shown in the following screenshot. Here, provide a
meaningful name, instance type, and replication count as required.

A domain name has to start with a letter or number and should be at
least three and not more than 28 characters long. A domain name can
have the subsequent characters: a-z (lower case), 0-9, and - (hyphen).
Upper case characters and underscores are not acceptable.

Miscellaneous Features, AWS Security, and Troubleshooting

[340]

3. In the CONFIGURE INDEX tab, choose Use a predefined configuration,
select IMDB movies (demo), and click on Continue.

4. In the REVIEW INDEX CONFIGURATION tab, check that the index fields
are configured properly or not. Automatically, 11 fields will be configured
automatically for the IMDB movie data with the following fields: actors,
directors, genres, image_url, plot, rank, rating, release_date, running_time_
secs, title, and year. This is the default example provided by AWS, so you
will definitely get these fields.

Chapter 12

[341]

5. In the SET UP ACCESS POLICIES step, click on Recommended rules, and
then on Continue.
The recommended rules will allow access to the search endpoint from all IP
addresses given in the policy as of now, and restrict access to the document
service for the IP address you specify (not set right now in the given policy).

6. In the CONFIRM tab, review the configuration and click on Confirm to start
the process of domain creation.

Miscellaneous Features, AWS Security, and Troubleshooting

[342]

7. Once the domain has been created, click on the OK button to exit and
go to the domain's dashboard to check the domain. The domain creation
process will usually take a few minutes, around 10 to 12. Once you get the
status ACTIVE, you can upload your data and start using the Amazon
CloudSearch functionality.

Uploading and indexing the data for search
Data has to be indexed by Amazon CloudSearch. The given data must be formatted
in either JSON or XML. If the given data is in a different format than JSON or XML,
it will be automatically converted to that format. The following data types are
supported in Amazon CloudSearch: .csv, .pdf, .htm, .html, .xls, .xlsx, .ppt,
.pptx, .doc, .docx, and .txt.

In the previous example, the sample IMDB movies data is already formatted in the
JSON type.

To upload data, perform the given steps:

1. In the Navigation pane, click on your newly created domain, and at the top
of the page, you will find the Upload Documents button. Click on it and you
are good to go.

2. In the DOCUMENT SOURCE tab, choose Predefined data, select IMDB
movies (demo), and click on Continue:

Chapter 12

[343]

3. In the REVIEW DOCUMENTS tab, check the upload summary and
proceed further:

4. Finally, on the DOCUMENT SUMMARY page, click on the Finish button
to complete the process:

Miscellaneous Features, AWS Security, and Troubleshooting

[344]

So, here you configured the search domain, which is fully functional and ready to
search. Now, it's time to search your domain using Amazon CloudSearch.

Searching your Amazon CloudSearch domain
You can use the search tester on the Amazon CloudSearch console to start with
a sample search. You can also do the search process through a web browser or
using cURL.

Let's try to search with the tester here. By default, search requests are handled with
a simple query parser. You can identify options for the selected parser, filter, sort
the results, and browse the configured facets. To start with the tester, execute the
following steps:

1. Go to the Navigation pane and click on the Run a Test Search link:

2. In the search box, add the term that you want to search and click on the
Go button. For example, enter a word matrix and you will get the
following results:

Chapter 12

[345]

Domain search result

3. You can edit your search option by clicking on Options button and can get
specific results as required:

Miscellaneous Features, AWS Security, and Troubleshooting

[346]

4. By selecting the Query Parser, you can select the type for your query to
search. By default, you will get the following options:

 ° Simple
 ° Structured
 ° Lucene
 ° DisMax

The preceding example is the simplest example to start with Amazon CloudSearch.
To learn more examples, you can check http://docs.aws.amazon.com/
cloudsearch/latest/developerguide/getting-started-search.html.

Finally, to remove your domain from Amazon CloudSearch, execute the
following steps:

1. Go to the top of the domain dashboard and click on the Delete this
Domain button:

2. You will be prompted with a dialog box for confirmation of deletion. Click
on the OK button and the deletion process will start:

It can take around 10 to 15 minutes to delete a domain and its related resources from
Amazon CloudSearch completely.

http://docs.aws.amazon.com/cloudsearch/latest/developerguide/getting-started-search.html
http://docs.aws.amazon.com/cloudsearch/latest/developerguide/getting-started-search.html

Chapter 12

[347]

Amazon Mechanical Turk
Mechanical Turk is an Amazon service where individuals can publish tasks that are
then executed by other people. The distinct tasks are called HITs. The Requester
publishes a task such us filling in a survey. The Workers can view and accept the
task, and upon finishing the task, will get paid the extent specified by the HIT
explanation. So, digging from the origins, what you require is this:

• Boto library (2.0b4): You can download this package from https://github.
com/boto/boto

• AWS keys: You will need the access key and secret key for this

To start with Amazon Mechanical Turk, follow the ensuing steps:

1. Log in with an AWS account on https://requestersandbox.mturk.com/
to create the MTurk sandbox account:

The MTurk sandbox account page

https://github.com/boto/boto
https://github.com/boto/boto
https://requestersandbox.mturk.com/

Miscellaneous Features, AWS Security, and Troubleshooting

[348]

2. To connect the MTurk engine, follow the ensuing code snippet (you'll also
find the snippet in the 3623EN_12_01.txt file in the code bundle):
from boto.mturk.connection import MTurkConnection
ACCESS_ID ='put access key here'
SECRET_KEY = 'put secret key here'
HOST = 'mechanicalturk.sandbox.amazonaws.com'
umtc = MTurkConnection(aws_access_key_id=ACCESS_ID,
 aws_secret_access_key=SECRET_KEY,
 host=HOST)
print umtc.get_account_balance()

3. Now, once you run the preceding code snippet, you will get the result with a
value such as $ 10,000.

4. Once you have completed the previous steps, it means you are all set
to create a HIT. Fundamentally, a HIT is a question or an assortment of
questions. Let's try to create a HIT with the initial two questions in which one
will be mandatory and the other will be optional. Execute the following code
snippet for it, which you'll also find in the 3623EN_12_02.txt file:

title = 'Offer your view roughly about this website'
description = ('Call a website and give your thoughts
about the design layout and also some personal comments')
keywords = 'website, rating, thoughts, views'

ratings =[('Very Bad','-2'),
 ('Bad','-1'),
 ('Not bad','0'),
 ('Good','1'),
 ('Very Good','1')]
#---------------BUILD OVERVIEW ------------------
overview = Overview()
overview.append_field('Title', 'Give your opinion on this
 website')
overview.append(FormattedContent('<a target="_blank"'
 ' href="cloudbyuchit.
 weebly.com ">'
 ' Uchit Vyas private
 site'))

Chapter 12

[349]

The overview is a free content of the question form, preceding processes
(for example, binary texts, HTML texts, and so on). Consider that it isn't a
"question object", it is just an arbitrary content. Take a look at 3623EN_12_03.txt
for the entire code:

#---------------CONSTRUCT QUESTION ONE--------------
mqc1 = QuestionContent()
mqc1.append_field('Title','How this design looks like to you?')
wfta1 = SelectionAnswer(min=1, max=1,style='dropdown',
 selections=ratings,
 type='text')
qs1 = Question(identifier='design',
 content=mqc1,
 answer_spec=AnswerSpecification(wfta1),
 is_required=True)

#-------------CONSTRUCT QUESTION TWO---------------
mqc2 = QuestionContent()
mqc2.append_field('Title','Your particular inputs)
wfta2 = FreeTextAnswer()
qs2 = Question(identifier="comments",
 content=mqc2,
 answer_spec=AnswerSpecification(wfta2))

The question is mostly prepared by the AnswerSpecification object, which
stipulates the type of answer to be extracted for the query by the QuestionContent
object. The content can be the same for the overview type, text type, binary type
content, and HTML type content. Check out 3623EN_12_04.txt for a detailed
version of the code:

#--------------CREATE THE QUESTION FORM--------
question_form = QuestionForm()
question_form.append(overview)
question_form.append(qs1)
question_form.append(qs2)

This is the container for all the listed questions and overviews, and ultimately, you
can say an addition of a Python standard catalog. You'll find the following snippet in
3623EN_12_05.txt:

#---------CREATE THE HIT AS FINAL STEP------------
umtc.create_hit(questions=question_form,
 max_assignments=1,
 title=title,

Miscellaneous Features, AWS Security, and Troubleshooting

[350]

 description=description,
 keywords=keywords,
 duration = 60*

This is the method to create HITs. After running this code all together, you will be
able to create a HIT on MTurk. To practice MTurk on a deep level, you can try the
PDF by AWS available at http://s3.amazonaws.com/awsdocs/MechTurk/latest/
amt-gsg.pdf.

AWS Security best practices
Information security (IS) holds dominant significance to Amazon Web Services
(AWS) clienteles. Security is a fundamental efficient constraint that defends perilous
intelligence from unintentional or considered theft, escape, reliability compromise,
and removal. AWS gives a variety of security functions and topographies that
customers can use to be assured of their resources. AWS consumers are liable for
keeping the privacy, integrity, and availability of their data in the AWS Cloud, as
well as for meeting certain industry needs for information safety.

AWS offers secure global infrastructure and services in the cloud. You can build your
systems using AWS as the foundation, and architect an ISMS (Information Security
Management System, that is, a group of IS policies and practices for an association's
resources on AWS) that takes advantage of AWS qualities. To plan an ISMS in AWS,
you should be familiar with the AWS shared responsibility model, which engages
AWS and customers to join efforts concerning security aims. To guarantee secure
services, AWS provides a shared responsibility model for services:

• Infrastructure services: This type consists of AWS services, such as
Amazon EC2, and related services, such as Amazon EBS, Auto Scaling,
and Amazon VPC.

• Container services: The services in this category type normally run on
individual AWS EC2 but sometimes you don't have to manage the OS or
platform layer. AWS offers a managed service for application "containers".
Examples of this type of services are Amazon RDS, Amazon Elastic Map
Reduce (Amazon EMR), and AWS Elastic Beanstalk.

• Abstracted services: These types of services are Amazon S3, Amazon Glacier,
Amazon DynamoDB, Amazon SQS, and Amazon SES. These services abstract
the platform on which you can construct and manage your applications.

http://s3.amazonaws.com/awsdocs/MechTurk/latest/amt-gsg.pdf
http://s3.amazonaws.com/awsdocs/MechTurk/latest/amt-gsg.pdf

Chapter 12

[351]

The shared responsibility model for infrastructure services, for example, AWS EC2,
states that AWS will administer the security of the subsequent resources:

• Facilities
• Physical security of hardware devices
• Network infrastructure
• Virtualization infrastructure

To start with AWS Cloud security, you have to learn AWS Secure Global
Infrastructure thoroughly.

Understanding AWS Secure Global
Infrastructure
The global infrastructure and services are managed by AWS itself securely and offer
a truthful base for business systems and distinct applications. Amazon establishes
high standards for information security, for example, from physical security
throughout software purchase and improvement to operative life cycle management
and security of organization. Also, the secure global infrastructure is subject to
systematic third-party compliance audits.

AWS Account

IAM User IAM User

AWS Services Used by Customer

AWS Global Infrastructure

AWS Data Centers

Hardware Software Network

Am
az

on
P

ro
vi

de
d

C
us

to
m

er
C

on
fi

gu
ra

bl
e �

�
�
�
�
�
�

Network access
Audit logging
Asset inventory
Guest OS patching
Anti-malware
IDS/IPS
Backups

�
�
�
�
�
�
�
�

24x7 guards
Limited access
Two-factor authentication
Disk destruction
Intrusion detection
Security reviews
Network monitoring
Secure API endpoints

Miscellaneous Features, AWS Security, and Troubleshooting

[352]

In this secure global infrastructure, IAM is also a vital part as it centrally directs
users, security credentials, and policies that control AWS services and resources
from end users and internal users within organization.

In the AWS global infrastructure, they give the following checks for
physical security:

• Controlled, need-based access
 ° All access is logged and reviewed
 ° Multifactor authentication

• Separation of duties
 ° Employees have physical access do not have logical access

(access to internal data)

• 24x7 security guards for each building of datacenter

On the other hand, at the networking end, Amazon provides the subsequent
securities:

• Standard mitigation techniques for DDOS (distributed denial-of-service)
• API points are secured by SSL
• IP spoofing is prohibited at host OS level
• Port scanning is prohibited
• Packet sniffing protection at hypervisor level and in promiscuous mode

becomes ineffective

In the storage area, AWS provides the following features to ensure the level
of security:

• All storage devices are degaussed and physically destroyed
• All the physical disks are wiped out after creation

For further reading on AWS security, third-party certifications, and compliance, you
can refer to https://aws.amazon.com/compliance/ and https://aws.amazon.
com/security.

https://aws.amazon.com/compliance/
https://aws.amazon.com/security
https://aws.amazon.com/security

Chapter 12

[353]

Regions, Availability Zones, and service
endpoints
You already learned about regions, AZs, and endpoints as they are also key
components in Global Secure Infrastructure. So, we will only glance through
these terms:

• Regions: AWS regions work to manage the network latency and regulatory
compliance. When you supply data in a particular region, it won't be
replicated externally from that region automatically. You are the only person
who is responsible for picking the appropriate region to store data with your
compliance and network latency requirements. Every region consists of at
least two Availability Zones, often more.

• Availability Zones (AZs): AZs are planned for fault segregation. They are
associated with manifold Internet Service Providers (ISPs) and different
power grids. You are the only person who is responsible for choosing the
AZs where your applications will exist. Apps can extend in multiple AZs in
the case of a disaster.

• Service endpoints: AWS provides web access as well as programmatic access
to each service by service endpoint, which is managed by AWS.

Managing keys in the Cloud
You can practice on-premises hardware security modules (HSMs) or CloudHSM to
provide a diversity of use cases, such as DB encryption, digital rights management
(DRM), and public key infrastructure (PKI) involving authentication and
authorization, and transaction handling. CloudHSM presently practices Luna SA
HSMs from SafeNet. The Luna SA is intended to convene Federal Information
Processing Standard (FIPS) 140-2 and Common Criteria EAL4+ standards, and
also provisions a diversity of industry-standard cryptographic processes. Your apps
can practice the regular APIs sustained by CloudHSM, for example, PKCS#11, MS
CAPI, and Java JCA or JCE (Java Cryptography Architecture or Java Cryptography
Extension). The CloudHSM client specifies the APIs for cloud apps and gears each
API call by concerning the CloudHSM appliance with the use of a communally
authenticated SSL assembly.

Miscellaneous Features, AWS Security, and Troubleshooting

[354]

Managing patches
You are the only person who is responsible for patch management for AWS AMIs
and running EC2 instances. I would like to recommend the freeze patch management
process rigidly once you are ready and can maintain a written document.

Although you can use third-party vendor patch management systems for OS
and other critical apps, it is a good habit to have an inventory of all software and
apparatuses with patch versioning and details of the origin of source. Also, it is
important to compare the catalog of security patches installed on every system
with the most recent vendor security patch list to validate the latest patches that are
getting installed. Moreover, AWS has occasionally held scheduled maintenance to
upgrade EC2 and requires users (EC2 instances) to reboot their OS.

Mitigating compromise and abuse
On AWS Secure Global Infrastructure, abuse activities are superficially perceived
activities of AWS customers' resources that are nasty, invasive, illegal, or could harm
other Internet resources.

AWS works with you to identify and address mistrustful and malicious happenings
from AWS resources in your account. Unanticipated or doubtful behaviors from
your account resources can signify that your AWS assets have been compromised,
which indicates potential risks to your commerce. AWS practices the subsequent
means to discover abuse activities from consumer assets:

• Interior event monitoring
• Exterior security intelligence in contradiction of the AWS network space
• Internet abuse grievances in contradiction to AWS assets

Malicious, illegal, or harmful actions that make your AWS assets infringe the AWS
standard use policy and can be an indication of account suspension. If the consumer
disappoints to report abuse activities, AWS will suspend the account to defend the
integrity of the AWS Global Secure Platform.

The Trusted Advisor tool
AWS support plans contain access to the Trusted Advisor tool as a service as of
now, which suggests a single window snapshot of your AWS services and assists to
recognize usual security misconfigurations, recommendations for cultivating system
performance, and underutilized resources.

Chapter 12

[355]

The following is the screenshot for the Trusted Advisor service for your reference:

So, from the Trusted Advisor service, you can dig your resources configuration and
the entire loop for security breach.

Troubleshooting practices
Until now, we have seen AWS services, their workings, and, mostly, the integration
of these services with each other. Now it's time to see some of the basic errors and
how to resolve them in a simple manner. So, let's start our journey with this.

Ephemeral disk corruption
When working an instance with ephemeral disks, your ephemeral disks can become
corrupt. The filesystem will become read-only, and you will be incapable to write
to disk. Messages will also display up in dmesg allied to filesystem corruption. A
possible solution is to try to detach your root EBS volume and attach it to a new
instance or launch an instance again to get your vital data back. Even you can follow
the AWS blogs; to check the EBS volume status, check at https://aws.amazon.com/
blogs/aws/ebs-volume-status-checks/.

https://aws.amazon.com/blogs/aws/ebs-volume-status-checks/
https://aws.amazon.com/blogs/aws/ebs-volume-status-checks/

Miscellaneous Features, AWS Security, and Troubleshooting

[356]

DNS concerns
It is conceivable for the internal DNS resolver on the hypervisor to crash, which
produces DNS lookups to collapse from within the instance. A possible solution is to
alter your DNS resolver, and try to re-launch your instance storage-backed instance
and start/stop an EBS backed instance.

Resizing or emptying disks
While one of the cases with AWS is that you can scale up as needed, it is a calamitous
truth that ephemeral disks don't do scaling automatically. You can upsize EBS but
not automatically. You can check how filled your disk is by inspecting disk usage
metrics. A possible solution is to change the size of your disk or delete idle files.

Host dispute
At the time of allocating server space, Amazon will frequently oversubscribe
a server under the postulation that all consumers won't use the full ability.
Exercise a command such as follows:

iostat 1

You can extend the volume of CPU steal your instance is facing. High CPU steal is
commonly a sign of piercing neighbors. A possible solution is to try to re-launch
your instance storage-backed instance and start/stop an EBS backed instance.

Security group misconfiguration
Misconfiguration of security groups can produce glitches, such as timeouts, 50x
errors, or application unreachability. You should remember to expose the local
firewall and port internally on an instance also, but forget to open it in the EC2
security group. A possible solution is to open an appropriate port on the security
group to reach an application smoothly.

AWS can be tough to administer, but when done accurately, it isn't difficult to
understand why it's a dynamic tool for so many different industries.

Chapter 12

[357]

Summary
In this chapter, we discussed some advanced services for better administration and
programming, such as AWS CloudSearch and Mechanical Turk (MTurk). Also, we
have gone through the security features provided by AWS and how to use those
security features at the infrastructure and application level within your Amazon
account. At the end of this chapter, we have seen some common AWS services
problems and troubleshooting practices.

[359]

Building Applications and
AWS Best Practices

We discussed most of the interesting and beneficial AWS offerings in the previous
chapters. Now, it is time to integrate all of those services in a single application as a
use case and the best practices. Here, we will create a web app that will be a mixture
of AWS services. In this chapter, we will focus on the following topics:

• Overview of the application
• Software and tools requirement elicitation
• Implementation and management of application
• AWS best practices and design solutions

Application impression
We will call the application that we will develop and maintain using AWS as
EduCloud. The app will grant AWS EC2 instances to its registered consumers. We
will use Java Server Faces (JSF) to create the web app. So, the user registering page,
login page, dashboard, and every web page will be coded using JSF. In this app, a
user will catalogue himself to the EduCloud with his cell phone number and e-mail
address. During the registration, an SNS topic will be created with his/her username
as the topic name. Both the cell phone number and e-mail address will be subscribed
to this topic. Once the admin will approve the request of a new requester, the user
can request for an EC2 instance (or our custom AMIs).

Building Applications and AWS Best Practices

[360]

Even if the user requests the instances in VPC, we will provision the same. As a
database, MySQL (RDS) will be used to store this information. Once the instance
request has been approved by the administrator, an SMS and e-mail will be sent to
the respective endpoints about the connection details to the instance via SES and
SNS. As the number of users and instance requests exceeds, there is a possibility that
some SNS messages are lost, so we will add those to the SQS queues. We will store
the instance key pairs in S3 once the user downloads it; we will delete the same from
S3. Lastly, we will see how this application can be deployed on the Elastic Beanstalk
container service.

Tool mixture
We don’t need any precise software tools to build our app. We will practice on the
following freeware (an open source software) tools:

• Eclipse IDE (as the development environment) with the AWS plugin setup
• JDK 7 and Tomcat 7.0 (to run the web application locally)
• MySQL connector (to connect to our RDS instance)
• Puttygen (to create the .ppk file from the .pem file)
• Putty (to connect to the EC2 instances)

All the preceding software is open source and available over the Internet.
Since we have already discussed most of this software in the previous chapters,
we will move to the core part, which is obviously the “development”.

Development phase
It’s time to get our hands dirty by creating the first AWS app, which will hold many
AWS services. It will be a JSF app, so rather than talking about the adornment of the
JSF page and how to mark the connection with the MySQL database, we will have
to concentrate only on the code where we will perform the AWS operations. And, of
course, yes, this app can be downloaded from the official Packt website.

Chapter 13

[361]

Conventions
For the appropriate working of the app, the subsequent conventions must be made.
We can even call the following points as prerequisites. Even if one of the following
points is missing, the whole app will fail:

• We should have an S3 bucket with the name my-keypair to save the
EC2 keys.

• An RDS instance must have an education_cloud database with admin
privileges.

• The AWS credentials file must be configured with the admin’s root AWS
account.

• The method publishInstanceCreation of the SNSoperations class
should have an accurate subscriber. In the app, it will be hardcoded as
016883241246. This must be replaced with a proper value. AWS SNS will
notify the users and admin if an event occurs.

Handlers
This app has two kinds (roles) of handlers, namely the admin and end consumer
(normal user). The admin operator can achieve instance requests. His/her dashboard
is shown as follows. It consists of two segments. The first segment is the Request
section in which he/she can approve, reject, or waitlist a group of instance requests.
This unit consists of three links, each to navigate to the Approved requests, Pending
requests, and Rejected requests pages. The second sector is the Links section, which
has links to add new instances to be made available for the consumer. Other links are
used to test whether the app is running, by requesting the instance and approving it;
thereby checking the unabridged workflow.

Building Applications and AWS Best Practices

[362]

Our app has another role, which is no-admin (can be apprentice or educator).
We will call this handler customer. A non-admin user’s homepage will have links
to request a new instance and view and edit the present requests.

An instance is a collection of instance type, AMI ID, and kernel ID. These
possessions are appealing much perilous, as choosing improper mishmash will
result in an exception. In our app, it will be the concern of the admin to adopt
instance configuration combinations because it requires proficiency. This is a crucial
operation of our app. Without adding an instance, the consumer cannot request for
any instance. The following screenshot will give you the hint for the Add Instance
page. The first parameter will be the instance type, which starts from the lower
end (of course, with free tier eligibility) t2 micro up to i2 8xlarge. If we want to add
information such as RAM disk size, we can specify it in portrayal. Then, we can click
on the Add Instance button, which will augment this info to the MySQL database.

Starting with EduCloud
On the login page, there will be a link to sign up. The sign up page will ask for
subsequent information:

1. Enter the essential personal information (first five fields). The other two fields
are used to create login credentials:

Chapter 13

[363]

2. Once we click on the Create Account button, a user's personal details will
be added to the Customer table and login details will be added to the
Login table.

3. In chorus, an SNS topic will be created by our app with the username as the
topic name. In the preceding screenshot, we registered a user with the name
uchit86. So, an SNS topic will be created as topic name so that the user will
be notified about his request update.

4. The code for topic creation is shown as follows:
public void createInstanceTopic(String topicName, String
 mailId,
 String mobileNumber) {
 CreateTopicRequest topic = new CreateTopicRequest();
 topic.setName(topicName);
 topic.setRequestCredentials(credential);
 String topicArn = client.createTopic
 (topic).getTopicArn();
 createInstanceSubscription(topicArn, mailId,
 mobileNumber);
 }

Building Applications and AWS Best Practices

[364]

EduCloud uses four tables in total. The Customer table stores
the personal information quantified for the duration of the
signup process. The Login table stores the EduCloud login
information. The Instance table stores information about
instance parameters such as AMI ID, kernel ID, instance type,
and so on. The fourth table, Request, has information about the
instance requested by the user and its status.

The function createInstanceTopic takes three parameters. The first
parameter is topicName, which is the same as that of the username, and
the rest is mailId and mobileNumber, which is obtained from the personal
information entered during the signup process. The preceding code generates
a topic, and topicArn along with mailId and mobileNumber are passed
to the createInstanceSubscription method (whose implementation is
shown as follows):
private void createInstanceSubscription(String topicArn, String
mailId, String mobileNumber) {
 SubscribeRequest subscribeRequest = new
 SubscribeRequest();
 subscribeRequest.setTopicArn(topicArn);
 subscribeRequest.setEndpoint(mailId);
 subscribeRequest.setProtocol(“email”);
 client.subscribe(subscribeRequest);
 if (mobileNumber.contains(“+1”)) {
 SubscribeRequest request = new SubscribeRequest();
 request.setTopicArn(topicArn);
 request.setEndpoint(mobileNumber);
 request.setProtocol(“SMS”);
 client.subscribe(request);
 }
}

The preceding code subscribes the registered e-mail ID and phone number
to the topic. SNS supports all the e-mail IDs, but SMS notification is currently
supported only for the US.

5. As soon as we click on the Create Account button, the user will get a
subscription mail for the topic.

Chapter 13

[365]

6. Once the user clicks on the Confirm subscription link, the mail ID will be
subscribed. The same is the case with the mobile number. If the mobile
number has +1 (US), then a text message to confirm the subscription will be
sent via an SMS.

7. We can validate the subscription by accessing the management console.
Until now, there were two users in our app (admin and uchit86). The last
two topics will serve as the determination for instance notifications.

Handling instance entreaty
As of now, we configured parameters for an instance and registered a customer to
our app; the user then has to subscribe to the notification.

1. Once the user is done with the subscription, they can request for the available
instances. The user can select one of the instances added by the admin using
the Instance Id dropdown.

2. Once the user selects the instance ID, AMI id, Kernel id, Instance Type, and
Description will be populated automatically.

Building Applications and AWS Best Practices

[366]

3. In addition to this, the user can specify the private key pair Key Name to be
created and the Duration value for which the instance is needed for practice.

4. Once we are done, we can click on Send Request. This will not produce any
EC2 instance. The instance will be created and the connection details will be
mailed (and the SMS will be sent) once the request is approved by the admin.

5. The same information will be available in the View Request page (shown in
the next screenshot). Since the request is not yet approved, the Status column
(of the following table) will show a yellow picture and the checkbox next to
this field will be enabled.

Chapter 13

[367]

This will be enabled only if the request is in the pending state. Since the
instance is not yet created, instance ID and public DNS will be empty as long
as it is not approved by the admin.

Instance entreaty sanction
The next steps show how to approve or reject the instance request. The admin home
page is the same as that of the pending requests page. It will show all the pending
instance requests. The last field (column) of the table is a checkbox.

1. The admin can check this button and click on the Approve button. Moreover,
in case of multiple requests, the admin can select multiple checkboxes.

2. Clicking on the Approve button will change the status of the request and
request for the EC2 instance creation. The createInstance method will be
invoked with six parameters, as shown in the subsequent code.

Building Applications and AWS Best Practices

[368]

The subsequent code invokes three local functions createKeyPair(),
getInstancePublicDndName(), and getInstanceState(). Another two
functions updateRequest() and publishInstanceCreation() will be
invoked to change the status of the request and send a notification to the
registered e-mail address and phone number. In a nutshell, the code does
the following functions.

 ° Create a key pair and store it in Amazon S3.
 ° Submit the EC2 instance request.
 ° Track whether the instance got created.
 ° Email the connection details along with the key pair location by

e-mail and SMS.
 ° Update the same details in the database, and in case the user missed

the notification, he can get it from his dashboard.

The code is as follows:
public void createInstance(Integer requestId, String instanceType,
 String imageId, String kernelId, String keyName, String
 topicName) throws Exception {
 String keyPairName = createKeyPair(keyName);
 String keyPairLoc = “https://s3.amazonaws.com/my-
 keypair/”
 + keyPairName + “.pem”;
 RunInstancesRequest request = new RunInstancesRequest();
 request.setInstanceType(InstanceType.T1Micro);
 request.setImageId(imageId); request.setMinCount(1);
 request.setMaxCount(1); request.setKernelId(kernelId);
 request.setKeyName(keyPairName);
 RunInstancesResult rs = client.runInstances(request);
 List<Instance> instances = rs.getReservation().
 getInstances();
 for (Instance instance : instances) {
 String awsInstanceId = instance.getInstanceId();
 String publicDNS = getInstancePublicDnsName
 (awsInstanceId);
 String State = getInstanceState(awsInstanceId);
 if (State.equalsIgnoreCase(“running”)) {
 String emailMsg = “Hi “ + topicName
 + “,\nYour instance’s public DNS is “ + publicDNS

Chapter 13

[369]

 + “.\nKey pair can be downloaded from “ + keyPairLoc;
 RequestEntity e = new RequestEntity();
 e.setRequestId(requestId);
 e.setAwsInstanceId(awsInstanceId);
 e.setKeyName(keyPairName); e.setDns(publicDNS);
 new RequestService().updateRequest(e);
 new SNSoperations().publishInstanceCreation(
 topicName, emailMsg);
} } }

The following code is used to produce a key pair with the name stated by the
user. It will also add this key pair to the instance request. In order to store
this file at an S3 location, the saveKeyPair method of the S3Operations
class will be invoked with the keyName and keypair content as a byte array:
public String createKeyPair(String keyName) {
 keyName += System.currentTimeMillis();
 CreateKeyPairRequest request = new
 CreateKeyPairRequest();
 request.setKeyName(keyName);
 CreateKeyPairResult keyPair = client.
 createKeyPair(request);
 String key = keyPair.getKeyPair().getKeyMaterial();
 return new S3Operations().saveKeyPair(keyName,
 new ByteArrayInputStream(key.getBytes()));
}

The saveKeyPair method of the S3Operations class is shown as follows.
In order to make this file available for public download, we set the ACL
rule as shown here. The following code adds the key pair to the
my-keypair S3 bucket:

public String saveKeyPair(String keyName, InputStream key)
 {
 AccessControlList acl = new AccessControlList();
 acl.grantPermission(GroupGrantee.AllUsers,
 Permission.Read);
 PutObjectRequest request = new PutObjectRequest(“my-
 keypair”, keyName + “.pem”, key, null).
 withAccessControlList(acl);
 client.putObject(request);
 return keyName;
}

Building Applications and AWS Best Practices

[370]

3. The following code iterates over all the instances in our account and returns
the instance state of the passed instanceId. The following method will be
invoked until the state becomes running:
public String getInstanceState(String instanceId) {
 DescribeInstancesResult dir = client.describeInstances();
 List<Reservation> reservations = dir.getReservations();
 for (Reservation reservation : reservations) {
 for (Instance instance : reservation.getInstances()) {
 if (instance.getInstanceId().equals(instanceId)) {
 InstanceState instanceState = instance.getState();
 return instanceState.getName();
 } } }
return null; }

4. Once the instance state becomes running, the following method will be
invoked. The following code is used to get the public DNS of the instance,
without which the user cannot connect to the EC2 instance. The following
code will describe all the EC2 instances for the account. Inside the for-each
loop, we will check whether the passed instanceId is the same as that of the
current instance. If that is the case, the public DNS will be returned.
public String getInstancePublicDnsName(String instanceId) {
 DescribeInstancesResult dir = client.describeInstances();
 List<Reservation> reservations = dir.getReservations();
 for (Reservation reservation : reservations) {
 for (Instance instance : reservation.getInstances()) {
 if (instance.getInstanceId().equals(instanceId)) {
 InstanceState instanceState = instance.getState();
 return instance.getPublicDnsName();
 } } }
return null; }

5. Once the key pair is created, stored, and the instance becomes available,
the DNS and key pair location will be published as e-mail and SMS to the
registered endpoints of the topic, as shown in the following code:
public void publishInstanceCreation(String topicName,
 String emailMsg) {
 PublishRequest publishRequest = new PublishRequest();
 publishRequest.setSubject(“Education cloud- details”);
 publishRequest.setMessage(emailMsg);
 publishRequest.setTopicArn(“arn:aws:sns:us-east-
 1:016883241246:”+ topicName);
 publishRequest.setRequestCredentials(credential);
 client.publish(publishRequest);
}

Chapter 13

[371]

6. The mail for the user request is shown in the following screenshot. It will
have information about public DNS and the S3 location, where key pairs
corresponding to this instance is stored.

7. We can validate the identical details in the management console, as shown in
the following screenshot. The three most important parameters (Instance ID,
Public DNS, and Key pair name) are highlighted in the following screenshot:

8. If the user logs into the app, the same information is shown in the dashboard.
9. Earlier, the status icon was in yellow; now, it has transformed to green

(since the request is approved and the instance is provisioned). The checkbox
to delete the request is disabled. This will be enabled only if the status is
pending; otherwise (approved or rejected), it will be disabled.

Building Applications and AWS Best Practices

[372]

Rejecting an instance entreaty
In the admin dashboard, if the admin has to reject the request and terminate the
instance, we can check the corresponding checkbox and click on the Reject button.
This will terminate the instance.

1. The code to terminate the instance request is shown as follows. It can accept
a list of instanceId. Each instanceId will be iterated and the instances are
terminated one by one. The implementation will stay with the while loop
until it is terminated.
public void terminateInstance(List<String> instanceIds) {
 TerminateInstancesRequest tir = new
 TerminateInstancesRequest();
 tir.setRequestCredentials(credentials);
 tir.setInstanceIds(instanceIds);
 TerminateInstancesResult result = client.
 terminateInstances(tir);
 List<InstanceStateChange> resultList = result.
 getTerminatingInstances();
 for (InstanceStateChange instanceStateChange :
 resultList) {
 while (!getInstanceState(instanceStateChange.
 getInstanceId())
 .toString().equalsIgnoreCase(“terminated”));
 }
}

2. If we access the management console, we can infer the same information
about the requested instance. We can check the status as shutting-down:

Chapter 13

[373]

3. The equivalent information will be made available in the user
dashboard. Since the EC2 instance is terminated, instance ID and public
DNS is also cleared:

4. Now, this request will be available in the admin’s rejected request page.
We can check this request and click on Approve to provision the instance
once more to the user.

5. Even though the instance (for the same request) is rejected and approved
again, public DNS, key pair, and instance ID will be different. The following
figure shows the mail:

6. In the user dashboard, instance ID, public DNS, and status will be updated.

Building Applications and AWS Best Practices

[374]

Using RDS and Elastic Beanstalk
Since the app we created is the JSF app, we can see a file named persistence.xml
in the src/META-INF folder. Copy the subsequent content to the XML and fill up
RDS-endpoint IP, port-number, RDS-instance-username, and RDS-instance-
password with the RDS instance details and save the file. Before using the app,
make sure that a database with the name education_cloud is available in the
RDS instance.

<persistence version=”1.0”...>
<persistence-unit name=”ECL”>
 <class>education.cloud.entity.InstanceEntity</class>
 <class>education.cloud.entity.RequestEntity</class>
 <class>education.cloud.entity.LoginEntity</class>
 <class>education.cloud.entity.CustomerEntity</class>
<properties>
 <property name=”toplink.jdbc.url” value=”jdbc:mysql://<RDS-
 endpoint IP>:<port-number>/education_cloud” />
 <property name=”toplink.jdbc.user” value=”<RDS-instance-
 username>” />
 <property name=”toplink.jdbc.driver”
 value=”com.mysql.jdbc.Driver”/>
 <property name=”toplink.jdbc.password” value=”<RDS-instance-
 password>” />
<!-- Some more properties removed -->
</properties>
</persistence-unit>
</persistence>

Deploying this app on Elastic Beanstalk will be done in dozens of clicks if we use the
Eclipse IDE. We can right-click on the JSF application and go to Run as | Run on
Server, which opens a window asking us to choose the proper server. To run the app
in our local system, we use Tomcat7. In order to deploy it in Elastic Beanstalk, we
need to choose AWS Elastic Beanstalk for the Tomcat 7 server. A few more windows
will pop up, in which we need not do anything (except click on the Next button). If
the AWS plugin is properly configured, then this application will be deployed on
AWS Elastic Beanstalk.

Chapter 13

[375]

The application of superlative AWS exercises
There are a few security and performance apprehensions, which we might have
come across in the EduCloud app. Let’s review these one by one.

• We save the instance key pair in S3 and the file has read permission for
everyone, so this is a major security breach. This should not be the case.
We must store this somewhere secured; at least the read permission should
be allowed only for the instance requester.

• Irrespective of whether the instance request is rejected or waitlisted, the EC2
instance gets terminated. So, we can make the application more efficient by
stopping the instance (when waitlisting the request) and starting it again
(when approving the request).

• There should be a provision for a non-admin user to start/stop an instance,
which will reduce the billing amount.

• We cannot sell this app to a third party since it is against the AWS agreement.

Best practices with AWS
In this section, we will discuss complex application development and deployment
problems, and how to develop AWS centric applications based on the underlying
AWS infrastructure. We will go through some of the generic problem statements and
try to solve them using AWS services as best possible solutions.

Problem 1: The scaling problem of the infrastructure for the in-house project or
in the data center.

Solution: In this scenario, you have to scale up your infrastructure based on the load
and demand. So, the following can be the best approach using Auto Scaling:

1. Set up EC2 instances under the ELB.
2. Create Base AMI for instances.
3. Define the policies (metrics) to trigger events such as add or

remove instances.
4. Use CloudWatch to monitor these metrics.
5. Set up Auto Scaling, which will increase or decrease the number

of instances based on policies.

Building Applications and AWS Best Practices

[376]

One should consider the following points as well:

• All of the data is removed in the instances.
• The data that the user wants to store or remain should be uploaded into

S3 or inserted into DynamoDB.
• The application deployment method should be carefully considered because

the following architecture depends on AMI.

You can refer to the following sample architecture as a design solution—how to
implement these services together that we have seen throughout the book:

CloudWatch

(Alarm)

CloudWatch Monitor

Auto Scaling

Auto Scale

Web/APWeb/APWeb/AP

ELB

EC2 EC2 EC2

direct traffic

AWS

AMI

Rules-Based

Alarms

1

2

Notify Auto Scaling3

4 Launch Server

Chapter 13

[377]

So, this can be the best suitable solution for scale out problem. Also, this can be
a solution for high availability requirements. Similarly, for the multi datacenter
pattern, you can create the following:

EC2EC2

ELB

AWS

Availability Zone - BAvailability Zone - A

Problem 2: A scale-out construction is a communal method, but in systems that start
less frequently, the construction is not one where it is likely to deliver multiserver
services using numerous servers at all. In such a case, establishing procedures to
handle the increased load may be time-consuming.

Solution: In this case, as a solution, you can create a combination of services, such
as EC2, ELB, EBS, and AMI. The following are the steps to proceed further in
such a case:

1. Set up your instances under ELB.
2. Create instances from running instances, or, let’s say, clone them.
3. Use rsync or scheduled EBS volumes, which means rotationally, EBS

volumes will attach and detach to instances and serve you the data.

Building Applications and AWS Best Practices

[378]

The following diagram can be useful for you to understand this:

ELB

EBS
Sync Disk

EC2

Launch EC2

AMI

Web/AP Web/AP Web/AP

Master

AWS

Problem 3: You will not be able to get benefit up by increasing the number of
machines when there is an unexpected increase in the number of admissions in a
short period of time. While you might deliberate handling this by increasing the
number of servers by predicting the growth in admissions, growing the number of
servers wastefully is difficult in terms of the price.

Chapter 13

[379]

Solution: In this case, you can use Amazon S3 along with EC2 instances to store static
content or even static websites. The following diagram can be helpful to understand
more about the combination of AWS EC2 and AWS S3:

video jpg

S3

Upload

html css js

/**/ { }

AWS

Web

EC2

If you have a combination of static and dynamic content, you can follow
this diagram:

zip

video html

Users

Offload

S3 EC2

AWS

Web

Problem 4: If you are carrying out successive processing, where processes
running on numerous systems accompany each other, there will be a propensity
for performance blockages resulting from having systems strongly linked to one
another. This tight association also thwarts the retrieval operations when there is a
catastrophe.

Building Applications and AWS Best Practices

[380]

Solution: You can accomplish this loose coupling of systems among systems using
queues and then exchanging messages that transfer jobs. You can use the Amazon
SQS service to transfer a process from an EC2 instance for one process to the EC2
instance for the next process.

To start with this, you can create the SQS flow with EC2 as follows:

1. Receive a message.
2. Trigger a job.
3. Transmit the message.
4. Repeat steps 1 to 3.

Just go through the following diagram as per the preceding steps to understand the
message flow between SQS and EC2:

SQS SQS

EC2 EC2 EC2

Get Message

Put message

Process job

(e.g. Image processing)

Get Message
Put message

Message (job) remains

in the queue

1
2

3

5

4

Problem 5: In the stamp pattern, you can get the machine image after all the setup
has been accomplished, with the middleware and apps up and running. Whereas
this lets you start up the VM tremendously fast, if you want to upgrade one of the
middleware things, or you want to alter a locale in an app, you will have to rebuild
the AMI.

Chapter 13

[381]

Solution: While creating an AMI, you can specifically place the numerous parameter
files required to initialize the EC2 instance in Amazon S3, and then, at the time of
starting up an EC2 instance, have the EC2 instances read out the parameter files to
shape themselves. You can store the parameter files in a repository such as Git or
SVN. The following steps describe how to do this:

1. Place the required data for bootstrapping into S3 or some repository called
Git or SVN.

2. Spin up an EC2 instance from a specific AMI, which includes the bootstrap.
3. At the time of startup, the instance will get the bootstrap data and configure

itself accordingly.

Take a look at the following diagram to understand the flow and fundamentals
of this:

Install, configure

Necessary data

AMI

S3

Launch EC2

EC2 Git and other

services

1

2

So, based on the requirements, your architecture will be different with
different AWS services. You can also check out the sample design patterns at
http://en.clouddesignpattern.org/index.php/Main_Page, and the best
possible solutions given by AWS for commonly required architecture are available
at http://aws.amazon.com/architecture.

http://en.clouddesignpattern.org/index.php/Main_Page
http://aws.amazon.com/architecture

Building Applications and AWS Best Practices

[382]

Summary
We started our journey by discussing the overview of the EduCloud app. Then, we
saw the homepage and roles of the admin user and non-admin user. After this, we
logged in as the admin and configured an instance so that it could be requested by
the consumer. Then, the user signed up and requested for the instance. Then, we saw
how a mail will be sent with connection particulars and key pair, when the request
is approved by the administrator. In conclusion, we terminated the instance by
rejecting the instance.

This chapter doesn’t stop there; we also conferred about how to integrate RDS and
AWS Elastic Beanstalk to this app. In the end, we deliberated four points, which will
improve the app both recital wise and trade wise. The learning doesn’t stop here.
Since the app is downloadable, we can accomplish the earlier modifications and call
ourselves AWS developers.

Finally, we saw generic problem statements of various real-time applications types
and best solutions based on AWS services to fulfill the requirements.

[383]

Index
A
abstract syntax tree (AST) 324
Access Control List (ACL) 139
access keys

adding, in Eclipse Toolkit 163, 164
configuring, in Eclipse Toolkit 220

Amazon CloudFormation
defining 117-121
starting with 250

Amazon CloudFront
about 85
modifications 86

Amazon CloudFront Distribution
creating 86-90

Amazon CloudSearch
data, indexing for search 342-344
data, uploading for search 342-344
defining 337, 338
search domain, configuring 338-341
search domain, creating 338-341
searching 344-346

Amazon CloudWatch
defining 98-101
EC2 instance, creating 101-103
metrics, defining 98

Amazon EC2 key pairs
observing, in Eclipse Toolkit 164-174

Amazon Elastic Block Storage
(Amazon EBS) 10

Amazon Elastic MapReduce
defining 310, 311
Hadoop cluster, provisioning on 311-322

Amazon instances
bootstrapping, Chef used 252-263

Amazon Kinesis
Amazon Kinesis Client Library 331-335
consumers 331
data record 330
defining 330
partition keys 331
producers 330
shards 331
streams 330

Amazon Machine Image (AMI) 8
Amazon Mechanical Turk

defining 347-349
Amazon RDS

about 91
advantages 91
managing, with CLI 91-94

Amazon Redshift
cluster configurations 230, 231
configuration options 228, 229
defining 227, 228

Amazon SimpleDB 161
Amazon Simple Notification Service 161
Amazon Simple Queue Service 161
Amazon Simple Storage Service 161
Amazon SWF

activity workers 266
deciders 266
workflow execution 266-275
workflow starters 266

Amazon VPC
architecting with 139-143
components 139
database instance, spinning in private

subnet 148-150

[384]

instance, launching 143-147
OpenVPN client, downloading 154
OpenVPN instance, launching 151-153
OpenVPN server, configuring 155, 156
private subnet, creating 148
Remote Access Software VPN,

creating 151
Amazon Web Services. See AWS
API

endpoints 197
eventual consistency model 197
libraries 197

API tools
defining 196
installing 197, 198

application
architecture 239
defining 359, 360
deploying, AWS Elastic Beanstalk

used 217-227
migrating, to Cloud 238-240

application services
characteristics 6

app migration 240
architecture, Availability Zones (AZ)

advanced failover 10
intermediary failover 10
simple failover 10

as-create-launch-config command
arguments 43

authentication
about 31
factors 32

authorization
about 31, 32
services 31

automation, with Amazon SWF 265, 266
Auto Scaling

about 36
configuring 38
defining, AWS Management

Console used 45-57
defining, CLI used 42-45
dynamic scaling 37
installing 38
performing, for AWS Elastic

infrastructure 36

predictive scaling 37
prerequisites, installing 38-42
service, accessing 37
working with 37

Auto Scaling group
creating 44

Auto Scaling launch configuration
starting 43

Auto Scaling management
Auto Scaling API 38
AWS CLI 37
AWS Management Console 38
CLI 37
SDKs, for Auto Scaling 38

Availability Zones (AZ)
about 9
using 10

AWS
about 6, 97, 217, 350
accessing 162
Availability Zones (AZ), using 6, 9, 10
CDN service, defining from 293
defining 122
interfaces 157
regions 6-9
services 122

AWS architecture
URL 381

AWS Cloud
about 127
features 2

AWS CloudFormation
instances, bootstrapping with 250-252

AWS CloudTrail
benefits 232
features 232
interacting with 232
starting with 233-235

AWS EC2
about 11, 15
functionality 11
instance numbers and pricing 17
instance type 12
performance 15
pricing 12
working with 12

[385]

AWS EC2 endpoint 8
AWS EC2 instances

bootstrapping 244
AWS Elastic Beanstalk

starting 218, 237, 238
used, for application deployment 217-227

AWS Explorer 161
AWS global infrastructure 4-6
AWS keys

URL 347
AWS Management Console

used, for defining Auto Scaling 45-57
AWS OpsWorks

apps 275
database layer, creating 279
EC2 instances 275
instances, adding 280-286
layer 275
OpsWorks stack, creating 277
prerequisites 277
Rails App Server layer, creating 278
stack 275
working with 275, 276

AWS SDK for Java
URL 218

AWS SDKs
AWS Toolkit 161
documentation 159
lib folder 159
Samples folder 159
Third-party folder 160
working with 158-176

AWS secret keys and access ID
URL 40

AWS Secure Global Infrastructure
abuse activities, mitigating 354
Availability Zones (AZs) 353
defining 351, 352
keys, managing in Cloud 353
patches, managing 354
regions 353
service endpoints 353
Trusted Advisor tool 354

AWS security
URL 352

AWS services 2, 3, 17

AWS Simple Storage Service (S3)
about 79
object, storing in 80-85

AWS toolkit, for Eclipse
URL 61

B
batch processing flow

cluster, monitoring 116
defining 104
IAM role, creating 105, 106
results, viewing 115, 116
S3 bucket, creating 108
SQS tasks, creating 107
work, dispatching 115, 116
worker nodes, launching 109-115

best practices, with AWS 375-381
Big Data

defining 310
billing, AWS EC2

defining 17
URL 17

billing conventions
defining 289

Bitmap indexes 329
black belt booting

about 28
defining 244-249

bootstrapping 26, 27

C
case study

LAMP environment 122
CD

defining 264, 265
Chef

about 253
chef-client 255
chef-repo 255
cookbook 255
Knife 255
node 255
recipe 255
run_list 255

[386]

used, for bootstrapping Amazon
instances 252-263

using 254
workstation 255

Chef servers
Enterprise Chef 255
Hosted Chef 255
Open Source Chef 255
URL 256

Chef Solo
URL 255

Chef Zero
URL 255

CI
defining 263
Gerrit 263
Jenkins 263
Nexus 264
Promotional workflow 263

Classless Inter-Domain Routing (CIDR) 141
CLI

Amazon RDS, managing with 91-94
defining 187-191
URL 188
used, for defining Auto Scaling 42-45

Cloud
applications, migrating to 238-240
leveraging 241

CloudFront
content, streaming 307
defining 293
using 297-306
working 293-295

CloudFront nomenclatures
distribution 294
edge locations 294
expiration time 294
objects 294
origin servers 294

Cloud Magic World
URL 36

CloudWatch metric
monitoring 98

cluster
monitoring 116

code libraries
working with 176

compiler 324
compliance, AWS

URL 352
components, of Cluster Configuration

defining 314
composite types

Arrays 325
Maps 325
Structs 325
Unions 325

computer services
characteristics 4

content delivery and networking services
characteristics 5

Content Delivery Network (CDN) 85, 293
Continuous delivery. See CD
Continuous integration. See CI
cost allocation reporting 290, 291
cost control architectures

about 292
access, controlling 292, 293

custom metric, in CloudWatch
monitoring 103

D
data

elementary approaches 138
replicating 137, 138

database layer
creating 279

databases
about 326
characteristics 5

Data Definition Language (DDL) 327
data format, for DynamoDB

defining 199
Data Manipulation Language (DML) 324
Data Migration 240
data model 326-328
data replication

asynchronous replication 138
considerations 137
synchronous replication 138

data storage scaling 60
data types 325

[387]

data types, DynamoDB
about 61-64
binary 200
binary set 200
number 200
number set 200
string 200
string set 200

deployment and management services
characteristics 6

design patterns
URL 381

development phase
AWS exercises, defining 375
best practices, with AWS 375-381
conventions 361
defining 360
defining, via Elastic Beanstalk 374
defining, via RDS 374
EduCloud, defining 362-365
handlers 361
instance, handling 365, 366
instance request, approving 367-371
instance request, rejecting 372, 373

devkit 158
digital rights management (DRM) 353
Directed Acyclic Graphs (DAG) 324
distribution

creating 298, 299
domain

removing, from Amazon CloudSearch 346
DR 128
driver 324
DR scenarios

backup and restore 129
defining 128
multisite solution 135
pilot light recovery, in AWS 130
warm standby solution 132-134

DR, with AWS
defining 128
RPO 128
RTO 128

DynamoDB
about 60, 170
data types 61-64

first SDK project, creating 65-69
Java SDK operations 70-76

DynamoDB local
about 76-78
URL, for downloading 76

DynamoDB Local
defining 185-187
URL 185

E
EBS 23
EBS-backed

versus instance store-backed 23
EBS (persistent storage)

attaching, to instance 24
EBS volume status

URL 355
EC2 API

example 198, 199
starting with 196

EC2 instances
Core 315
creating 101-103
Master 315
running 198
Task 316

Eclipse
URL 218

EduCloud
defining 362-365

Elastic Compute Cloud. See AWS EC2
elasticity 26, 27
Elastic Load Balancer (ELB) 35
Elastic MapReduce (EMR) 310
ELB

creating 53
ephemeral storage

about 18-23
versus persistent storage 18

ephemeral storage size
URL 22

example, Amazon CloudSearch
URL 346

execution engine 324
external tables 326

[388]

F
Federal Information Processing

Standard (FIPS) 353

G
Gerrit 263
global infrastructure services

characteristics 4
Google File System (GFS) 310

H
Hadoop

defining 310
Hadoop Distributed File System

(HDFS) 310
hardware security modules (HSMs) 353
Hive

about 310
buckets 326
clusters 326
partitions 326
table 326

HiveQL 322
Hive structural design

apparatuses, supporting 324
compiler 324
defining 323
execution engine 324
metastore 323

Hive tables
indexing on 328, 329

HTTP requests
defining 200-202
request body 203
request header 202, 203
response header 203, 204

HTTP standard components
HTTP method 194
request body 194
request headers 194
Universal Resource Identifier (URI) 194

I
IAM

about 11, 28
accessing 29-31
features 28

IAM role
creating 105-107, 235, 236
creating, for EC2 instance 99-101

IDE toolkit
working with 158-175

instance categories
compute-optimized instances 16
defining 16
general purpose instance 16
GPU instances 16
memory-optimized 16
storage-optimized 16
t1.micro instances 16
URL 16
use cases 16

instance numbers and pricing, AWS EC2
URL 17

instances
about 11
adding 280-286
bootstrapping 27
bootstrapping, with AWS

CloudFormation 250-252
launching 244, 245
launching, in VPC 143-147

instances, booting
advantages 243

instances, bootstrapping
advantages 27, 28

instance storages 22
instance store-backed

versus EBS-backed 23
instance type

defining 16
on-demand instance 13
reserved instance 13, 14
selecting 12-15
spot instance 13, 15

[389]

Integrated Development
Environment (IDE) 158

interfaces, with AWS
API tools 193
AWS Management Console 193
command-line interface 193
Eclipse plugin 193

Internet Service Providers (ISPs) 353

J
Java

URL 38
Java SDK operations

defining 180-184
Java SDK operations, DynamoDB 70-76
Java Server Faces (JSF) 359
Jenkins 263

K
Kinesis 330
Knife-ec2

about 260
installing 260

L
LAMP, on Amazon EC2

about 122
files permissions 124
LAMP server, installing 123
LAMP server, starting 123
LAMP web server, testing 124
prerequisites 122

launch configuration
determining 43

M
managed services bucket

application services 6
compute 4
content delivery and networking 5
databases 5

deployment and management 6
global infrastructure 4
security 4
storage 5

metastore 323
MFA device

about 32
defining 33
Hardware MFA 32
types 32
URL 33
Virtual MFA 32

migration
Cloud assessment 240
reasons for 239

MTurk
URL 350

MTurk sandbox account
URL 347

Multi-factor authentication
device. See MFA device

multisite solution, phases
preparation phase 135
recovery phase 136

N
network access

authorizing 94-96
Network Address Translation (NAT) 139
Nexus 264
nodes 254
non-persistent storage 25

O
object

storing, in AWS Simple Storage
Service (S3) 80-85

ObjectInspector 324
Object-Relational Mapping (ORM) 323
OpenVPN client

downloading 154
OpenVPN instance

launching 151-153

[390]

OpenVPN server
configuring 155, 156
URL 155

operations, in DynamoDB
BatchGetItem 212
BatchWriteItem 214
CreateTable 205
defining 204
DeleteItem 210
DeleteTable 212
DescribeTable 210
GetItem 207
ListTables 212
PutItem 205, 206
Query 208, 209
Scan 209
UpdateItem 206, 207
UpdateTable 211

OpsWorks stack
creating 277

options, scaling plans 50

P
paravirtual (PV) 25
persistent storage

about 25
using, with instance 24-26
versus ephemeral storage 18

pilot light method, phases
preparation phase 131
recovery phase 132

pip 40
Postman

using 201
pricing, AWS EC2

defining 17
private subnet

creating 148
database instance, spinning in 148-150

programmatic AWS billing
about 287
detailed billing report data, referencing 290
detailed billing reports, selecting 289
detailed billing reports, turning on 288

public key infrastructure (PKI) 353

Q
Query API 193
queue

creating, from AWS Management
Console 234

R
Rails App Server layer

creating 278
RDP connections

enabling 148
RDS command-line toolkit

URL 92
recipes 253
Recovery point objective. See RPO
Recovery time objective. See RTO
Redundant Array of Independent Disks

(RAID) 23
region, AWS

about 7-9
defining 3
URL 7

Relational Database Service (RDS) 138
Remote Access Software VPN

creating, to VPC 151
request body 203
request header

about 202
authorization 202
connection 202
Content-Length 202
Content-Type 202
host 202
x-amz-date 202
x-amz-target 202

requests
authenticating, REST APIs used 195, 196

response header
about 203
HTTP/1.1 203
x-amz-crc32 204
x-amzn-RequestId 203

[391]

REST APIs
API tools, defining 196
API tools, installing 197, 198
AWS access key ID 194
EC2 instance, running 198
signature 194
time stamp and date 194
used, for authenticating requests 194-196

REST-based APIs
defining 194

RPO 128
RTO 128

S
S3 bucket

creating 108
sample word count example

URL 313
scalability 26, 27
scalable application

characteristics 26
scaling types

horizontal scaling 35
vertical scaling 35

SDK, for Java
URL 161

SDK project
creating 177-179

SDKs and libraries, for PHP
URL 157

SDKs and libraries, for Python
URL 157

SDKs and libraries, for Ruby
URL 157

Secure Shell (SSH) 98
SerDe 324
server 254
services, AWS

abstracted services 350
container services 350
infrastructure services 350

setx command 40

Signature parameter
URL 203

Simple Notification Service (SNS) 52
Simple Storage Service (S3) 244
Simple Workflow (SWF) 265
SOAP API 193
Software Development Kit (SDK) 158
Solid State Disk (SSD) 60
SQS flow, with EC2

creating 380
SQS tasks

creating 107
storage system 59
streaming, content

defining 307
Live Streaming, for Amazon

CloudFront 307
Live Streaming, with Wowza 307
on-demand Smooth Streaming 307

T
template, SugarCRM server

URL 118
TodoApp

URL 282
tools

using 360
working with 176

troubleshooting practices
about 355
DNS concerns 356
ephemeral disk corruption 355
High CPU 356
idle files, deleting 356
security group misconfiguration 356

Trusted Advisor tool 354

U
user data script, in EC2 instance launch

defining 246
User-defined Aggregate

Functions (UDAFs) 324
User-defined Functions (UDFs) 324

[392]

V
virtual machine (VM) 252
VPC

about 42, 127
starting 140-143

W
warm standby solution, phases

preparation phase 133
recovery phase 134

web application
deploying 222

WordPress plugin
URL 90

worker nodes
launching 109-115

workstation 254

X
X.509 certificate 196

Thank you for buying
Mastering AWS Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning AWS OpsWorks
ISBN: 978-1-78217-110-2 Paperback: 126 pages

Learn how to exploit advanced technologies
to deploy and auto-scale web stacks

1. Discover how a DevOps cloud management
solution can accelerate your path to delivering
highly scalable infrastructure and applications.

2. Learn about infrastructure automation,
auto-scaling, and distributed architecture
using a Chef-based framework.

3. Includes illustrations, details, and practical
examples for successful scaling in the cloud.

Learning Django
Web Development
ISBN: 978-1-78398-440-4 Paperback: 336 pages

From idea to prototype, a learner's guide for web
development with the Django application framework

1. Build two real-life based projects, one based
on SQL and other based on NoSQL.

2. Best practices to code, debug, and deploy
the Django web application.

3. Easy to follow instructions and real world
examples to build highly effective Django
web application.

Please check www.PacktPub.com for information on our titles

Implementing Cloud Design
Patterns for AWS
ISBN: 978-1-78217-734-0 Paperback: 228 pages

Create highly efficient design patterns for scalability,
redundancy, and high availability in the AWS Cloud

1. Create highly robust systems using
cloud infrastructure.

2. Make web applications resilient against
scheduled and accidental down-time.

3. Explore and apply Amazon-provided services
in unique ways to solve common problems.

RESTful Services with ASP.NET
Web API
ISBN: 978-1-78328-575-4 Duration: 02:04 hours

Get hands-on experience of building RESTful services
for the modern Web using ASP.NET Web API

1. Apply your current ASP.NET knowledge to
make your Web APIs more secure and comply
to the global standard in order to make your
service RESTful.

2. Explore the possibilities of extending your
Web APIs by making use of message handlers,
filters, and media formatters.

3. Comprehensive examples to help you build an
end-to-end working solution for a real-use case.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Architecting in the Cloud
	AWS services
	The AWS global infrastructure
	Regions and Availability Zones
	What are AWS regions?
	What are AWS Availability Zones?
	How to use AWS AZs

	AWS EC2 and IAM
	The AWS EC2 functionality
	Instance types and pricing
	Selecting an instance type

	AWS EC2 instance numbers and pricing
	Billing and pricing

	Ephemeral versus persistent storage
	What is ephemeral storage?
	How to use persistent storage with your instance

	Scalability, elasticity, and bootstrapping
	Bootstrap your instances
	Black belt booting

	Identity and Access Management
	Accessing IAM

	Authentication and authorization
	Summary

	Chapter 2: Elastic and Fault Tolerant Infrastructure
	The AWS Elastic infrastructure by Auto Scaling
	Working with Auto Scaling
	Ways to access the Auto Scaling service

	Installing and configuring Auto Scaling
	Installing Auto Scaling prerequisites

	Working with Auto Scaling using the CLI
	Getting started with Auto Scaling using AWS Management Console

	Summary

	Chapter 3: Storage Lifecycle Management
	Data storage scaling
	AWS DynamoDB
	DynamoDB data types:
	Creating the first SDK project
	Java SDK operations
	The DynamoDB local

	AWS Simple Storage Service (S3)
	Amazon CloudFront
	Creating Amazon CloudFront Distribution

	Amazon RDS management with CLI
	Authorizing network access

	Summary

	Chapter 4: Web Application and Batch Processing Architecture
	Alarms with Amazon CloudWatch
	Creating an EC2 instance

	Batch processing flow
	Creating an IAM role
	Creating SQS tasks
	Creating S3 Bucket
	Launching worker nodes
	Dispatching work and viewing results
	Monitoring the cluster

	Amazon CloudFormation
	Where should I start on AWS?
	Case study
	LAMP on your Amazon EC2
	Prerequisites
	Installing and starting the LAMP server
	File permissions
	Testing the LAMP web server

	Summary

	Chapter 5: High Availability, Disaster Recovery, and Amazon VPC
	Disaster recovery circumstances with AWS
	Recovery time objective and recovery point objective
	Backup and restore
	Pilot light recovery into AWS
	Warm standby solution
	Multisite solution

	Replication of data
	Architecting with Amazon VPC
	Launching an instance in the VPC
	Creating a private subnet
	Spinning a database instance in the private subnet
	Creating a Remote Access Software VPN to your VPC
	Launching an OpenVPN instance
	Downloading the OpenVPN client
	Configuring the OpenVPN server

	Summary

	Chapter 6: Tools for AWS and Setup Guidelines
	Working with AWS SDKs and IDE toolkits
	Working with tools and code libraries
	Creating an SDK project
	Java SDK operations

	DynamoDB Local
	Command-line Interface
	Summary

	Chapter 7: Interacting with AWS using API
	REST-based APIs
	Authenticating requests using REST APIs
	Getting started with API tools
	Installing API tools
	Running your first instance
	Example of EC2 API

	Data format for DynamoDB
	HTTP requests
	Request header
	Request body
	Response header

	Operations in DynamoDB
	CreateTable
	PutItem
	UpdateItem
	GetItem
	Query
	Scan
	DeleteItem
	DescribeTable
	UpdateTable
	DeleteTable
	ListTables
	BatchGetItem
	BatchWriteItem

	Summary

	Chapter 8: Amazon Beanstalk, CloudTrail, and Data Warehouse Services
	Application deployment using AWS Elastic Beanstalk
	Getting started with Amazon Redshift
	Configuration options
	Cluster configurations

	Interacting with AWS Trail
	Features and benefits

	Case study: migrating applications to the cloud
	Summary

	Chapter 9: Bootstrapping and Auto Configuration
	Black Belt booting
	Bootstrapping instances with AWS CloudFormation
	Bootstrapping Amazon instances using Chef
	Continuous integration and continuous deployment
	Automation with Amazon SWF
	The workflow execution of Amazon SWF

	Working with AWS OpsWorks
	Creating an OpsWorks stack
	Creating the Rails App Server layer
	Creating the database layer
	Adding Instances

	Summary

	Chapter 10: AWS Billing and Amazon CDN Service
	Programmatic AWS billing
	Turning on detailed billing reports
	Select the detailed billing reports you want to receive
	Referencing your detailed billing report data

	Cost allocation reporting
	Cost control architectures
	Controlling access to your billing report files

	CDN service from AWS – CloudFront
	How CloudFront works
	Getting started with CloudFront
	Streaming

	Summary

	Chapter 11: Analyzing Big Data with AWS
	Introducing Big Data and Hadoop
	Introducing Amazon Elastic MapReduce
	Provisioning a Hadoop cluster on EMR

	Hive structural design
	Metastore
	Compiler
	The execution engine
	Supporting apparatuses

	Data types
	Data model
	Indexing on Hive tables

	Amazon Kinesis
	Kinesis terminology
	Streams
	Data Records
	Producers
	Consumers
	Shards
	Partition keys
	Amazon Kinesis Client Library

	Summary

	Chapter 12: Miscellaneous Features, AWS Security, and Troubleshooting
	Amazon CloudSearch
	Creating and configuring a search domain
	Uploading and indexing the data for search
	Searching your Amazon CloudSearch domain

	Amazon Mechanical Turk
	AWS Security best practices
	Understanding AWS Secure Global Infrastructure
	Regions, Availability Zones, and service endpoints
	Managing keys in the cloud
	Managing patches
	Mitigating compromise and abuse
	The Trusted Advisor tool

	Troubleshooting practices
	Ephemeral disk corruption
	DNS concerns
	Disks are getting full
	Host dispute
	Security group misconfiguration

	Summary

	Chapter 13: Building Applications and AWS Best Practices
	Application impression
	Tool mixture
	Development phase
	Conventions
	Handlers
	Starting with EduCloud
	Handling instance entreaty
	Instance entreaty sanction
	Rejecting an instance entreaty
	Using RDS and Elastic Beanstalk
	The application of superlative AWS exercises

	Best practices with AWS
	Summary

	Index

