
www.allitebooks.com

http://www.allitebooks.org

Learning AWS

Design, build, and deploy responsive applications
using AWS cloud components

Aurobindo Sarkar
Amit Shah

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning AWS

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1280715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-463-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Aurobindo Sarkar

Amit Shah

Reviewers
Jiří Činčura

Brian C. Galura

Mark Takacs

Robert Williamson

Commissioning Editor
Edward Bowkett

Acquisition Editor
Larissa Pinto

Content Development Editor
Anish Sukumaran

Technical Editor
Bharat Patil

Copy Editor
Merilyn Pereira

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Sheetal Aute

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Aurobindo Sarkar is a consulting CTO at BYOF Studios. With a career spanning
22 plus years, he has consulted at some of the leading organizations in the U.S.,
the UK, and Canada. He specializes in Software as a Service product development,
cloud computing, cloud economics, big data analytics, Internet of Things (IoT)
platforms, and web-scale architectures. His domain expertise runs across financial
services, media, mobile gaming, public and automotive sectors. Aurobindo has been
actively working with technology start-ups for over 5 years now. As a member of
the top leadership team at various start-ups, he has mentored several founders and
CxOs, provided technology advisory services, developed cloud strategies, drawn
up product roadmaps, and set up large engineering teams. Aurobindo has an MS
(Computer Science) from New York University, M.Tech (Management) from Indian
Institute of Science, and B.Tech (Engineering) from IIT Delhi.

Amit Shah has a bachelor's degree in electronics. He is a senior manager at
Western Outdoor Interactive. He has been programming since the early '80s with the
first wave of personal computing—initially as a hobbyist and then as a professional.
His areas of interest include embedded systems, Internet of Things (IoT), analog and
digital hardware design, systems programming, cloud computing, and enterprise
architecture. He has been working extensively in the field of cloud computing and
enterprise architecture for the past 4 years.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jiří Činčura is an independent developer focused on clean code, language constructs,
and databases, all applied to mostly backend-related stuff. He is a project lead for ADO.
NET, a provider for the Firebird project, and the Entity framework support maintainer
for the NuoDB database. He's currently creating custom applications for a living
for various customers in Europe as well as companies from other countries. Other
than that, he conducts training sessions and consultations about new technologies
to provide customers with the best information possible to deliver applications in a
shorter time and with better maintainability. When he's not programming or teaching,
he spends time participating in ultrarunning races.

Brian C. Galura spent his childhood tinkering with subjects such as Java
programming and Linux. His professional experience started with VoIP testing at
3Com in suburban Chicago. He then spent 2 years studying computer engineering
at Purdue University, before leaving to pursue freelance consulting in Los Angeles.
Following several years of freelancing, he developed his expertise in enterprise
infrastructure and cloud computing by working for a variety of start-ups and large
corporations. Later, he completed a bachelor's in IT while working at Citrix. He is
currently working on Citrix's cloud engineering and systems architecture team in
Santa Barbara, California.

www.allitebooks.com

http://www.allitebooks.org

Mark Takacs got his first job in the early '90s as the only applicant with HTML
experience. Since then, his road to DevOps has spanned traditional MVC software
development on LAMP and Java, frontend web development in JavaScript, HTML,
CSS, network administration, build and release engineering, production operations,
and a large helping of system administration throughout. He currently lives and
works in Silicon Valley.

Robert Williamson is a senior software engineer working mainly on the
development of a graphics engine for flight simulators; he enjoys designing and
developing real-time solutions. Before that, he worked in the Computer Graphics
and Image Understanding Lab at the University of Missouri Columbia while earning
his bachelor's and master's in computer science. His other interests include data
visualization, data mining, computer vision, and machine learning. During his spare
time, he enjoys traveling and backpacking through national parks.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Cloud 101 – Understanding the Basics 1

What is cloud computing? 2
Public, private, and hybrid clouds 3
Cloud service models – IaaS, PaaS,
and SaaS 4
Setting up your AWS account 5
The AWS management console 8
Summary 10

Chapter 2: Designing Cloud Applications –
An Architect's Perspective 11

Multi-tier architecture 12
Designing for multi-tenancy 14

Data security 16
Data extensibility 18
Application multi-tenancy 22

Designing for scale 23
Automating infrastructure 26
Designing for failure 27
Designing for parallel processing 29
Designing for performance 29
Designing for eventual consistency 31
Estimating your cloud computing costs 31
A typical e-commerce web application 34
Setting up our development environment 36

Running the application 39
Building a WAR file for deployment 40

Summary 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: AWS Components, Cost Model, and Application
Development Environments 43

AWS components 43
Amazon Elastic Compute Cloud (EC2) 44
Amazon S3 44
Amazon EBS 44
Amazon CloudFront 45
Amazon Glacier 45
Amazon RDS 45
Amazon DynamoDB 45
Amazon ElastiCache 46
Amazon Simple Queue Service 46
Amazon Simple Notification Service 46
Amazon Virtual Private Cloud 46
Amazon Route 53 46
AWS Identity and Access Management 46
Amazon CloudWatch 47
Other AWS services 47

Optimizing cloud infrastructure costs 47
Choosing the right EC2 instance 49
Turn-off unused instances 50
Use auto scaling 51
Use reserved instances 52
Use spot instances 52
Use Amazon S3 storage classes 53
Reducing database costs 53
Using AWS services 54
Cost monitoring and analysis 54

Application development environments 54
Development environments 55
QA/Test environment 55
Staging environment 55
Production environment 56

Setting up the AWS infrastructure 56
The AWS cloud deployment architecture 56
AWS cloud construction 59

Creating security groups 59
Creating EC2 instance key pairs 61
Creating Roles 62
Creating an EC2 Instance 64
Elastic IPs (EIP) 70

Table of Contents

[iii]

Amazon Relational Database Service 72
Software stack installation 78

Summary 81
Chapter 4: Designing for and Implementing Scalability 83

Defining scalability objectives 84
Designing scalable application architectures 84

Using AWS services for out-of-the-box scalability 84
Using a scale-out approach 85
Implement loosely coupled components 85
Implement asynchronous processing 85

Leveraging AWS infrastructure services for scalability 86
Using AWS CloudFront to distribute content 86
Using AWS ELB to scale without service interruptions 86
Implementing auto scaling using AWS CloudWatch 87
Scaling data services 87
Scaling proactively 88

Setting up auto scaling 88
AWS auto scaling construction 88

Creating an AMI 88
Creating Elastic Load Balancer 90
Creating a launch configuration 99
Creating an auto scaling group 102
Testing auto scaling group 111

Scripting auto scaling 112
Creating an AMI 114
Creating an Elastic Load Balancer 115
Creating launch configuration 117
Creating an auto scaling group 118

Summary 121
Chapter 5: Designing for and Implementing High Availability 123

Defining availability objectives 124
The nature of failures 125

Setting up VPC for high availability 125
Using ELB and Route 53 for high availability 126

Instance availability 126
Zonal availability or availability zone redundancy 127
Regional availability or regional redundancy 128

Setting up high availability for application and data layers 129
Implementing high availability in the application 131

Using AWS for disaster recovery 132
Using a backup and restore DR strategy 133
Using a Pilot Light architecture for DR 133

Table of Contents

[iv]

Using a warm standby architecture for DR 133
Using a multi-site architecture for DR 134
Testing a disaster recovery strategy 134

Setting up high availability 135
The AWS high availability architecture 135
HA support for auto scaling groups 138
HA support for ELB 139
HA support for RDS 140

Summary 142
Chapter 6: Designing for and Implementing Security 143

Defining security objectives 144
Understanding security responsibilities 144
Best practices in implementing AWS security 145

Implementing identity lifecycle management 146
Tracking the AWS API activity using CloudTrail 147
Logging for security analysis 147
Using third-party security solutions 147
Reviewing and auditing security configuration 148

Setting up security 148
AWS IAM – Securing your Infrastructure 149

IAM roles 149
AWS Key Management Service 152
Using the KMS key 156

Application security 158
Transport security 158
Secure data-at-rest 162

Summary 167
Chapter 7: Deploying to Production and Going Live 169

Managing infrastructure, deployments, and support at scale 170
Creating and managing AWS environments using CloudFormation 171
Creating CloudFormation templates 173
Building a DevOps pipeline with CloudFormation 174
Updating stacks 175
Extending CloudFormation 179

Using CloudWatch for monitoring 180
Using AWS solutions for backup and archiving 181
Planning for production go-live activities 182
Setting up for production 183

The AWS production deployment architecture 184
VPC subnets 185
Bastion host 187
Security groups 188

Table of Contents

[v]

Infrastructure as code 190
Setting up CloudFormation 190
Executing the CloudFormation script 198

Centralized logging 202
Summary 205

Index 207

[vii]

Preface
With an increasing interest in leveraging cloud infrastructure around the world, the
AWS cloud from Amazon offers a cutting-edge platform for architecting, building,
and deploying web-scale cloud applications through a user-friendly interface. The
variety of features available within AWS can reduce overall infrastructure costs and
accelerate the development process for both large enterprises and start-ups alike.

Learning AWS covers basic, intermediate, and advanced features and concepts
as they relate to designing, developing, and deploying scalable, highly available,
and secure applications on the AWS platform. By sequentially working through
the steps in each chapter, you will quickly master the features of AWS to create an
enterprise-grade cloud application. We use a three-tiered services-oriented sample
application for extensive hands-on exercises.

This book will not only teach you about the AWS components, but you will gain
valuable information about key concepts such as multi-tenancy, auto scaling,
planning, implementing application development environments, addressing
application security concerns, and so on. You will also learn how these concepts
relate to cost effective architectural decisions while designing scalable, highly
available, and secure AWS cloud applications.

A step-by-step approach to cloud application design and implementation is explained
in a conversational and easy-to-follow style. Each topic is explained sequentially in
the process of creating an AWS cloud application. Detailed explanations of the basic
and advanced features of AWS that address the needs of readers with a wide range
of real-world experiences are also included. Expert programmers and architects will
appreciate the focus on the practice rather than the theory.

Preface

[viii]

What this book covers
Chapter 1, Cloud 101 – Understanding the Basics, describes basic cloud concepts
including the public, private, and hybrid cloud models. We explain and compare the
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS) cloud service delivery models. In addition, we explain multi-tenancy
models and the challenges they present in design, implementation, and operations.

Chapter 2, Designing Cloud Applications – An Architect's Perspective, describes familiar
and not-so familiar architectural best practices in the cloud context. These include
designing a multi-tier architecture and designing for multi-tenancy, scalability, and
availability. We will also guide you through the process of estimating your cloud
computing costs.

Chapter 3, AWS Components, Cost Model, and Application Development Environments,
introduces you to the AWS components—EC2, S3, RDS, DynamoDB, SQS Queues,
SNS, and so on. We will discuss strategies to lower your AWS infrastructure
costs and their implications on architectural decisions. We will explain the typical
characteristics of the Development, QA, Staging, and Production environments on
the AWS cloud.

Chapter 4, Designing for and Implementing Scalability, provides guidance on how to
define your scalability objectives, and then discusses the design and implementation
of specific strategies to achieve scalability.

Chapter 5, Designing for and Implementing High Availability, provides guidance on how
to define your availability objectives, discuss the nature of failures, and then discuss
the design and implementation of specific strategies to achieve high availability.
In addition, we will describe the approaches that leverage the AWS features and
services for your Disaster Recovery planning.

Chapter 6, Designing for and Implementing Security, provides guidance on how to
define security objectives, explains your security responsibilities, and then discusses
the implementations of specific best practices for application security.

Chapter 7, Deploying to Production and Going Live, provides guidance on managing
infrastructure, deployments, support, and operations for your cloud application.
In addition, we provide some tips on planning your production Go-Live activities.

What you need for this book
You will need your standard development machine with Spring Tool Suite (STS),
Maven, the Git command line tools, the MySQL database, and an Amazon account
to complete the hands-on sections in this book.

Preface

[ix]

Who this book is for
This book is targeted at expert programmers/architects, who want to learn AWS. This
book assumes that the reader has previously designed and developed multi-tiered
applications, not necessarily on a cloud platform, but in an enterprise or a start-up
setting. Some familiarity with Spring, MySQL, and RESTful web services is expected.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This can be done via the command line from the root of the a1ecommerce project
via a maven goal package."

A block of code is set as follows:

jdbc.url=jdbc:mysql:// a1ecommerce.cklrz1a88gdv.us-east-
 1.rds.amazonaws.com:3306/
 a1ecommerceDba1ecommerceDba1ecommerceDb #Endpoint of
 AmazonAmazonAmazon RDS
jdbc.username=a1dbroot # username of Amazon DB instance
jdbc.password=a1dbroot #Password for the Amazon DB instance

Any command-line input or output is written as follows:

sudo apt-get update;

sudo apt-get install tomcat7 mysql-client-5.6;

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"From the RDS dashboard, click on Instances in the navigation pane, and then
on a1ecommerce to view the details of the DB instance."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

Cloud 101 – Understanding
the Basics

In this chapter, we will introduce you to cloud computing and the key terminologies
used commonly by cloud practitioners.

We will briefly describe what public, private, and hybrid clouds are, followed by
a description of various cloud service models (offered by the service providers),
including the features of Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS).

To help you get started on Amazon Web Services (AWS), we will end the chapter
by walking you through the step-by-step process of creating an AWS account, and
describing some of the salient features of the AWS dashboard.

This chapter will cover the following points:

• Define cloud computing and describe some of its characteristics
• Describe and compare public, private, and hybrid clouds
• Explain and compare IaaS, PaaS, and SaaS cloud service delivery models
• Steps to create an AWS account
• A brief overview of the AWS management console

Cloud 101 – Understanding the Basics

[2]

What is cloud computing?
Wikipedia defines cloud computing as:

"Cloud computing is internet-based computing in which large groups of remote
servers are networked to allow the centralized data storage, and online access to
computer services or resources."

The National Institute of Standards and Technology (NIST) gives the following
definition of cloud computing:

"Cloud computing is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction."

There are several other broadly accepted definitions of cloud computing. Some
explicitly emphasize configurability of the resources, while others include the need
for rapid on-demand provisioning of resources, and still others drop the requirement
of access via the internet. We define cloud computing as a model that enables the
features listed here:

• Users should be able to provision and release resources on-demand
• The resources can be scaled up or down automatically, depending on

the load
• The provisioned resources should be accessible over a network
• Cloud service providers should enable a pay-as-you-go model,

where customers are charged based on the type and quantum of
resources they consume

Some of the implications of choosing to use the cloud for your computing needs are
as follows:

• The illusion of infinite processing and storage resources, available on-demand,
reduces the need for detailed advance planning and procurement processes.

• The model promotes the use of resources as per customer needs, for example,
starting small, and then increasing resources based on an increase in need.

• The development and test environments can be provisioned on a smaller
scale than production environment, and enabled only during normal
business hours, to reduce costs.

Chapter 1

[3]

• The staging environment can be provisioned for a short duration to
be a replica of the production environment. This enables testing using
production configuration (and scale) for improved defect resolution.

• There will be ease of scaling, both vertically and horizontally, in order to
better manage spikes in demand and variations due to business cycles or
time-of-day reasons, and so on.

• This encourages experimentation, by trying out new ideas and software
by quickly provisioning resources, rather than requisition for resources
through time-consuming and cumbersome processes.

In addition, there are several key operational and maintenance-related implications,
including no hardware maintenance or data center operations required, zero-downtime
migrations and upgrades, ease of replacement of unhealthy machines, ease of
implementation of high-availability and disaster recovery strategies, and many more.

These and other implications of using cloud services to design scalable, highly
available, and secure applications are discussed in-depth in subsequent chapters.

Public, private, and hybrid clouds
Basically, there are three types of clouds in cloud computing, they are public, private,
and hybrid clouds.

In a public cloud, third-party service providers make resources and services
available to their customers via the internet. The customers' applications and
data are deployed on infrastructure owned and secured by the service provider.

A private cloud provides many of the same benefits of a public cloud but the services
and data are managed by the organization or a third-party, solely for the customer's
organization. Usually, private cloud places increase administrative overheads on the
customer but give greater control over the infrastructure and reduce security-related
concerns. The infrastructure may be located on or off the organization's premises.

A hybrid cloud is a combination of both a private and a public cloud. The decision
on what runs on the private versus the public cloud is usually based on several
factors, including business criticality of the application, sensitivity of the data,
industry certifications and standards required, regulations, and many more. But in
some cases, spikes in demand for resources are also handled in the public cloud.

Cloud 101 – Understanding the Basics

[4]

Cloud service models – IaaS, PaaS,
and SaaS
There are three cloud-based service models, IaaS, PaaS, and SaaS. The main features
of each of these are listed here:

• Infrastructure as a Service (IaaS) provides users the capability to provision
processing, storage, and network resources on demand. The customers
deploy and run their own applications on these resources. Using this service
model is closest to the traditional in-premise models and the virtual server
provisioning models (typically offered by data center outsourcers). The onus
of administering these resources rests largely with the customer.

• In Platform as a Service(PaaS), the service provider makes certain core
components, such as databases, queues, workflow engines, e-mails, and
so on, which are available as services to the customer. The customer then
leverages these components for building their own applications. The service
provider ensures high service levels, and is responsible for scalability, high-
availability, and so on for these components. This allows customers to focus a
lot more on their application's functionality. However, this model also leads
to application-level dependency on the providers' services.

• In the Software as a Service(SaaS) model, typically, third-party providers
using a subscription model provide end-user applications to their customers.
The customers might have some administrative capability at the application
level, for example, to create and manage their users. Such applications also
provide some degree of customizability, for example, the customers can use
their own corporate logos, colors, and many more. Applications that have a
very wide user base most often operate in a self-service mode. In contrast,
the provider provisions the application for the customer for more specialized
applications. The provider also hands over certain application administrative
tasks to the customer's application administrator (in most cases, this is limited
to creating new users, managing passwords, and so on through well-defined
application interfaces).

From an infrastructure perspective, the customer does not manage or control the
underlying cloud infrastructure in all three service models.

The following diagram illustrates who is responsible for managing the various
components of a typical user application across IaaS, PaaS, and SaaS cloud service
models. The column labeled User Application represents the main components of
a user application stack, while the following columns depict the varying levels of
management responsibilities in each of the three service models. The shaded boxes are
managed by the service provider, while the unshaded boxes are managed by the user.

Chapter 1

[5]

The level of control over operating systems, storage, applications, and certain network
components (for example, load balancers) is the highest in the IaaS model, while the
least (or none) in the SaaS model.

We would like to conclude our introduction to cloud computing by getting you
started on AWS, right away. The next two sections will help you set up your AWS
account and familiarize you with the AWS management console.

Setting up your AWS account
You will need to create an account on Amazon before you can use the Amazon Web
Services (AWS). Amazon provides a 12 month limited fully functional free account
that can be used to learn the different components of AWS. With this account, you
get access to services provided by AWS, but there are some limitations based on
resources consumed. The list of AWS services is available at http://aws.amazon.
com/free.

http://aws.amazon.com/free
http://aws.amazon.com/free

Cloud 101 – Understanding the Basics

[6]

We are assuming that you do not have a pre-existing AWS account with Amazon
(if you do, please feel free to skip this section). Perform the following steps:

1. Point your browser to http://aws.amazon.com/ and click on Create a
Free Account.
The process to create a brand new AWS account has started. You can sign in
using your existing Amazon retail account, but you will have to go through
the process of creating an AWS account; the two accounts are different for
accounting purposes, even though they share the same common login.
Let's take a look at the following screenshot:

2. After creating a new account or using your existing retail Amazon account,
select the I am a returning user and my password is: option and click on
Sign in using our secure server. A set of intuitive screens will guide you
through multiple screens in order to to create an AWS account, these include:

http://aws.amazon.com/

Chapter 1

[7]

 ° Contact Information: Amazon also uses this information for
billing and invoicing. The Full Name field is also used by the
AWS management console to identify your account, as shown
in the following screenshot:

 ° Payment Information: When you create an AWS account and sign
up for services you are required to enter payment information.
Amazon executes a minimal amount transaction against the card on
file to confirm that it is valid and not reported lost or stolen. This is
not an actual charge it merely places the 'X' amount on hold on the
card which will eventually drop off. The 'X' amount depends on the
country of origin.

 ° Identity Verification: Amazon does a call back via an automated
system to verify your telephone number.

 ° Support Plan: You can subscribe to one from the following, Basic,
Developer, Business, or Enterprise. We recommend subscribing
to the Basic plan to start with.

The Basic plan costs nothing, but is severely limited and
hence not recommended for production. It is an excellent
way to learn and get familiar with AWS.

Cloud 101 – Understanding the Basics

[8]

 ° Confirmation: On clicking on Launch Management Console you
will be requested to login, as shown in the following screenshot:

3. At this stage, you have successfully created an AWS account, and you are
ready to start using the services offered by AWS.

The AWS management console
The AWS management console is the central location from where you can access all
the Amazon services. The management console has links to the following:

• Amazon Web Services: This is a dashboard view that lists all the AWS
services currently available in a specific Amazon region. Clicking on any
one of these launches the dashboard for the selected service, as shown in
the following screenshot:

Chapter 1

[9]

• Shortcuts for Amazon Web Services: On the console management screen,
you can create shortcuts of frequently accessed services via the Edit option,
as shown in the following screenshot:

• Account related information: This allows you to access your account-related
data. This includes security credentials needed to access the AWS resources
by your application. The Billing & Cost Management option gives you real-
time information on your current month's billing; this helps in managing
costs, as shown in the following screenshot:

• Amazon regions: This option allows you to access the AWS in a specific
region. In the following screenshot, all the Amazon Web Services are located
in the US East (N. Virginia) region:

www.allitebooks.com

http://www.allitebooks.org

Cloud 101 – Understanding the Basics

[10]

• Support: You can navigate to the Help, Forums, and support pages:

• Service Health: Launches the health dashboard of all the Amazon Web
Services across all regions, and not of your deployed service:

Summary
In this chapter, we introduced you to a few cloud computing concepts and
terminologies. We described the basic features of public, private, and hybrid
clouds. We introduced the main cloud delivery models, namely, IaaS, PaaS,
and SaaS. Finally, we listed the steps for creating your AWS account, and
described the salient features of the AWS management console.

With the basics out of the way, in the next chapter we will deep dive into the
details of how multitenanted cloud applications are different from traditional
multi-tiered applications. We will also walk you through creating a sample
application (using Spring and MySQL) that will be used to illustrate key cloud
application design concepts through the rest of this book.

[11]

Designing Cloud Applications
– An Architect's Perspective

As an architect, we are sure you have come across terms such as loosely coupled,
multi-tier, services oriented, highly scalable, and many more. These terms are
associated with architectural best practices and you find them listed in the first
couple of pages of any system architecture document. These concepts are generally
applicable to all architectures, and the cloud is no exception.

In this chapter, we want to highlight how these are accomplished on the cloud.
You will notice that the approach you take towards cloud application architecture
remains the same to a large extent. However, you need to be aware of certain
peculiarities of the cloud environment, in order to architect scalable, available,
and secure cloud applications. For example, if you are architecting a web-scale
application, you need to take into consideration the ability to automatically scale
up and down. What are the implications of auto scaling on your design?

One of the major differences in cloud-based SaaS applications and on-premise
enterprise applications is multi-tenancy. What are some of the design considerations
of multi-tenancy? How do you design for UI, services, and data multi-tenancy in a
multi-tier architecture?

Designing Cloud Applications – An Architect's Perspective

[12]

In this chapter, we describe the familiar and not-so familiar architectural best
practices in the cloud context, by covering the following topics:

• Multi-tier architecture
• Designing for multi-tenancy including data security and extensibility
• Designing for scale
• Automating infrastructure
• Designing for failure
• Parallel processing
• Designing for performance
• Designing for eventual consistency
• Estimating your cloud computing costs
• Sample application is a typical e-commerce web application

Multi-tier architecture
A simple three-tier architecture consists of a UI tier, an application or business tier,
and a data tier.

These tiers are ordinarily implemented using web servers, application servers, and
databases, respectively.

Cloud applications can be deployed at multiple locations. Typically, these locations
are regions (that is, separate geographical areas) or zones (that is, distinct locations
within a region connected by low latency networks).

This tiered architecture on the cloud supports auto scaling and load balancing of
web servers and application servers. Further, it also implements a master-slave
database model across two different zones or data centers (connected with high
speed links). The master database is synchronously replicated to the slave. Overall,
the architecture represents a simple way to achieve a highly scalable and highly
available application in a cloud environment.

Chapter 2

[13]

Let's take a look at the following diagram:

Designing Cloud Applications – An Architect's Perspective

[14]

It is also possible to separate the tiers across two different regions, to provide for higher
level of redundancy including data center wide or zone level failures. While designing
high availability architectures across multiple regions, we need to address network
traffic flow and data synchronization issues between the regions. Such issues are
discussed in more detail in Chapter 5, Designing for and Implementing High Availability.
The following diagram illustrates this architecture:

Designing for multi-tenancy
The major benefit of multi-tenancy is cost saving due to infrastructure sharing and
the operational efficiency of managing a single instance of the application across
multiple customers or tenants. However, multi-tenancy introduces complexity. Issues
can arise when a tenant's action or usage affects the performance and availability of
the application for other tenants on the shared infrastructure. In addition, security,
customization, upgrades, recovery, and many more requirements of one tenant can
create issues for other tenants as well.

Chapter 2

[15]

Multi-tenancy models may lie anywhere from the share-nothing to share-everything
continuum. While technical ease may be a key factor from the IT department's
perspective, the cloud architect should never lose sight of the business implications
and costs of selecting the approach to multi-tenancy.

Whatever the multi-tenancy model, the data architecture needs to ensure robust
security, extensibility, and scalability in the data tier. For example, storing a particular
customer's data in a separate database leads to the simplest design and development
approach. Having data isolation is the easiest and the quickest to both understand
and explain to your customers.

It is very tempting to offer tenant-specific customizations when each
tenant's data is stored in separate databases. However, this is primarily
done to separate data and associated operations, and not to arbitrarily
allow dramatic changes to the database schema per tenant.

In this model, suitable metadata is maintained to link each database with the correct
tenant. In addition, appropriate database security measures are implemented to
prevent tenants from accessing other tenants' data. From an operations perspective,
backups and restores are simpler for separate databases, as they can be executed
without impacting other customers. However, this approach can and will lead to
higher infrastructure costs.

Typically, you would offer this approach to your bigger customers who might be
more willing to pay a premium to isolate their data. Larger enterprise customers
prefer database isolation for higher security, or in some cases, to comply with their
security policies. Such customers might also have a higher need for customizations.

While architecting multi-tenanted applications, pay particular attention
to the expected number of tenants, storage per tenant, expected number
of concurrent users, regulatory and policy requirements, and many
more. If any of these parameters are heavily skewed in favor of a
particular tenant, then it might be advisable to isolate their data.

We can define a separate database schema for each of the tenants (within the same
database server instance) for applications having a limited number of database tables.
This approach is relatively simple to implement, and offers flexibility for custom tables
to be defined per tenant. However, data restore for a particular tenant can impact other
tenants hosted on the same database instance, but this approach can reduce costs while
separating out the data of each tenant.

Designing Cloud Applications – An Architect's Perspective

[16]

In a shared database, with a shared schema approach, the costs are minimized,
but the complexity of the application is much higher. This model works well for
cost conscious customers. However, restoring a customer's data is complicated,
as you will be restoring specific rows belonging to a specific tenant. This operation
can impact all other tenants using the shared database.

In cloud architectures, the main factors to consider while designing multi tenancies
are the security, extensibility, and scalability. In addition, multi-tenancy brings
additional complexity from a DevOps perspective, and we need to ensure that
we are able to effectively manage upgrades and troubleshoot, bugs and maintain
high service levels and operations' efficiency.

Data security
There are two levels of security to be considered—at the tenant level (typically, an
organization) and the end-user level, who is a member or an employee of a given
tenant. In order to implement a security model, you need to create a database access
account at the tenant level. This account can specify (using ACLs) the database objects
accessible to a specific tenant. Then at the application level, you can prevent users from
accessing any data they are not entitled to. A security token service can be used to
implement the access at the tenant level.

When multi-tenancy is realized by having separate databases or separate schemas
per tenant, you can restrict access at the database or the schema level for a particular
tenant. The following diagram depicts a very common scenario, where both these
models are present in a single database server instance:

Chapter 2

[17]

If database tables are shared across tenants, then you need to filter data access by each
tenant. This is accomplished by having a column that stores a tenant ID per record
(to clearly identify records that belong to a specific tenant). In such a schema, a typical
SQL statement will contain a where clause based on the tenant ID being equal to the
security ID of the user account, namely an account belonging to the tenant.

Designing Cloud Applications – An Architect's Perspective

[18]

Aside from database level security, organizational policies or regulatory requirements
can mandate securing your data at rest. There are several options available from
the cloud service provider and third-party vendors for implementing encryption to
protect your data. These range from manual ones implemented on the client-side to
fully automated solutions. This topic will be discussed in detail in Chapter 6, Designing
for and Implementing Security.

Regardless of the approach, it is a good practice to encrypt sensitive data fields in
your cloud database and storage. Encryption ensures that the data remains secure,
even if a nonauthorized user accesses it. This is more critical for shared database/
schema model. In many cases, encrypting a database column that is part of an index
can lead to full table scans. Hence, try not to encrypt everything in your database,
as it can lead to poor performance. It is therefore important to carefully identify
sensitive information fields in your database, and encrypt them more selectively.
This will result in the right balance between security and performance.

It is a good idea to store a tenant ID for all records in the database
and encrypt sensitive data regardless of which approach you take
for implementing data multi-tenancy. A customer willing to pay
a premium for having a separate database might want to shift to
a more economical shared model later. Having a tenant ID and
encryption already in place can simplify such a migration.

Data extensibility
Having a rigid database schema will not work for you across all your customers.
Customers have their specific business rules and supporting data requirements.
They will want to introduce their own customizations to the database schema.
You must ensure that you don't change your schema for a tenant so much that
your product no longer fits into the SaaS model. But you do want to bake in
sufficient flexibility and extensibility to handle custom data requirements of your
customers (without impacting subsequent product upgrades or patch releases).

Chapter 2

[19]

One approach to achieve extensibility in the database schema is to preallocate a
bunch of extra fields in your tables, which can then be used by your customers
to implement their own business requirements. All these fields can be defined as
string or varchar fields. You also create an additional metadata table to further
define a field label, data type, field length, and so on for each of these fields on
a per tenant basis. You can choose to create a metadata table per field or have a
single metadata table for all the extra fields in the table. Alternatively, you can
introduce an additional column for the table name, to have a common table
describing all custom fields (for each tenant) across all the tables in the schema.

This approach is depicted in the following figure. Fields 1 to 4 are defined as extra
columns in the customer table. Further, the metadata table defined the field labels
and data types:

www.allitebooks.com

http://www.allitebooks.org

Designing Cloud Applications – An Architect's Perspective

[20]

A second approach, takes a name-value pair approach, where you have a main
data table that points to an intermediate table containing the value of the field,
and a pointer to a metadata table that contains the field label, data type, and such
information. This approach cuts out potential waste and does not limit the number
of fields available for customization as in the first approach, but is obviously more
complicated to implement.

Chapter 2

[21]

A variation on the preceding two approaches is to define an extra field per table, and
store all custom name-value pairs per tenant in an XML or JSON format, as shown in
the following figure:

A third approach is to add columns per tenant as required. This approach is more
suitable in the separate database or separate schema per tenant models. However,
this approach should generally be avoided as it leads to complexity in application
code that is, handling arbitrary number of columns in a table per tenant. Further,
it can lead to operational headaches during upgrades.

You will need to design your database schema carefully for providing
custom extensions to your tenants, as this can have a ripple effect on
the application code and the user interface.

Designing Cloud Applications – An Architect's Perspective

[22]

In this section, we have primarily covered multi-tenant approaches for relational
databases. Depending on your particular application requirements, for instance,
type and volume of data, and types of database operations, a NoSQL database can
be a good data storage solution. NoSQL databases use nontabular structures, such as
key-value pairs, graphs, documents, and so on to store data. The design techniques
in such cases would depend on your choice of NoSQL database.

Application multi-tenancy
In addition to introducing a tenant ID column in the database, if the application
has web service interfaces, then these services should also include the tenant ID
parameter in its request and/or response schemas. To ensure smooth transition
between shared and isolated application instances, it is important to maintain
tenant IDs in the application tier. In addition, tenant aware business rules can be
encoded in a business rules engine, and tenant specific workflows can be modeled
in multi-tenanted workflow engine software, using Business Process Execution
Language (BPEL) process templates.

In cases where you end up creating a tenant-specific web service, you will need
to design it in a manner that least impacts your other tenants. A mediation proxy
service that contains routing rules can help in this case. This service can route the
requests from a particular tenant's users (specified by the tenant ID in the request)
to the appropriate web service implemented for that tenant.

Similarly, the frontend or the UI is also configured for each tenant to provide a more
customized look and feel (for example, CSS files per tenant), tenant specific logos,
and color schemes. For differences in tenant UIs, portal servers can be used to serve
up portlets, appropriately.

If different service levels need to be supported across tenants, then an instance of the
application can be deployed on separate infrastructure for your high-end customers.
The isolation provided at the application layer (and the underlying infrastructure)
helps avoid tenants impacting each other, by consuming more CPU or memory
resources than originally planned.

Logging also needs to be tenant-aware (that is, use tenant ID in your record format).
You can also use other resources such as queues, file directories, directory servers,
caches, and so on for each of your tenants. These can be done in a dedicated or
separated out application stacks (per tenant). In all cases, make use of the tenant
ID filter for maximum flexibility.

Other application multi-tenancy-related issues include tenant-specific notifications,
new tenant provisioning and decommissioning, and so on.

Chapter 2

[23]

Designing for scale
Traditionally, designing for scale meant carefully sizing your infrastructure for peak
usage, and then adding a factor to handle variability in load. At some point when you
reach a certain threshold on CPU, memory, disk (capacity and throughput), or network
bandwidth, you will repeat the exercise to handle increased loads and initiate a lengthy
procurement and provisioning process. Depending on the application, this could mean
a scale up (vertical scaling) with bigger machines or scale out (horizontal scaling) with
more number of machines being deployed. Once deployed, the new capacity would be
fixed (and run continuously) whether the additional capacity was being utilized fully
or not.

In cloud applications, it is easy to scale both vertically and horizontally. Additionally,
the increase and the decrease in the number of nodes (in horizontal scalability) can be
done automatically to improve resource utilization, and manage costs better.

Typically, cloud applications are designed to be horizontally scalable. In most cases,
the application services or business tier is specifically designed to be stateless, so
that compute nodes can be added or deleted with no impact to the functioning of
the application. If the application state is important, then it can be stored externally
using the caching or the storage service. Depending on the application, things such
as session state can also be provided by the caller in each call, or be rehydrated from
a data store.

Horizontal scaling in the data tier is usually achieved through sharding.
Sharding splits a database across two or more databases to handle higher query
or data volumes than what can be effectively handled by a single database node.
In traditional application design, you would choose an appropriate sharding strategy
and implement all the logic necessary, to route the read/write requests to the right
shard. This results in increased code complexity. Instead, if you choose to use a PaaS
cloud database service, the responsibility for scalability and availability is largely
taken care off by the cloud provider.

An architecture comprising of loosely coupled components is a well-accepted
approach and the best practice. This is especially true while building highly scalable
systems. Loose coupling allows you to distribute your components and scale them
independently. In addition, loose coupling allows parts of your system to go down
without bringing the whole system down. This can improve the overall availability
of your application.

Designing Cloud Applications – An Architect's Perspective

[24]

The most commonly used design approaches to implement loose coupling is
to introduce queues between major processing components in your architecture.
Most PaaS cloud providers offer a queuing service that can be used to design for
high concurrency and unusual spikes in load. In a high velocity data pipeline type
application, the buffering capability of queues is leveraged to guard against data
loss when a downstream processing component is unavailable, slow, or has failed.

The following diagram shows a high capacity data processing pipeline. Notice that
queues are placed strategically between various processing components to help match
the impedance between the inflows of data versus processing components' speed:

Typically, the web tier writes messages or work requests to a queue. A component
from the services tier then picks up this request from the queue and processes it.
This ensures faster response times for end users as the queue-based asynchronous
processing model does not block on responses.

In a traditional architecture, you may have used message queues with simple enqueue
and dequeue operations to add processing requests and remove them for processing
from the queues, subsequently. However, implementing queue-based architectures
on the cloud is a little different. This is because your queue is distributed and your
messages automatically replicated across several nodes. In addition, one of these nodes
may be unavailable, or fails, when your request arrives, or during the processing of
your request.

In order to design more effectively, it is important to understand that:

• Message order is not guaranteed to be preserved between the enqueue
and dequeue operations. If there is a requirement to strictly preserve this
sequence then you include sequencing information as a part of the content
of each message.

• It may so happen that one of the replicas of the message may not get deleted
(due to a hardware failure or the unavailability of the node). Hence, there is a
chance that the message or processing request would get processed twice. It is
imperative to design your transactions to be idempotent in such circumstances.

Chapter 2

[25]

• As the queue is distributed across several servers, it is also possible that no
messages or not all messages are returned in any given polling request, even
if the queue contains messages. The cloud queuing service is not guaranteed
to check all the servers for messages against each polling request. However,
a message not returned in a given polling request will be returned in a
subsequent one.

• Due to the variability in the rate of incoming requests, a lot of polling
requests (as described previously) need not return any requests for
processing. For example, online orders on an online shopping site might
show wide variability between daytime and night hours. The empty polling
requests are wasteful in terms of resource usage, and more importantly
incur unnecessary costs. One solution to reduce these costs is to implement
the exponential back-off algorithm (that steadily increases the intervals
between empty polling requests). But this approach has the down side of
not processing requests soon after their arrival. A more effective approach is
to implement long polling. With long polling, the queuing service waits for
a message to become available, and returns it if the message arrives within
a configurable time period. Long polling for a queue can be easily enabled
through an API or a UI.

• In a cloud queue service, it is important to differentiate between a dequeue
and delete operation. When a message is dequeued, it is not automatically
deleted from the queue. This is done to guard against the possibility of failure
in the message reaching the processing component (due to a connection or
a hardware failure). Therefore, when a message is read off the queue and
returned to a component; it is still maintained in the queue. However, it is
rendered invisible for a period of time so that other components do not
pick it up for processing. As soon as the queue service returns the message,
a visibility timeout clock is started. This time out value is usually configurable.
What happens if processing takes longer than the visibility timeout? In such an
eventuality, it is a good practice to extend the time window through your code
to avoid the message becoming visible again, and getting processed by another
instance of your processing component.

• If your application requirements do not require each message to be processed
immediately upon receipt, you can achieve greater efficiency and throughput
in your processing by batching a number of requests and processing them
together through a batch API.

As charges for using cloud queuing services are usually
based on the number of requests, batching requests can
reduce your bills as well.

Designing Cloud Applications – An Architect's Perspective

[26]

• It is important to design and implement a handling strategy for messages
that lead to fatal errors or exceptions in your code. These messages will
repeatedly get processed until the default time out set for how long a
message should be retained in the queue. This is wasteful processing and
leads to additional charges on your bill. Some queuing services provide
a dead letter queue facility to park such messages for further review.
However, ensure you place a message in the dead letter queue after a
certain number of retries or dequeue count.

The number of messages in your queue is a good metric to use for
auto scaling your processing tier. It is also a great trigger to raise
alerts to your operations team.

• Depending on the different types of messages and their processing duration, it
is a good practice to have separate queues for them. In addition, if your load is
evenly distributed across your queues, then consider having a separate thread
to process each queue instead of a single thread processing multiple queues.

Automating infrastructure
During failures or spikes in load, you do not want to be provisioning resources,
identifying and deploying the right version of the application, configuring parameters
(for example, database connection strings), and so on. Hence, you need to invest in
creating ready-to-launch machine images, centrally storing application configuration
parameters, and booting new instances quickly by bootstrapping your instances. In
addition, you will need to continuously monitor your system metrics to dynamically
take actions such as auto scaling.

It is possible to automate almost everything on the cloud platform via APIs
and scripts, and you should attempt to do so. This includes typical operations,
deployments, automatic recovery actions against alerts, scaling, and so on. For
example, your cloud service may also provide an auto-healing feature. You should
leverage this feature to ensure failed/unhealthy instances are replaced and restarted
with the original configurations.

There are several tools and systems available from Amazon and other third-party
providers that can help you automate your infrastructure. These include OpWorks,
Puppet, Chef, and Docker.

Chapter 2

[27]

Designing for failure
Assuming things will fail, ensure you carefully review every aspect of your cloud
architecture and design for failure scenarios against each one of them. In particular,
assume hardware will fail, cloud data center outages will happen, database failure
or performance degradation will occur, expected volumes of transactions will be
exceeded, and so on. In addition, in an auto-scaled environment, for example, nodes
may be shutdown in response to loads getting back to normal levels after a spike.
Nodes might be rebooted by the cloud platform. There can also be unexpected
application failures. In all cases, the design goal should be to handle such error
conditions gracefully and minimize any impact to the user experience.

There should be a strong preference to minimize human or manual intervention.
Hence, it is preferred to implement strategies using services made available by the
cloud platform to reduce the chances of failures or automate recovery from such
failures. For example, you can use AWS CloudFormation to install, configure, and
start applications on Amazon EC2 instances. AWS CloudFormation includes a set
of helper scripts based on cloud-init. You can call these scripts from your AWS
CloudFormation templates to automate installation, configuration, and updating
of your applications on EC2 instances.

The following are a list of key design principles that will help you handle failures in
the cloud more effectively:

• Do not store application state on your servers because if your server gets killed
then you will lose any application state. Sessions should never be stored to
local filesystems. This is relevant not only in the case of server failures, but
also applicable in server scale out situations. During the scaling down process,
you don't want to lose information by storing it on the local file system.

• Logging should always be to a centralized location, for example, using a
database or a third-party logging service. If you need to store information
temporarily for subsequent processing, then there are several good
storage options available. For instance, based on your application-specific
requirements, the cloud platform's reliable queuing service can be a good
choice.

• Your log records should contain additional cloud-specific information to help
the debugging process, for example, instance ID, region, availability zone,
tenant ID, and so on. In addition, it is often useful to include application-
specific sequence of calls or requests up to the point of failure, to help trace
the source of the problem. Centralized logging across multiple tenants (in a
shared everything configuration) can get voluminous. Therefore, it helps to
use tools for viewing, searching, and filtering log records.

Designing Cloud Applications – An Architect's Perspective

[28]

• A request passes through numerous components (for example, network
components) along its journey to the server side processing components.
An error can occur anywhere or anytime during the life of the request.
These errors might typically result in a server error (that is, a 5xx series
error). In such cases, it is normal for the application code to implement
retry logic. The cloud provider's SDKs usually provide features that make
implementing this retry logic simple.

Remember to log your retry attempts and raise operator alerts if
the threshold on the number of retry attempts is crossed. If you
notice a high number of retry attempts, then it's a good idea to
review the sizing of your infrastructure. You will most likely
need to provision additional resources to reduce error or failure
rates, and the resultant retry attempts.

• The cloud platform might restrict the number of API requests you can
issue in a given time period. Hence, in addition to the total number of
retries, you need to ensure you do not exceed the allowed request rates,
by implementing delays between your retry attempts. This is typically
implemented using long polling.

• Avoid single points of failure. Plan to distribute your services across multiple
regions and zones (that is, different data centers in the same region), and also
implement a robust failover strategy. This will minimize the chances of an
application outage due to individual instances, availability zone, or region.

Sometimes running multiple instances is cost prohibitive for smaller
organizations (very common for start ups new to the cloud). If you
want to run a single instance, then ensure you still configure for
auto scaling. Set the minimum and maximum number of servers
equal to one. This will ensure that in case your instance becomes
unhealthy, then the cloud service can replace it with a new instance
within a few minutes of downtown.

In some cases, for example, highly interactive applications, it is best to just display
a simple message to the end user to resubmit the transaction or refresh the screen
(the resulting retry will likely succeed).

Chapter 2

[29]

Designing for parallel processing
It is a lot easier to design for parallelization on the cloud platform. You need
to design for concurrency throughout your architecture, from data ingestion to
its processing. So use multithreading to parallelize your cloud service requests,
distribute load using load balancing, ensure multiple processing components or
service endpoints are available via horizontal scaling, and so on.

As a best practice, you should exploit both multithreading and multi-node processing
features in your designs. For example, using multiple concurrent threads for fetching
objects from a cloud data storage service is a lot faster than fetching them sequentially.
In the precloud or noncloud environments, parallel processing across a large number
of nodes was a difficult and expensive problem to solve. However, with the advent
of cloud it has become very easy to provision a large number of compute instances
within minutes. These instances can be launched, used, and then released using APIs.
In addition, frameworks such as Hadoop have reduced the earlier complexity and
expenses involved in building distributed applications.

Designing for performance
When an application is deployed to the cloud, latency can become a big issue.
There is sufficient evidence that shows that latency leads to loss in business.
It can also severely impact user adoption.

You will need to attack the latency through approaches that can improve the user
experience by reducing the perceived and real latency. For example, some of the
techniques you can use include using memory optimized instances, right sizing
your infrastructure, using caching, and placing your application and data closer
to your end users.

Perceived latency can be reduced by prefetching data that is likely to be used by the
application or caching frequently used pages/data. Additionally, you can design
your pages in a manner that after they are downloaded to your browser, they don't
need to traverse the network for most of the subsequent navigation. You can also
use Ajax or similar technology to reduce perceived latency of web pages loading.

Ensure that the data required by your processing components are located as close
to each other as possible. Use caching and edge locations to distribute static data
as close to your end users as possible. Performance oriented applications use in-
memory application caches to improve scalability and performance by caching
frequently accessed data. On the cloud, it is easy to create highly available caches
and automatically scale them by using the appropriate caching service.

www.allitebooks.com

http://www.allitebooks.org

Designing Cloud Applications – An Architect's Perspective

[30]

Most cloud providers maintain a distributed set of servers in multiple data centers
around the globe. These servers are used as a Content Delivery Network (CDN)
to serve content to end users from locations closest to them. This service is made
available to you by the cloud service provider through an easy-to-use web service
interface. On Amazon's CDN service, the distributed content could be HTML,
CSS, PHP, or image files in regular web applications. CDNs can also be used for
rich media and content sites with live streaming video. The content is distributed
to various edge locations, and is served to end users from points closest to them.
This reduces latency while simultaneously improving the performance of your
web application/site significantly.

The following diagram shows how a typical web application hosted on the cloud
can leverage the CDN service to place content closer to the end user. When an end
user requests content using the domain name, the CDN service determines the best
edge location to serve that content. If the edge location does not have a copy of
the content requested, then the CDN service pulls a copy from the origin server
(for example, the web servers in Zone 1). The content is also cached at the edge
location to service any future requests for the same content:

Chapter 2

[31]

Designing for eventual consistency
Depending on the type of applications you have designed in the past, you may or
may not have come across the concept of eventual consistency (unless you have
worked extensively on distributed transactions-oriented applications). However,
it is fairly common in the cloud world. After a data update, if your application can
tolerate a few seconds delay before the update is reflected across all replicas of the
data, then eventual consistency can lead to better scalability and performance.

Cloud platforms typically store multiple replicas of the data to ensure
data durability. For example, the replica of a database table could be
stored in several geographically distributed locations.

Normally, eventual consistency is the default behavior in a cloud data service.
If the application requires consistent reads at all times, then some cloud data
services provide the flexibility to specify strongly consistent reads. However, there
are several cloud data services that support the eventually consistent option only.

Another approach used to improve scalability and performance is to deploy one
or more read replicas close to your end users. This is typically used for read-heavy
applications. The read traffic can be routed to these replicas for reduced latencies.
These replicas can also support resource-heavy queries for online report generation,
serve read-only requests, or run offline queries to support light analytics applications
while your main database is down for maintenance or operations activities.

Changes to the source database are applied to the read
replicas continuously, but there is a small lag involved.
These lags should be monitored to ensure they are within
acceptable ranges. Suitable operator alarms should be
raised if the delays exceed specified thresholds. Hence,
read replicas are considered to be eventually consistent.

Estimating your cloud computing costs
Costs are central to designing for the cloud. Selecting the most appropriate options
from a wide variety of tunable parameters available for each of the services can make
this a challenging task. Typically, if you understand the cost for your compute nodes
and database services well, then you would have largely accounted for a big chunk
of your expected bill. Using an 80:20 principle can help get you to ballpark cost
estimates quickly.

Designing Cloud Applications – An Architect's Perspective

[32]

Most cloud service providers make online calculators available to arrive at the
ballpark figures for your infrastructure. The following is a sample screenshot
for provisioning AWS EC2 instances (compute nodes) in a calculator provided
by Amazon. The left margin contains links for estimating the costs of AWS services
that you plan to provision for your application:

The following figure is a sample screenshot of the AWS calculator's monthly bill tab.
This tab presents the total costs you can expect on a monthly basis. These calculators
are typically very easy to use, and there is a lot of guidance and help available to
select the appropriate options for each of the services:

Chapter 2

[33]

The calculations and the totals obtained from these calculators is a good
estimate; however, it is a snapshot in time or a static estimate. You will need
to create several of these to accurately reflect your costs through the product
development lifecycle. For example, you will provision development, QA/
Test, Staging, and Production environments at different times, and with
different sizing and parameter values. In addition, you might choose to
shutdown all development and QA / Test environments at the end of each
work day, or bring up the Staging environment only for load tests and a
week prior to any production migrations.

Cloud service providers present you with an itemized bill that includes the details
of your resource usage. Compare the actual resource usage against your provisioned
resources to identify tuning opportunities. This can help lower your cloud
environment costs.

It is very important to understand your cloud resource usage and the
associated costs in your itemized bill. Track your bills closely for the
first few months and at crucial times in your product development.
These include whenever you spin up new environments, do load
testing, run environments round the clock, provision a new service,
or upgrade or increase the number of your compute instances. It is
also important to give a heads up to the finance or leadership team
when you expect the bills to show a spike or an uptick.

Designing Cloud Applications – An Architect's Perspective

[34]

A typical e-commerce web application
In this section, we go through the specifications of a typical e-commerce website
that we will develop later on. We will also show you how to deploy on the AWS
infrastructure. We will leverage off the AWS infrastructure to reduce project
timeline and also show you what specific AWS code is needed to support
nonfunctional requirements.

This application is not production grade and is only developed to
familiarize you with the AWS concepts and infrastructure.

The code base for this application is in Java and the framework used is Spring4.x
along with MySQL as the database. We will not delve into the design or the
specifications as it is not in the scope of the book nor will we develop all the
functional use cases defined in the specifications. We will however, dive deep into
the nonfunctional specifications as they tend to match what the cloud provides.
So, let's start the story.

Suppose Electronics retailer A1 Sales has decided to create an e-commerce
site to boost their brand and revenues. A1 Sales have identified functional and
nonfunctional requirements, which are typical of any e-commerce web application.
They have made the decision not to invest in a data center and leverage off the current
available cloud infrastructure; hence the e-commerce web application needs to be
geared and ready for the cloud from day one.

The nonfunctional requirements will be used by the architect to design the overall
solution on AWS cloud. The nonfunctional requirements identified are as follows:

• Operational Cost: The architected solution for the e-commerce
application should have a minimum monthly operational cost as
nothing is free on the cloud. The solution at the minimum should
meet the minimum requirements for scalability, availability, fault
tolerance, security, replication, and disaster recovery.

Chapter 2

[35]

• Scalability cloud infrastructure: The cloud infrastructure should scale
the application up or down by adding/removing application nodes
from the network, depending on the load on the application.

• Scalability application: The architected solution should be designed in
a decoupled and stateless manner, which lends itself to support scaling.

• High availability: The architected solution will be designed in a manner
which avoids single point failures in order to achieve high availability.

• Fault tolerant: The application should be coded to handle cloud services'
related failures to the extent possible.

• Application security: The application should use an encrypted channel for
communications. All the confidential data should be stored in an encrypted
format. All the files at rest should be stored in an encrypted format.

• Cloud infrastructure security: The cloud infrastructure should be configured
to close all the unnecessary network ports with the help of the firewall. All
the compute instances on the cloud should be secured with SSH keys.

• Replication: All the data should be replicated in real time to a secondary
location to reduce the window for data loss.

• Backups: All the data from the databases shall be backed up on a daily basis.
• Disaster recovery: The architected solution should be designed in a manner

that it is easy to recover from an outage with minimal human intervention,
with the help of automated scripts.

• Design for failure: The architected solution should be designed for failure;
in other words, the application should be designed, implemented, and
deployed for automated recovery from failure.

• Should be coded using open source software and open standards to prevent
vendor lock-in and to drive costs down.

Designing Cloud Applications – An Architect's Perspective

[36]

Setting up our development environment
In this section, we show you how to download the source code from GitHub and
run the A1 electronics e-commerce application. It is assumed that the user has
the following packages installed in his development environment:

• Eclipse or Spring Tool Suite (STS): For downloading STS/Eclipse the
links are http://spring.io/tools/sts/all and https://eclipse.org/
downloads/.

• JDK 1.7: The download link is http://www.oracle.com/technetwork/
java/javase/downloads/jdk7-downloads-1880260.html.

• Maven 3: For downloading Maven 3, the link is http://maven.apache.org/
download.cgi.

• Git command line tools: For download the link is http://git-scm.com/
downloads.

• Eclipse with Maven plugin (m2e): m2e is installed by default when
using the STS. You can install the previous M2Eclipse release by using the
following update site from within Eclipse, by navigating to Help | Install
New Software on http://download.eclipse.org/technology/m2e/
releases.

The following instructions mentioned are for Linux but not limited to, they can be
also used for Windows and Mac OS X with minor or no modifications.

Let's get started:

1. To begin with, create a folder named a1electronics in your preferred
workspace mkdir a1electronics.

2. Next, download the source code from the GitHub repository.
3. Switch to the created folder a1electronics, and clone the source code from

the git repository, using the following command:
git clone https://github.com/a1electronics/ecommerce a1ecommerce

4. Now that you have the source code, the next step is to import the project into
Eclipse or STS. Alternatively, you can run it directly from the command line.

http://spring.io/tools/sts/all
https://eclipse.org/downloads/
https://eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://git-scm.com/downloads
http://git-scm.com/downloads
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases

Chapter 2

[37]

5. To run the application directly from the command line, irrespective of
importing the project into STS, using the following command:
mvn tomcat7:run

This will launch the web server tomcat along with the application on
port 8888. You can type in the following URL in your favorite browser
http://localhost:8888/a1ecommerce and viola you have the
A1 Electronics home page.

6. To import the project into STS, you will need to go to menu File | Import and
then select Existing Maven Projects as shown in the following screenshot and
click on Next:

Designing Cloud Applications – An Architect's Perspective

[38]

7. In the next step, as shown in the following screenshot, you will need to point
to the folder where you checked out the application from the git repository.
As described in the earlier section, clicking on Finish will successfully import
your project into STS:

Chapter 2

[39]

Running the application
Now, in order to run our application, let's perform the following steps:

1. You can launch the imported project from the Package Explorer by
selecting the menu option Run | Run; this will open a pop-up window,
as shown here:

www.allitebooks.com

http://www.allitebooks.org

Designing Cloud Applications – An Architect's Perspective

[40]

2. Select the Run On Server option and click on OK. This will open another
popup to select the installed web server from within STS, as shown in the
following screenshot. Clicking on Finish will launch the a1electonics
e-commerce application from within the STS:

Building a WAR file for deployment
You have the option of creating a war file, which can be deployed in any web server
that supports the servlet container. This can be done via the command line from the
root of the a1ecommerce project via a maven goal package:

mvn package

This will create a war file a1ecommerce.war in the folder called target, which is in
the root of the a1ecommerce project.

Chapter 2

[41]

Summary
In this chapter, we explained the differences in design and implementation of
cloud-based application. We reviewed some of the architectural best practices
in the cloud context. More specifically, we described multi-tiered, loosely coupled,
and service oriented scalable designs and their realizations on the cloud platform.
We also went through the design consideration and implementation approaches
to multi-tenancy. We also created a simple application that we intend to expand
and elaborate in the coming chapters to illustrate the AWS concepts in detail.

After covering the cloud architectural principles in this chapter, we will get a lot
more specific in our coverage of cloud computing in the next chapter. We will cover
the AWS-specific cloud services, the costing model, and application development
environments.

[43]

AWS Components,
Cost Model, and Application
Development Environments

This chapter will describe the main AWS components and services. We will also
cover strategies to lower your cloud infrastructure costs, and how they influence
your architectural decisions. Furthermore, this chapter will discuss the typical
characteristics and functions of AWS cloud application development environments,
including development, testing, staging, and production environments. Finally,
we will walk you through the process of setting up the AWS infrastructure for
our sample application.

AWS components
AWS offers a variety of infrastructural services. The list of AWS services is a
continuously growing list of services with several of them in preview mode at
any given time. In this section, we will describe some of the main AWS services.

AWS Components, Cost Model, and Application Development Environments

[44]

Amazon Elastic Compute Cloud (EC2)
Amazon EC2 is a web service that provides compute capacity in the AWS cloud. You
can bundle the operating system, application software, and associated configuration
settings into an Amazon Machine Image (AMI). You can then use these AMIs to
provision multiple virtualized instances as well as decommission them using web
service calls. EC2 instances can be resized and the number of instances scaled up or
down to match your requirements or demand. These instances can be launched in one
or more geographical locations or regions, and Availability Zones (AZs). Each region
comprises of several AZs at distinct locations, connected by low latency networks in
the same region.

Amazon Elastic Block Storage (Amazon EBS) volumes provide network-attached
persistent storage to the EC2 instances. Elastic IP addresses allow you to allocate
a static IP address, and programmatically assign it to an instance. You can enable
monitoring on EC2 instances using Amazon CloudWatch. You can create auto
scaling groups using the auto scaling feature to automatically scale your capacity
based on CloudWatch metrics. You can also distribute incoming traffic by using
the Elastic Load Balancer (ELB) service. You can also use the AWS CloudTrail
service to monitor AWS API and AWS SDK calls for your account.

Amazon EC2 Container Service is a cluster management and configuration
management service. This service enables you to launch and stop container-enabled
applications via API calls.

Amazon S3
Amazon S3 is a highly durable and distributed data store. Using a web services
interface, you can store and retrieve large amounts of data as objects in buckets
(containers). The stored objects are also accessible from the web via HTTP.

Amazon EBS
Amazon EBS is highly available and durable persistent block level storage volumes
for use with Amazon EC2 instances. You configure EBS with SSD (general purpose
or provisioned IOPS) or magnetic volumes. Each EBS volume is automatically
replicated within its Availability Zone (AZ).

Chapter 3

[45]

Amazon CloudFront
The Amazon CloudFront service is a CDN service for low latency content delivery
(static or streaming content). For example, copies of S3 objects can be distributed
and cached at multiple edge locations around the world, by creating a distribution
network using the Amazon CloudFront service.

Amazon Glacier
Amazon Glacier is low-cost storage service that is typically used for archiving and
backups. The retrieval time for data on Glacier is up to several hours.

Other AWS Storage services include Amazon Storage Gateway (enables integration
between on-premise environment and AWS storage infrastructure) and AWS Import/
Export service (which uses portable storage devices to enable movement of large
amounts of data into and out of the AWS cloud environment).

Amazon RDS
Amazon Relational Database Service (Amazon RDS) provides an easy way to
setup, operate, and scale a relational database in the cloud. Database options available
from AWS include MySQL, Oracle, SQL Server, PostgreSQL, and Amazon Aurora
(in preview at this time). You can launch a DB instance and get access to a full-featured
MySQL database, while reducing effort on common database administration tasks like
backups, patch management, and so on.

Amazon DynamoDB
Amazon DynamoDB is a NoSQL database service offered by AWS. It supports both
document and key-value pairs, data models, and has a flexible schema. Integration
with other AWS services, such as Amazon Elastic MapReduce (Amazon EMR) and
Redshift provide support for Big Data and BI applications, respectively. In addition,
the integration with AWS Data Pipeline provides an efficient means of moving data
into and out of DynamoDB.

AWS Components, Cost Model, and Application Development Environments

[46]

Amazon ElastiCache
If your application is read-intensive, then you can use the AWS ElastiCache service
to significantly boost the performance of your applications. ElastiCache supports
Memcached and Redis in-memory caching solutions. AWS ElastiCache supports
higher reliability through automatic detection and replacement of failed nodes,
automates patch management, and enables monitoring through integration with
Amazon CloudWatch. ElastiCache can be scaled-up/scaled-down in response to
the application load.

Amazon Simple Queue Service
Amazon Simple Queue Service (Amazon SQS) is a reliable, highly-scalable,
hosted, and distributed queue for storing messages as they travel between
computers and application components.

Amazon Simple Notification Service
Amazon Simple Notification Service (Amazon SNS) provides a simple
way to notify applications or people from the cloud application. It uses the
publish-subscribe protocol.

Amazon Virtual Private Cloud
Amazon Virtual Private Cloud (Amazon VPC) allows you to extend your corporate
network into a private cloud contained within AWS. Amazon VPC uses the IPSec
tunnel mode that enables you to create a secure connection between a gateway in
your data center and a gateway in AWS.

Amazon Route 53
Amazon Route 53 is a highly-scalable DNS service that allows you to manage your
DNS records by creating a hosted zone for every domain you would like to manage.

AWS Identity and Access Management
AWS Identity and Access Management (IAM) enables you to you to control access
to AWS services and resources. You can create users and groups with unique security
credentials and manage permissions for each of these users. You can also define
IAM roles so that your application can securely make API calls without creating and
distributing your AWS credentials. IAM is natively integrated into AWS Services.

Chapter 3

[47]

Amazon CloudWatch
CloudWatch is a monitoring service for your AWS resources. It enables you to
retrieve monitoring data, set alarms, troubleshoot problems, and take actions
based on the issues arising in your cloud environment.

Other AWS services
There are several other AWS services that assist you in the administration of
your cloud environment. These include CloudTrail (records AWS API calls),
AWS Config (provides you with a resource inventory and current configuration
of your AWS resources), AWS CloudHSM (helps you meet contractual obligations
and/or compliance requirements), and AWS Key Management (to manage your
data encryption keys).

In addition, AWS provides several services for deployment and management
of your applications. These include AWS Elastic Beanstalk (for deploying and
scaling web applications), AWS OpsWorks (an application management service),
AWS CloudFormation (for provisioning a set of related AWS resources), and
AWS CodeDeploy (for automating code deployments).

Other applications' related services from AWS include Amazon EMR (a hosted
Hadoop framework), Amazon Kinesis (for real time streaming data ingestion and
processing), Amazon SWF (a workflow service), Amazon AppStream (for streaming
from the cloud), Amazon Elastic Transcoder (for conversion of media files), Amazon
SES (a bulk e-mail service), and Amazon CloudSearch (for applications that need a
scalable search service functionality). AWS also offers payment and billing services
that leverage Amazon's payment infrastructure.

Other than services provided by Amazon, there are many software products
and services offered by third-party vendors through the Amazon Marketplace.
Depending on your application requirements you can choose to integrate these
services into your applications instead of building them.

Optimizing cloud infrastructure costs
It is important to understand your cloud-costing model, so that you are able to
manage costs better. Typically, a substantial part of your bill comprises of costs of
EC2 compute instances, database instances (especially, if you are using Provisioned
IOPS), and the usage of any specialized application services (Amazon EMR, Amazon
Redshift, and many more). However, storage costs can also be significant for certain
applications such as a photo-sharing application. In this section, we will focus on
several strategies that will help you cut your cloud infrastructure costs.

AWS Components, Cost Model, and Application Development Environments

[48]

Costs are a big motivation to use cloud infrastructure,
and AWS provides many different ways of saving on your
AWS bills. However, it is up to you to take advantage of all
the saving opportunities available. As a simple guideline,
start with minimal infrastructure, and iterate from there to
optimize your infrastructure costs.

Most often pursuing these cost-cutting measures can lead to a leaner and a more
robust architecture. In addition, these measures are a lot easier to implement on
AWS cloud than in the traditional data center-based infrastructure.

With an ever-increasing number of services and customers, Amazon
has been able to leverage economies of scale and pass on additional
savings to their customers. In fact, they have reduced prices over
forty times since 2006, and prices continue to be revised downwards
for various services on an on-going basis.

The infrastructure setup process in the precloud era consisted of plan-build-run
steps where mistakes were often expensive, and hard to correct. With the advent
of cloud computing, this process has become cyclical, where we iterate through
architect-build-monitor steps. Cloud infrastructure is dynamically allocated and
deallocated so we do not have to be 100 percent right in all our infrastructure design
decisions, the first time around. We can iteratively improve our architecture while
meeting our infrastructure cost objectives.

The free version of AWS Trusted Advisor is available to all customers
through the AWS Management Console. This version includes a
limited number of performance and security recommendations.
Additional features are available for startups and for customers
who sign-up for Business-level and Enterprise-level support. AWS
Trusted Advisor helps you provision your resources by following best
practices, inspects your environment, and guides you in optimizing
your costs. These savings can help defray the AWS support costs.

There are several strategies that can result in substantial savings, and most of these
are relatively easy to implement. We discuss the main ones to provide you guidance
on lowering your cloud infrastructure spending in the next few sections.

Chapter 3

[49]

Choosing the right EC2 instance
The EC2 instances you choose are directly dependent on your application
characteristics. Ensure that you have a good understanding of these characteristics,
for example, is the application CPU-intensive, or is it more I/O bound? What are the
typical workloads? Is there variability in demand over a period of time? Are there any
special events when the demand is unusually high? What are the average resource
requirements for good user experience?

Based on the application characteristics, shortlist a few instance types that are available
from AWS. EC2 types include several families of related instances available in sizes
ranging from micro to extra large. These classes include general purpose, compute
optimized, memory optimized, storage optimized, and GPU instances.

You should then do a few tests to analyze the performance of the shortlisted
instances against increasing loads. It is a good idea to understand the upper limit
of these instances in terms of number of users or throughput they can support.

For example, let's assume you want to select EC2 instances for your web servers.
These web servers proxy API calls to the application servers, that is, handle CPU-
intensive traffic and support heavy payloads. Based on these requirements, let's say
you shortlist two instance type—a CPU optimized (say, c3.xlarge) and a general
purpose (m3.xlarge) instance type. Typically, you should choose a general purpose
and a special purpose instance type for comparison purposes. In order to conduct
the performance analysis, create a set of test cases to test a few scenarios in your
application. Monitor the CPU utilization for these instances at different loads, say
1000, 2000, and 3000 users. Increase the load to a point where you max out on the
CPU. It is very likely that you will hit max CPU utilization at different loads for
each of the chosen instances.

In cases where you want to test at very high loads, you should
contact Amazon before conducting the load test to have your
load balancer prewarmed. They can configure the load balancer
to have the appropriate level of capacity, based on the expected
traffic during your load tests. It is also important to load test
from multiple distributed agents to ensure your IP address is
not flagged.

At this stage, you should provision multiple smaller instances (from the same
families) that match the xlarge instance's compute power and conduct the same
load tests. This is done to check whether we can achieve the same performance,
at a higher level of resiliency, by using multiple smaller instances in place of a
bigger instance.

www.allitebooks.com

http://www.allitebooks.org

AWS Components, Cost Model, and Application Development Environments

[50]

Instance selection is not only about the instance size or type alone, but also about the
available network bandwidth. Hence, you should also compare the results of your
network bandwidth assessment for each of your instance types. If your application
requires increased network bandwidth, turn on the enhanced networking option,
which is available on certain instance types.

Enhanced networking option is available on C3, C4, D2, I2,
and R3 instances, but not on general purpose instances.

Compare the costs against different throughput levels. It is possible that the general
purpose instance type costs more than the compute optimized instance type for your
application's expected workload.

Finally, availability and costs of instance types differ by region. Hence, your EC2
instance type and size decision will need to take into consideration the availability of
instance types, and then strike the right balance in terms of performance, resiliency,
and costs.

Typically, in start-ups the development and test environments
are provisioned in the most economical region using minimum
sizes of general purpose EC2 instances to minimize development
infrastructure costs.

Turn-off unused instances
It is surprising how many times you find unused instances adding to your bills. This
usually happens when someone provisions an instance to conduct an experiment,
or check out a new feature and then fails to delete the instance when done. It also
happens a lot during testing when the test environment is, carelessly, left running
through the weekend or after the testing activity is over. It is important to check
your bills and usage data to minimize such costs. Tag your instances with the
environment name, owner's name, and so on to identify the instances, and the
primary owner or cost center, quickly.

Instances can be switched on and off easily, so ensure you switch off your dev,
test, and training instances after office hours and through the weekends. You can
also automate your infrastructure for this purpose using AWS CloudFormation.
On cloud, instances are disposable; hence, you do not need to keep them on when
they are not being used. You can easily save 30-40 percent on your bills this way.

Chapter 3

[51]

Use auto scaling
Automatically scale your compute instances to the extent required; otherwise, scale
down automatically. You can define launch configurations for your EC2 instances
and then set up appropriate auto scaling groups for them. You can select parameters
such as the minimum and maximum number of instances. This helps automate the
process of saving money, by turning off unused instances during scale down.

During a scale-up it can take a few minutes for your new instances to come online.
So ensure you account for this while establishing your thresholds. Do not set the
threshold too high (for example, at 90 percent CPU utilization) because there is a
high chance your existing instances will hit 100 percent utilization before your new
instances have spun up. It is a good practice to set the CPU utilization threshold
to be between 60-70 percent, as it gives you sufficient headroom. To guard against
inadvertent scale up due to a random spike, you should also specify a duration of
say 2 or 5 minutes at the threshold CPU utilization before the scale-up process kicks
in. As EC2 instances are charged by the hour, do not rush to scale down immediately
after you have scaled up (if there is an immediate dip below the threshold). You can
set a longer duration say 10-20 minutes at the reduced CPU utilization threshold
before scaling down.

You can also set thresholds for network and memory utilization based on profiling
your application or working with an initial best guess and iteratively adjusting to
arrive at the right threshold values. However, avoid setting multiple scaling triggers
per auto scaling group because, if this increases the chance of conflict in your
triggers, then this could lead to a situation where you are scaling up based on one
trigger while scaling down due to another. You should also specify a cooling down
period upon a scale down.

If you have multi-AZ architecture, then scale-up and scale-down
should be in increments of two instances at a time. This helps keep
your AZs balanced with equal numbers of instances in each.

Sometimes, massive scaling is required in response to certain planned events.
Special events such as a big sales event by a popular e-commerce site, or a news
site during the Olympics, or the elections might lead to disruptions due to huge
demand on resources during these events. In such cases, it might be a better
approach to overprovision instances for the sharp increase in traffic, rather than
relying on auto scaling alone. After the event is over, the instances can be scaled
down, appropriately.

AWS Components, Cost Model, and Application Development Environments

[52]

You can also do schedule-based scaling where you can match scaling with the
workload at different times during the day and/or weekends. This approach can also
be used to scale down development and test environments during off-peak hours.

Now that you have architected your application environment, the next step is to
monitor it. Monitoring is important because it helps you validate your architectural
decisions. If your focus is costs and usage at this stage, then monitor them closely
to identify targets for further optimizations. Tag your instances with identifying
information with respect to the environment, owner, cost center, and so on for
reporting purposes. You also need to establish various monitoring thresholds
and alerts. Analyze this information frequently to iterate on your architecture
for further savings.

Use reserved instances
Reserved instances can help save 50-60 percent or higher on your instance
costs (versus using on-demand instances). You have flexibility to pay all, part,
or nothing upfront, and they are available for a duration of 1 year or 3 years at
much lower hourly rates. You can also modify or sell your reserved instances if
your requirements change. Typical breakeven on these instances vary between
5 months to 10 months depending on the duration of the contract. Reserved
instances are flexible, for example, they can be moved between AZs and their
sizes can be modified (within the same instance family).

As production instances are typically required to run 24/7/365 in a reliable manner,
reserved instances are a good fit for enterprise applications (in production). For dev/
test environments (and in start-ups), you might want to experiment with and spend
more time evaluating spot instances because spot prices can be a fraction of the
regular on-demand prices.

Use spot instances
Spot instances can be the most cost effective option for experimentation and learning
purposes, and also for establishing economical cloud environments. AWS carries
extra capacity in terms of unused instances and they sell these instances on a spot
market. The pricing is dynamic, and based on supply/demand.

You can set the maximum price you want to pay for an instance, and that price
can be much lower than the regular on-demand price. If there is available capacity,
then Amazon will fulfill that request. However, your instance is terminated if the
spot price becomes higher than your price. If your application is architected against
failures, then such terminations should not impact the running of your application.

Chapter 3

[53]

Availability and costs can vary between different availability zones. When the
demand goes up, the price can go even higher than on demand instances. To guard
against this situation, you need to set your price carefully and start your instances
in another availability zone, in case the price in your current availability zone goes
higher than your set price.

Spot instances give you an opportunity to name your own price and can potentially
save you 80-90 percent of your instance-related costs. However, understand the risks
associated with using them. You can leverage auto scaling to reduce your overall
risks, for example, you can define one group with spot instances and a second with
on-demand instances.

So far, we have primarily focused on cost savings related to EC2 instances. However,
Amazon S3 offers additional opportunities to cut costs on storage as well.

Use Amazon S3 storage classes
Using the Reduced Redundancy Storage (RRS) option in Amazon S3 storage
can reduce your costs by storing non-critical and easily restorable data at lower
levels of redundancy than the standard storage option. Amazon S3's reduced
redundancy option stores data in multiple facilities and on multiple devices,
but the data is replicated fewer times. RRS provides 99.99 percent data durability
versus 99.999999999 percent using the standard option. This can lead to savings
of 15 to 20 percent on storage.

Aside from enabling RRS, Amazon Glacier storage class can be used for storing
backups and archiving old data. Amazon Glacier is low cost storage with 99.999999999
percent data durability. Data restores from Glacier storage can take 3 to 5 hours.
However, this can result in 50-60 percent savings on storage. You can also specify
life-cycle rules to automate data movement from S3 to the Glacier storage.

Reducing database costs
Caching and Read Replicas can reduce the capacity required for your database
instance in read intensive transactions/applications. For caching the data, you can
leverage the spare local RAM caches available in your application server instances
or use Amazon ElastiCache (there is a cost involved but that might be lower than
additional capacity allocation for your database instance for your application type).

You can also use Amazon SQS to buffer writes that exceed your provisioned capacity
for the database instance. This approach allows you to provision for average capacity
rather than the peak.

AWS Components, Cost Model, and Application Development Environments

[54]

Using AWS services
AWS makes available a bunch of ready-to-use services that you can integrate into
your application. This can help reduce the infrastructure you need to maintain,
scale, and pay for, while getting the benefits of scalability and high-availability out
of the box. In most cases, this will result in a leaner and more efficient architecture.
For example, you can use Amazon CloudFront in front of your web architecture.
CloudFront caches your static and dynamic content thereby helping you scale
down the architecture behind CloudFront.

Cost monitoring and analysis
The AWS platform provides a set of tools to help monitor and analyze your costs.
These include the AWS TCO calculator, a simple monthly calculator (described in
Chapter 2, Designing Cloud Applications – An Architect's Perspective), the AWS billing
console that shows you an itemized bill, and AWS Cost Explorer that gives you costs'
trends information across different time periods. You can also set AWS Billing Alerts,
that will send you automatic notifications when your bill hits some preset threshold.
These thresholds can also be used for auto scaling where you can shut down
instances, automatically, if your bill reaches a certain level. You can also enable
detailed billing to break down costs by hour, day, or month; or by each account.
AWS will publish these reports as CSV files and store them in your S3 bucket.

There are several third-party open source (for example, Netflix ICE) and
commercial tools (for example, cloudability). These tools provide cost and usage
reporting, information related to accounts, comparison across time periods, and
underutilized instances.

In the next section, we briefly discuss various environments you should provision for
cloud application development purposes.

Application development environments
You will need to provision several environments in the course of your application
development. These environments should be provisioned only when they are
required. This section discusses these environments and their features.

Chapter 3

[55]

Development environments
The primary purpose of the development environment is to support development
and unit testing activities. This environment is usually provisioned with the smallest
instances to support your developers. In addition, you can use a shared database
instance with schema space for each of your developers. Depending on the standards
within your organization, you will do daily, weekly, or on-demand deployments in
this environment. You may or may not provision for HA or configure auto scaling in
your development environment. Typically, the development instances are shutdown
at the end of each day and through the weekends. However, during crunch periods
these environments are kept running for extended hours.

QA/Test environment
This environment is typically provisioned for supporting functional and nonfunctional
testing activities. They use small instances and are not configured for HA and auto
scaling (during functional testing). This environment can be configured for auto
scaling and HA (only when required) for nonfunctional testing. Like the development
environment, this environment is shutdown on a daily basis and during weekends.
Application deployments in this environment are as per the planned project schedule
(to match testing cycles).

Staging environment
Staging environment should mirror the production environment in terms of
configuration. This environment is typically used for User Acceptance Testing
(UAT), recreating production issues, testing application patches, and load testing.
As this environment mirrors production, it will be expensive to keep it running
continuously; hence, it should be brought only when necessary to support the
aforementioned activities. Application deployments occur only when required,
for instance, to test the application before a production migration.

AWS Components, Cost Model, and Application Development Environments

[56]

Production environment
Production environments are highly scalable and HA-enabled environments.
Auto scaling is enabled, backups are maintained according to the organization's
backup policy, and the environment is monitored, continuously. The instances run
continuously and a specific version of the application remains deployed at all times.

Additional environments can be created for the purposes of customer training, demos,
and so on.

In the next section, we take you through the process of setting up the infrastructure
for our sample application.

Setting up the AWS infrastructure
This section introduces you to provisioning the AWS infrastructure in order to
deploy and run the A1Electronics e-commerce application securely on AWS.
You will also see the code changes required at the application level. By the end
of this section, you will be familiar with creating EC2 and RDS instances, and
the choices you need to make for configuring them for you own deployments.
We will automate the entire process, which will allow you to launch and stop
existing RDS and EC2 instances, and also create new ones. So let's begin.

The AWS cloud deployment architecture
Before we start, we need to have the deployment architecture in place. The term
deployment architecture here describes the manner in which a set of resources like
the web server, the application server, databases, DNS servers, load balancers, or
any other specific AWS resources are configured on the network to fulfil the system
requirements (and ultimately satisfy your business goals). The following diagram
shows a simple AWS deployment architecture for our A1Electronics e-commerce
application. Production grade AWS deployment architecture will be discussed later,
in Chapter 7, Deploying to Production and Going Live.

Chapter 3

[57]

The following figure is created with Amazon provided AWS icons that can be
downloaded from http://aws.amazon.com/architecture/icons/:

Let's get familiar with the AWS terms in the preceding diagram.

• Region: AWS services are hosted in multiple locations around the word and
these are known as regions. The regions are connected through the public
internet. The main criteria for choosing a specific AWS region are:

 ° Location of your customers: This reduces network latency and makes
for responsive web applications. For our example, since a majority
of A1Electronics customers are located in the US, the US East (N.
Virginia) region is selected.

http://aws.amazon.com/architecture/icons/

AWS Components, Cost Model, and Application Development Environments

[58]

 ° Price: The products and services offered by Amazon are priced
differently across the regions. For example, we can choose a region
with the cheapest pricing for our development work, but for
production deployment, we can do a cost benefit analysis to choose
the most appropriate region. Pricing of all the AWS products and
services is available at http://aws.amazon.com/products/.

 ° Not all products and services are available across all the regions:
A list of AWS services and products available by region is available
at http://aws.amazon.com/about-aws/global-infrastructure/
regional-product-services.

• Availability Zone: Availability zones (AZ) can be treated as traditional data
centers within a region. AZs in the same region are designed to provide
infrastructure redundancy in the event of a catastrophic outage, such as
earthquakes, snowstorms, Godzilla attacks, and so on. The number of AZs
in a region is region specific. In our example, we select the us-east-1a AZ.

• EC2 Instance: This is a virtual server on which you run your applications.
These come in various flavors to meet your computing demand. A high
compute EC2 instance also has high network I/O memory associated with
it. You cannot have a low compute EC2 instance with high memory and
network I/O. EC2 instances have fixed CPU to memory ratios. It is best to
select a micro instance for development, since it is free. More on EC2 instance
types is available at http://aws.amazon.com/ec2/instance-types/.

• Amazon Relational Database Service (RDS): Amazon RDS is a fully-managed
SQL database service. It is nothing but an EC2 instance running a SQL engine
of your choice. MySQL, PostgreSQL, Oracle, Microsoft SQL Server plus, and
Amazon's own MySQL-compatible Amazon Aurora DB engine are supported.

• Security Groups: A security group acts as a virtual firewall for your
instance to control inbound and outbound traffic. The security group can
be configured by a set of rules for inbound and outbound traffic. The rules
define the network protocol, port, and source and destination IP address
ranges to accept or send your data to.

• Virtual Private Cloud (VPC): VPC lets you provision a private, isolated
section of the AWS cloud where you can launch AWS resources in a virtual
network, using custom-defined IP address ranges. It is like your own private
data centre. It also provides you with several options on connecting VPC
with other remote networks. For our example, we have chosen a default VPC
172.31.0.0/16 CIDR block that allows us define a total of 65536 subnets or a
total of 65534 addressable resources.

http://aws.amazon.com/products/
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/ec2/instance-types/

Chapter 3

[59]

AWS resources launched within a VPC aren't addressable via the
global internet, EC2, or by resources in any other VPC. Resources
can be accessed only by resources running within the same VPC.

• Subnets: Subnets are logical segments of a VPC's address range that
allow you to designate to a group of your resources based on security
and operational needs.

• Router: Each VPC comes with a default router in order to communicate
with resources outside the VPC. For example, connecting to a database
server in other VPCs.

• Internet gateway: Each VPC also comes with a default Internet gateway
to connect to the public Internet; this Internet gateway is on the VPC side
of a connection to the public Internet.

Let's now begin the construction.

AWS cloud construction
To create a working AWS cloud infrastructure, you will need to create security
groups, key pairs, users and roles, MySQL RDS instances, EC2 instances, Elastic
IPs, and wire them all together. We will create this in a bottom up manner where
we create the base AWS constructs such as security groups, key pairs, users, and
roles, and then we wire them to the EC2 and RDS instances.

Creating security groups
As per the deployment architecture diagram, we need to create two security groups;
one for the EC2 instance and the other for the RDS MySQL instance. To create the
group, perform the following steps:

1. From the EC2 dashboard, click on Security Groups from the navigation
pane and then on the Create Security Group button.

2. Create a security group for EC2 instances to allow the following:
 ° Web traffic from any IP address on port 8080 (default Tomcat

server port)
 ° SSH traffic for remote login from any IP address

AWS Components, Cost Model, and Application Development Environments

[60]

 ° ICMP traffic to ping the EC2 instance from a public Internet

3. Create a security group for MySQL RDS instances to allow access from
the Internet.

 ° During the development phase, we need to have direct access to
databases from our development environment. This makes it is
easy to change, monitor the database without logging in to the EC2
instance, or setting up complex SSH tunnels. In addition, there is
the added advantage of not having to install a local MySQL server
on your development machine. For production environments, it is
recommended to allow database access only from within the VPC.
Select Anywhere from Source and 0.0.0.0/0 to allow access from any
IP address. If you have a static IP address from your ISP, you can enter
it here to allow access to all machines from your static IP address, only.
If you have a dynamic IP address, then you will need to update this
rule to the most recent, as shown in the following screenshot:

Chapter 3

[61]

Creating EC2 instance key pairs
AWS uses public/private keys to securely connect to your instances. The public key
will be retained by AWS, while the private key is downloaded to your computer as
soon as it is created. To create a key pair, perform the following steps:

1. From the EC2 dashboard, click on Key Pairs from the navigation pane and
then on the Create Key Pair button.

2. Enter ec2AccessKey when prompted with a dialog box asking to enter the
key pair name. This key pair name will be used while configuring the EC2
instances and in CloudFormation scripts.

Make sure you select the correct AWS region from the EC2 dashboard
to create the keys because key pairs can't be shared across regions
As soon as you create the key pair, your private key will be
immediately downloaded to your computer. Secure this private key.
This private key file can be only downloaded once during the creation
of the keys. You cannot change access keys in your EC2 instances once
they have been assigned.

AWS Components, Cost Model, and Application Development Environments

[62]

Creating Roles
Role is a set of permissions that grant access to AWS services. Roles are independent
of users or groups. You will need a strategy to distribute and rotate the credentials
to your EC2 instances; especially, the ones which AWS creates on your behalf, for
example, Spot instances or Auto Scaling groups. A good security practice is credential
scoping—granting access only to the services your application requires. AWS solves
the issues of credential scoping and credential distribution via IAM roles.

1. From the IAM dashboard, click on Roles in the navigation pane and then on
the Create New Role button.

2. Create a role named ec2Instances for our EC2 instances that have access to
all the AWS provided services, as shown in the following screenshot:

3. The next step is to grant permissions to the selected AWS services. Click on
the Amazon EC2 role type, as shown in the following screenshot:

Chapter 3

[63]

4. Next, we will assign permissions for the selected role. Select the Power
User Access option. For now, we do not have any credential scoping. Read
and write permissions for all AWS services are granted to the selected role.
Permissions to the role can be reassigned even when the EC2 instance is
running. Let's have a look at the following screenshot:

5. The following screen allows you the option of copying the permissions
and testing them in the IAM simulator. It also allows you to modify the
permissions as per your requirements. No changes are required to be
made here for now. Click on the Next Step button, as shown in the
following screenshot:

AWS Components, Cost Model, and Application Development Environments

[64]

6. The last screen allows you to preview your selected options before creating a
role. Click on the Create Role button, as shown in the following screenshot:

Creating an EC2 Instance
Since we have already done the groundwork (steps 1 to 3), it is just a matter of
wiring the EC2 instance. Perform the following steps:

1. From the EC2 dashboard, click on Instances in the navigation pane
and on the Launch instance. This will start a process of provisioning
an EC2 instance.

2. The next step is to choose an operating system for the EC2 instance; this is
done by choosing the correct Amazon Machine Image (AMI) as per our
requirements. Select the Ubuntu Server 14.04 LTS (HVM) SSD Volume
Type AMI, as shown in the following screenshot:

Chapter 3

[65]

3. After selecting an AMI image, the next option is to choose an instance type.
The instance is the virtual server that will run our application. Select the
t2.micro instance that is included in the free-tier for a period of 1 year from
the date you have created your AWS account. Click on the Next:Configure
Instance Details button, as shown in the following screenshot:

4. Next, we configure the instance. Here, we have several options and we need
to make the most appropriate choices:

 ° Number of instances: This allows launching of multiple
AMI instances. By default, it is set to 1 (no need to change that).
You can always launch multiple instances via the EC2 dashboard.

 ° Purchasing Option: Since we are using the free tier, we can ignore
this. The idea of purchasing this option relates to excess capacity
for an instance type in an AWS region made available for use at
a lower price than the advertised price.

 ° Network: By default, all EC2 instances are launched in a VPC.
We use the default VPC.

 ° Subnet: By default, each subnet is associated with an availability
zone within a region. Select the 172.31.16.0/20 subnet associated
with us-east-1a AZ.

AWS Components, Cost Model, and Application Development Environments

[66]

 ° Auto-assign Public IP: When an EC2 instance starts, it can request
a public IP address from Amazon's pool of public IP addresses (so
that it can be a part of the public internet). This public IP address
will be available as long as the EC2 instance is on. Each time the EC2
instance starts, it will get a public IP address from the Amazon's pool
of public IP addresses. The public IP is not persistent. If we want the
public IP address to be persistent across restarts, then we have to use
an Elastic IP that we will set up in step 5. Set this to Disable for now.

 ° IAM role: Select the role ec2Instances created earlier in step 3.
 ° Shutdown behavior: An instance can be either stopped or terminated

on shutdown. Select Stop.
 ° Enable termination protection: This is a means to disable the

terminate option for the EC2 instance in the EC2 dashboard.
Select this option.

 ° Enable Monitoring: This is for enabling collection of metrics and
analysis via AWS CloudWatch. Logging of basic metrics is free
(with restrictions). Refer to https://aws.amazon.com/cloudwatch/
pricing/ to know what's free and what you have to pay for. For our
purposes, you do not need to select this option.

 ° Tenancy: Shared tenancy uses an over-subscription model to rent the
hardware among the customers; this makes the performance of the
EC2 instance unpredictable. To overcome this problem, Amazon also
provides a dedicated tenancy option, which costs more but reserves
the instance exclusively for your use. Select the Shared tenancy
option from the dropdown.

 ° Network Interface: This option is used to add extra network interfaces
to the EC2 instance. No changes are needed.

 ° Advanced Details: This option is used to pass user data or scripts to
the EC2 instance. Right now, we do not pass any user data or scripts
to the EC2 instance. No changes are needed.

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

Chapter 3

[67]

5. Click on Next: Add Storage to provision persistent storage, as shown in the
following screenshot:

6. Next, we configure the persistence storage also known as elastic block
storage (EBS). It is the hard disk for your EC2 instance. Up to 30 GB of disk
is available in the free tier, which is sufficient for most applications. Select
General Purpose (SSD) from the Volume Type column. The data access
speed of the disk is proportional to the size of the disk. It is defined in terms
of IOPS, which stands for input output operations per second. One IOP is
defined as a block of 256 KB data written per second. Click on Next: Add
Tags, as shown in the following screenshot:

AWS Components, Cost Model, and Application Development Environments

[68]

7. Next, we tag the EC2 instance. Tags do not have any semantic value and
are treated purely as strings in a key-value form. You can work using the
tags with the AWS management console, EC2 API, and EC2 command line
interface tools. Click on Next: Configure Security Group. Let's have a look
at the following screenshot:

8. Next, we assign the security group sq-EC2WebSecurityGroup we
defined earlier in step 1. Click on the Select an existing security group
radio button to view all the available predefined security groups. Select
sq- EC2WebSecurityGroup from the list. Click on Review and Launch,
as shown in the following screenshot:

Chapter 3

[69]

9. Next, we can review the options we have selected, and modify them,
if required. Click on Launch to launch the instance. Let's have a look
at the following screenshot:

10. Upon launch, the EC2 instance will prompt you to select the public/private
key pair, which was created in Step 2. Select the ec2AccessKey from the
drop down list box. Click on Launch Instances to launch the EC2 instance.
Let's have a look at the following screenshot:

AWS Components, Cost Model, and Application Development Environments

[70]

The key pair once assigned to an instance cannot be changed.
Make sure you store your private key securely.

11. Your EC2 instance will take some time to start. You cannot access it as it does
not have a public IP associated with it yet. The EC2 instance is assigned an IP
address from the VPC subnet, in this case it is 172.31.16.179. This EC2 instance
can be used only for communication between the instances in your VPC. Next,
create an elastic IP and assign it to the EC2 instance so that it can be accessed
via the public internet. Let's have a look at the following screenshot:

Elastic IPs (EIP)
EIPs are dynamically remappable static public IP addresses that make it easier to
manage EC2 instances. Each EIP can be reassigned to a different EC2 instance when
needed. You control the EIP address until you choose to explicitly release it. An EIP
is associated with your account and not a particular EC2 instance. Since public IP
addresses are a scarce resource, you are limited to 5. If you need more EIPs, then you
have to apply for your limit to be raised. If you have a large deployment, then an
elastic load balancer (ELB part of AWS) is placed in front of all the instances; hence
consuming a single EIP.

Chapter 3

[71]

You will be charged for all EIPs not associated with running
EC2 instances. It is charged at 0.01$/hour for each EIP that is
not associated.

To create an EIP, perform the following steps:

1. From the EC2 dashboard, click on Elastic IPs in the navigation pane and
then on Allocate New Address. This will assign a new EIP to your account.

2. The next step is to associate the EIP to an instance. Click on Associate
Address. Type the tag name of the EC2 instance you want to associate this
EIP with on Instance. Select the instance, and click on Associate. Let's have
a look at the following screenshot:

AWS Components, Cost Model, and Application Development Environments

[72]

3. From the EC2 dashboard, click on Instances in the navigation pane and then
on A1ElectronicsEcommerce to view the details. The EIP is assigned to the
instance. Use ping to test the instance either by the EIP address 54.172.48.64,
or by the domain name ec2-54-172-48-64.compute-1.amazonaws.com from
the terminal. Let's have a look at the following screenshot:

Amazon Relational Database Service
As we have seen, the A1ElectronicsEcommerce EC2 instance is up on the cloud; we
now need to create a RDS instance within our VPC for our A1ElectronicsEcommerce
web application. Since we have already defined it under the Creating security groups
section, it is now just a matter of wiring it to the RDS instance. Perform the following
steps:

1. From the RDS dashboard, click on Launch a DB Instance. This will start a
process of provisioning a RDS instance.

Chapter 3

[73]

2. The next step is to select the SQL database engine. For our application,
we will select MySQL Community Edition and click on Select. Perform
the following steps:

3. The next step is to decide whether the RDS DB instance will be used for the
production environment or outside of it. Under the production environment,
RDS provides an option for high availability. It also provides an option of
provisioning IOPS for your RDS DB instance as per your application's need.
All this sounds good, but the costs can add up quickly, so unless you have a
convincing business case, avoid this choice. We select the No radio button and
click on Next Step. Let's take a look at the following screenshot:

AWS Components, Cost Model, and Application Development Environments

[74]

4. The next step is to configure the RDS instance. The following are the properties:
 ° License Model: Since we chose MySQL Community Edition,

general-public-license is the only option available.
 ° DB Engine Version: This option allows you to select a specific version

of MySQL. Choose the latest, unless you have MySQL-specific code
that runs for a specific version.

 ° DB Instance Class: This is the same as choosing the EC2 instance
type. This will select the virtual server that will run your MySQL
database engine; faster DB instances can be chosen as per your
database workload after profiling them, db.t2.micro is the only
one that is available for the free tier.

 ° Multi-AZ Deployment: This option is for high availability as
discussed earlier. Select No from the drop-down list.

 ° Storage Type: Select General Purpose (SSD): The other options
are Provisioned IOPS, which kicks in only if your allocated storage
is 100 GB or more, and Magnetic, which is slower.

 ° Allocated Storage: You can use the default that is 5 GB. The free tier
allows storage up to 20 GB.

 ° DB Instance Identifier: This is the identifier for the MySQL server
database instance, and this identifier is used for defining the DNS
entry for the DB instance. Type a1ecommerce in the text field.

 ° Master Username: This is the master login name to access the
DB instance; it needs to start with a letter. Enter a1dbroot for
the master username.

 ° Master Password: This is the password for the master username.
 ° Confirm Password: Type in the master password again.

Chapter 3

[75]

5. Click on Next Step for advanced settings, as shown in the
following screenshot:

6. Next, we configure Advanced Settings, which have the following properties:
 ° VPC: This is the VPC network where the DB instance will reside.

It is the same default VPC network in which our EC2 instance resides.
Since there is only one VPC defined, select the Default VPC from the
dropdown.

 ° Subnet Group: This allows for the selection of a DB subnet. A DB
subnet is a logical subdivision of the VPC network space. This is
useful in large implementations, where you might have a use case
for different DB instances being logically separated from each other.
From the architecture diagram, this DB instance is in the same subnet
as the EC2 instance. This can be achieved by selecting the correct
availability zone. Select default from the dropdown.

AWS Components, Cost Model, and Application Development Environments

[76]

 ° Publicly Accessible: This is a good security practice to hide your
databases from the Internet. However, access to the DB instance is only
possible after remotely logging into the EC2 instances running within
the same VPC or by setting up SSH tunnels. During the development
phase, this becomes very inconvenient and frustrating to manage
database schema changes, viewing data, and debugging. So by
keeping things simple, select Yes from the dropdown. For production
DB instances, this should be set to No and a VPC security group that
allows access from within the VPC should be created and assigned.

 ° Availability Zone: Select us-east-1a from the drop-down box, which
is the same as where our EC2 instances are deployed. It assigns the
correct subnet to the DB instance.

 ° VPC Security Groups: Select sq-RDSSecurityGroup from the list
box (created earlier in step 1).

 ° Database Name: This is the name of the database to which an
application connects to. Name it a1ecommerceDb.Name.

 ° Database Port: This is the default MySQL port. Do not change the
default port number, which is set to 3306.

 ° Parameter Group: Management of DB engine configuration is done
via the parameter group. This allows you to change the default DB
configuration. Since we have not created any parameter group,
select the default default.mysql5.6.

 ° Option Group: An option group allows us to set additional features
provided by the DB engine to manage the data and the database and
to provide additional security to your database. Since, we have not
created any option group, select the default default.mysql.5.6.

 ° Backup Retention Period: This is the number of days Amazon RDS
keeps the automatic backup for the instance. The range is from 1 to
35 days. This helps enable one-click restoration of the data in case
of disaster recovery. Selection of 0 days disables backup retention.
Select 7 from the dropdown.

 ° Backup Window: This is the time slot during which the automatic
backups take place. The selected time period should be such during
which the database load is least. It is normally set when we deploy
the database in production. During the development cycle, this can
be set to No Preference.

 ° Auto Minor Version Upgrade: Amazon RDS will automatically
update the DB instance only for minor updates. Select Yes from
the dropdown.

Chapter 3

[77]

 ° Maintenance Window: This performs any modifications to the
DB instance such as changing the DB instance class, storage size,
password, multi availability zone deployment, and so on. These
changes take place during the maintenance window period. Again,
this is useful for production instances. The maintenance window can
be overridden during the time of modification of the DB instance.

7. Click on Launch DB Instance, this will create a DB instance and launch it.
Let's have a look at the following screenshot:

AWS Components, Cost Model, and Application Development Environments

[78]

8. From the RDS dashboard, click on Instances in the navigation pane, and
then on a1ecommerce to view the details of the DB instance. If you notice
there is no IP address associated with the DB instance; the only way you
can access this DB instance is via the endpoint. Let's have a look at the
following screenshot:

Software stack installation
The next step is to remotely log in to the EC2 instance and install the Apache Tomcat
and MySQL client libraries. We will use the private key file created and downloaded
under Creating EC2 instance key pairs. Perform the following steps:

1. Copy the private key to the .ssh folder in your home directory; if for some
reason it does not exist, then create it and make sure it has read/write/
executable rights assigned for the owner (drwx-----). To log in from your
Linux command line, type the following to assign correct rights to the private
key we downloaded in step 2. This assigns read/write and execution rights
only to the file owner. Unless the rights are changed, it will not be possible
to login remotely. Use the following command:
chmod 700 ~/.ssh/ec2AccessKey.pem

Chapter 3

[79]

 ° Remote login: After executing the command in the previous step,
we can login remotely. The default user name for Ubuntu AMIs is
ubuntu, and the IP address to connect to the EIP of the EC2 instance
is 54.172.48.64 (from step 5). Type Yes when you get a warning that
the authenticity of the host 54.172.48.64 can't be established:
ssh –i ~/.ssh/ec2AccessKey.pem ubuntu@54.172.48.64

 ° Installing software: The next step is to install Apache Tomcat and
MySQL client libraries on to the EC2 instance. First, update the
package repositories, and then install the packages:
sudo apt-get update;
sudo apt-get install tomcat7 mysql-client-5.6;

 ° Verify Tomcat7 installation: Open any browser and type
http://54.172.48.64:8080. You will see a default Apache
Tomcat page on the browser.

 ° Verify the MySQL access from the EC2 instance: From the EC2
instance command line, type key in the endpoint (URL) exactly
as displayed on the RDS instance dashboard:
mysql -ua1dbroot -p -h a1ecommerce.cklrz1a88gdv.
 us-east-1.rds.amazonaws.com

When prompted for the password, type the password you entered while
creating the DB instance in step 6. At the end of it, you should see a MySQL
command prompt.

 ° Repeat the preceding step from your development machine.
This verifies that the DB instance is accessible from both the
EC2 instance and your development machine.

2. Now, we have the DB instance configured, the Tomcat webserver is up and
running, and all we need to do next is to deploy the a1ecommerce application
on the EC2 instance. Before the application can be deployed on the EC2
instance modifications are required in the source files:

 ° Point to correct configuration file: Set up the drivers and
the database schema to use with RDS by changing line
39 in PersistenceContextConfig.java in src/main/java/
com/a1electronics/ecommerce/config folder to @
PropertySource(value = { "classpath:application-
cloud.properties" })

AWS Components, Cost Model, and Application Development Environments

[80]

 ° Change the database endpoint: In the application-cloud.
properties file in the src/main/resources folder, change the
following properties:
jdbc.url=jdbc:mysql:// a1ecommerce.cklrz1a88gdv.us-east-
 1.rds.amazonaws.com:3306/
 a1ecommerceDba1ecommerceDba1ecommerceDb #Endpoint of
 AmazonAmazonAmazon RDS
jdbc.username=a1dbroot # username of Amazon DB instance
jdbc.password=a1dbroot #Password for the Amazon DB instance

 ° After modifying the data-access.property file, it is time to build
the project and copy the WAR file to the EC2 instance for deployment.
From the root of the project, type the following command:
mvn package

This will create an a1ecommerce.war file. In the target folder, copy this to the
EC2 instance for deployment:
scp –i ~/.ssh/ec2AccessKey.pem taget/a1ecommerce.war
ubuntu@54.172.48.64:~/

This copies the a1ecommerce.war file from the target folder to the home
folder of ubuntu in the EC2 instance:
sudo cp a1ecommerce.war /var/lib/tomcat7/webapps

This deploys the WAR file to the Apache Tomcat web server.
 ° You have successfully completed deploying a web application

on the Amazon cloud. To verify this, in the browser type
http://54.172.48.64:8080/a1ecommerce, and you should
see the A1Electronics e-commerce site up and running.

Chapter 3

[81]

Summary
In this chapter, we described the main AWS services that are most commonly used for
AWS cloud applications development. These included compute, storage and content
delivery, databases, networking, application, administration, and deployment services.
Next, we described some techniques for lowering your cloud infrastructure bills.
We also explained the purpose and characteristics of environments that are typically
provisioned for cloud development. Finally, we walked you through the process of
provisioning the AWS development infrastructure for our sample application.

In the next chapter, we will focus our attention on how you can design and implement
application scalability on AWS cloud. We will describe some design patterns for
achieving application scalability. Next, we will describe the AWS auto scaling feature,
and how to select the best set of rules for configuring it. Finally, we will implement
some of these design patterns in our sample application and implement the auto
scaling rules.

[83]

Designing for and
Implementing Scalability

In this chapter, we will introduce some key design principles and approaches
to achieving scalability in your applications deployed on the AWS cloud. As an
enterprise, or a start-up at its inflection point, you never want your customers to be
greeted with a 503 message (that is, Service Unavailable). The approaches in this
chapter will ensure your web and mobile applications scale effectively to meet your
demand patterns, growth in business, and spikes in traffic. We will also show you how
to set up auto scaling in order to automate the scalability in our sample application.

In this chapter, you will learn the following topics:

• Defining scalability objectives
• Designing scalable application architectures
• Leveraging AWS infrastructure services for scalability
• Setting up auto scaling for your deployed application

Designing for and Implementing Scalability

[84]

Defining scalability objectives
Achieving scalability requires your application architecture to be scalable in order
to leverage the highly scalable infrastructure services provided by AWS cloud. Your
application should respond proportionally to the increase in resources consumed,
and be operationally efficient and cost effective. For example, if you lift-and-shift
your on-premise application to the cloud and vertically scale your instances to
meet increasing load, then it is likely that it will either become very expensive,
your application's increasing resource requirements will necessitate another move
to larger instances soon, or both. Hence, it is vital that you design your application
to work together with the infrastructure to meet your scalability requirements. In
order to design, implement, and operate effectively, you should define an initial set
of scalability metrics, for example, the number of requests to be served per second,
average and peak number of simultaneous users to be supported, and so on. These
metrics will help you establish an initial baseline that you can then benchmark
against. This will also let you set appropriate targets for your developers and
operations staff, and help you iteratively optimize your designs, processes, and costs.
In most cases, if you split your application into small components and then optimize
them using the AWS infrastructural features, then you will obtain the best results.

Designing scalable application
architectures
In this section, we present some of the common approaches to designing scalable
application architectures. Some of these design principles are not unique to
cloud-based applications; however, they become even more important in the
cloud context. Let's have a look at a few of these design principles.

Using AWS services for out-of-the-box
scalability
Leverage AWS PaaS services wherever possible to receive the benefits of scalability and
availability without the associated administrative headaches or design complexity. For
example, you can leverage the RDS or the DynamoDB services available for scalable
relational and NoSQL database services, respectively. Similarly, you could leverage the
AWS SQS for a highly scalable queuing service without having to roll out your own
implementation or managing an open source product deployed in an EC2 instance.

Chapter 4

[85]

Using a scale-out approach
Designing an application that can scale horizontally allows you to distribute
application components, partition your data, and follow a services-oriented
design strategy. This approach will help you leverage elasticity of the AWS cloud
infrastructure. For example, you can choose the right sizes and number of EC2
instances you need automatically and on-demand, to meet varying requirements.

Implement loosely coupled components
Loosely coupled applications are typically implemented using message-oriented
architectures. You can use the AWS SQS service for this purpose. SQS queues are
commonly introduced between components to buffer messages. This ensures that
the application will perform in situations of high concurrency, unpredictable loads,
and/or load spikes.

Loosely coupled components can help you differentially scale-out your architecture
by deploying more instances of any given component or by provisioning more
powerful instances for components that require it. You can also provision specialized
EC2 instances to meet the specific requirements of your components, for example,
compute optimized, memory optimized, and/or storage optimized instances.

In addition, you should try to design your components to be stateless as far
as possible. This will help you distribute your components more effectively.
In situations where you need to store the session state, ensure that you do so at
a central location so that it is accessible from any instance serving user requests.
This is especially important in the auto scaling context where the number of
instances varies in response to the demand.

Implement asynchronous processing
Implementing asynchronous processing wherever possible in your application can
improve scalability. However, ensure you include sufficient information in your
logging records to be able to trace and troubleshoot problems. This is typically done
using AWS SQS queues. Ensure you implement a dead letter queue for queue requests
that fail after several retries (usually between 3-5 times). You can use the AWS SNS
service for notifying components when a message's request processing has been
completed. You can also create asynchronous pipelines for data flows within your
application using AWS Kinesis data streams and AWS SQS queues, where you can
route your data to different queues to be processed differently.

Designing for and Implementing Scalability

[86]

Leveraging AWS infrastructure services
for scalability
In this section, we will shift our focus to strategies you can use to leverage the AWS
cloud infrastructure to scale your applications.

Using AWS CloudFront to distribute content
Try to offload as much content as possible to the AWS CloudFront CDN service
for distribution to Amazon edge locations. CloudFront can be used to deliver your
entire site including static, dynamic, streaming, and interactive content. It can also
work with a non-AWS origin server that stores your original content.

Static content or files include CSS, HTML, images, and so on that are stored in Amazon
S3 (and not on your web server instance). This can reduce the load on your web servers
and improve the efficiency of maintaining content (by storing at one S3 location) while
reducing latency for your end users and reducing overall costs (by reducing the size or
the number of EC2 instances required for your web servers).

In the case of dynamic content, for example, repeated queries from many different
users resulting in the same content response from your servers are cached and
served up from the edge locations. This results in deriving similar benefits as in
the case of static content distribution. This approach can be especially useful in
speeding up mobile application responses.

Using AWS ELB to scale without service
interruptions
Configure an AWS ELB in your deployment architecture even if you are using a
single EC2 instance behind it. This will ensure you are ready to scale up or down
without interrupting your services. ELB ensures the CNAME application access
point remains the same as you auto scale the number of servers or even replace a
fleet of servers behind it. This can also help you systematically rollout new versions
of your application behind the ELB with no service interruption to your customers.
You can also deploy your web application on EC2 instances behind ELBs and use
Amazon CloudFront to deliver your entire site.

Chapter 4

[87]

Implementing auto scaling using AWS
CloudWatch
The auto scaling feature offered by the AWS cloud infrastructure services allows you
to automatically increase or decrease the numbers of instances supporting your load
dynamically. The most common way to set this up is by using the AWS CloudWatch
service. You can use AWS CloudWatch to measure CPU utilization, network traffic,
and so on. You can also define custom metrics for your application. Using these
metrics you can setup appropriate thresholds for auto scaling.

ELBs can work within an AWS region only. However, they can work
across multiple availability zones within a region. Typically, AWS Route
53 is used for distributing traffic across multiple AWS regions.

Scaling data services
There are several options for data services available from AWS that are optimized for
specific use cases. Choose the most appropriate one as per your application's needs.
For example, you can choose the RDS service to use the MySQL databases and create
read replicas for use in your reporting applications. Depending on your specific
requirements, the read replicas can be hosted on a different class of machines (larger
or smaller instances) than your RDS instance. This not only serves your application
needs efficiently, but also helps you reduce the size and number of RDS instances
required. Similarly, you can exploit AWS ElastiCache to further offload requests that
need to be served by your master RDS instance. In many applications, a vast majority
of database requests (as high as 80-90 percent) can be serviced from ElastiCache.

Remember to monitor the utilization of your RDS using
AWS CloudWatch to tune your instance sizes.

In chatty applications, it can also help to offload some of your data from RDS to
low-latency AWS DynamoDB and with ElastiCache to further reduce your costs
of RDS usage.

Refer to the extensive documentation available from Amazon for
architectural blueprints, technical blogs, white papers, and videos
for in-depth guidance on effective scalability strategies to follow for
each of the AWS services. In addition, events such as AWS re:Invent,
webinars, and meetups with Amazon architects are great sources of
information on scalable architectures.

Designing for and Implementing Scalability

[88]

Scaling proactively
You can proactively scale your applications in response to known traffic patterns or
special events. For example, if you have cyclical patterns (daily, weekly, or monthly)
in the usage of your application, then you can leverage that information to scale
up or down the number of instances at the appropriate time to handle the increase
or decrease in demand, respectively. You can also rapidly scale up just minutes in
advance of special events such as a flash sale or in response to breaking news to
handle a huge surge in traffic. Remember to benchmark how long it takes for your
application components to come up and be available to service requests. This will
help you accurately deploy your resources in a timely manner.

Setting up auto scaling
This section introduces you to dynamic scaling for your deployed application.
As explained, the application will either scale-out, that is, more EC2 instances
will be added or scaled in, that is, running EC2 instances will be removed based
on some measureable metric. We will select the metric from a defined set and
apply rules so that our auto scaling can scale-in or out based on these rules.

AWS auto scaling construction
To create a working AWS auto scaling, we will create an Elastic Load Balancer (ELB),
a base AMI (which will be our EC2 instance running our e-commerce application),
Launch Configuration (that is, the base AMI to launch in an EC2 instance), and alarms
in CloudWatch in order to add/remove instances that apply to an Auto Scaling Group
(ASG). Perform the steps listed in the following sub-sections to setup auto scaling for
your application.

Creating an AMI
An Amazon Machine Image (AMI) is a master image for the creation of virtual
servers on the Amazon cloud. An AMI contains instruction to launch an EC2
instance; this includes an operating system, machine architecture 32 bit or 64 bit,
software stack for your applications, launch permissions, disk size et.al. You start
with the basic AMI that is provided by Amazon, the user community or the market
place, and then customize as per your requirements; you can also create an AMI of
your running EC2. An AMI is a prerequisite for creating and using an auto scaling
group. We will use the A1ElectronicsEcommerce instance that we had created in
Chapter 3, AWS Components, Cost Model, and Application Development Environments
to create the AMI.

Chapter 4

[89]

Let's have a look at it:

1. Creating an AMI: From the EC2 navigation pane, click on Instances to view
all your EC2 instances. Select the A1ElectronicsEcommerce instance and then
right-click on it; this will display a pop-up menu with all the actions you can
perform on the selected instance. Select Image and then Create Image from
the menu to create an AMI, as shown in the following screenshot:

2. The next step is to name the AMI and allocate the disk space for it. On this
screen, you only need to be aware of the following configuration parameters:

 ° No reboot: By default, Amazon EC2 shuts down the instance, takes
a snapshot of attached volumes, and then creates and registers the
AMI. If this option is checked, then the EC2 instance will not shut
down and the integrity of the filesystem cannot be guaranteed while
creating the AMI.

Designing for and Implementing Scalability

[90]

 ° Delete on Termination: During auto scaling the EC2 instances
are created or terminated depending upon the metrics you have
configured for. During the launch of an EC2 instance, EBS volumes
are created and referenced by the AMI; in our case, it is the Root
volume. When the EC2 is terminated, the volume is not deleted, so
over a period of time you accumulate EBS volumes that you have to
pay unnecessarily, to store. As our application is stateless and does
not store any data on the instance, we can delete the EBS volume and
hence save on the cost. Let's have a look at the following screenshot:

Creating Elastic Load Balancer
An ELB distributes the incoming requests from the Internet/intranet to the EC2
instances registered with it. The elastic load balancer can only distribute the requests
to the instances in a round-robin manner. If you need more complex routing
algorithms, then either use the Amazon Route53 DNS service, Nginx as a reverse
proxy, or HAProxy. Amazon ELB is designed to handle unlimited concurrent
requests per second with a gradually increasing load pattern. It is not designed to
handle a sudden increase in requests, such as promotional sales, online exams, or
online trading, where you might have a sudden surge of requests. If your use case
falls in the latter category you need to request the Amazon Web Service support
team to prewarm the ELBs to handle the sudden load.

Chapter 4

[91]

The ELB consists of three parts; they are as follows:

• Load Balancer: This monitors and handles the requests coming in through the
Internet/intranet and distributes them to EC2 instances registered with it.

• Control Service: It automatically scales the handling capacity in response to
incoming traffic by adding and removing load balancers as needed, and also
does a health check on the load balancers.

• SSL Termination: ELB provides SSL termination that saves precious CPU
cycles encoding and decoding SSL within your EC2 instances attached to
the ELB. All it requires is a X.509 certificate to be configured within the ELB.
It is optional; you still have an option of terminating the SSL connection in
the EC2 instance as well.

Let's begin the creation of ELB:

1. From the EC2 navigation pane, click on Load Balancers under Network &
Security and then on Create LoadBalancer. The fist step is to name the load
balancer and configure the protocols it will service. They are as follows:

 ° Load Balancer name: This is a name that uniquely identifies a load
balancer. This name will be a part of the public DNS name of your
load balancer.

 ° Create an internal load balancer: An internal load balancer balances
the Intranet traffic in a private subnet, that is, between your internal
servers, for example, between web servers and application servers.
Do not select this option.

Enable this option only when you want to load
balance traffic between internal servers.

 ° Enable advanced VPC configuration: The advanced VPC
configuration option allows you to specify your own subnets.
Select this option if you want to route traffic to EC2 instances
running in specific availability zones. Select this option as we
want to route the traffic to EC2 instance running in availability
zone us-east-1a. The other use case is when we want to design for
high availability, it is discussed in detail in Chapter 5, Designing for
and Implementing High Availability.

Designing for and Implementing Scalability

[92]

 ° Listener Configuration: A listener is the process that listens for
incoming requests of a protocol on a specific port from the client's
side and relays it to an EC2 instance configured for a protocol and a
port. It supports protocols both at the transport layer (TCP/SSL) and
the application layer (HTTP/HTTPS). Our Apache Tomcat server
listens on port 8080; we enter port 8080 both on the Load Balancer
Port and the Instance Port. The acceptable ports for both HTTPS/SSL
and HTTP/TCP connections are 80 and 443 and between 1024-65535.
Select HTTP as the protocol on both Load Balancer Protocol and
Instance Protocol.

 ° The next step is to configure the ELB to route the incoming traffic
to the subnets in which the application is running. The VPC is
configured such that each unique subnet is associated with an
availability zone. The purpose of this is to make your application
resistant to failures. If an availability zone goes down all the instances
in that availability zone will not respond and hence will be detected
via the ELB's health check. The ELB will then start routing the
incoming requests to your healthy instances running on the other
availability zones within the same region. Since our application is
deployed in us-east-1a availability zone we add to our Selected
Subnets by selecting it from the Available Subnets list. This does
not imply that by simply selecting the subnets from the availability
zone will magically auto scale your application. You should have
an EC2 deployed in that subnet. Ignore the warning Please select
at least two Subnets in different Availability Zones to provide
higher availability for your load balancer as it for setting up a
high availability deployment, more of it in Chapter 5, Designing for
and Implementing High Availability.

Chapter 4

[93]

Designing for and Implementing Scalability

[94]

2. Now, we assign a security group to our ELB. We have already created the
security group sq-EC2WebSecurityGroup in Chapter 3, AWS Components,
Cost Model, and Application Development Environments under the AWS Cloud
Construction section. Select the sq-EC2WebSecurityGroup:

3. The next is to configure the Security Settings, since SSL is not being used
with the ELB, this step is skipped. This section will be revisited later in
Chapter 6, Designing for and Implementing Security.

4. Next, we configure the health check. ELB periodically sends requests to test
the availability of the EC2 instances registered with it. These tests are called
health checks. EC2 instances that respond to pings at the time of the health
check are marked as InService and the instances that do not respond are
marked as OutOfService. The ELB performs health checks on all registered
instances, regardless of whether the instance is in a healthy or unhealthy
state. ELB will route requests only to InService instances. In the following
section, you will define what an InService and OutOfService EC2 instance
is. In your web application, you define a URL that the ELB can call for
a health check. To reduce network traffic, we suggest you have a REST
endpoint or a static HTML page, which returns no data only a 200 OK HTTP
response code. Let's have a look at the following screenshot:

Chapter 4

[95]

 ° Ping Protocol: This is the protocol to connect to on the EC2 instance.
It can be TCP, or HTTP/HTTPS. Select HTTP from the dropdown.

 ° Ping Port: This is the port to connect to with the instance. Enter 8080,
which is the default port of our Apache Tomcat server.

 ° Ping Path: This is the HTTP/HTTPS destination for the health
request. A HTTP/HTTPS GET request is issued to the instance on
the Ping Port and the Ping Path. If the ELB receives any response
other than 200 OK within the response timeout period, the instance
is considered unhealthy.

 ° Response Timeout: This is the time to wait when receiving a
response from the health check. If the instance does not respond
within the set time period, it is considered unhealthy. Use the
default value of 5 seconds.

 ° Health Check Interval: This is the amount of time in between
the health checks. If you have low value, then you will increase
the network traffic but a healthy/unhealthy EC2 instance can be
detected quickly and vice versa. Use the default value of 30 seconds.

 ° Unhealthy Threshold: This is the number of consecutive health check
failures before declaring an EC2 instance unhealthy or OutOfService.
An OutOfService EC2 instance will only be detected after a time
period of HealthCheck Interval * Unhealthy Threshold seconds. Use the
default value 2. If you do not want your servers taken offline after
two consecutive bad health checks, then you can increase this value.
This is typically done for applications requiring longer startup time.

Designing for and Implementing Scalability

[96]

 ° Healthy Threshold: Number of consecutive health check successes
before declaring an EC2 instance healthy or InService. An InService
EC2 instance will only be detected after a time period of HealthCheck
Interval * Healthy Threshold seconds. Use the default value 10.

5. Next, we add any running instances we have to ELB. As we are creating this
ELB for an auto scaling group, we can skip this. The auto scaling group when
activated will add the EC2 instance to the ELB on the fly:

 ° Enable Cross-Zone Load Balancing: This option allows the ELB to
route traffic across the availability zone.

 ° Enable Connection Draining: This feature only works when used
in conjunction with auto scaling. In auto scaling, the instances are
dynamically added or removed depending on the policies defined.
The auto scaling should not deregister an instance from the ELB
when it is in the middle of processing a request that potentially
could mean an unhappy customer. If the ELB is processing a request,
then this feature delays deregistering the instance by a predefined
time period, thereby, potentially allowing the in-process request to
complete. In addition, it stops routing traffic to the instance. After
the elapsed time period, the ELB will deregister the instance and
hopefully by that time, the instance would have processed all the
pending requests. The default time period is 300 seconds, but you
can change it as per your application needs. Let's have a look at the
following screenshot:

Chapter 4

[97]

6. Next, we add a tag to the ELB, Key is Name and Value is
A1ElectonicsEcommerce-ELB-us-east1a. These key-value pairs
can be named as per your naming convention if you have one.

7. The final step is to review all the configuration data and change it if required.
Click on Create to create the ELB, as shown in the following screenshot:

Designing for and Implementing Scalability

[98]

8. After the ELB has been created, it will be assigned a DNS name by which
you can access it over the internet. This DNS name is assigned by AWS and
cannot be changed; moreover, it is not a user-friendly name. You would
rather use www.a1eletronics.com than xyz-721149061.us-east-1.elb.
amazonaws.com. In a production environment, you need to associate your
custom domain name with your ELB domain name by registering a CNAME
with your domain DNS provider registrar.

Chapter 4

[99]

Creating a launch configuration
A launch configuration is a template, which is used by the Auto Scaling Group to select
and configure the EC2 instances. This includes configuring IAM role, configuring the
IP address, disk size, security group, and public/private key-pair selection to access
the instances.

You cannot modify the launch configuration after you have created it.
There is a limit of 100 launch configurations per region.

Let's have a look at the steps:

1. From the EC2 dashboard navigation pane, click on Launch Configurations,
then on Create Auto Scaling group, and on Create Launch Configuration,
to start the launch configuration process.

2. The first step is to select the AMI; as we have already created an AMI
earlier select it from My AMIs in the navigation pane, as shown in the
following screenshot:

Designing for and Implementing Scalability

[100]

3. The next step is to configure the AMI. Apart from filling in the usual
suspect's values such as name, most of the other parameters are already
discussed in Chapter 3, AWS Components, Cost Model, and Application
Development Environments under the Creating an EC2 Instance section.
We only modify IP Address Type and select the option of Assign a
public IP address to every instance from Advanced Details, so that
we can SSH into it. Let's have a look at the following screenshot:

As a good security practice, in production servers, select the
option of Do not assign a public IP address to any instances.
If you want to access the instances, then you can create an
EC2 instance that can only be connected to/from your static
IP address and from there you can access any instance. This is
sometimes called a bastion host or jump host.

Chapter 4

[101]

4. Next, we add storage to the AMI. Here, use the defaults unless your
requirement is for high disk bandwidth.

5. Next, we configure the security group; use the one that was created
in Chapter 3, AWS Components, Cost Model, and Application Development
Environments under the Creating Security Groups section. Let's have a
look at the following screenshot:

6. Next, we review the launch configuration, make changes if required,
and then click on Create launch configuration.

7. Before the launch configuration is created, you need to provide the
public/private key-pair to SSH into the instance. Select the public/
private key created in Chapter 3, AWS Components, Cost Model, and
Application Development Environments under the Creating EC2 instance
key pairs section, that is, ec2AccessKey.

Designing for and Implementing Scalability

[102]

Creating an auto scaling group
After the launch configuration is created, you are directly taken to the creation of the
auto scaling group. Perform the following steps:

1. The first step is to configure the auto scaling group details, which are
as follows:

 ° Launch Configuration: This is the launch configuration for
this auto scaling group. This is selected in our case and is set
to A1EcommerceLaunchConfig.

 ° Group name: This is the name of this auto scaling group.
 ° Group size: The size here refers to the minimum number of instances

that run inside the auto scaling group. This number typically depends
on the load the application is expecting and how many requests a
single instance can serve with accepted latencies. Before deploying
to production, it is good practice to benchmark the application to
determine its capacity. Since ours is a demo with the aim to keep
the costs to bare minimum, we start with 1 instance.

 ° Network: Select the VPC where the auto scaling group will launch.
Use the default VPC already created in Chapter 3, AWS Components,
Cost Model, and Application Development Environments.

 ° Subnet: Select the subnet for the auto scaling group within the
selected VPC. In our case, there are four subnets representing
the four availability zones available within the us-east-1 region.
Select the default subnet in the us-east-1a availability zone.

 ° Load Balancing: An auto scaling group can be associated with an
elastic load balancer. Select the elastic load balancer we created
earlier in this chapter under Creating Elastic Load Balancer section,
that is, a1electronicsecommerce-elb. If you are using other
means of load balancing such as using nginx as a reverse proxy
and then unchecking this option.

 ° Health Check Type: The auto scaling group performs a health check
on the instances in the group and replaces the failed instances with
new ones. It can either use the results of the elastic load balancer
or monitor the state of the EC2 instance to detect a failed instance.
Select the ELB option since we have configured our auto scaling
group to use elastic load balancer.

Chapter 4

[103]

 ° Health Check Grace Period: When an instance comes up, it might
take some time before it starts responding to the health checks and
pass the auto scaling groups' health check. This time should always
be greater than the expected boot time of the instance plus the startup
time of the application. In our case, the default value of 300 seconds
is fine. Let's have a look at the following screenshot:

2. Next, we configure the scaling policies for the auto scaling group. A policy is a
rule that defines how to scale-in our scale-out response to varying conditions.
The three options are as follows:

 ° Keep this group at its initial size: This is a static option. The auto
scaling group does not scale-in or scale-out the number of instances
defined under group size as defined in step 1. The auto scaling group
will monitor and replace any failed instances.

Designing for and Implementing Scalability

[104]

 ° Use scaling policies to adjust the capacity of this group: This
option allows the auto scaling group to scale-in or out dynamically
depending on the conditions. These conditions can be configured
as alarms and monitored by CloudWatch. Whenever an alarm goes
off breaching the metric limit, CloudWatch sends a message to the
scale-in or the scale-out policy, which in turn invokes the scaling
activity. There are two policies to be defined: one for scaling in and
the other for scaling out.

 ° Set the minimum and maximum instance in the auto scaling group:
This sets the min/max limit for number EC2 instances in the auto
scaling group. This is typically set after you know the load you are
expecting, and the cost you are ready to bear. For our purpose, set
this minimum to 1 and maximum to 2.

 ° Increase Group Size: Next, we define the policy that will increase
the instance in an auto scaling group when an alarm associated with
it goes off. They are as follows:

 ° Name: This is the name of the increase group. Use the default value.
 ° Execute policy when: This is where we create an alarm that will be

triggered by cloud watch when it is breached. Since there are no
alarms set, click on Add new alarm. See step 5 for more details.

 ° Take the action: When the alarm triggers, we can either add or
remove an instance in terms of either percentage of total instances, or
by fixed number of instances. Since it is a scale-out situation, we add
an instance to the auto scaling group. Adding instances can be done
either in terms of percentage of total machines running in the auto
scaling group or by a fixed number of instances. Since our maximum
instances in our auto scaling group are 2, increasing the percentage
does not make sense. Percentages work if you have hundreds of
instances in your auto scaling group and would want to add multiple
instances at a time.

 ° Decrease Group Size: Next, we define the policy that will decrease
the instance in an auto scaling group when an alarm associated with
it goes off. They are as follows:

 ° Name: This is the name of the increase group. Use the default value.
 ° Execute policy when: This is where we create an alarm that will be

triggered by cloud watch when it is breached. Since there are no
alarms set, click on Add new alarm. See step 6 for more details.

Chapter 4

[105]

 ° Take the action: When the alarm triggers, we can either add or
remove an instance in terms of either percentage of total instances
or by a fixed number of instances. Since it is a scale-in situation we
remove an instance from the auto scaling group. Removing instances
can be done either in terms of percentage of total machines running
in the auto scaling group or by a fixed number of instances. Since
our minimum instances in our auto scaling group is 1 decreasing
the percentage does not make sense.

Designing for and Implementing Scalability

[106]

3. While creating an alarm to scale-out, it is very important to know how the
alarm is set for scaling out, that is, to add more instances to the auto scaling
group. The idea is to trigger the alarm 5-10 minutes before 75 percent of the
target threshold is reached. You need to take into account the boot up time of
the instance as well as of the application before the instance is ready to serve
the requests; hence, we trigger early and catch up with the future demand. The
metric we are using to trigger the alarm is CPU Utilization. The other useful
metrics that can be used are network utilization and memory utilization.
A list of EC2 metrics collected by cloud watch is available at http://docs.
aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-
metricscollected.html#ec2-metrics. The alarm we want to set in plain
English is trigger the alarm when the CPU utilization of the EC2
instance is greater than 60% for at least 5 minutes.

 ° Send a notification to: Cloud watch uses Amazon Simple Notification
Service (SNS) to send the notifications to the recipients. Click on
Create to create a new SNS topic to send the message to, name it
A1EcommerceASG-ScaleOut.

 ° With these recipients: You can add e-mail addresses of up to
10 recipients in a comma separated format when the alarm triggers.
For notifications to work, each recipient must reply on a subscription
confirmation mail sent by SNS.

 ° Whenever: This is a computed aggregation of the metric over a
period of time. Select Average. The other options are as follows:
Minimum: This is the lowest value observed during the
specified period.
Maximum: This is the highest value observed during the
specified period.
Sum: This is an addition of all the values during the specified period.
SampleCount: This is the number of data points used in
the calculation.
Average: This is the value of the Sum/Sample count during the
specified period. This gives an average value and can be used to
increase or decrease the instance count.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html#ec2-metrics
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html#ec2-metrics
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html#ec2-metrics

Chapter 4

[107]

 ° Of: This is the metric we are interested in to monitor and set the
alarm against. Select the CPU Utilization, since it's the most logical
choice if we want to add or remove instances. The other useful
metrics that can be used are network utilization and memory
utilization. A list of EC2 metrics collected by cloud watch is available
at http://docs.aws.amazon.com/AmazonCloudWatch/latest/
DeveloperGuide/ec2-metricscollected.html#ec2-metrics.

 ° Is: This defines the metric threshold. In our case, we want to add an
instance when the CPU Utilization Percent reaches more than 80
percent. Enter 60 as the threshold value with 20 percent headroom
to account for irregular spikes and an instance failing to startup.
The threshold percentage is the average of all the instances in the
auto scaling group and not any specific instance.

 ° For at least: This is the specified period after which the alarm is
triggered. By default, the CloudWatch sampling period is 5 minutes,
and is offered free of charge. This is 1 minute as a paid service. The
parameter for consecutive period(s) cannot be less than the metric
selected for the sampling period. Enter 1 in the For at least column
and select 5 Minutes from the period(s) dropdown.

 ° Name of alarm: A name is automatically generated, as shown in the
following screenshot:

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html#ec2-metrics
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html#ec2-metrics

Designing for and Implementing Scalability

[108]

4. While creating an alarm for scaling in, care should be taken to not remove
capacity too quickly. This helps avoid rapid cycles that alternate between
creation and deletion of instances. This can happen when the scale in policy
is aggressive. Take time to scale slowly, that is, scale-in only when the CPU
Utilization is less than 30 percent for a period of 20 minutes:

 ° Is: This defines the metric threshold. In our case, we want to
remove an instance when the CPU Utilization Percent goes
down to 30 percent.

 ° For at least: This is the specified period after which the alarm is
triggered. Enter 4 in For at least and select 5 Minutes from the
consecutive period(s) of dropdown. This will ensure that the alarm
is triggered after 20 minutes, as shown in the following screenshot:

5. Next, we configure the auto scaling group to send the notifications to the
Amazon SNS topic whenever a scaling event takes place. Currently, we are
only interested in fail to launch and failed to terminate scaling events. But
in production, it is strongly recommended to send all the scaling events,
as shown in the following screenshot:

Chapter 4

[109]

6. Next, we configure tags; these tags will be applied to all the instances managed
by the auto scaling group. A maximum of 10 tags can be configured. Tags are
useful when there are several auto scaling groups configured for different
layers. In such situations, it becomes easier to identify the EC2 instances in the
dashboard. Make sure you to tick Tag New Instances. Enter input into Key
as Name and Value as A1EcommerceASG. Add other tags as per your naming
convention, as shown in the following screenshot:

Designing for and Implementing Scalability

[110]

7. The next step is to review and create the auto scaling group. From the
navigation pane of the EC2 dashboard, click on Auto Scaling Groups, this
will list all the auto scaling groups. When the auto scaling group is created,
it also creates the alarms in cloud watch and topics in SNS. For viewing SNS
topics, you can go directly to https://console.aws.amazon.com/sns/
home?region=us-east-1#dashboard and for cloud watch alarms, https://
console.aws.amazon.com/cloudwatch/home?region=us-east-1#. When
the auto scaling group starts, it starts with the minimum number of instances.
To verify that the auto scaling group is working as configured, copy the DNS
name of the elastic load balancer as described in step 9 in Creating Elastic Load
Balancer. In this case, it is http://a1electronicsecommerce-elb-721149061.
us-east-1.elb.amazonaws.com:8080; please do not forget to add the port
number. If the auto scaling group is correctly configured, then you should see
the default Tomcat web page, as shown in the following screenshot:

https://console.aws.amazon.com/sns/home?region=us-east-1#dashboard
https://console.aws.amazon.com/sns/home?region=us-east-1#dashboard
https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#
https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#

Chapter 4

[111]

Testing auto scaling group
The next step is to test the auto scaling group. It should add an instance to when the
CPU Utilization is greater than 60 percent for 5 minutes and remove an EC2 instance
if the CPU Utilization falls in less than 30 percent for 20 minutes. The easiest way
to test this is to load the CPU for more than 5 minutes and check whether an EC2
instance is added.

The public IP address of the instance is available from Instances in the EC2
dashboard navigation pane:

1. Log in to the instance via ssh, using the following command:
ssh –i ~/.ssh/ec2AccessKey.pem ubuntu@54.172.48.64

2. To tax the CPU use bc, which is precision calculator language to compute a
value which takes take a lot of time, for example, raising 2 to the 10 billionth
power which in turn pushes the CPU to 100 percent:
echo 2^1234567890 | bc

Now, we have set the stage for the auto scaling group to add new instance whenever
the average load crosses 60 percent for more than 5 minutes. There are multiple ways
to verify that an instance has been added when the scale-out alarm is breached. They
are mentioned here:

• As we have set a notification with the scale-out alarm, an e-mail will be sent
to the configured e-mail address with the all the alarm details

• A new EC2 instance is added to the instances view in the EC2 dashboard,
as shown in the following screenshot:

Designing for and Implementing Scalability

[112]

• The auto scaling group view in the EC2 dashboard has a tab Scaling History,
which displays all the scaling events, as shown in the following screenshot:

In the same way, we can verify the scaling in by the auto scaling group, that is,
removal of an EC2 instance when the average CPU utilization of the EC2 instances
falls below 30 percent for a period of 20 minutes. This can be achieved by ending the
bc task. The average CPU utilization of the instances will fall below 30 percent and
scaling in threshold will be breached after a period of 20 minutes.

Scripting auto scaling
Creating the auto scaling via the user interface is all good when you are doing it
for the first time but later on it gets cumbersome and repetitive with potential for
errors. The ideal way would be to automate the creation of an auto scaling group via
command line script. For the purpose of automation, Amazon provides a command
line interface using your favorite language to manage your AWS services. We will
now create the complete auto scaling group right from creating an AMI, elastic load
balancer and the auto scaling group itself. It is assumed that you are familiar with
the Linux command line. The values for the command line parameters are exactly
the same as the ones used via the Amazon web interface in the previous section.
You will need to change the names if you already have auto scaling working. For
complete automation, all the commands described here can be easily incorporated
into a shell script. To make this happen, you need to install the Amazon command
line library in your development environment.

Chapter 4

[113]

The installation process described here assumes you have root access:

1. Since Amazon's command line interface is based upon Python, we need
Python in our development machine. Check if you have Python installed
in your development machine:
python –version

 ° If you do not have python installed, then before you proceed further
you need to install python version 2.7 or later. A great link to install it
under Ubuntu is http://askubuntu.com/questions/101591/how-
do-i-install-python-2-7-2-on-ubuntu

2. Now that you have Python installed in your development machine, the next
step is to install pip, which is an installation manager for python packages:
sudo apt-get install python-pip

3. Check the pip installation:
pip –help

4. To install the Amazon command line interface (CLI), use the following
command:
sudo pip install awscli

5. To upgrade the CLI, use the following command:
sudo pip install --upgrade awscli

6. The CLI package has an auto completer, which servers the purpose
of presenting the probable options, but its installation is specific to the
Linux shell you have configured. Make sure you add this command in
your .bashrc file so it executes every time you login. For bash shell,
use the following command:
complete -C '/usr/local/bin/aws_completer' aws

http://askubuntu.com/questions/101591/how-do-i-install-python-2-7-2-on-ubuntu
http://askubuntu.com/questions/101591/how-do-i-install-python-2-7-2-on-ubuntu

Designing for and Implementing Scalability

[114]

7. The last step is to set up the credentials of your AWS account and the settings
to be used by the CLI. If you do not have the access keys you can create it via
the IAM management console:

aws configure
AWS Access Key ID [None]: Your AWS access key
AWS Secret Access Key [None]: Your AWS secret access key
Default region name [None]: us-east-1
Default output format [None]: json

Since the CLI has been configured, let's begin the creation of the auto scaling using
the command line.

Creating an AMI
To create an AMI, we need the instance ID of the A1ElectronicsEcommerce instance
on which the AMI will be based upon:

1. The EC2 instances can be queried via the CLI:
aws ec2 describe-instances

In response, the EC2 service returns the configuration and status of
all EC2 instances running. Since we have tagged our EC2 instance as
A1ElectonicsEcommerce it becomes easy to locate in the response:
"Tags": [
 {
 "Value": "A1ElectronicsEcommerce",

Chapter 4

[115]

 "Key": "Name"
 }
],

Instance ID is available in the JSON response (at the same level as Tags):
"InstanceId": "i-3f7e0ed3",

Make a note of the instance ID as it will be used in creating a
launch configuration.

2. To create the AMI, use the following command:
aws ec2 create-image --instance-id i-3f7e0ed3 --name
 "A1ElectronicsEcommerce" --description "Linux Stack with
 tomcat and java"

In response, the EC2 service returns the AMI ID. Make a note of this AMI,
as it will be used later in creating launch configuration:
{
 "ImageId": "ami-5c790734"
}

Creating an Elastic Load Balancer
Creating a load balancer requires you to define the load balancer, configure health
check, and add tags. To create ELB, the command line expects the IDs for the VPC
subnet, security group perform the following steps:

1. Execute the following command to retrieve the details of your security group:
aws ec2 describe-security-groups

In response, the EC2 service will configure all the security groups, since we
are only interested in sq-EC2WebSecurityGroup. From the response, we
have VpcId:
 "GroupName": "sq-EC2WebSecurityGroup",
 "VpcId": "vpc-3f30a65a",
 "OwnerId": "295846325849",
 "GroupId": "sg-979767f3"

2. Similarly, we can query the subnets using the following command:
aws ec2 describe-subnets

Designing for and Implementing Scalability

[116]

ELB will be hosted on the us-east-1a availability zone; from the response, we
have the SubnetId:

 {
 "VpcId": "vpc-3f30a65a",
 "CidrBlock": "172.31.16.0/20",
 "MapPublicIpOnLaunch": true,
 "DefaultForAz": true,
 "State": "available",
 "AvailabilityZone": "us-east-1a",
 "SubnetId": "subnet-6e15c737",
 "AvailableIpAddressCount": 4086
 },

3. Now, we are ready to create an ELB from the command line:
aws elb create-load-balancer --load-balancer-name a1electronicse
commerce-elb --listeners Protocol=HTTP,LoadBalancerPort=8080,
InstanceProtocol=HTTP,InstancePort=8080 --subnets subnet-6e15c737
--security-groups sg-979767f3 --tags Key=Name,Value=A1Electronics
Ecommerce-ELB-us-east-1a

In response, the EC2 service returns the ELB DNS name:
{
 "DNSName": "a1electronicsecommerce-elb-1387886298.us-east-1.
elb.amazonaws.com"
}

4. Next, we enable connection draining, using the following command:
aws elb modify-load-balancer-attributes --load-balancer-name
a1electronicsecommerce-elb --load-balancer-attributes "{\"Connecti
onDraining\":{\"Enabled\":true,\"Timeout\":300}}"

In response, the EC2 service returns the modified attributes:
{
 "LoadBalancerAttributes": {
 "ConnectionDraining": {
 "Enabled": true,
 "Timeout": 300
 }
 },
 "LoadBalancerName": "a1electronicsecommerce-elb"
}

Chapter 4

[117]

5. Next, we associate a health check with the ELB:
aws elb configure-health-check --load-balancer-name
a1electronicsecommerce-elb --health-check Target=HTTP:8080/index.
html,Interval=30,UnhealthyThreshold=2,HealthyThreshold=10,Timeo
ut=5

In response, the EC2 service returns an added health check:
{
 "HealthCheck": {
 "HealthyThreshold": 10,
 "Interval": 30,
 "Target": "HTTP:8080/index.html",
 "Timeout": 5,
 "UnhealthyThreshold": 2
 }
}

Creating launch configuration
To create the launch configuration IDs for AMI, a security group is needed and also
the key name and IAM role. We have the IDs for AMI (ami-5c790734) and security
group (sg-979767f3). In addition, we have the values for key name (ec2AccessKey)
and IAM role (ec2Instaces) as defined in Chapter 3, AWS Components, Cost Model, and
Application Development Environments. Let's have a look at the following command:

aws autoscaling create-launch-configuration --launch-configuration-
name A1EcommerceLaunchConfig --key-name ec2AccessKeys --image-id ami-
5c790734 --security-groups sg-979767f3 --instance-type t2.micro --
instance-monitoring Enabled=false --no-ebs-optimized --associate-
public-ip-address --placement-tenancy default --iam-instance-profile
"ec2Instaces" --block-device-mappings "[{\"DeviceName\":
\"/dev/sda1\",\"Ebs\":{\"VolumeType\":\"gp2\",\"VolumeSize\":30,\"Del

eteOnTermination\":true}}]"

Amazon's auto scaling service doesn't return any response. To check whether the
launch configuration is created, you need to issue another command line:

aws autoscaling describe-launch-configurations --launch-
 configuration-names A1EcommerceLaunchConfig

Designing for and Implementing Scalability

[118]

Creating an auto scaling group
The final step is to create an auto scaling group and set the alarms. To create the
auto scaling group from the command line, you need the launch configuration
name (A1EcommerceLaunchConfig), VPC subnet (subnet-6e15c737), and elastic
load balancer (a1electronicsecommerce-elb):

1. Creating the auto scaling group:
aws autoscaling create-auto-scaling-group --auto-scaling-
group-name A1EcommerceASG --launch-configuration-name
A1EcommerceLaunchConfig --load-balancer-names
"a1lecronicsecommerce-elb" --health-check-type ELB --health-
check-grace-period 300 --vpc-zone-identifier subnet-6e15c737 -
-min-size 1 --max-size 2 --tags
Key=Name,Value=A1EcommerceASG,PropagateAtLaunch=true --
default-cooldown 300 --desired-capacity 1

Amazon's auto scaling service doesn't return any response. To check whether
the auto scaling group is created, you need to issue another command line:
aws autoscaling describe-auto-scaling-groups

2. The next step is to create policies for increasing and decreasing the instances
in a group. Two policies will be created, one for scaling out and the other for
scaling in. You only need the name of the auto scaling group created in step 1
(A1EcommerceASG). Create a policy that will remove instances from the group:
aws autoscaling put-scaling-policy --policy-name scalein-policy
--auto-scaling-group-name A1EcommerceASG --scaling-adjustment -1
--adjustment-type ChangeInCapacity

The Amazon auto scaling service returns the Amazon Resource Name
(ARN). The ARN will be required to create and/or remove capacity alarm:
{
 "PolicyARN": "arn:aws:autoscaling:us-east-
 1:193603752452:scalingPolicy:8b199b0a-88e8-4864-a18e-
 2599282cc909:autoScalingGroupName/A1EcommerceASG:
 policyName/scalein-policy"
}

Now create a policy that will add instances to the group:
aws autoscaling put-scaling-policy --policy-name scaleout-
policy --auto-scaling-group-name A1EcommerceASG --scaling-
adjustment 1 --adjustment-type ChangeInCapacity

Chapter 4

[119]

The Amazon auto scaling service returns the ARN. The ARN will be required
to create/remove capacity alarm:
{
 "PolicyARN": "arn:aws:autoscaling:us-east-
 1:193603752452:scalingPolicy:7d63fd35-19ad-4aa3-9379-
 28d7a33d3701:autoScalingGroupName/A1EcommerceASG:
 policyName/scaleout-policy"
}

3. Now we have to create alarms and associate them with the policies.
We will create two alarms, one to trigger scale-out and the other to
trigger scale-in. Create an alarm that triggers the scale-out policy
when CPU utilization exceeds 60 percent for 5 minutes:
aws cloudwatch put-metric-alarm --alarm-name scale-out --
alarm-description "Alarm when CPU exceeds 60 percent" --
metric-name CPUUtilization --namespace AWS/EC2 --statistic
Average --period 300 --evaluation-periods 1 --threshold 60 --
comparison-operator GreaterThanThreshold --unit Percent --
dimensions Name=AutoScalingGroupName,Value=A1EcommerceASG --
alarm-actions arn:aws:autoscaling:us-east-
1:193603752452:scalingPolicy:7d63fd35-19ad-4aa3-9379-
28d7a33d3701:autoScalingGroupName/A1EcommerceASG:policyName/sc
aleout-policy

Create an alarm that triggers a scale-in policy when the CPU utilization falls
below 30 percent for 5 minutes and for four consecutive periods:
aws cloudwatch put-metric-alarm --alarm-name scale-in --alarm-
description "Alarm when CPU falls below 30 percent" --metric-
name CPUUtilization --namespace AWS/EC2 --statistic Average --
period 300 --evaluation-periods 4 --threshold 30 --comparison-
operator LessThanThreshold --unit Percent --dimensions
Name=AutoScalingGroupName,Value=A1EcommerceASG --alarm-actions
arn:aws:autoscaling:us-east-
1:193603752452:scalingPolicy:8b199b0a-88e8-4864-a18e-
2599282cc909:autoScalingGroupName/A1EcommerceASG:policyName/sc
alein-policy

Amazon's cloud watch service doesn't return any response. To check whether
the alarms are created, you need to issue another command line:
aws cloudwatch describe-alarms

Designing for and Implementing Scalability

[120]

4. To receive e-mail notifications from the auto scaling group, topics in SNS
have to be created and the auto scaling group has to be configured. Two SNS
topics will be created, one to route events when the auto scaling group scales
out and another when it scales in. Create the two topics:
aws sns create-topic --name A1EcommerceASG-ScaleIn
aws sns create-topic --name A1EcommerceASG-ScaleOut

The response from the Amazon SNS service is ARN. The ARN will be
required to create the subscriptions. Use the following code:
{
 "TopicArn": "arn:aws:sns:us-east-
 1:193603752452:A1EcommerceASG-ScaleOut"
}
{
 "TopicArn": "arn:aws:sns:us-east-
 1:193603752452:A1EcommerceASG-ScaleIn"
}

Now, add subscribers to these topics using the following command:
aws sns subscribe --topic-arn arn:aws:sns:us-east-
1:193603752452:A1EcommerceASG-ScaleIn --protocol email --
notification-endpoint xxxx@gmail.com
aws sns subscribe --topic-arn arn:aws:sns:us-east-
1:193603752452:A1EcommerceASG-ScaleOut --protocol email --
notification-endpoint xxxx @gmail.com

The response from the SNS service is the current confirmation status, as
described in the following code:
{
 "SubscriptionArn": "pending confirmation"
}

The list of topics can be queried using the following command:
aws sns list-topics

The list of subscribers can be queried using the following command:
aws sns list-subscriptions

Chapter 4

[121]

5. The last step is choosing the auto scaling events to be routed to the topics.
The command line expects the ARN of the topics and the name of the
auto scaling group. Route all events during scaling in to the scale-in topic.
Use the following command:
aws autoscaling put-notification-configuration --auto-scaling-
group-name A1EcommerceASG --topic-arn arn:aws:sns:us-east-
1:193603752452:A1EcommerceASG-ScaleIn --notification-type
autoscaling:EC2_INSTANCE_LAUNCH
autoscaling:EC2_INSTANCE_LAUNCH_ERROR
autoscaling:EC2_INSTANCE_TERMINATE
autoscaling:EC2_INSTANCE_TERMINATE_ERROR

Route all events during scaling out to the scale-out topic using the
following command:
aws autoscaling put-notification-configuration --auto-scaling-
group-name A1EcommerceASG --topic-arn arn:aws:sns:us-east-
1:193603752452:A1EcommerceASG-ScaleOut --notification-type
autoscaling:EC2_INSTANCE_LAUNCH
autoscaling:EC2_INSTANCE_LAUNCH_ERROR
autoscaling:EC2_INSTANCE_TERMINATE
autoscaling:EC2_INSTANCE_TERMINATE_ERROR

The notification can be queried using the following command:
aws autoscaling describe-notification-configurations

Amazon GUI console can be used to verify the resources created via the command
line in the preceding steps.

Summary
In this chapter, we reviewed some of the strategies you can follow for achieving
scalability for your cloud application. We emphasized the importance of both
designing your application architecture for scalability and using AWS infrastructural
services to get the best results. We followed this up with an extended section on
setting up auto scaling for our sample application.

In the next chapter, we will shift our focus to strategies to achieve high availability
for your application. We will review some application architectural principles and
AWS infrastructural features to implement high availability. We will also include
a hands-on section that will walk you through the process of implementing high
availability for our sample application.

[123]

Designing for and
Implementing High

Availability
In this chapter, we will introduce some key design principles and approaches
to achieving high availability in your applications deployed on the AWS cloud.
As a good practice, you want to ensure that your mission-critical applications
are always available to serve your customers. The approaches in this chapter will
address availability across the layers of your application architecture including
availability aspects of key infrastructural components, ensuring there are no single
points of failure. In order to address availability requirements, we will use the AWS
infrastructure (Availability Zones and Regions), AWS Foundation Services (EC2
instances, Storage, Security and Access Control, Networking), and the AWS PaaS
services (DynamoDB, RDS, CloudFormation, and so on). In addition to availability,
we will describe several approaches used for disaster recovery. We will also show
you how to implement high availability for our sample application.

In this chapter, you will learn the following topics:

• Defining availability objectives
• Nature of failures
• Setting up VPC for high availability
• Using ELB and Route 53 for high availability
• Setting up high availability for application and data layers
• Implementing high availability in the application
• Using AWS for disaster recovery
• Testing disaster recovery strategies

Designing for and Implementing High Availability

[124]

Defining availability objectives
Achieving high availability can be costly. Therefore, it is important to ensure that you
align your application availability requirements with your business objectives. There
are several options to achieve the level of availability that is right for your application.
Hence, it is essential to start with a clearly defined set of availability objectives and
then make the most prudent design choices to achieve those objectives at a reasonable
cost. Typically, all systems and services do not need to achieve the highest levels of
availability possible; at the same time ensure you do not introduce a single point of
failure in your architecture through dependencies between your components. For
example, a mobile taxi ordering service needs its ordering-related service to be highly
available; however, a specific customer's travel history need not be addressed at the
same level of availability.

The best way to approach high availability design is to assume that anything can fail,
at any time, and then consciously design against it.

"Everything fails, all the time."

- Werner Vogels, CTO, Amazon.com

In other words, think in terms of availability for each and every component in your
application and its environment because any given component can turn into a single
point of failure for your entire application. Availability is something you should
consider early on in your application design process, as it can be hard to retrofit
it later. Key among these would be your database and application architecture
(for example, RESTful architecture). In addition, it is important to understand that
availability objectives can influence and/or impact your design, development, test,
and running your system on the cloud.

Finally, ensure you proactively test all your design assumptions and reduce
uncertainty by injecting or forcing failures instead of waiting for random
failures to occur.

Chapter 5

[125]

The nature of failures
There are many types of failures that can happen at any time. These could be a result
of disk failures, power outages, natural disasters, software errors, and human errors.
In addition, there are several points of failure in any given cloud application. These
would include DNS or domain services, load balancers, web and application servers,
database servers, application services-related failures, and data center-related failures.
You will need to ensure you have a mitigation strategy for each of these types and
points of failure. It is highly recommended that you automate and implement detailed
audit trails for your recovery strategy, and thoroughly test as many of these processes
as possible.

In the next few sections, we will discuss various strategies to achieve high availability
for your application. Specifically, we will discuss the use of AWS features and services
such as:

• VPC
• Amazon Route 53
• Elastic Load Balancing, auto-scaling
• Redundancy
• Multi-AZ and multi-region deployments

Setting up VPC for high availability
In this section, we describe a common VPC setup scenario for some of the high
availability approaches discussed later in this chapter.

Before setting up your VPC, you will need to carefully select your primary site
and a disaster recovery (DR) site. Leverage AWS's global presence to select the
best regions and availability zones to match your business objectives. The choice
of a primary site is usually the closest region to the location of a majority of your
customers and the DR site could be in the next closest region or in a different
country depending on your specific requirements. Next, we need to set up
the network topology, which essentially includes setting up the VPC and the
appropriate subnets. The public facing servers are configured in a public subnet;
whereas the database servers and other application servers hosting services such
as the directory services will usually reside in the private subnets.

Designing for and Implementing High Availability

[126]

Ensure you chose different sets of IP addresses across the different regions for
the multi-region deployment, for example 10.0.0.0/16 for the primary region and
192.168.0.0/16 for the secondary region to avoid any IP addressing conflicts when
these regions are connected via a VPN tunnel. Appropriate routing tables and ACLs
will also need to be defined to ensure traffic can traverse between them. Cross-VPC
connectivity is required so that data transfer can happen between the VPCs (say,
from the private subnets in one region over to the other region). The secure VPN
tunnels are basically IPSec tunnels powered by VPN appliances—a primary and
a secondary tunnel should be defined (in case the primary IPSec tunnel fails). It is
imperative you consult with your network specialists through all of these tasks.

An ELB is configured in the primary region to route traffic across multiple availability
zones; however, you need not necessarily commission the ELB for your secondary site
at this time. This will help you avoid costs for the ELB in your DR or secondary site.
However, always weigh these costs against the total cost/time required for recovery.
It might be worthwhile to just commission the extra ELB and keep it running.

Gateway servers and NAT will need to be configured as they act as gatekeepers for
all inbound and outbound Internet access. Gateway servers are defined in the public
subnet with appropriate licenses and keys to access your servers in the private subnet
for server administration purposes. NAT is required for servers located in the private
subnet to access the Internet and is typically used for automatic patch updates. Again,
consult your network specialists for these tasks.

Elastic load balancing and Amazon Route 53 are critical infrastructure components
for scalable and highly available applications; we discuss these services in the
next section.

Using ELB and Route 53 for high availability
In this section, we describe different levels of availability and the role ELBs and
Route 53 play from an availability perspective.

Instance availability
The simplest guideline here is to never run a single instance in a production
environment. The simplest approach to improving greatly from a single server
scenario is to spin up multiple EC2 instances and stick an ELB in front of them.
The incoming request load is shared by all the instances behind the load balancer.

Chapter 5

[127]

ELB uses the least outstanding requests routing algorithm to spread
HTTP/HTTPS requests across healthy instances. This algorithm favors
instances with the fewest outstanding requests.

Even though it is not recommended to have different instance sizes between or
within the AZs, the ELB will adjust for the number of requests it sends to smaller
or larger instances based on response times. In addition, ELBs use cross-zone load
balancing to distribute traffic across all healthy instances regardless of AZs. Hence,
ELBs help balance the request load even if there are unequal number of instances in
different AZs at any given time (perhaps due to a failed instance in one of the AZs).

There is no bandwidth charge for cross-zone traffic
(if you are using an ELB).

Instances that fail can be seamlessly replaced using auto scaling while other instances
continue to operate.

Though auto-replacement of instances works really well, storing
application state or caching locally on your instances can be hard
to detect problems.

Instance failure is detected and the traffic is shifted to healthy instances, which then
carries the additional load. Health checks are used to determine the health of the
instances and the application. TCP and/or HTTP-based heartbeats can be created
for this purpose. It is worthwhile implementing health checks iteratively to arrive at
the right set that meets your goals. In addition, you can customize the frequency and
the failure thresholds as well. Finally, if all your instances are down, then AWS will
return a 503.

Zonal availability or availability zone redundancy
Availability zones are distinct geographical locations engineered to be insulated
from failures in other zones. It is critically important to run your application
stack in more than one zone to achieve high availability. However, be mindful of
component level dependencies across zones and cross-zone service calls leading to
substantial latencies in your application or application failures during availability
zone failures. For sites with very high request loads, a 3-zone configuration might
be the preferred configuration to handle zone-level failures. In this situation, if one
zone goes down, then other two AZs can ensure continuing high availability and
better customer experience.

Designing for and Implementing High Availability

[128]

In the event of a zone failure, there are several challenges in a Multi-AZ configuration,
resulting from the rapidly shifting traffic to the other AZs. In such situations, the load
balancers need to expire connections quickly and lingering connections to caches must
be addressed. In addition, careful configuration is required for smooth failover by
ensuring all clusters are appropriately auto scaled, avoiding cross-zone calls in your
services, and avoiding mismatched timeouts across your architecture.

ELBs can be used to balance across multiple availability zones. Each load balancer will
contain one or more DNS records. The DNS record will contain multiple IP addresses
and DNS round-robin can be used to balance traffic between the availability zones.
You can expect the DNS records to change over time. Using multiple AZs can result
in traffic imbalances between AZs due to clients caching DNS records. However, ELBs
can help reduce the impact of this caching.

Regional availability or regional redundancy
ELB and Amazon Route 53 have been integrated to support a single application
across multiple regions. Route 53 is AWS's highly available and scalable DNS and
health checking service. Route 53 supports high availability architectures by health
checking load balancer nodes and rerouting traffic to avoid the failed nodes, and
by supporting implementation of multi-region architectures. In addition, Route 53
uses Latency Based Routing (LBR) to route your customers to the endpoint that has
the least latency. If multiple primary sites are implemented with appropriate health
checks configured, then in cases of failure, traffic shifts away from that site to the
next closest region.

Region failures can present several challenges as a result of rapidly shifting traffic
(similar to the case of zone failures). These can include auto scaling, time required
for instance startup, and the cache fill time (as we might need to default to our data
sources, initially). Another difficulty usually arises from the lack of information or
clarity on what constitutes the minimal or critical stack required to keep the site
functioning as normally as possible. For example, any or all services will need to
be considered as critical in these circumstances.

The health checks are essentially automated requests sent over the Internet to your
application to verify that your application is reachable, available, and functional.
This can include both your EC2 instances and your application. As answers are
returned only for the resources that are healthy and reachable from the outside
world, the end users can be routed away from a failed application. Amazon Route
53 health checks are conducted from within each AWS region to check whether
your application is reachable from that location.

Chapter 5

[129]

The DNS failover is designed to be entirely automatic. After you have set up your
DNS records and health checks, no manual intervention is required for failover.
Ensure you create appropriate alerts to be notified when this happens. Typically,
it takes about 2 to 3 minutes from the time of the failure to the point where traffic
is routed to an alternate location. Compare this to the traditional process where an
operator receives an alarm, manually configures the DNS update, and waits for the
DNS changes to propagate.

The failover happens entirely within the Amazon
Route 53 data plane.

Depending on your availability objectives, there is an additional strategy (using
Route 53) that you might want to consider for your application. For example, you
can create a backup static site to maintain a presence for your end customers while
your primary dynamic site is down. In the normal course, Route 53 will point to
your dynamic site and maintain health checks for it. Furthermore, you will need to
configure Route 53 to point to the S3 storage, where your static site resides. If your
primary site goes down, then traffic can be diverted to the static site (while you work
to restore your primary site). You can also combine this static backup site strategy
with a multiple region deployment.

Setting up high availability for application and
data layers
In this section, we will discuss approaches for implementing high availability in the
application and data layers of your application architecture.

The auto healing feature of AWS OpsWorks provides a good recovery mechanism
from instance failures. All OpsWorks instances have an agent installed. If an
agent does not communicate with the service for a short duration, then OpsWorks
considers the instance to have failed. If auto healing is enabled at the layer and an
instance becomes unhealthy, then OpsWorks first terminates the instance and starts
a new one as per the layer configuration.

In the application layer, we can also do cold starts from preconfigured images or a
warm start from scaled down instances for your web servers and application servers
in a secondary region. By leveraging auto scaling, we can quickly ramp up these
servers to handle full production loads. In this configuration, you would deploy the
web servers and application servers across multiple AZs in your primary region
while the standby servers need not be launched in your secondary region until you
actually need them. However, keep the preconfigured AMIs for these servers ready
to launch in your secondary region.

Designing for and Implementing High Availability

[130]

The data layer can comprise of SQL databases, NoSQL databases, caches, and so on.
These can be AWS managed services such as RDS, DynamoDB, and S3, or your own
SQL and NoSQL databases such as Oracle, SQL Server, or MongoDB running on
EC2 instances. AWS services come with HA built-in, while using database products
running on EC2 instances offers a do-it-yourself option. It can be advantageous to use
AWS services if you want to avoid taking on database administration responsibilities.
For example, with the increasing sizes of your databases, you might choose to share
your databases, which is easy to do. However, resharding your databases while
taking in live traffic can be a very complex undertaking and present availability risks.
Choosing to use the AWS DynamoDB service in such a situation offloads this work to
AWS, thereby resulting in higher availability out of the box.

AWS provides many different data replication options and we will discuss a few of
those in the following several paragraphs.

DynamoDB automatically replicates your data across several AZs to provide higher
levels of data durability and availability. In addition, you can use data pipelines to
copy your data from one region to another. DynamoDB streams functionality that
can be leveraged to replicate to another DynamoDB in a different region. For very
high volumes, low latency Kinesis services can also be used for this replication
across multiple regions distributed all over the world.

You can also enable the Multi-AZ setting for the AWS RDS service to ensure AWS
replicates your data to a different AZ within the same region. In the case of Amazon
S3, the S3 bucket contents can be copied to a different bucket and the failover can be
managed on the client side. Depending on the volume of data, always think in terms
of multiple machines, multiple threads and multiple parts to significantly reduce the
time it takes to upload data to S3 buckets.

While using your own database (running on EC2 instances), use your database-specific
high availability features for within and cross-region database deployments. For
example, if you are using SQL Server, you can leverage the SQL Server Always-on
feature for synchronous and asynchronous replication across the nodes. If the volume
of data is high, then you can also use the SQL Server log shipping to first upload
your data to Amazon S3 and then restore into your SQL Server instance on AWS.
A similar approach in case of Oracle databases uses OSB Cloud Module and RMAN.
You can also replicate your non-RDS databases (on-premise or on AWS) to AWS RDS
databases. You will typically define two nodes in the primary region with synchronous
replication and a third node in the secondary region with asynchronous replication.
NoSQL databases such as MongoDB and Cassandra have their own asynchronous
replication features that can be leveraged for replication to a different region.

Chapter 5

[131]

In addition, you can create Read Replicas for your databases in other AZs and
regions. In this case, if your master database fails followed by a failure of your
secondary database, then one of the read replicas can be promoted to being the
master. In hybrid architectures, where you need to replicate between on-premise
and AWS data sources, you can do so through a VPN connection between your data
center and AWS. In case of any connectivity issues, you can also temporarily store
pending data updates in SQS, and process them when the connectivity is restored.

Usually, data is actively replicated to the secondary region while all other servers like
the web servers and application servers are maintained in a cold state to control costs.
However, in cases of high availability for web scale or mission critical applications, you
can also choose to deploy your servers in active configuration across multiple regions.

Implementing high availability in the
application
In this section, we will discuss a few design principles to use in your application
from a high availability perspective. We will briefly discuss using highly available
AWS services to implement common features in mobile and Internet of Things
(IoT) applications. Finally, we also cover running packaged applications on the
AWS cloud.

Designing your application services to be stateless and following a micro services-
oriented architecture approach can help the overall availability of your application.
In such architectures, if a service fails then that failure is contained or isolated to
that particular service while the rest of your application services continue to serve
your customers. This approach can lead to an acceptable degraded experience rather
than outright failures or worse. You should also store user or session information in
a central location such as the AWS ElastiCache and then spread information across
multiple AZs for high availability. Another design principle is to rigorously implement
exception handling in your application code, and in each of your services to ensure
graceful exit in case of failures.

Most mobile applications share common features including user authentication
and authorization, data synchronization across devices; user behavior analytics;
retention tracking, storing, sharing, and delivering media globally; sending push
notifications; store shared data; stream real-time data; and so on. There are a host
of highly available AWS services that can be used for implementing such mobile
application functionality. For example, you can use Amazon Cognito to authenticate
users, Amazon Mobile Analytics for analyzing user behavior and tracking retention,
Amazon SNS for push notifications and Amazon Kinesis for streaming real-time
data. In addition, other AWS services such as S3, DynamoDB, IAM, and so on can
also be effectively used to complete most mobile application scenarios.

Designing for and Implementing High Availability

[132]

For mobile applications, you need to be especially sensitive about
latency issues; hence, it is important to leverage AWS regions to
get as close to your customers as possible.

Similar to mobile applications, for IoT applications you can use the same highly
available AWS services to implement common functionality such as device analytics
and device messaging/notifications. You can also leverage Amazon Kinesis to ingest
data from hundreds of thousands of sensors that are continuously generating massive
quantities of data.

Aside from your own custom applications, you can also run packaged applications
such as SAP on AWS. Such packaged applications can be sourced from AWS
Marketplace. In such cases, you can leverage some of the same AWS features and
approaches discussed in this chapter for high availability. These would typically
include replicated standby systems, Multi-AZ and multi-region deployments, hybrid
architectures spanning your own data center, and AWS cloud (connected via VPN or
AWS Direct Connect service), and so on. For more details, refer to the specific package
guides for achieving high availability on the AWS cloud.

Using AWS for disaster recovery
In this section, we discuss how AWS can be leveraged for your on-premise and
cloud-based application's disaster recovery. We present several different DR
strategies that might be suitable for different types of applications, budgets,
and situations.

Disaster recovery scenarios typically include hardware or software failures,
network outages, power outages, natural disasters such as floods, or other
such significant events that directly impact a company's ability to continue
with their business. Traditionally, there have been two key metrics driving
the implementation of disaster recovery strategies—Recovery Time Objective
(RTO) and Recovery Point Objective (RPO).

RTO is the time it takes to restore the business process (after a
disaster) to its service level.
RPO is the acceptable amount of data loss measured in time units.

Depending on your RTO and RPO objectives, there are several architectural strategies
available to recover from disasters. The main ones in the order of reducing RTO/RPO
(but with higher associated costs) are described in the following sections.

Chapter 5

[133]

Using a backup and restore DR strategy
Backup and restore is the simplest and the most common option used in traditional
data centers. The process of taking tape-based backups and doing restores from tapes
is familiar to most organizations. However, there are some simpler and often faster
options available as AWS services. Amazon S3 is an ideal storage medium for quick
backups and restores for your cloud and on-premise applications. Another storage
option is to use Amazon Glacier for your longer-term backups.

There are several options available for hybrid architectures, where your data center
extends into the cloud. You can use the Direct Connect facility to set up a high
throughput and low latency connection between your data center and the AWS
cloud for your backups. If your data volumes are on a terabyte scale, then Amazon
also provides a facility where you can ship your data on portable storage media,
and Amazon will use their high-speed internal network to load it on S3 for you.
This is often a more economical option to load your data compared to upgrading
your network connections and transferring massive volumes of data over the
Internet. Another AWS option is to use the AWS Storage Gateway, an on-premise
software appliance, to store your data on AWS S3 or AWS Glacier storage. In cases
of disaster, you can choose to launch your workloads within the AWS environment
or your own data center environment.

Using a Pilot Light architecture for DR
As the name suggests, in this architecture, you set up data replication of your
on-premise or cloud databases. In addition, you create images of your critical
on-premise or cloud servers. These images would typically include your web
servers and application servers. In order to avoid incurring unnecessary running
costs, these instances are launched only when they are needed. In the event of a
disaster, the web servers and application servers can be quickly launched from
the preconfigured images.

Using a warm standby architecture for DR
This option is similar to the Pilot Light architecture; however, in this case, we run
a scaled down version of the production environment. In the event of a disaster,
we simply divert the traffic to this site and rapidly scale up to the full-blown
production environment.

Designing for and Implementing High Availability

[134]

Using a multi-site architecture for DR
In a multi-site architecture, there are multiple production environments running
in active configuration on AWS only or a hybrid of the on-premise and AWS cloud
infrastructure. In cases of a disaster, the traffic is routed to the already running
alternate sites. You can use the weighted routing feature of Route 53 for this purpose.
You will need to ensure sufficient capacity at each site or a rapid scale up of capacity
as provided by the auto scaling feature on AWS, to avoid poor customer experience
or cascading failures from occurring. The costs associated with this option depend
on how much production traffic is handled by AWS during normal operations and
during disasters (at full loads).

In order to meet the RTO objectives, the infrastructure is fully
automated. AWS CloudFormation can be used for this purpose.
However, it is recommended to have an engineer closely monitor
the recovery process in case rollbacks are required as a result of
any failures.

Testing a disaster recovery strategy
It is imperative to thoroughly test your recovery strategy end to end, to ensure it
works and to iron out any kinks in the processes. However, testing for failures is
hard especially for sites or applications with very high request loads or complex
functionality. Such web-scale applications usually comprise of massive and rapidly
changing datasets, complex interactions and request patterns, asynchronous requests,
and a high degree of concurrency. Simulating complete and partial failures in such
scenarios is a big challenge; at the same time, it is even more critical to regularly inject
failures into such applications, under well-controlled circumstances to ensure high
availability for your end customers.

It is also important to be able to simulate increased latency or failed service calls.
One of the biggest challenges in terms of testing services-related failures is that
many times the services owners do not know all the dependencies or the overall
impact of a particular service failure. In addition, such dependencies are in a constant
flux. In these circumstances, it is extremely challenging to test service failures in a
live environment at scale. However, a well thought out approach that identifies the
critical services in your application takes into consideration prior service outages.
Having a good understanding of dependency interactions or implementing
dynamic tracing of dependencies can help you execute service failure test cases.

Chapter 5

[135]

Simulating availability zone and/or region failures need to be executed with care, as
you cannot shutdown an entire availability zone or region. You can, however, shut
down the components in an AZ via the console or use CloudFormation to shut down
your resources at a region level. After the shutdown of the resources in the AZs of
your primary region, you can launch your instances in the secondary region (from
the AMIs) to test the DR site's ability to take over. Another way to simulate region
level failures is to change the load balancer security group settings to block traffic.
In this case, the Route 53 health checks will start failing and the failover strategy
can be exercised.

Setting up high availability
This section introduces configuring AWS infrastructure to support high availability
for our application. Most of Amazon's high-level services are designed for high
availability and fault tolerance such as Elastic Load Balancer (ELB), Simple Storage
Service (S3), Simple Queue Service (SQS), Simple Notification Service (SNS), Relation
Database Service (RDS), Route 53 a dynamic DNS service, and CloudWatch. The
infrastructure services such as Elastic Cloud Compute (EC2) and Elastic Block Storage
(EBS) provide constructs such as availability zones, elastic IP addresses, and snapshots
to design high availability and fault tolerant applications. Remember hosting an
application on the cloud does not make it fault-tolerant or highly available.

We will be architecting for high availability and not for fault
tolerance. The difference between them is that there is no service
interruption in the case of fault-tolerant services; whereas, there
is minimal service interruption in cases of high availability.

The AWS high availability architecture
Let's start by designing generic high availability architecture for an Amazon region.
High availability can be architected in many different ways depending upon the
services used and the requirements. Here we present a very generic architecture .The
key for achieving high availability is to avoid single point of failure (SPOF) that is,
the application will fail when any one of the components or services that make up the
system fails. This implies that we have to cover for all the Amazon services which can
fail in a region which the application uses, in our case, these are as follows:

• Availability zone (AZ)
• EC2 instances (EC2)
• Elastic Load Balancer (ELB)
• Relation Database Service (RDS)

Designing for and Implementing High Availability

[136]

In the preceding list of Amazon services, ELB and RDS are already designed for
high availability and need to be configured to support high availability as per the
architecture. Let's begin by analyzing the high availability architecture. Let's take
a look at the following figure:

The application is hosted in the US East region of the AWS cloud. This architecture is
designed to handle failures within a region and not across regions.

• Availability Zone: An availability zone is equivalent to a datacenter. They
are in distinct physical locations and are engineered to isolate failure from
each other. The application is hosted in more than one availability zone to
isolate them from failures. The decision on how many availability zones to
host the application zone depends on how critical the application is and the
economics of hosting. This removes the SPOF if using a single AZ.

Chapter 5

[137]

• Elastic Load Balancer: All the traffic is routed via the ELB to the applications.
This piece of infrastructure is fault-tolerant by design. ELB needs to be
configured for routing traffic to the application hosted in different AZ's.
In addition, ELB performs health checks on all the EC2 instances registered
with it and only routes traffic to the healthy EC2 instances. This removes
the SPOF at the load balancer tier.

• EC2 instances: An EC2 instance is the most vulnerable component in the
chain. It is the most complex in terms of the software components it has,
which is your application plus the supporting software stack. Failure in
either will make your application unavailable. To cover for this, an auto
scaling group (ASG) is used that monitors and launches the EC2 based on
the configuration of alarms, maximum, minimum, and desired EC2 instances
per availability zone. This removes the SPOF at web server/application tier.

• Relation Database Service: The last in the chain is the database. The RDS
service provides high availability and failover using Multi-AZ deployments.
The RDS creates a database instance in two availability zones, one of them
being a master and the other being a standby replica or slave instance.
The master and standby database are synchronized via synchronous data
replication. All the EC2 instances write to the database via a FQDN or an
endpoint. Behind the scenes, the RDS service routes the writes to the current
master database instance. With Multi-AZ, you can't access the inactive
secondary database until the primary fails. If the primary RDS instance
fails; under the hood, the DNS CNAME record is updated to point to the
new master. If the standby fails, a new instance is launched and instantiated
from the primary as the new standby. Once failover is detected, it takes less
than a minute to switch to the salve RDS instance. Multi-AZ deployment is
designed for 99.95 percent availability. In addition, RDS can be configured
to take a snapshot of the database at regular intervals, which helps during
disaster recovery. This removes the SPOF at the database tier.

• Simple Storage Service (S3): S3 is a highly available service for storing static
assets. Amazon S3 is designed for 99.99 percent availability and 99.999999999
percent of durability of objects over a year. All the files uploaded to the
application should be stored in S3. Even if the EC2 instances fails, the uploaded
file is not lost and another EC2 instance can process if required. It is good
practice to store all the static assets such as images/scripts of the application
into S3 as it takes the load off your EC2 instances.

• Virtual Private Cloud (VPC): Amazon automatically creates a VPC for a
region for all the accounts created after March 18, 2013. By default, subnets
are created for all availability zones in a region. You can create up to 200
subnets per region, which can be increased on request.

Designing for and Implementing High Availability

[138]

For a high availability setup, the existing AWS services that were provisioned
and configured under Chapter 3, AWS Components, Cost Model, and Application
Development Environments and Chapter 4, Designing for and Implementing Scalability
need to reconfigured to support high availability.

HA support for auto scaling groups
To launch the EC2 application instances in different availability zones, the subnets
within the auto scaling group need to be reconfigured, as subnets are associated
with the availability zones. We can follow the steps listed here to launch the
EC2 application:

1. From the EC2 dashboard navigation pane, click on Auto Scaling Groups.
Select the A1EcommerceASG auto scaling group and then click on the
Edit button in the Details tab.

2. From our architecture diagram, the second availability zone selected is
us-east-1c where the EC2 instances will be launched. Select the subnet
associated with the us-east-1c availability zone from the dropdown in
the Subnet(s). This configures the ASG for high availability.

3. For high availability, the minimum number of instances running in the
auto scaling group needs to be two, one EC2 instance per availability zone.
Modify the Desired and Min number of instances to 2 and Max to a number
greater or equal to 4.

4. Save the changes. As soon as you save the changes, the auto scaling group
will start a new EC2 instance in the us-east-1c availability zone. Let's take a
look at the following screenshot:

Chapter 5

[139]

HA support for ELB
The next step is configuring the ELB to route the traffic to EC2 instances in the added
availability zone that is us-east-1c. Perform the following steps:

1. From the EC2 dashboard navigation pane, click on Load Balancers.
Select the a1electronicsecommerce-elb load balancer and then click
on Edit Availability Zones in the Instances tab.

2. Click on the us-east-1c availability zone to add it to the ELB. Click on Save.
The ELB starts routing the traffic to the EC2 instances in the us-east-1c zone.

Designing for and Implementing High Availability

[140]

HA support for RDS
As explained RDS provides high availability via Multi-AZ. To setup Multi-AZ,
RDS needs to be configured for two things—one, the availability zone where
the slave RDS instance will be launched and instantiated and the second is the
Multi-AZ support for the current RDS instance.

Perform the following steps:

1. From the RDS dashboard navigation pane, click on Subnet Groups. Select
a1ecommercedb and click on Edit. Make sure there are a minimum of two
availability zones in the subnet group. The two availability zones as per the
architecture diagram are us-east-1a and us-east-1c.

Chapter 5

[141]

2. From the RDS dashboard navigation pane, click on Instances. Select the
a1ecommerce database instance and click on Modify from the Instance Action
dropdown. Select Yes from the Multi-AZ Deployment dropdown, this will
instantiate the slave database instance in the us-east-1c availability zone.

Make sure you check the Apply Immediately checkbox; if not,
your changes will be scheduled for the next maintenance cycle.

Designing for and Implementing High Availability

[142]

Let's take a look at the following screenshot:

Summary
In this chapter, we reviewed some of the strategies you can follow for achieving
high availability in your cloud application. We emphasized the importance of
both designing your application architecture for availability and using the AWS
infrastructural services to get the best results. We followed this up with a section
on setting up high availability in our sample application.

In the next chapter, we will shift our focus to strategies for designing and implementing
security for your cloud application. We will review some approaches for application
security using the AWS services. We will also include a hands-on section that will walk
you through the process of implementing security in our sample application.

[143]

Designing for and
Implementing Security

In this chapter, we will introduce some key design principles and approaches to
achieving security in your applications deployed on the AWS cloud. As an enterprise
or a startup, you want to ensure your mission critical applications and data are secure
while serving your customers. The approaches in this chapter will address security
across the layers of your application architecture including security aspects of key
infrastructural components. In order to address security requirements, we will use the
AWS services including IAM, CloudTrail, and CloudWatch. We will also show you
how to implement security for our sample application.

In this chapter, we will cover the following topics:

• Defining security objectives
• Understanding security responsibilities
• Best practices in implementing AWS security
• Implementing identity lifecycle management
• Tracking AWS API activity using CloudTrail
• Logging for security analysis
• Using third-party security solutions
• Reviewing and auditing security configuration
• Setting up security using IAM roles, key management service,

and configuring SSL
• Securing data-at-rest – Amazon S3 and RDS

Designing for and Implementing Security

[144]

Defining security objectives
In order to protect your assets and data on the cloud, you will need to define
an Information Security Management System (ISMS), and implement security
policies, and processes for you organization. While larger companies may have
well-defined security controls already defined for their on-premise environments,
start-up organizations may be starting from scratch. However, in all cases your
customers will demand to understand your security model and require strong
assurances before they use your cloud-based applications. Especially, in cases of
SaaS or multi-tenanted applications, it can be extremely challenging to produce
security-related documentation to meet varying demands of your customers.

There are several information security standards available, for example, the ISO
27000 family of standards can help you define your ISMS. Selecting a control
framework can help you cover all the bases and measure success against a set of
well-defined metrics. Mapping your implementation against the control framework
allows you to produce evidence of due diligence to your customers. In addition, you
should budget for the expenses and effort required for conducting regular audits.
In some cases, be prepared to share these audit reports with your major customers.

Implementation costs can vary widely based on security mechanisms; hence, make
your solution choices based on your business needs and risks. As your business
evolves, revisit your security plan and make necessary adjustments to better meet
your business requirements and risks.

Finally, ensure you build a lot of agility into your processes to keep up with and take
advantage of new security-related features and services released frequently by AWS.

Understanding security responsibilities
AWS security operates on a shared responsibility model comprising of parts managed
by you and other parts managed by AWS. For example, you will need to implement
your own security controls for users and roles, policies and configuration, applications
and data (storage, in-transit, and at-rest) and for firewalls, network configuration, and
the operating system.

AWS is responsible for managing the security for the virtualization layer, the compute,
storage, and network infrastructure, and the global infrastructure (regions, AZs, and
endpoints), and physical security. In addition, AWS is responsible for the operating
system or the platform layer for EC2 or other infrastructure instances for AWS
container services (Amazon RDS, Amazon EMR, and so on). AWS also manages the
underlying service components and the operating system for AWS abstracted services
(Amazon S3, DynamoDB, SQS, SES, and so on).

Chapter 6

[145]

AWS has a whole host of industry recognized compliance certifications and
standards such as Payment Card Industry (PCI), NIST, SSAE, ISO, and so on.
Hence, we will keep our focus on your responsibilities in this chapter.

In the next section, we will discuss the basics and best practices of a minimally
viable approach (a good starting point) to implement some of the security controls
that can mature into a comprehensive security strategy over time.

Best practices in implementing
AWS security
Typically, you will start with basic security measures in place and then rapidly iterate
from there to improve your overall cloud security model and/or implementation.
Before designing any of your security solutions, you will need to identify and then
classify (into high/medium/low categories) the assets you need to protect. This is
often a non-trivial undertaking in large enterprises. Assets related data is typically
entered manually in most organizations and it relies heavily on human accuracy.
Capturing this data programmatically results in better efficiency and accuracy.
Integrate AWS Describe APIs with your existing enterprise asset management
systems and include your CloudFormation templates or scripts as artifacts in your
configuration management database to get a better handle on your cloud assets.

In order to get off the ground faster, take full advantage of everything that is
provided out of the box by AWS, whether it is security groups or network ACLs,
or the ability to turn on CloudTrail on all your AWS accounts. In addition, we
typically implement infrastructure as code on the AWS cloud. Security is now
baked into the whole deployment process. For example, when code is deployed
on a new EC2 instance, the OS hardening happens as part of the build pipeline.

The AWS IAM service is central to implementing security for your applications
on the AWS cloud. Some of the main activities and best practices for AWS IAM
are listed as follows:

• Use IAM to create users, groups, and roles and assign permissions.
• Manage permissions using groups. You assign permissions to groups and

then assign individuals to them. While assigning permissions to groups,
always follow the principle of granting least privilege. AWS provides several
policy templates for each of their services. Use these policy templates as they
are a great starting point for setting up the permissions for AWS services. For
example, you can quickly set up permissions for groups that have read-only
access to S3 buckets.

Designing for and Implementing Security

[146]

• In your ISMS, you will need to define a set of roles and responsibilities
and assign specific owners to particular security-related tasks and controls.
Depending on your choices, these owners might be a combination of people
within your organization, AWS, partners, third-party service providers, and
vendors. Map each of these owners to appropriate AWS IAM roles.

• Use IAM roles to share access. Never share your credentials for access,
temporarily or otherwise. Restrict privileged access further using the
IAM conditions and reduce or eliminate the use of root credentials.

• Use IAM roles for getting your access keys to various EC2 instances.
This eases the rotation of keys as the new set keys can be accessed via
a web service call in your application.

• Enable multi-factor authentication for privileged users. For example,
users that have permissions to terminate instances.

• Rotate security credentials regularly. Rotate both your passwords and
access keys.

There are a few more security-related best practices that are commonly implemented
using IAM. For example, you can configure the rules to support your company's
password policy. It is advisable to configure a strong password policy for use on
the cloud. Still other best practices relate to using AWS Security Token Service to
provide just-in-time access for a specific duration to complete a task. For more details
on AWS Security Token Service refer to http://docs.aws.amazon.com/STS/
latest/UsingSTS/STSPermission.html.

More details on IAM including specific commands for our sample application are
presented in a later section of this chapter.

Implementing identity lifecycle management
Establishing a robust identity lifecycle management is often considered late in the
development lifecycle by organizations offering SaaS applications on a global basis.
For example, how do you keep track of users within your customers' organizations?
This can leave you in a situation where an employee having access to your application
leaves the customer organization located in a different time zone. Often it is the easiest,
from an account management perspective, to have a feature within your application
to create an application administrator role per customer who in turn is responsible for
managing users within their organization.

AWS Directory Services can help reduce the complexity of managing groups of
users. These groups can be mapped to IAM roles for appropriate access to AWS
APIs. Organizations can also choose to extend their on-premise directory services
to the AWS cloud using Direct Connect.

http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html

Chapter 6

[147]

Tracking the AWS API activity using CloudTrail
AWS CloudTrail is a web service for recording the API activity (across AWS Console,
CLI, or from within SDKs) in your AWS account. It can also record higher-level API
calls from AWS services, for example, CloudFormation calls to other services such
as EC2. CloudTrail events provide a rich source of information for AWS API calls
including the user, timing, nature, resources, and location of an API call. Therefore,
CloudTrail logs can be very helpful in incident analysis, tracking changes to AWS
resources, and troubleshooting operational issues.

Logging for security analysis
As a design principle and best practice, log everything. In addition, if you collect
all your logs centrally, then you can correlate between various log records for a
more comprehensive threat analysis and mitigation. However, ensure your logging
activity is scalable and does not unduly impact the performance of your application.
For example, you can use SQS with auto scaling based on the queue depth for the
logging activity. In addition, you can also use products such as Logstash and Kibana
to help centralize log collection and visualization. Kibana dashboards are dynamic
and support features for drill down, reporting, and so on. In addition, you can
automate responses to certain events in your logs using AWS CloudWatch and SNS.

Using third-party security solutions
Familiarize yourself with AWS Marketplace as there are hundreds of security ISVs
and products that can replace what you are doing natively in your application. Partner
solution sets can be the answer to your specific situation or application architecture.

In addition, certain enterprise vulnerability scanning software products like
HP Fortify (available as a SaaS service or an on-premise product) or Veracode
(SaaS service) can be used to identify vulnerabilities within your application code.
These enterprise security tools might be expensive but they are great for prevention
of OWASP top ten type vulnerabilities in your application and promoting secure
coding practices in your development teams.

It is important to schedule a penetration test with specialists both within your
organization and external consultants to ensure your production site is secure.
If this is the first time your organization is doing vulnerability scans or getting
penetration testing done by specialists, then ensure that you allow sufficient time
in your project schedule for 2-3 rounds of testing and remediation work.

Designing for and Implementing Security

[148]

Reviewing and auditing security configuration
It is important to regularly review and audit your security controls and
implementation using a combination of internal and external audits. They are
primarily done to ensure your implementation matches your overall security
design and objectives. In addition, these reviews and audits can ensure that your
implementation limits damage in case of any security flaws in your architecture.
Overall, these exercises are very useful because they help you remain safe as well
as satisfy your customers' security requirements on an on-going basis.

Typically, these detailed reviews include a review of your network configuration
including all your subnets, gateways, ACLs, and security groups. In addition,
adherence to IAM best practices, AWS service usage, logging policies, and
CloudWatch thresholds, alarms and responses are also reviewed in-depth.

Your architecture and infrastructure usage will evolve over a period of time, for
example, with deployments in new AZs and regions, new roles might get defined,
permissions might be created and/or granted, new AWS accounts created, and so
on. Verifying changes to your architecture and infrastructure can ensure that you
are continuing to meet your security goals.

In the following sections, we describe the features and walk you through the process
of setting up security for our sample application. This will include using IAM roles,
Key Management Service, configuring SSL, and implementing security for data-at-
rest in Amazon S3 and RDS.

Setting up security
This section looks at securing AWS infrastructure and the application. As the
AWS security model is a shared one where Amazon is responsible for the security
of the infrastructure such as facilities, hardware, network and some software like
virtualization, host operating systems, and so on, you, as the user, are responsible
for the security of your software stack, application, updates, data at rest and in
transit, data stores, configuration properties, policies, credentials and the security
of the AWS services being used.

Chapter 6

[149]

AWS IAM – Securing your Infrastructure
AWS Identity and Access Management (IAM) is a web service that enables you
to manage users, groups, and user permissions within the AWS infrastructure.
This allows for central control of users, groups, user access, and security credentials.
As there are a plethora of services being offered by AWS, there is a need of securely
accessing these services by authorized users. IAM defines concepts, constructs, and
services to achieve this. IAM solves the following issues:

• Credential Scoping: This grants access and the required permissions
only to the services a user requires. For example, a web application needs
write permission to a specific bucket within S3, instead of assigning write
permission to the entire S3.

• Credential Distribution: This facilitates the distribution and rotation
of credentials to users, AWS services, instances, and to applications in
a secure manner.

• Managing Access for Federated Users: Federated users are users that
are managed outside IAM. Typically, these are users in your corporate
directory. IAM allows for granting access to the AWS resources to
the federated users; this is achieved by granting temporary security
credentials to the federated user.

Covering IAM in totality is beyond the scope of this book and probably would need
a book on its own. In this section, only the pertinent IAM concepts and services are
discussed, which cover a general web hosting use case.

IAM roles
A role is a set of permissions that grant access to AWS resources. Roles are not
associated with any user or group but instead are assumed by a trusted entity which
can be an IAM user, application, or AWS service such as EC2. The difference between
an IAM user and a role is that a role cannot access the AWS resources directly implying
that they do not have any credentials. This property is very useful when the trusted
AWS services such as EC2 assume a role; there is no need to provide credentials to an
EC2 instance. This solves a very important issue that is of credential distribution and
rotation plus not having the credentials stored as clear text or in an encrypted form.

Designing for and Implementing Security

[150]

Since we have already created an IAM role in Chapter 3, AWS Components, Cost Model,
and Application Development Environments, and assigned it to an EC2 instance, we will
not go through it again. While assigning permissions to roles, always remember to
assign only the required permissions as per the principle of least privileges (http://
en.wikipedia.org/wiki/Principle_of_least_privilege). Let's examine how
this works. When an application running in an EC2 instance uses AWS-supplied
SDK to access an AWS resource, the SDK API transparently fetches the temporary
credentials via the instance metadata service, which in turn requests the temporary
credentials from AWS Security Token Service. Instance metadata is data about your
instance that can be used to configure or manage the running instance. If you are
not using an AWS SDK, you can still get the temporary credentials by querying
the instance metadata either on the EC2 or hardcoded it into the application.
The instance metadata can be queried from the running EC2 instance from the
command line by making a call to:

curl http://169.254.169.254/latest/meta-data/

This returns the following metadata that can be queried:

ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
iam/
instance-action
instance-id
instance-type
local-hostname
local-ipv4
mac
metrics/
network/
placement/
profile
public-hostname
public-ipv4
public-keys/
reservation-id
security-groups

http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege

Chapter 6

[151]

To query the temporary security credentials for a role execute the following
command from the running EC2 instance command line:

curl http://169.254.169.254/latest/meta-data/iam/security-
 credentials/ec2Instaces

Note that ec2Instaces is the name of the role assigned to your EC2 instance.
The response will be a temporary security credential that the AWS SDK uses
to access the resource:

{
 "Code" : "Success",
 "LastUpdated" : "2014-11-12T03:15:30Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "ASIAICXSVRXJIG56YDRA",
 "SecretAccessKey" : "bH6Q+s6bLB9CRMrQBRrqDVx7aCm+fdDRfITWBevO",
 "Token" : "AQoDYXdzEFQa0ANZNtrSNX5uqJa0jYEmK/93OEKYJmjgHm+qqWYKIT
CBL//p+6l7De7PzJrYcmJRM2uLuOJ32ejjrA02bFRhP21MvVkU6xOM960Se1VMtmXUF
p+3seSke/7bBblbtEOtbOWKcAo3vEXCCVuF61vQruH760Ak5kTwowaQokRwHlWG+71+
Hn4dd1OqqBvHQw/ISI+MSXYDmcjgX1xPnZ6TNaW8UfeKtEac8Msr3ZfSYDkohxFZrKC/
JB30tDRRN1WG093sPU8wSZ3ljYJW37xH8L2q5i9tdwrxOz28Kr6O5qU8jPGZPJSeUqGJkB/
L0wK6G92drLQoE4kylybNeF9R2X7aIYw4vsuputEuptAOmWNH0W43LIScZEE0r9es8BbF6
mQpel+epT/Y0VpphrG9TSJSQ4U64vFjCK+dQhTiktrBcx0Fvwa+yGopanOHAa9MpNWT5BwS3
vULxAgAhamXtsgds+U1rMu4M8C2+fAZCyYE9VxpQNgBPSecynLOM3oa4ar+8BGHZztEB24x
aqFrp36C/4V5IcIJyOgRhfohmAAYslOlCWN3Tl6mJFA2I5DHFb2nRYmAaq7whL5gjMXeW1+
PWgzE6GMb5C/xeD8nBKEFsyDAiMqnBQ==",
 "Expiration" : "2014-11-12T09:50:26Z"
}

The temporary credentials are automatically rotated and have an expiry date and
time associated with it. The application has to query the instance metadata for the
new credentials before the current credential expires; if AWS SDK is being used
within an application, then it manages it transparently and no credential key refresh
logic is necessary. You are not charged for making the instance metadata calls. For
more information on the metadata, please refer to http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/ec2-instance-metadata.html.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Designing for and Implementing Security

[152]

AWS Key Management Service
We all have used encrypted data in some application or the other, and the biggest
challenge has always been knowing how to effectively hide the encryption key,
the key with which the data is encrypted within the application or the OS by using
different mechanisms. However, at the end, there will always be a key that will
be in clear text, which will unlock other keys or the encrypted data. This is for a
single application. Imagine you have tens of applications running on the cloud, the
challenge of the key distribution and the effort to keep the key secret multiplies
exponentially because a programmer interacts with many others. In addition,
social engineering could be used to get the master key, or an unauthorized user
compromises your network since the master key is in clear text. With KMS, the
master key is never released but still enables you to encrypt and decrypt data.

AWS key management service manages the following issues:

• Encryption for all your applications: This manages encryption keys used
to encrypt data stored by your applications, regardless of where you store it.
KMS provides an SDK for programmatic integration of encryption and key
management.

• Centralized Key Management: This provides centralized control of your
encryption keys, presents a single view into all of the key usage, allows
for creation of keys, implements key rotation, creates usage policies, and
enables logging.

• Integration with AWS services: This is integrated with other AWS services
such as S3, Redshift, EBS, and RDS to make it easy to encrypt data you store
with these services.

• Built-in Auditing: This logs all API calls from KMS to AWS CloudTrail.
It helps to meet compliance and regulatory requirements by providing
details of when keys were accessed and who accessed them. A log file is
delivered to your specified S3 bucket.

Chapter 6

[153]

• Fully Managed: This is a fully managed service. AWS handles availability,
physical security, and hardware maintenance of the underlying
infrastructure.

• Low Cost: Each key costs $1/month plus you pay only $0.03 for 10,000
usage requests.

Let's get started with the process of creating a master key, and then we will use it to
encrypt and decrypt data. As a good security practice, create and use different keys
for different AWS services such as S3, RDS and within your applications.

Creating the KMS key
From the IAM dashboard navigation pane, click on Encryption Keys and then on
Create Key to create a new master encryption key.

Once created, a key cannot be deleted; it can only
be enabled or disabled.

After creating a key, perform the following steps:

1. The first step is to create a key for a region. In this step, we will create an alias
and describe it as follows:

 ° Alias: The alias is a display name that is used to easily identify the
key. The alias must be between 1 and 32 characters long. An alias
must not begin with aws, as these are reserved by AWS to represent
AWS-managed keys.

 ° Description: The description can be up to 256 characters long and
should tell users what the key will be used to encrypt.

Designing for and Implementing Security

[154]

2. Click on Next Step, which will configure the users who administer the key.

3. The next step is to associate the users/roles who will have administration
rights on this key. The administration rights allows enabling or disabling
of a key, rotation of keys, and adding of users/roles that can use the key.
In our example, adminusers is selected as the IAM group. Click on Next
Step; this assigns users to the key, as shown in the following screenshot:

Chapter 6

[155]

4. The next step is to assign rights to the IAM users/roles. Usage rights in
this context means to encrypt and decrypt data using this key. It is a good
practice to assign rights to roles instead of users, as it helps to centralize
user management around roles. Click on Next Step to review the key policy.
Let's take a look at the following screenshot:

Designing for and Implementing Security

[156]

5. You can now review the policy before creating one. Click on Finish to create
a new master key. Note that the result of this wizard is a JSON policy file.
This JSON file can also be externally created and edited and should be stored
in your SCM tool. It is a good practice to test the policy on the IAM policy
simulator at https://policysim.aws.amazon.com/home/index.jsp?#.
Let's take a look at the following screenshot:

Using the KMS key
In the previous step, we created a master key; now, we will use this key to encrypt
and decrypt data in the application. The use case is in the properties file the database
password needs to be kept in an encrypted format. Here is a class to encrypt and
decrypt the data using KMS; use this class to first encrypt the data and then use the
encrypted string in the properties file. Replace keyId in the following code with the
ARN of the key you created in the previous section. The ARN of the key can be viewed
by double-clicking on the key you want to use from the Encryption Keys screen from
the IAM dashboard. As a good security practice, remove the credentials if you are
running it within the EC2 instance; the AWS sdk will query and use the credentials
from the instance metadata.

https://policysim.aws.amazon.com/home/index.jsp?#

Chapter 6

[157]

Let's take a look at the following code:

 public class KMSClient {
 private String keyId = "arn:aws:kms:us-east-
 1:993603752452:key/2b0c514c-0ea9-48cc-8c70-a8e60c4724be";
 private AWSCredentials credentials;
 private AWSKMSClient kms;

 public KMSClient() {
 credentials = new BasicAWSCredentials("AKIAJYLXXXXX",
 "FCCCCSS2wFq+w5bHrKUsYfNHUW/KFm8rJMYi7kmm");
 kms = new AWSKMSClient(credentials);
 kms.setEndpoint("kms.us-east-1.amazonaws.com");
 }
 public String encryptData(String plainText) {
 ByteBuffer plaintext =
 ByteBuffer.wrap(plainText.getBytes());
 EncryptRequest req = new
 EncryptRequest().withKeyId(keyId).withPlaintext(plaintext);
 ByteBuffer ciphertext =
 kms.encrypt(req).getCiphertextBlob();
 String base64CipherText = "";
 if (ciphertext.hasArray()) {
 base64CipherText=Base64.encodeAsString(ciphertext.array());
 }
 return base64CipherText;
 }

 public String decryptData(String cipherText) {
 ByteBuffer cipherTextBlob = null;
 cipherTextBlob = ByteBuffer.wrap(Base64.decode(cipherText));
 DecryptRequest req = new
 DecryptRequest().withCiphertextBlob(cipherTextBlob);
 ByteBuffer plainText = kms.decrypt(req).getPlaintext();
 String plainTextString = new String(plainText.array(),
 java.nio.charset.StandardCharsets.UTF_8);
 return plainTextString;
 }
 }

Designing for and Implementing Security

[158]

Application security
In application security settings, we look at:

• Securing the data between the endpoints while it is being transported
to prevent a man-in-the-middle attack.

• Encrypting and storing the data at rest.
• Encrypting all the critical data, such as passwords and keys used

by the application. We have already covered this previously in the
Using the KMS key section.

Transport security
While transporting data over HTTP, security is provided by an SSL. SSL is widely used
on the Internet to authenticate a service to a client, and then to provide encryption to
the transport channel. Configuring the ELB to accept SSL certificates will secure the
transport channel between the user's browsers and the ELB. This implies the data is not
secured between the ELB and the application running in an EC2 instance, but since it is
on a VPC within the AWS infrastructure, it is secure. Digital certificates are issued by
Certification Authorities (CAs) who are trusted third parties, whose purpose is to sign
certificates for network entities it has authenticated using secure means. Normally, you
would create a CSR and have the CSR signed by the CA. We will not use a commercial
CA to sign a certificate but instead use a self-signed certificate. As a result, the browser
will not be able to verify the self-signed digital certificate or the authenticity of the
website and will generate an exception. However, a secure transport channel is
created between the browser and the ELB. If you own a domain then you can access
www.startssl.com to obtain free SSL certificates.

www.startssl.com

Chapter 6

[159]

Generating self-signed certificates
OpenSSL is used to create the keys and certificates and to make sure you have it
installed on your development machine. The example shown here is for a Linux
machine. From the command line, execute the following command:

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem
 -days 3650 –nodes

This will create a 2048 bit RSA private key key.pem and this private key is used to
sign the certificate cert.pem file. While generating the signed certificate, make sure
you enter the correct information for Common Name (for example, server FQDN or
your name); here, we have used the ELB public DNS name:

Generating a 2048 bit RSA private key
.+++
..+++
writing new private key to 'key.pem'

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:Irvine
Organization Name (eg, company) [Internet Widgits Pty
Ltd]:A1Electronics
Organizational Unit Name (eg, section) []:Software Engineering
Common Name (e.g. server FQDN or YOUR name)
[]:a1electronicsecommerce-elb-721149061.us-east-1.elb.amazonaws.com
Email Address []:admin@a1lectronics.com

Designing for and Implementing Security

[160]

Configure ELB for SSL
The next step is to configure the ELB to support SSL. Here, the SSL connection will
be terminated at the load balancer. The connection between the ELB and your EC2
instance will be unsecured. The standard HTTPS port is 443; instead, we use port
8443, as using port 443 requires configuring the OS and the default Apache Tomcat
configuration files. Perform the following steps:

1. The first step is to configure the security group to add a custom TCP rule
to accept data on port 8443. From the EC2 dashboard, navigate to Load
Balancers, click on the Security tab, and then click on Security Group ID
associated with the ELB. In our example, this is sq-EC2WebSecurityGroup.
The click action will navigate to the Security Groups pane. Click on Edit in
the Inbound tab to add the TCP rule and accept data on port 8443. Delete
Custom TCP Rule on Port Range 8080 as it is being replaced by the 8443
port, as shown in the following screenshot:

2. The next step is to add load balancer protocol (HTTPS) and listener port
and configure the private and the public key on the ELB. From the EC2
dashboard, navigate to Load Balancers, click on the Listeners tab, and
then click on Edit:

 ° From Load Balancer Protocol, select the HTTPS protocol
 ° Set Load Balancer Port to 8443; this is the port we added to our

security group in our previous step

Chapter 6

[161]

 ° From Instance Protocol, select HTTP; this is the protocol between
the ELB and the EC2 instances

 ° Set Instance Port to 8080; this is the port that the Tomcat is listening on
 ° From Load Balancer Protocol, delete the HTTP protocol as it is not

needed anymore

3. The next step is to associate the SSL certificate with the ELB. Click on Change
under SSL Certificate. The following are the properties:

 ° Certificate Type: Make sure the radio button Upload a new SSL
Certificate is selected.

 ° Certificate Name: Enter the name of the certificate for your reference;
this will be reflected in the ELB dashboard Listeners tab.

 ° Private Key: Copy the contents of key.pem and paste it in the edit box.
 ° Public Key Certificate: Copy the contents of the cert.pem file and

paste it in the edit box.

Designing for and Implementing Security

[162]

 ° Click on the Save button. This will configure ELB to support the SSL
protocol. Test the URL on the browser using the HTTPS protocol.
Let's take a look at the following screenshot:

Secure data-at-rest
Another key aspect of security is to secure the data stored in physical storage devices
such as hard disks, USB drives, SAN devices, and so on. In the AWS cloud world,
these would be AWS data storage services such as S3, RDS, Redshift, Dynamo DB
and so on. To secure data-at-rest, symmetric encryption is used, that is, the data is
encrypted with an encryption key—the data is secured as long as the encryption
key is secure so all the effort is directed to keep this encryption key secure. AWS
provides Key Management Service (KMS) to resolve the issues related with
management and storage of encryption key as described in the previous section.
This service is also used to secure the data-at-rest. Encryption of data at rest is a key
component of regulations such as HIPPA, PCI DSS,SOC1, 2, 3, and so on. In this
section, walkthroughs to secure the data-at-rest for RDS and S3 are presented.

Chapter 6

[163]

Secure data on S3
To secure the data-at-rest within S3 broadly, there are two options, as follows:

• Server-Side Encryption: Amazon S3 encrypts your object before saving, and
decrypt's it when you download the objects. The encryption and decryption
process is totally transparent and seamless. Amazon S3 can be configured in
multiple ways for the encryption keys.

• Client-Side Encryption: The client is responsible for the encryption of
the object before uploading it to Amazon S3, and for decrypting the object
after it has been downloaded. The client is responsible for the encryption/
decryption process and management of encryption keys.

Here, we show you two ways by which you can achieve server-side encryption—
one, by using the S3 console and the other by uploading a file to S3 via Java AWS
SDK. We will not go through the client-side encryption.

Using the S3 console for server-side encryption
The easiest way to secure data on S3 is via the S3 console. Select the bucket where the
file is to be uploaded, click on the Upload button; this presents a pop up window to
upload files, as shown in the following screenshot:

Click on Set Details to set the encryption options.

Designing for and Implementing Security

[164]

Select the check box Use Server Side Encryption and then click on Use an AWS
Key Management Service master key to select the key to encrypt the file with.
There is an option of selecting Master Key for encryption available with the Key
Management Service. Click on Start Upload to upload the selected file, as shown
in the following screenshot:

Using Java SDK for server-side encryption
Here is a code snippet that will upload code from your application and instruct S3
to encrypt the file; this is not the same as a client encrypting the file and uploading
it to S3, since the code only passes the location of the encryption key within the KMS
and the actual process of encryption is handled by S3. The variable keyId needs to
be initialized with the KMS key identifier with which the S3 will encrypt the file.
The key identifier of master keys is located within the KMS dashboard:

public class S3 {
 /** The s3 secret key. */
 private String secretKey;
 /** The s3 access key. */
 private String accessKey;
 /** The s3 amazon s3 client. */
 AmazonS3 amazonS3Client;
 /** The s3 client options. */

Chapter 6

[165]

 S3ClientOptions s3ClientOptions;
 /** KMS encryption key id **/
 private String keyId;

 public S3(String secretKey,String accessKey) {

 this.secretKey=secretKey;
 this.accessKey=accessKey;
 this.endPoint="s3-external-1.amazonaws.com"; // US Standard
 * N. Virginia only
 this.keyId="2b0c514c-0ea9-48cc-8c70-a8e60c4724be "; // KMS
 Encryption KeyID for S3

 amazonS3Client = new AmazonS3Client(new
 BasicAWSCredentials(this.accessKey,this.secretKey));
 s3ClientOptions = new S3ClientOptions();
 s3ClientOptions.setPathStyleAccess(true);
 amazonS3Client.setS3ClientOptions(s3ClientOptions);
 amazonS3Client.setEndpoint(this.endPoint);
 this.accessKey=null;this.secretKey=null;
 }

 /**
 * To upload a file to a particular s3 bucket with a key.
 *
 * @param file file to upload.
 * @param object for this file.
 * @param s3Bucket the s3 bucket name.
 */
 public void uploadFileEncrypted(File file, String object,
 String s3Bucket) throws AmazonServiceException,
 AmazonClientException, InterruptedException {
 TransferManager s3TransferManager = new
 TransferManager(amazonS3Client);
 PutObjectRequest putObjectRequest = new
 PutObjectRequest(s3Bucket, object, file).
 withSSEAwsKeyManagementParams(new
 SSEAwsKeyManagementParams(this.keyId));
 putObjectRequest.setStorageClass("REDUCED_REDUNDANCY");
 Upload upload = s3TransferManager.upload(putObjectRequest);
 upload.waitForCompletion();
 s3TransferManager.shutdownNow(false);
 s3TransferManager=null;
 }

 }

Designing for and Implementing Security

[166]

Secure data on RDS
The RDS service secures the database by encrypting the database volume with the
specified encryption key from the KMS. Note, RDS does not encrypt the database at
the application level; it encrypts the complete database volume at the OS file level.
The data stored in the database rows is in plain text; the application doesn't need
the encryption key to decrypt the data. If an unauthorized user gets a hold of the
database volume, it will be of no real value to him, since it is encrypted, and without
the encryption key, it cannot be decrypted. The option to encrypt the database
volume is available while creating the database under Configure Advanced Settings.
This encrypts the RDS read replicas, automated backups, the underlying database
storage, and database snapshots. Let's take a look at the following screenshot:

Chapter 6

[167]

Summary
In this chapter, we reviewed some of the strategies you can follow for achieving
security in your cloud application. We emphasized on the best practices of
implementing security using the AWS services. We followed this up with
several sections on setting up security in our sample application.

In the next chapter, we will shift our focus to production deployments, go-live
planning, and operations. We will also discuss data backups and restores and
application monitoring and troubleshooting. We will also include a hands-on
section that will walk you through these processes for our sample application.

[169]

Deploying to Production
and Going Live

In this chapter, we will focus on getting your application live in the cloud. As an
enterprise, or a start-up, you want to ensure that your applications are deployed
and supported appropriately to best serve your customers. We will discuss tools,
approaches, and the best practices in deployment and operations that ensure smooth
functioning of your applications in production environments. We will also show you
how to deploy a sample application in a production environment.

In this chapter, we will cover the following topics:

• Managing infrastructure, deployments, and support at scale
• Creating and managing AWS environments using CloudFormation
• Using CloudWatch for monitoring
• Using AWS solutions for backups and archiving
• Planning for production go-live activities

Deploying to Production and Going Live

[170]

Managing infrastructure, deployments,
and support at scale
In recent times there has been a huge shift in the way organizations manage their
cloud environments and applications. This is in response to the ease of operating in
the cloud, availability of infrastructure on-demand, and cloud-based PaaS services
that can readily be leveraged within your applications. The overall speed and
number of deployments has increased greatly, thereby requiring significant levels
of automation in application builds, infrastructure provisioning, and deployments.
Software development and release is evolving into continuous delivery environments
(enabled by features and services provided by the cloud vendors).

In such environments, it is important that tasks and processes be highly repeatable,
resilient, flexible, and robust. Amazon provides numerous tools, APIs, and services
to enable you to create highly automated DevOps pipelines. These pipelines can help
you handle your infrastructure requirements including provisioning your technology
stack, performing deployments dynamically with zero downtime, and supporting
your end customers at scale. Some of the major AWS services in these areas are AWS
CloudFormation, AWS OpsWorks, AWS CodeDeploy, AWS CloudTrail, and AWS
CloudWatch. We describe some of these in greater detail in the following sections.

Besides AWS tools and services, it is also important that we upgrade our skills
and try to stay as current as possible with the new services and features released
by Amazon. This is important because the roles of application developers and
infrastructure engineers are also evolving rapidly. Increasingly, application
developers are taking on end-to-end responsibilities for their specific applications.
These responsibilities include tasks that were typically handled by specialized
operations and infrastructure teams earlier. At the same time, the infrastructure
engineers, specialists, and administrators focus more on organizational network
architecture; infrastructural policies; templates, generic patterns, frameworks and
models; AWS service usage guidelines and principles; cloud security; and so on.

We strongly recommend you actively engage Amazon architects throughout your
development lifecycle. They have done this before and they can help you get it
right the first time. In addition, ensure you document everything including your
design, code, scripts, infrastructure, templates, policies, processes, procedures, and
so on. This will help your team's technical understanding of the cloud environment,
aid rapid on-boarding of new team members, and help establish standards and
guidelines in your organization.

Chapter 7

[171]

Creating and managing AWS environments
using CloudFormation
Your primary goal for deployments includes minimizing the overall time and effort
required for it, while having predictability, flexibility, and visibility into each of the
steps required to install and run your cloud applications. AWS CloudFormation
provides an easy way to create and manage the AWS resources for your application.

There are several factors at play, simultaneously, while setting up a DevOps pipeline.
The layers in your architecture are interdependent, and you want a very high degree of
automation and agility. On a different note, there are defined processes and procedures
to be followed for production migrations and application upgrades. CloudFormation
provides you the orchestration required for fulfilling most of these requirements in a
declarative and parameterized manner while managing the dependencies for you.

It is important that you use CloudFormation right from the beginning even if
your initial configuration is simple enough to be provisioned and managed using
the console. Also, ensure that all subsequent changes to your stacks flow through
CloudFormation as well, in order to avoid unpredictable results. In case you need to
make a change from outside of CloudFormation, then have a process in place to make
the appropriate changes in the CloudFormation template before any subsequent stack
updates. Ensure that you protect your stacks from accidental or inadvertent changes
by strictly managing changes or updates to your templates using IAM policies.
You can also create stack policies that can prevent changes to certain resources, for
example, disallowing any changes to the database, while changes are being made
to other resources in the stack. Use comments to describe the resources and other
elements in your templates. Following these practices will minimize the chances
of errors during provisioning and updating of your environments.

Deploying to Production and Going Live

[172]

A typical high-level workflow using CloudFormation is shown in the following
figure. The business requirements drive your application's design and infrastructural
requirements. Subsequently, these designs and infrastructural requirements are
realized in your application code and templates. CloudFormation templates are ideal
for provisioning and replication of your application's technology stack across your
environments, that is, development, test, staging, and production. The feedback loop
helps you address your evolving business requirements, and also improves your
designs and processes over time. As costs form an important input to the feedback
loop, you can use the AWS Cost Explorer to obtain the costs associated with your
stack (by assigning appropriate tags to your resources).

The technology stack largely consists of hardware, OS, libraries, and your application
packages and/or code. You can define more stacks based on your application layers
and environments, that is, dev, test, staging, and production. In addition, you can also
define nested stacks to address various layers or components in your architecture.
CloudFomation templates that refer to other templates result in nested stacks or a
tree of stacks. This is typically done to drive as much reusability as possible in your
deployment processes. For example, if you have several websites sharing common
requirements in terms of their load balancing and auto scaling features, then you can
create a template for your ELB and auto scaling groups, and reuse it across multiple
stacks. If your stacks are complex, then you can also use AWS OpsWorks. This option
will allow you to leverage a number of predefined stacks and Chef recipes.

Multiple stacks are typically required not only to organize your implementation
according to layers or environments but also because these layers and environments
have different characteristics. These characteristics might include different lifecycles
associated with your AWS resources or different ownership associated with the
layers in your architecture. In addition, if you have services and/or databases that
are shared by multiple applications, then having a separate stack for them will help
you manage these resources better.

Chapter 7

[173]

Creating CloudFormation templates
AWS CloudFormation provides sample templates that you can use as a starting
point for defining your specific requirements. You need to create one or more
templates to translate your design into stacks. For example, if you have designed a
Services Oriented Application, then your application contains units of functionality
and contracts that define its interfaces. You might also have dependencies between
your services. Hence, your stacks will need to reflect these services' characteristics
in terms of parameters, output, and so on.

Creating CloudFront templates is very similar to software development practices.
For example, you will need to develop, conduct code reviews, maintain repositories,
version control, test, run, and maintain them. In addition, when you hit errors you
will need to debug and fix your code.

In order to minimize the errors and the time taken to develop the production quality,
CloudFormation templates ensure that you:

• Validate the template (checks for structure and API usage, JSON syntax,
presence of circular dependencies, and so on). The CloudFormation console
automatically validates your template after you specify the appropriate input
parameters. Alternatively, you can use the AWS CLI, that is, the validate-
template command or the AWS CloudFormation API to validate your
templates.

• Use parameter types to avoid bad input parameters and specify appropriate
parameter-related constraints and regex patterns. These parameters are
validated at the beginning of your stack creation process so in case of any
errors, you will get to know almost immediately.

• Grant IAM permissions for creating the full stack and all the resources
specified in the template. In addition, ensure that permissions are given
to create/update the stack as well as rollback the changes.

• Ensure sufficient quotas for all the resource types in your stack, for example,
number of EC2 instances, RDS storage limits, and so on. There are default
limits for AWS services per AWS account. You can request changes to these
limits for the services that allow them. One way to verify these limits is to
use Trusted Advisor. Trusted Advisor displays your usage and limits for
each of the services in a specific region.

• Leverage CloudFormation: Here Init is used to declaratively specify the
packages to be installed, users to be created, specific configuration scripts
to be executed, and so on. Never include secret keys and access keys in
your CloudFormation templates. You can leverage IAM roles to achieve
the same result.

Deploying to Production and Going Live

[174]

Leverage CloudFormation's integration with other AWS services
and features to get a better handle on managing your stack. For
example, use CloudFormation's integration with CloudTrail to log
CloudFormation API calls. Furthermore, you can query these logs
and set alerts. These features can enable you to troubleshoot or
debug any issues.

There are other AWS tools that can help you with creating and updating your
CloudFormation templates. For example, you can use AWS Config for detecting
changes in the stack made from outside of CloudFormation. You can also use
CloudFormer to create CloudFormation templates from existing resources in
an active stack.

Building a DevOps pipeline with
CloudFormation
Application deployments in traditional environments used to take days, and if the
deployment required procurement of infrastructure, then the deployment cycle
would extend to weeks and sometimes even months. With cloud applications, the
infrastructure is available on-demand and deployment time has reduced to minutes,
at least in enterprises that have embraced some of these practices. In large enterprises,
the average number of deployments across their application portfolio now runs into
a couple of hundreds per day. In order to achieve smooth and error-free deployments
with zero downtime, it is imperative to plan, design, and implement a highly
automated DevOps pipeline.

It is absolutely essential to have automated tests for your application
and infrastructure in highly automated DevOps pipelines.

The following diagram illustrates a DevOps pipeline incorporating code
repositories, a continuous integration environment, AWS CloudFormation,
and application environments. Automated testing in the test and staging
environments is almost mandatory for rapid deployments of a well-tested
application to the production environment.

Chapter 7

[175]

CloudFormation is a key part of your DevOps pipeline enabling faster production
releases. For example, as shown in the figure, you can setup a continuous integration
environment that builds your application, packages the application code and
CloudFormation templates, and then uses CloudFormation templates to create the
stack and deploy your application (in various environments including the final
promotion to production).

Updating stacks
There are primarily two main approaches to updating your stack—in-place and
blue-green approach. Each of these approaches has their own pros and cons, and
you should select the approach that is most suitable for your specific situation.
You can also start with one approach and then move over to a different approach
depending on your business needs.

As the name suggests, in-place updates approach requires you to create a new
template and then use that template to update your existing stack by using the
update stack API. This approach is faster, more cost efficient, and migration of
data and the application state is much simpler than the blue-green approach.

In the blue-green approach, you take the new template and create a completely new
and separate stack (from your currently running stack). After you have verified that
the new stack is running as per your requirements, you switch production traffic
over to it.

Deploying to Production and Going Live

[176]

The main steps in a blue-green deployment are illustrated in a series as shown in the
following steps:

1. Instances with the production stack are labeled blue and the instances hosting
the new stack are labeled green. The blue fleet is currently serving all of the
production traffic.

2. Verification and acceptance tests for the new stack are conducted on the
green fleet, while the blue fleet continues to serve the production traffic.

Chapter 7

[177]

3. After the acceptance tests are successfully cleared, the production traffic is
switched over to the green fleet.

4. The green fleet is then labeled blue and it is serving all of the production
traffic. The fleet that was originally Blue is now labeled Green.

The primary advantage of the blue-green approach is that you are not touching the
currently running stack at all. You also have the option to fallback to the old stack at
any time, easily. However, blue-green deployments are expensive, as this approach
requires you to spin up a duplicate set of instances.

Each of the stack update options has certain desirable characteristics, and you can
combine them, appropriately, to evolve an approach that works best for you.

There are several variants of the blue-green approach that address some of the
shortcomings of the traditional blue-green deployment approach discussed previously.

Deploying to Production and Going Live

[178]

An approach that uses a mix of the green and blue instances (with a single ELB)
might be useful for certain applications, and is described as follows:

1. The starting state is a single fleet of instances labeled blue (belonging to an
auto scaling group). These instances serve all of the production traffic.

2. In this stage, you create a new instance hosting the new stack (in a separate
auto scaling group with a max size of 1). While the blue fleet is serving a
majority of production traffic, the green instance also starts serving some
of the production traffic.

3. In the next step, you scale up the green fleet.

Chapter 7

[179]

4. Finally, you switch over to the green fleet.

At this stage, you can shutdown the blue fleet and your green fleet is now the
designated blue fleet. This approach takes into consideration that acceptance tests
might not be complete or comprehensive. At the same time, there are no DNS
changes or ELB warm up required.

A variant of the blue-green approach that works well within an auto scaling group
are rolling updates. The updates are applied to the instances in batches (with zero
downtime). CloudFormation ensures that there is always a set of healthy instances
serving your customers at all times. In this approach, the auto scaling group is
divided into several batches, and then the update is applied to the first batch of
instances. ELB health checks should be enabled to ensure that the instances are
healthy after the update has been applied. If the instances in the batch are healthy,
then you can signal back to CloudFormation to update the next batch of instances.
These rolling updates, across all your instances, can be achieved using a single
CloudFormation template.

Extending CloudFormation
Typically, extensions to CloudFormation are required if your application uses third-
party services and you want to include the provisioning of the third-party resources in
your CloudFormation template. Extensions to CloudFormation might also be required
for AWS services that are not currently supported by CloudFormation, or if you have
a requirement to provision on-premise resources as a part of your stack. Two ways of
including such resources in your CloudFormation stack are discussed here.

Deploying to Production and Going Live

[180]

In the first approach, to achieve a tighter integration of such services or custom
resources in our stack, the third-party service provider will need to expose a
service that can process incoming provisioning-related create, update, and delete
requests. CloudFormation will send a message to the third-party service and wait
for a response. On a success response, CloudFormation will continue with its stack
creation process; otherwise, it will fail out. This way CloudFormation can treat the
entire stack including the external resources as a single unit that either succeeds fully
or fails out in its entirety.

The second approach leverages stack events to achieve the same results. For example,
if you want your web application to provision a subscription to a third-party service,
then while CloudFormation provisions your web application, it produces certain stack
events. CloudFormation delivers these events to a SNS topic that are subsequently
picked up by a provisioning application (that you have to write) to subscribe to the
third-party resource. This approach is not as robust as the previous one because
CloudFormation is not aware of failures during the provisioning of the third-party
service.

Using CloudWatch for monitoring
Amazon CloudWatch enables monitoring of Amazon services, standard and custom
defined metrics, and a variety of logs. Typically, you would want to retrieve metrics
for analysis and/or integration with other monitoring tools. CloudWatch provides
APIs to retrieve hundreds of metrics by namespace, start and finish times, intervals,
and so on.

CloudWatch logs can be monitored for errors, exceptions, HTTP response codes,
Amazon S3 logs, specific messages or custom metrics published by the application,
and so on. In addition, you can also use the logs to correlate system status with
change events such as when AWS CloudFormation is used to roll out a new stack.
We can define metric filters on the logs and raise alerts based on specific thresholds.
These alerts can in turn be forwarded to SNS topics for appropriate notifications
to be pushed out. The metric filters can be based on literal terms, or common log
formats, or specified using JSON. In addition, you can combine multiple literal
terms, group the terms, count occurrences, and/or specify variable names for log
record fields, and so on.

For monitoring API calls to AWS services, you can integrate AWS CloudTrail logs
with AWS CloudWatch. You can also set it up to receive SNS notifications from
CloudWatch for the API activity captured by CloudTrail. Typically, you will turn on
this integration from the CloudTrail console or through a CloudFormation template,
define a metric filter on your CloudWatch Logs log group, assign a CloudWatch
metric to the metric filter, and then create an appropriate CloudWatch alarm.

Chapter 7

[181]

Other alternatives include subscribing to third-party logging services or rolling
out your own solution for centralized monitoring. For example, you can use AWS
Kinesis initially to ingest the logging messages, and then use an ElasticSearch
cluster for searching through the records efficiently, and a product such as Kibana
for visualization support. There are several third-party logging service providers
such as Loggly, Splunk, Sumo Logic, and so on. You can subscribe to their services
to meet your requirements (at scale).

Using AWS solutions for backup and
archiving
Using AWS for backups and archiving is very common and an easy entry point
for organizations new to the cloud. The main reasons for the popularity of cloud-
based backup solutions are AWS' global infrastructure, data durability SLAs, a
rich ecosystem of partners and vendors, and compliance with regulations such
as HIPAA, PCIDSS, and so on. Taking a phased approach that begins with using
cloud storage as a backup data store is a reasonable and common approach.
However, taking this further to create your application environment in the cloud
can be good business continuity strategy. It is also easier to track the actual usage
of the backup data on the cloud thereby presenting further opportunities to reduce
your overall costs.

In most cases, the enterprise already has a well-established backup strategy, policy,
and technology solution in place. They are not looking for a complete replacement.
The primary motivation here is to leverage the cloud as a lower cost destination.
However, for most early stage startups, the cloud might represent their first and
only backup solution.

There are third-party solutions such as those from CommVault that are natively
integrated with Amazon S3 and Glacier. Other backup solutions can also be integrated
using storage gateways. These approaches can help evolve your backup solution to
embrace cloud storage with least disruption while you continue to use your existing
processes. Cloud storage represents unlimited capacity, so you don't have to worry
about closely tracking your tape usage or rotating through them constantly.

Deploying to Production and Going Live

[182]

It is important to carry out a data classification exercise for all the data in your
application. For example, you might first want to classify data that needs to be kept
versus data that need not to be kept. Next, you might classify your data as long
term data to be kept for compliance reasons that is unlikely to be restored, very high
volume data to be transferred from on-premise storage to the cloud, data shared
by multiple applications (document shares, image repositories, and so on), highly
available data, data that can be aggregated and then kept in a summarized form, data
related to online collaboration applications, and so on. This classification can help you
choose appropriate solutions for their storage and backup. AWS provides different
storage classes, that is, S3, Glacier, and EBS, to meet varied data lifecycle management
requirements. To further reduce costs, you can enable the reduced redundancy option,
for less sensitive data, to store fewer copies of your data on the S3 storage. All these
data storage services are scalable, secure, and reasonably priced.

It is also important to define certain guiding principles for your backups. For example,
you could choose to backup only the data and not the entire VM. This would mean
you are choosing to rebuild (using a service such as AWS CloudFormation) instead of
restoring. Other guidelines might recommend building stateless services and storing
all data on Amazon S3 and leveraging services such as SQS based on assuming that
all instances are temporary or will fail sooner or later. You might also want to take
snapshots of your EBS volume on other EBS volumes to recover faster from instance
failures. In the DevOps environment, owners of applications are taking increasing
responsibilities for their data.

While evaluating costs of a cloud-based backup strategy, ensure you do not
restrict your TCO calculations to hardware and software alone. For a good
comparison, ensure you take into consideration costs associated with facilities,
maintenance, people and professional services, storage utilization, transportation,
cost of capital, and so on. In larger backup environments, the cost of a cloud-based
solution compares very favorably versus the total cost of physical media, robot
systems, and other costs mentioned earlier. In addition, cloud-based solutions
provide an easy and convenient solution to offsite backup requirements.

Planning for production go-live activities
In this section, we will cover the final steps required for a new application to go live
on the cloud. By this time, your application should have been fully tested (against
functional and nonfunctional requirements) and accepted by the business, all your
templates for automated production infrastructure provisioning and deployment
scripts tested and ready to go, and backup policies and disaster recovery strategies
documented and tested.

Chapter 7

[183]

For the first few deployments, it is useful to create a comprehensive checklist for
executing the actual go-live process. This will ensure that you are systematically
executing each step in the process, verifying intermediate results (for example,
complete and correct data migration), communicating to the stakeholders at regular
intervals, making go/no go decisions at the appropriate times, having a rollback
strategy clearly defined, and so on. However, it is imperative to fully automate the
deployments and the associated verification steps, as soon as you have worked out
the wrinkles in your end-to-end deployment process.

As a good practice, after you have deployed your application in the production
environment, run a set of predefined tests to ensure your application is functioning
as required. You should also test that application monitoring and logging is
functioning as expected. Finally, ensure that you engage internal and/or external
specialists to conduct a penetration test. These tests could result in changes to the
application as well as some infrastructure settings; therefore, plan for sufficient
time in your schedule for a couple of iterations of the penetration test. It is a good
practice not to do this for the first time after you have deployed in production and
management is impatient to go live. You will get through the penetration tests a lot
quicker if you have done them a couple times before in you dev, test, and staging
environments. This will ensure that you have addressed most of the vulnerability
issues before reaching production. After you have cleared the penetration test you
should be officially live and actively serving your customers.

At this time, you might also want to schedule a team meeting to analyze what
worked well versus what could have been done better during the project. It is also
useful to document lessons learnt and best practices for your specific situation, and
plan your next release of the application with new features, bug fixes, tweaks to your
infrastructure, and so on.

In the next section, we will walk you through the deployment related activities for
our sample application.

Setting up for production
This is it! The final section where AWS will be configured to host the application
for production deployment. The key issues in the production setup include health
monitoring of the application, disaster recovery, security, costs, configuration
management, and process repeatability.

Deploying to Production and Going Live

[184]

The AWS production deployment architecture
The first step is to design the deployment architecture. You can architect AWS
in several different ways to meet your business requirements. The deployment
architecture presented here takes into consideration security practices, and is
specifically designed for scalability and high availability. In addition, it is an
extension to the one presented for HA in Chapter 5, Designing for and Implementing
High Availability.

Let's re-examine the choices made for the selection and configuration of AWS
resources. The choices for regions, availability zones, ELB, ASG, RDS, and S3
have already been covered in chapters 3 to 5. All the AWS resources needed
for our production setup have been discussed previously.

The following figure represents the deployment architecture for the sample
application:

Chapter 7

[185]

VPC subnets
The first step is to logically partition the VPC into separate subnets based on our
requirements. Next, we apply security groups (firewall) to each of the subnets to
accept connections on fixed TCP ports (from predefined subnets). The main purpose
of having separate subnets is to secure the hosts by restricting access. For example,
we host the RDS MYSQL database server in a private subnet (172.31.80.0/20) that
accepts connections on port 3306 only. This allows access only from the two public
subnets (172.31.16.0/20 and 172.31.48.0/20). The VPC is created on 172.31.0.0/16
and the subnets created within the VPC are listed as follows:

• Subnet at 172.31.96.0/20 hosts the bastion host and accepts SSH connections
from trusted sources only.

• Public subnets at 172.31.16.0/20 and 172.31.48.0/20 hosting the EC2
instances in the auto scaling group for the application. It accepts HTTP
and HTTPS connections from the load balancer security group. The two
subnets are in two different availability zones to support HA.

• Private subnets at 172.31.80.0/20 and 172.31.64.0/20 to host the database
servers and accept MYSQL connections only from defined web and bastion
security groups.

We configured two subnets, 172.31.16.0/20 in AZ us-easts-1a region and 172.31.48.0/20
in AZ us-east-1c region, in Chapter 5, Designing for and Implementing High Availability.
We will continue to use them as our public subnets.

Private subnet
Any EC2 running on a private subnet can be accessed from another EC2 instance
within a VPC network or over a VPN network and are not accessible via the public
Internet. Each VPC has a default Internet gateway associated with it whose purpose
is to route traffic to the Internet. A new subnet is always created as a public subnet
and can be changed to a private subnet by assigning its route table to a private route
table. Perform the following steps:

1. The first step is to create a private route table. From the VPC dashboard,
navigate to Route Tables and click on Create Route Table:

 ° In the Create Route Table popup, assign the name of the route table
in the Name tag

Deploying to Production and Going Live

[186]

2. The next step is to create a subnet. From the VPC dashboard, navigate to
Subnets and then click on Create Subnets:

 ° Name tag: Specify a name for the subnet. This name will be reflected
in the VPC dashboard.

 ° VPC: Choose the VPC in which this subnet will be created. Select the
option containing (172.31.0.0/16) from the dropdown if you have
more than one VPC.

 ° Availability Zone: This is the availability zone in which the subnet
will be created. From the dropdown, select us-east-1a; this is one of
the two private subnets, the other one will be created in the us-east-1c
availability zone as per the deployment architecture.

 ° CIDR block: Classless Inter-Domain Routing (CIDR) defines
a range of IP addresses to be allocated to the hosts in the subnet.
In this case, 172.31.80.0/20 defines the IP address range from
172.31.80.0 to 172.31.95.255 (a total of 4096 hosts).

3. The last step is to associate the private route table created in step 1 to the
subnet created in step 2. From the VPC dashboard, navigate to Subnets
and click on the subnet created in step 2. Navigate to the Route Table tab
in the bottom pane and click on edit, as shown in the following screenshot:

Chapter 7

[187]

4. From the Change To dropdown, select the route created in step 1.

Similarly, create another subnet Private Subnet with the CIDR block 172.16.48.0/16
in the availability zone us-east-1c and assign the private route table to it (created in
step 1).

Bastion subnet
Create another subnet named bastion, with the CIDR block 172.16.96.0/20 in the
availability zone us-east-1a. There is no need to assign a private route table to it
as the EC2 instances running in this subnet will be accessed by clients from the
public internet.

Bastion host
A bastion host is a secure host that accepts SSH connections only from trusted
sources. A trusted source is the static IP addresses of your Internet connection.
This ensures that the access to your AWS resource is from a machine from within
your network. A bastion is used to administer your AWS network and instances.
All instances accept SSH connection only from the bastion security group.

Deploying to Production and Going Live

[188]

Security groups
The traffic between the instances is governed by the ingress (inbound) and egress
(outbound) rules defined in the security groups. Listed are recommended security
groups and their inbound and outbound rules. Please refer to Chapter 2, Designing
Cloud Applications – An Architect's Perspective.

• The ELB security group recommended rules: Apply this security group to
the ELB.

Inbound
Source (CIDR) Protocol Port Range Comments

0.0.0.0/0 TCP 8080 This accepts HTTP traffic from anywhere.
0.0.0.0/0 TCP 8443 This accepts HTTPS traffic from anywhere.

Outbound
Destination (CIDR) Protocol Port Range Comments
ID of Web security
group

TCP 8080 Route HTTP traffic to instances that have
a web security group assigned.

ID of Web security
group

TCP 8443 Route HTTPS traffic to instances that
have a web security group assigned.

• Web security group recommended rules: Apply this security group to
EC2 instances running in a public network in both the availability zones.
This security group is for the web servers.

Inbound
Source (CIDR) Protocol Port Range Comments
ID of ELB security
group

TCP 8080 This accepts HTTP traffic from the load
balancer.

ID of ELB security
group

TCP 8443 This accepts HTTPS traffic from the load
balancer.

ID of Bastion
security group

TCP 22 This allows SSH traffic from the bastion
network.

Chapter 7

[189]

Outbound
Destination
(CIDR)

Protocol Port
Range

Comments

ID of Database
security group

TCP 3306 This allows MYSQL access to the database
servers assigned to database security group

0.0.0.0/0 TCP 80 Allow the EC2 instances to connect to the
Internet on HTTP port

0.0.0.0/0 TCP 443 Allow the EC2 instances to connect to the
Internet on HTTPS port

• Bastion Security Group Recommended Rules: Apply this security group to
EC2 instances running in the bastion network.

Inbound
Source (CIDR) Protocol Port

Range
Comments

MyIP TCP 22 This accepts the SSH connection for your fixed
static IP. It implies that you can connect to the
bastion sever only from this IP address. If you do
not have a static IP, change the source to 0.0.0.0/0.

Outbound
Destination
(CIDR)

Protocol Port
Range

Comments

0.0.0.0/0 TCP 0..65535 Allow to connect on any ports on the Internet
and also to the private database security
group.

• Database security group recommended rules: Apply this security group to
EC2 instances running in a private network in both the availability zones.
This security group is for the database servers.

Inbound
Source (CIDR) Protocol Port

Range
Comments

ID of Web Security
Group

TCP 3306 This accepts MYSQL connections from
the web application running in the public
network.

ID of Bastion
security group

TCP 3306 This allow MYSQL access to the database
servers for administering MYSQL database.

Deploying to Production and Going Live

[190]

Outbound
Destination (CIDR) Protocol Port Range Comments
None None

Infrastructure as code
So far we have been setting up the AWS infrastructure via the Amazon AWS console,
which is quite helpful in the initial stages when you are learning the ropes. However,
it is a good practice to build your cloud infrastructure via code as it is repeatable and
can be versioned.

AWS provides services such as CloudFormation, AWS OpWorks, and Code Deploy.
CloudFormation focuses on providing foundational capabilities for the full breadth
of the AWS services, while AWS OpWorks focuses on deployment, monitoring, auto
scaling, and automation and supports a narrower range of application-oriented AWS
resource types including EC2 instances, EBS volumes, Elastic IPs, and CloudWatch
metrics. CodeDeploy automates application deployment in a reliable and efficient
manner to a fleet of EC2 instances and instances running on-premise.

Setting up CloudFormation
While working with CloudFormation you define the AWS resources you need and
then wire them together as per your architecture.

The template JSON file includes the following sections; only the Resources section
is mandatory while the rest are all optional.

The structure of a CloudFormation script consists of the following:

{
 "AWSTemplateFormatVersion" : "",
 "Description" : "",
 "Parameters" : {
 },
 "Mappings" : {
 },
 "Conditions" : {
 },
 "Resources" : {
 },
 "Outputs" : {
 }
}

Chapter 7

[191]

• AWSTemplateFormatVersion: This defines the capabilities of the template.
Only one version has been defined so far and the value for it is 2010-09-09.

• Description: This is free text; use it to include comments for your template.
It should always follow AWSTemplateFormatVersion. The maximum size of
this free text is 1,024 characters.

• Parameters: This is used to pass values to the template while creating the
stack and helps customize the template each time you create a stack.

• Mappings: As the name suggests, it is a map of key-values pairs. For example,
this can be used to select the correct AMI base image for a region where the
stack is being created; the key will be the region and the value will be the AMI
id of the base image.

• Conditions: Since JSON cannot have any logic embedded in it, a section was
created to implement the basic conditional logic evaluation within the JSON
template. The conditional logic functions available are AND, OR, EQUALS,
IF, and NOT.

• Resources: This is the section where you define your AWS resources and
wire them together. This section is mandatory.

• Outputs: In this section, you declare the values to be returned on creation
of each AWS resource. This is useful, for example, to find the ELB URL or
a RDS endpoint.

Since a full CloudFormation template of the production deployment architecture can
run into hundreds of lines of JSON code, we will only present the creation of key
AWS resources is presented; however, the complete script (a1ecommerceaws.json)
is available for download in the source code repository. The code snippets below
might not match the script line by line as the emphasis here is more on clarity than
on structure.

The key AWS resources are explained below:

• VPC: Here a different CIDR block is used for production instead of the default
172.31.0.0/16. You can skip this if you want to keep the default CIDR block,
but remember to change the reference to the VPC in the subnets:
"VPC":{
 "Type":"AWS::EC2::VPC",
 "Properties":{"CidrBlock":"10.44.0.0/16",
 "EnableDnsSupport" : "true",
 "EnableDnsHostnames" : "true",
 "InstanceTenancy" :{"Ref":"EC2Tenancy"},
 "Tags":[{"Key":"Application",
 "Value":{"Ref":"AWS::StackName" }
 },
 {"Key":"Network","Value":"Public" },

Deploying to Production and Going Live

[192]

 {"Key":"Name","A1Ecommerce Production"}
]
 }
}

• Subnets: As an example, only one is presented here for the public subnet.
Remember to replace CIDR Block with 172.31.16.0/24 and VPCId with the
default VPC identifier, for example, vpc-3f30a65a and DependsOn is not
required if you wish to create the subnets in the default VPC. Similarly,
create the other subnets:
"PublicSubnet":{
"DependsOn":["VPC"],
 "Type":"AWS::EC2::Subnet",
 "Properties":{
 "VpcId":{"Ref":"VPC"},
 "CidrBlock":"10.44.0.0/24",
 "AvailabilityZone":"us-east-1a",
 "Tags":[
 {"Key":"Application",
 "Value":{"Ref":"AWS::StackName"}
 },
 {"Key":"Network","Value":"Public"},
 {"Key":"Name","Value":"Public Subnet"}
]
 }
}

• Security Group: As an example, the ELB security group is specified here.
Similarly, create the other security groups:
"ELBSecurityGroup":{
 "DependsOn":["VPC"],
 "Type":"AWS::EC2::SecurityGroup",
 "Properties":{
 "GroupDescription":"ELB Base Security Group",
 "VpcId":{"Ref":"VPC"},
 "SecurityGroupIngress":[
 {"IpProtocol":"tcp","FromPort":"80",
 "ToPort":"80","CidrIp":"0.0.0.0/0"},
 {"IpProtocol":"tcp","FromPort":"443",
 "ToPort":"443","CidrIp":"0.0.0.0/0"},
],
 "Tags":[{
 "Key":"Name",
 "Value":"ELB Security Group"}
]
 }
},

Chapter 7

[193]

"ELBSecurityGroupEgress80":{
 "DependsOn":["ELBSecurityGroup"],
 "Type":"AWS::EC2::SecurityGroupEgress",
 "Properties":{
 "GroupId":{"Ref":"ELBSecurityGroup"},
 "IpProtocol":"tcp","FromPort":"8080",
 "ToPort":"8080",
 "DestinationSecurityGroupId":{
 "Fn::GetAtt": ["WebSecurityGroupPublic","GroupId"]
 }
 }
},
"ELBSecurityGroupEgress443":{
 "DependsOn":["ELBSecurityGroup"],
 "Type":"AWS::EC2::SecurityGroupEgress",
 "Properties":{"GroupId":{"Ref":"ELBSecurityGroup"},
 "IpProtocol":"tcp","FromPort":"8443",
 "ToPort":"8443",
 "DestinationSecurityGroupId":{
 "Fn::GetAtt": ["WebSecurityGroupPublic","GroupId"]
 }
 }
}

• RDS: An RDS subnet needs to be created so that the RDS service can run in
the correct availability zones—us-east1a and us-east-1c:
"RDSSubnetGroup":{
"Type" : "AWS::RDS::DBSubnetGroup",
"Properties":{
 "DBSubnetGroupDescription":" Availability Zones for
 A1EcommerceDB",
 "SubnetIds" : [{ "Ref" : "PrivateSubnet" },
 { "Ref" : "DbPrivateSubnet" }]

"A1EcommerceMasterDB" : {
 "Type" : "AWS::RDS::DBInstance",
 "Properties" : {
 "DBName" :"a1ecommerce",
 "DBInstanceIdentifier" : "a1ecommerce",
 "AllocatedStorage" : "5",
 "DBInstanceClass" : "db.t1.micro",
 "BackupRetentionPeriod" : "7",
 "Engine" : "MySQL",
 "MasterUsername" : "a1dbroot",

Deploying to Production and Going Live

[194]

 "MasterUserPassword" : "a1dbroot",
 "MultiAZ" : "rue",
 "Tags" : [{ "Key" : "Name", "Value" : "A1Ecommerce
 Master Database" }],
 "DBSubnetGroupName":{"Ref":"RDSSubnetGroup"},
 "VPCSecurityGroups": [{ "Fn::GetAtt": [
 "PrivateSecurityGroup", "GroupId"] }],
 },
 "DeletionPolicy" : "Snapshot"
}

• ELB: The ELB is straightforward. It routes the incoming traffic to the two
subnets in the two availability zones and is assigned the ELB security group:
"ElasticLoadBalancer":{
 "Type":"AWS::ElasticLoadBalancing::LoadBalancer",
 "DependsOn":["PublicSubnet","HASubnet"
],
 "Properties":{
 "Subnets":[{"Ref":"PublicSubnet"},
 {"Ref":"HASubnet"}
],
 "CrossZone":"true",
 "Listeners":[{
 "LoadBalancerPort":"8080",
 "InstancePort":"8080",
 "Protocol":"HTTP"
 },
 {
 "LoadBalancerPort":"8443",
 "InstancePort":"8443",
 "Protocol":"TCP"
 }
],
 "ConnectionDrainingPolicy":{
 "Enabled":"true","Timeout":"60"
 },
 "SecurityGroups":[{
 "Ref":"ELBSecurityGroup"
 }],
 "HealthCheck":{
 "Target":"HTTP:8080/index.html",
 "HealthyThreshold":"3",
 "UnhealthyThreshold":"5",
 "Interval":"30",

Chapter 7

[195]

 "Timeout":"5"
 }
 }
}

• Launch Configuration: The ImageId is your base AMI instance that the auto
scaling group will launch. Replace the image ID with your own AMI:
"LaunchConfig":{
 "Type":"AWS::Auto scaling::LaunchConfiguration",
 "Properties":{
 "KeyName":{
 "Ref":"KeyPairName"
 },
 "ImageId":"i-3a58b4cd"
 "SecurityGroups" : [{ "Ref" : "WebSecurityGroupPublic" }],
 "InstanceType":{
 "Ref":"EC2InstanceASG"
 },
 }
}

• Scaling Configuration: There are two scaling configurations, one to scale
up and the other to scale down. Auto scaling will add/remove new EC2
instances as defined in the ScalingAdjustment field whenever the alarm
goes off:
"WebServerScaleUpPolicy":{
 "Type":"AWS::Auto scaling::ScalingPolicy",
 "Properties":{
 "AdjustmentType":"ChangeInCapacity",
 "Auto scalingGroupName":{
 "Ref":"WebServerGroup"
 },
 "Cooldown":"60",
 "ScalingAdjustment":"1"
 }
},"
WebServerScaleDownPolicy":{
 "Type":"AWS::Auto scaling::ScalingPolicy",
 "Properties":{
 "AdjustmentType":"ChangeInCapacity",
 "Auto scalingGroupName":{
 "Ref":"WebServerGroup"
 },

Deploying to Production and Going Live

[196]

 "Cooldown":"60",
 "ScalingAdjustment":"-1"
 }
}

• Scaling Alarms: Next are the alarms that are the qualifiers for the auto scaling
group to add or remove EC2 instances. In this example, a new EC2 instance is
added whenever the average CPU load is greater than 90 percent for a period
of 5 minutes and an EC2 instance is removed whenever the average CPU
load is less than 70 percent for a period of 5 minutes. For lack of space, only
CPUAlarmHigh is presented here:
"CPUAlarmHigh":{
 "Type":"AWS::CloudWatch::Alarm",
 "Properties":{
 "AlarmDescription":"Scale-up if CPU > 90% for 5 minutes",
 "MetricName":"CPUUtilization",
 "Namespace":"AWS/EC2",
 "Statistic":"Average",
 "Period":"300",
 "EvaluationPeriods":"2",
 "Threshold":"90",
 "AlarmActions":[
 {"Ref":"WebServerScaleUpPolicy"}
],
 "Dimensions":[{
 "Name":"Auto scalingGroupName",
 "Value":{"Ref":"WebServerGroup" }
 }
],
 "ComparisonOperator":"GreaterThanThreshold"
 }
},
"CPUAlarmLow":{
},

Chapter 7

[197]

• Auto Scaling Group: Finally, the auto scaling group itself is configured to send
messages to the SNS topic on launch and termination of EC2 instances:

"WebServerGroup":{
 "Type":"AWS::Auto scaling::Auto scalingGroup",
 "DependsOn":[
 "LaunchConfig","ElasticLoadBalancer"
],
 "Properties":{
 "AvailabilityZones" : [
 {"Fn::GetAtt" : ["HASubnet" , "AvailabilityZone"] },
 {"Fn::GetAtt" : ["PublicSubnet" , "AvailabilityZone"] }
],
 "LaunchConfigurationName":{
 "Ref":"LaunchConfig"
 },
 "MinSize":"1",
 "MaxSize":"1",
 "LoadBalancerNames":[
 {"Ref":"ElasticLoadBalancer"}
],
 "VPCZoneIdentifier":[
 { "Ref" : "HASubnet" },
 { "Ref" : "PublicSubnet" }
],
 "NotificationConfiguration":{
 "TopicARN":{"Ref":"A1SNSInfraAlert"
 },
 "NotificationTypes":[
 "auto scaling:EC2_INSTANCE_LAUNCH",
 "auto scaling:EC2_INSTANCE_LAUNCH_ERROR",
 "auto scaling:EC2_INSTANCE_TERMINATE",
 "auto scaling:EC2_INSTANCE_TERMINATE_ERROR"
]
 }
 }
},

Deploying to Production and Going Live

[198]

Executing the CloudFormation script
The next step is to execute the CloudFromation script in order to create the AWS
resources. There are two ways by which you can achieve this; the first one is by
using the Amazon web console and the other by using the Amazon command line
from your development machine. Before you execute the script make sure you delete
all the AWS resources except the AMI Image you have in the N. Virginia region.
By default the CloudFormation script is configured for the N. Virginia region.
Cross check the following parameters in the script before you execute the script:

• Substitute the value of KeyPairName in the script with the EC2 instance
key pair created in Chapter 3, AWS Components, Cost Model, and Application
Development Environments under Creating EC2 instance key pairs if required

• Substitute the value of AMIImageId in the script with an AMI instance ID
created in Chapter 4, Designing for and Implementing Scalability under Creating
an AMI if required

• Substitute the values of DBName, DBUser, and DBPassword in the script with
the ones created in Chapter 3, AWS Components, Cost Model, and Application
Development Environments under Amazon Relational Database Service if required

Now we are ready to execute the CloudFormation script.

Via the command line
The simplest way of executing the CloudFormation script is via the Amazon
command line tools that were installed in Chapter 4, Designing for and Implementing
Scalability under Scripting auto scaling. If you already have the AWS command line
tools installed and configured, only two commands need to be fired, the first one
to validate the CloudFormation script is as follows:

aws cloudformation validate-template --template-body file://
a1ecommerceaws.json --region=us-east-1

To create the CloudForamtion stack, the second command is as follows:

aws cloudformation create-stack --stack-name a1ecommerce --template-body
file://a1ecommerceaws.json --region=us-east-1

The progress of the CloudFormation stack can be monitored via the CloudFormation
dashboard via the Amazon web console.

Chapter 7

[199]

Via the Amazon web console
There is another option to create the CloudFormation stack via the CloudFormation
dashboard. Navigate to the CloudFormation dashboard from the Amazon web
console and click on Create Stack.

• Select Template: The first step is to name the CloudFormation stack and
upload the template script to S3. Another option is to provide the path of
the template script in S3; this option is useful if a single file is used to create
stacks across regions or availability zones within a region.

Deploying to Production and Going Live

[200]

• Specify Parameters: This screen allows you to override the default
parameters in the template script. Cross check to verify that the values
of parameters for KeyPairName, AMIImageId, DBName, DBUser,
and DBPassword are legit.

Chapter 7

[201]

• Options: On this screen, you can specify Tags for your stack and configure
certain other advanced options. For instance, you can send notifications
of CloudFormation events to an Amazon SNS topic. In addition, you can
specify a timeout period for stack creation, enable rollbacks, and specify
stack policies for protection of your AWS resources during stack updates.

Deploying to Production and Going Live

[202]

• Review: This screen lists your selected options and parameter overrides for
review before creating the stack. Click on Create to start the CloudFormation
stack. The AWS resources created by the script can be monitored under the
Events tab in the CloudFormation dashboard:

Centralized logging
When you move from a static environment to a dynamically scaled, cloud-based
environment, you need to pay close attention to the way you store, capture, and
analyze log files generated by the OS and your application. As EC2 instances are
instantiated and deleted by the auto scaling group, dynamically, storing the log
files locally is not recommended. Hence, there is a need for a centralized logging
service to which all the applications and OS log their data to; this makes it very
convenient to search, view, analyze, and take action on the logs in real time from a
centralized console. You have an option of either rolling out your own centralized
logging infrastructure using the open source ELK stack (Elasticsearch, Logstash, and
Kibana) or subscribing to one of the many third-party logging as a service provider.
Since this a book is about AWS, we will work with CloudWatch as the logging and
monitoring service.

Chapter 7

[203]

Setting up CloudWatch
To enable logging from the EC2 instance to CloudWatch, a logging agent needs to be
installed on the EC2 instances. As an example, we will show you the logging related
to a Tomcat access log file. Other log files can be handled similarly. Ensure you install
this agent in your base AMI image. To do this, perform the following steps:

1. Install the AWS command client library as described in Chapter 4, Designing
for and Implementing Scalability, under the Scripting auto scaling section.

2. The next step is to install the logging agent itself. Since our EC2 is based on
Ubuntu, the agent needs to be downloaded and installed on the EC2 instance.

 ° Download the CloudWatch logging agent:
wget https://s3.amazonaws.com/aws-cloudwatch/downloads/
latest/awslogs-agent-setup.py

 ° Install and configure the Cloudwatch agent. The region command
line parameter specifies the AWS region in which your current AWS
EC2 instances and infrastructure is running. The log file to push
CloudWatch is defined in step 4; make sure the file by the name exists:
sudo python ./awslogs-agent-setup.py --region --us-east-1
Launching interactive setup of CloudWatch Logs agent ...
Step 1 of 5: Installing pip ...DONE
Step 2 of 5: Downloading the latest CloudWatch Logs agent
bits ... DONE
Step 3 of 5: Configuring AWS CLI ...
AWS Access Key ID [None]:
AWS Secret Access Key [None]:
Default region name [us-east-1]:
Default output format [None]:
Step 4 of 5: Configuring the CloudWatch Logs Agent ...
Path of log file to upload [/var/log/syslog]: /var/log/
tomcat7/access_log.log
Destination Log Group name [/var/log/tomcat7/access_log.
log]:
Choose Log Stream name:
 1. Use EC2 instance id.
 2. Use hostname.
 3. Custom.
Enter choice [1]: 1
Choose Log Event timestamp format:
 1. %b %d %H:%M:%S (Dec 31 23:59:59)
 2. %d/%b/%Y:%H:%M:%S (10/Oct/2000:13:55:36)
 3. %Y-%m-%d %H:%M:%S (2008-09-08 11:52:54)

Deploying to Production and Going Live

[204]

 4. Custom
Enter choice [1]: 3
Choose initial position of upload:
 1. From start of file.
 2. From end of file.
Enter choice [1]: 2
More log files to configure? [Y]: n

 ° After configuring and installing the CloudWatch instance in your
base AMI image, start the logging agent:
sudo service awslogs start

 ° From the CloudFormation web console, navigate to Logs; there
will be an entry for /var/log/tomcat7/access_log.log, which
implies the log agent has been installed and configured correctly.
Drill down by clicking on the Log Groups entry, a list of all the
EC2 instances that are configured and are logging to the selected
Log Group. Further drilling down and by clicking on any one of
the EC2 instances will display the log data:

Chapter 7

[205]

Summary
In this chapter, we reviewed some of the strategies you can follow for the
deployment of your cloud application. We emphasized the importance of
automating your infrastructure and setting up a DevOps pipeline. We followed
this up with sections on setting up and monitoring a cloud-based backup solution.
We also included a brief section on going live with your application on the cloud.
Finally, we described deployment related steps for our sample application.

[207]

Index
A
Amazon CloudFront 45
Amazon CloudWatch

about 47
used, for monitoring 180, 181

Amazon DynamoDB 45
Amazon ElastiCache 46
Amazon Elastic Block Storage

(Amazon EBS) 44
Amazon Elastic Compute Cloud (EC2) 44
Amazon Elastic MapReduce

(Amazon EMR) 45
Amazon Glacier 45
Amazon Machine Image (AMI) 44, 64, 88
Amazon Relational Database

Service 45, 58, 72
Amazon S3 44
Amazon Simple Notification Service (SNS)

about 46, 106
URL 110

Amazon Simple Queue Service
(Amazon SQS) 46

Amazon Virtual Private Cloud
(Amazon VPC) 46

Amazon Web Services (AWS)
about 1, 8
components 43
URL 6
using, for disaster recovery 132

application
high availability, implementing in 131, 132
high availability, setting up for 129, 130

application, designing for multi-tenancy
about 22
data extensibility 18-22

data security 16-18
application development environments

about 54
development environment 55
production environment 56
QA/Test environment 55
staging environment 55

application security
about 158
transport security 158

approaches, for designing scalable
application architecture

asynchronous processing, implementing 85
AWS services, using for out-of-the-box

scalability 84
loosely coupled components,

implementing 85
scale-out approach, using 85

architectural best practices, cloud contexts
application, designing for eventual

consistency 31
application, designing for failure 27, 28
application, designing for

multi-tenancy 14-16
application, designing for

performance 29, 30
application, designing for scale 23-26
cloud computing costs, estimating 31-33
infrastructure, automating 26
multi-tier architecture 12-14
parallel processing 29
typical e-commerce web application 34, 35

archiving
AWS solutions, using for 181, 182

auto scaling
setting up 88

[208]

Auto Scaling Group (ASG) 88
auto scaling, scripting

about 112, 113
AMI, creating 114, 115
auto scaling group, creating 118-121
Elastic Load Balancer, creating 115-117
launch configuration, creating 117

availability objectives
defining 124

Availability Zone (AZ) 44
AWS account

setting up 5-8
AWS API activity

tracking, CloudTrail used 147
AWS auto scaling construction

about 88
Amazon Machine Image (AMI),

creating 88, 89
auto scaling group, creating 102-110
auto scaling group, testing 111, 112
Elastic Load Balancer, creating 90-98
launch configuration, creating 99-101

AWS cloud construction
about 59
EC2 Instance, creating 64-70
Elastic IPs (EIP), creating 70-72
RDS instance, writing 72-78
roles, creating 62-64
security groups, creating 59, 60
software stack installation 78-80

AWS cloud deployment architecture 56
AWS environments

creating, CloudFormation used 171, 172
managing, CloudFormation used 171, 172

AWS high availability architecture
about 135, 136
Availability Zone 136
EC2 instances 137
Elastic Load Balancer 137
Relation Database Service 137
Simple Storage Service(S3) 137
Virtual Private Cloud (VPC) 137

AWS icons
URL, for downloading 57

AWS Identity and Access
Management (IAM)

about 46, 149

roles 149-151
AWS infrastructure

setting up 56
AWS infrastructure services,

leveraging for scalability
about 86
applications, scaling proactively 88
auto scaling, implementing with AWS

CloudWatch 87
AWS CloudFront, used for distributing

content 86
AWS ELB, used for scaling without service

interruptions 86
data services, scaling 87

AWS key management service
issues, solving 152, 153
KMS key, creating 153-155
KMS key, using 156

AWS management console
about 8
account related information 9
Amazon regions 9
Amazon Web Services 8
Service Health 10
shortcuts, for Amazon Web Services 9
Support 10

AWS production deployment architecture
about 184
bastion host 187
security groups 188, 189
VPC subnets 185

AWS products
URL 58

AWS security implementation
best practices 145, 146

AWS Security Token Service
URL 146

AWS services
URL 5

AWS solutions
using, for archiving 181, 182
using, for backup 181, 182

AWS, terms
Amazon Relational Database

Service (RDS) 58
Availability Zone (AZ) 58
EC2 Instance 58

[209]

Internet gateway 59
region 57
router 59
security groups 58
subnets 59
Virtual Private Cloud (VPC) 58

B
backup

AWS solutions, using for 181, 182
backup DR strategy

using 133
bastion host 187
bastion subnet 187
best practices, AWS security

implementation
about 145, 146
AWS API activity, tracking with

CloudTrail 147
identity lifecycle management,

implementing 146
logging for security analysis 147
third-party security solutions, using 147

Business Process Execution Language
(BPEL) 22

C
centralized logging

about 202
CloudWatch, setting up 203, 204

Certification Authorities (CAs) 158
Classless Inter-Domain Routing (CIDR) 186
client-side encryption 163
cloud computing

about 2
features 2, 3

CloudFormation
DevOps pipeline, building with 174, 175
extending 179, 180
templates, creating 173
used, for creating AWS

environments 171, 172
used, for managing AWS

environments 171, 172

cloud infrastructure costs optimization
about 47, 48
Amazon S3 storage classes, using 53
auto scaling, using 51, 52
AWS services, using 54
cost monitoring and analysis 54
database costs, reducing 53
EC2 instance, selecting 49, 50
reserved instances, using 52
spot instances, using 52, 53
unused instances, turning off 50

cloud service models
Infrastructure as a Service (IaaS) 4
Platform as a Service(PaaS) 4
Software as a Service(SaaS) 4

CloudTrail
used, for tracking AWS API activity 147

components, AWS
about 43
Amazon CloudFront 45
Amazon CloudWatch 47
Amazon DynamoDB 45
Amazon ElastiCache 46
Amazon Elastic Block Storage

(Amazon EBS) 44
Amazon Elastic Compute Cloud (EC2) 44
Amazon Glacier 45
Amazon Relational Database Service 45
Amazon Route 53 46
Amazon S3 44
Amazon Simple Notification Service

(SNS) 46
Amazon Simple Queue Service

(Amazon SQS) 46
Amazon Virtual Private Cloud

(Amazon VPC) 46
AWS Identity and Access

Management (IAM) 46
Content Delivery Network (CDN) 30

D
data

securing, at REST 162
securing, on RDS 166
securing, on S3 163

[210]

data layers
high availability, setting up for 129, 130

deployments
managing 170

development environment
about 55
e-commerce web application,

running 39, 40
requisites 36
setting up 36-38
WAR file, building for deployment 40

DevOps pipeline
building, with CloudFormation 174, 175

disaster recovery (DR)
about 125
AWS, using for 132
multi-site architecture, using for 134
Pilot Light architecture, using for 133
warm standby architecture, using for 133

disaster recovery strategy
testing 134, 135

E
EC2 Instance

about 58
URL 58

EC2 metrics
URL 106, 107

Eclipse
URL 36

e-commerce web application
about 34
nonfunctional requisites 34, 35

Elastic IPs (EIP) 70
Elastic Load Balancer (ELB)

about 44, 88
configuring, for SSL 160, 161
Control Service 91
Load Balancer 91
SSL Termination 91

ELB, using for high availability
about 126
availability zone redundancy 127, 128
instance availability 126, 127
regional redundancy 128, 129
region availability 128, 129

zonal availability 127, 128

F
failures

types 125

G
Git

URL 36

H
high availability

implementing, in application 131, 132
setting up 135
setting up, for application 129, 130
setting up, for data layers 129, 130
Virtual Private Cloud (VPC), setting up

for 125, 126
high availability support

for auto scaling groups 138
for ELB 139
for RDS 140-142

hybrid cloud 3

I
IAM policy simulator

URL 156
identity lifecycle management

implementing 146
Information Security Management System

(ISMS) 144
infrastructure

managing 170
infrastructure as code

about 190
CloudFormation, setting up 190-197

Internet gateway 59
Internet of Things (IoT) 131
issues

solved, by AWS Identity and Access
Management (IAM) 149

solved, by AWS key management
service 152, 153

[211]

J
Java SDK

using, for server-side encryption 164
JDK 1.7

URL 36

K
Key Management Service (KMS) 162

L
Latency Based Routing (LBR) 128

M
m2e

URL 36
Maven 3

URL 36
multi-site architecture

using, for disaster recovery 134
multi-tier architecture 12-14

N
National Institute of Standards and

Technology (NIST) 2
nonfunctional requisites, e-commerce

web application
backups 35
design for failure 35
disaster recovery 35
fault tolerant 35
high availability 35
operational cost 34
replication 35
scalability application 35
scalability cloud infrastructure 35
security application 35
security cloud infrastructure 35

P
Payment Card Industry (PCI) 145
Pilot Light architecture

using, for disaster recovery 133

Platform as a Service (PaaS) 1, 4
principle of least privileges

URL 150
private cloud 3
private subnet 185-187
production environments 56, 183
production go-live activities

planning for 182, 183
public cloud 3

Q
QA/Test environment 55

R
RDS

data, securing on 166
Recovery Point Objective (RPO) 132
Recovery Time Objective (RTO) 132
Reduced Redundancy Storage (RRS) 53
region 57
requisites, development environment

Eclipse 36
Eclipse, with Maven plugin (m2e) 36
Git command line tools 36
JDK 1.7 36
Maven 3 36
Spring Tool Suite (STS) 36

REST
data, securing 162

restore DR strategy
using 133

Route 53, using for high availability
about 126
availability zone redundancy 127, 128
instance availability 126, 127
regional redundancy 128, 129
region availability 128, 129
zonal availability 127, 128

router 59

S
S3 console

using, for server-side encryption 163
scalability objectives

defining 84

[212]

scalable application architectures
designing 84, 85

security analysis
logging for 147

security configuration
auditing 148
reviewing 148

security groups 188, 189
security objectives

defining 144
security responsibilities 144, 145
security setup

about 148
application security 158
AWS Identity and Access

Management (IAM) 149
self-signed certificates

generating 159
server-side encryption

about 163
Java SDK, using for 164
S3 console, using for 163, 164

single point of failure (SPOF) 135
Software as a Service (SaaS) 1, 4
Spring Tool Suite (STS)

URL 36
SSL

ELB, configuring for 160, 161
stacks

updating 175-179
staging environment 55
subnets 59

T
template JSON file, sections

AWSTemplateFormatVersion 191
Conditions 191
Description 191
Mappings 191
Outputs 191
Parameters 191
Resources 191

third-party security solutions
using 147

transport security
about 158
ELB, configuring for SSL 160, 161
self-signed certificates, generating 159

U
Ubuntu

URL 113
User Acceptance Testing (UAT) 55

V
Virtual Private Cloud (VPC)

about 58
setting up, for high availability 125, 126

VPC subnets
about 185
bastion subnet 187
private subnet 185-187

W
warm standby architecture

using, for disaster recovery 133

Thank you for buying
Learning AWS

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning AWS OpsWorks
ISBN: 978-1-78217-110-2 Paperback: 126 pages

Learn how to exploit advanced technologies to
deploy and auto-scale web stacks

1. Discover how a DevOps cloud management
solution can accelerate your path to delivering
highly scalable infrastructure and applications.

2. Learn about infrastructure automation,
auto-scaling, and distributed architecture
using a Chef-based framework.

3. Includes illustrations, details, and practical
examples for successful scaling in the cloud.

Amazon Web Services: Migrating
your .NET Enterprise Application
ISBN: 978-1-84968-194-0 Paperback: 336 pages

Evaluate your Cloud requirements and successfully
migrate your .NET Enterprise application to the
Amazon Web Services Platform

1. Get to grips with Amazon Web Services from
a Microsoft Enterprise .NET viewpoint.

2. Fully understand all of the AWS products
including EC2, EBS, and S3.

3. Quickly set up your account and manage
application security.

Please check www.PacktPub.com for information on our titles

AWS Development Essentials
ISBN: 978-1-78217-361-8 Paperback: 226 pages

Design and build flexible, highly scalable, and
cost-effective applications using Amazon Web Services

1. Integrate and use AWS services in
an application.

2. Reduce the development time and billing
cost using the AWS billing and management
console.

3. This is a fast-paced tutorial that will cover
application deployment using various tools
along with best practices for working with
AWS services.

RESTful Services with ASP.NET
Web API [Video]
ISBN: 978-1-78328-575-4 Duration: 02:04 hours

Get hands-on experience of building RESTful services
for the modern Web using ASP.NET Web API

1. Apply your current ASP.NET knowledge to
make your Web APIs more secure and comply
to the global standard in order to make your
service RESTful.

2. Explore the possibilities of extending your
Web APIs by making use of message handlers,
filters, and media formatters.

3. Comprehensive examples to help you build an
end-to-end working solution for a real-use case.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Cloud 101 – Understanding the Basics
	What is cloud computing?
	Public, private, and hybrid clouds
	Cloud service models – IaaS, PaaS,
and SaaS
	Setting up your AWS account
	AWS management console
	Summary

	Chapter 2: Designing Cloud Applications – An Architect's Perspective
	Multi-tier architecture
	Designing for multi-tenancy
	Data security
	Data extensibility
	Application multi-tenancy

	Designing for scale
	Automating infrastructure
	Designing for failure
	Designing for parallel processing
	Designing for performance
	Designing for eventual consistency
	Estimating your cloud computing costs
	A typical e-commerce web application
	Setting up our development environment
	Running the application
	Building a war file for deployment

	Summary

	Chapter 3: AWS Components,
Cost Model, and Application Development Environments
	AWS components
	Amazon Elastic Compute Cloud (EC2)
	Amazon S3
	Amazon EBS
	Amazon CloudFront
	Amazon Glacier
	Amazon RDS
	Amazon DynamoDB
	Amazon ElastiCache
	Amazon Simple Queue Service
	Amazon Simple Notification Service
	Amazon Virtual Private Cloud
	Amazon Route 53
	AWS Identity and Access Management
	Amazon CloudWatch
	Other AWS Services

	Optimizing cloud infrastructure costs
	Choosing the right EC2 instance
	Turn-off unused instances
	Use auto scaling
	Use reserved instances
	Use spot instances
	Use Amazon S3 storage classes
	Reducing database costs
	Using AWS services
	Cost monitoring and analysis

	Application development environments
	Development environments
	QA/Test environment
	Staging environment
	Production environment

	Setting up the AWS infrastructure
	The AWS cloud deployment architecture
	AWS cloud construction
	Creating Security Groups
	Creating EC2 instance key pairs
	Creating Roles
	Creating an EC2 Instance
	Elastic IPs (EIP)
	Amazon Relational Database Service (RDS)
	Software stack installation

	Summary

	Chapter 4: Designing for and Implementing Scalability
	Defining scalability objectives
	Designing scalable application architectures
	Using AWS services for out-of-the-box scalability
	Using a scale-out approach
	Implement loosely coupled components
	Implement asynchronous processing

	Leveraging AWS infrastructure services for scalability
	Using AWS CloudFront to distribute content
	Using AWS ELB to scale without service interruptions
	Implementing auto scaling using AWS CloudWatch
	Scaling data services
	Scaling proactively

	Setting up auto scaling
	AWS auto scaling construction
	Creating an AMI
	Creating Elastic Load Balancer
	Creating a launch configuration
	Creating an auto scaling group
	Testing auto scaling group

	Scripting auto scaling
	Creating an AMI
	Creating an elastic load balancer
	Creating launch configuration
	Creating an auto scaling group

	Summary

	Chapter 5: Designing for and Implementing High Availability
	Defining availability objectives
	The nature of failures
	Setting up VPC for high availability
	Using ELB and Route 53 for high availability
	Instance availability
	Zonal availability or availability zone redundancy
	Regional availability or regional redundancy

	Setting up high availability for application and data layers
	Implementing high availability in the application

	Using AWS for disaster recovery
	Using a backup and restore DR strategy
	Using a Pilot Light architecture for DR
	Using a warm standby architecture for DR
	Using a multi-site architecture for DR
	Testing disaster recovery strategy

	Setting up high availability
	The AWS high availability architecture
	HA support for auto scaling groups
	HA support for ELB
	HA support for RDS

	Summary

	Chapter 6: Designing for and Implementing Security
	Defining security objectives
	Understanding security responsibilities
	Best practices in implementing
AWS security
	Implementing identity lifecycle management
	Tracking AWS API activity using CloudTrail
	Logging for security analysis
	Using third-party security solutions
	Reviewing and auditing security configuration

	Setting up security
	AWS IAM – Securing your Infrastructure
	IAM roles
	AWS Key Management Service
	Using the KMS key

	Application security
	Transport security
	Secure data-at-rest

	Summary

	Chapter 7: Deploying to Production
and Going Live
	Managing infrastructure, deployments, and support at scale
	Creating and managing AWS environments using CloudFormation
	Creating CloudFormation templates
	Building a DevOps pipeline with CloudFormation
	Updating stacks
	Extending CloudFormation

	Using CloudWatch for monitoring
	Using AWS solutions for backup and archiving
	Planning for production go-live activities
	Setting up for production
	The AWS production deployment architecture
	VPC subnets
	Bastion host
	Security groups

	Infrastructure as code
	Setting up CloudFormation
	Executing CloudFormation script

	Centralized logging

	Summary

