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Introduction

An enterprise data warehouse (EDW) is a common, business-critical system that benefits 

from highly mature concepts and design best practices. In the market today, there is a 

wealth of books on the topic, some of which examine the differences between the two 

fundamental ideologies behind the warehouse design, those of Ralph Kimball and his 

drive for denormalized star schemas and Bill Inmon with his preference for a normalized 

corporate data warehouse. Others may focus on specific patterns or techniques to solve 

more tricky modeling problems. However, few focus on the platform that is being used 

for the data warehouse. Taking nothing away from these books, the concepts they discuss 

are still relevant today; however, very few books speak specifically about a cloud-based 

implementation of a data warehouse and how the tooling is different, how the patterns 

change, and how a developer needs to adapt to the new environment.

Gone are the days when a data warehouse project was a slow-moving, inflexible 

venture that was difficult to maintain and impossible to extend. We now have an 

impressive set of tools that allow us to surface analytical insight at massive scale and 

at incredible speed, without the overhead of maintaining a gigantic server. Not only is 

a cloud platform perfectly tailored for data processing, but the processes to feed that 

platform can be completely automated and integrated to just about any source system, 

making maintenance and development simple and enjoyable. Further to all this, we can 

now fully explore the different ingestion architectures that comprise streaming, event-

based, and batch loading, allowing developers to break free of the “Nightly ETL Window” 

constraint and fully discover how they can populate the warehouse at the rate of the 

incoming data.

But is there a reason why an entire book needs to be dedicated to data warehousing 

in the cloud? Doesn’t the cloud provide the same technology as on-premises just without 

the server management? The short answer is no. As you go through this book, the hope 

is that you will discover the nature by which the cloud completely changes the way a 

data warehouse is built and why it is important to consider making this move. The core 

concepts of on-premises data warehousing still very much apply, but the way in which 

they are implemented has drastically changed. The cloud has revolutionized the way 

developers can reason about a problem and even eliminated some compromises that 
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had to be made in the years gone by. This is not without cost however; there are new 

problems to understand and tackle and part of the aim of this book is to talk these issues 

through and make clear the patterns that solve those issues.

In this book, you will not find much discussion of Online Transaction Processing 

(OLTP) type systems nor of the wider capabilities of the Microsoft Azure data platform. 

This book will not discuss why you should implement either Kimball or Inmon 

or explain how to create a flashy executive level dashboard. Instead this book is a 

discussion about the key technologies in the Microsoft Azure data platform that lend 

themselves to data warehousing and how they connect together. I will explain how to 

choose a SQL engine that is tailored for your analytical requirements, how to create 

data movement processes that scale, and how to extend your warehouse to become 

intelligent and modern.

If you are already building SQL data warehouses, you may wonder if you need 

a book such as this. You know SQL. You know ETL. What can this book tell you that 

you do not already know? Well, SQL server is changing. And given that Microsoft is 

a cloud-first company, the newest features and biggest developments are shipped 

to the Azure versions of SQL months if not years before they hit the box product. 

Not only this, there are features arriving in the Azure data platform that will NEVER 

be available in the box product. Things like Accelerated Database Recovery (ADR) 

simply cannot be implemented on-premises, and if your organization cares about 

their recovery time objective (RTO) and recovery point objective (RPO), then this is a 

feature you need to understand. Ultimately there are an increasingly small number of 

reasons why a company would choose to avoid cloud software and this book hopes 

to dispel the last of those.

I sincerely hope that this book eradicates any anxiety about making a move to the 

cloud, and if your organization has embraced the cloud already, then I aim to provide 

further insight into how the technologies work at a low level and advise on the patterns 

and architectures that should be utilized to get the most out of them.

�Who This Book Is For?
If you are already building on-premises Microsoft SQL Server data warehouses using 

common tools such as SSIS, then this book will explain how to move that knowledge into 

the cloud, giving, where possible, comparisons about the way a thing was done in that 

world and how it should be done in the cloud. If you are already utilizing some of the 
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Azure data platform, then this book will hopefully provide a better understanding of how 

each service operates and why it works the way it does. If you are already successfully 

running and developing data warehouses with Azure Synapse Analytics (formerly Azure 

SQL Date Warehouse) or Azure SQL Database and Azure Data Factory, then I hope 

this book will help to solidify your knowledge and perhaps provide some fresh ideas or 

patterns that you could use in future development.

If you hope to understand the entire Azure data platform, then this book will not 

be broad enough to answer all your questions. For example, we will not go deeply into 

Cosmos DB or any of the third-party database offerings in Azure. Additionally, we 

will not cover off core data modeling concepts other than where this is critical to the 

implementation of an Azure Synapse Analytics instance. Despite this, a good working 

knowledge of the other data stores and technologies available in Azure will open up 

many new avenues for you to explore that can allow for exciting and highly valuable 

extensions to a traditional data warehouse.

�Assumptions About You
The people that will get the most out this book will be already experienced with 

data warehousing core concepts and the terminology that goes along with it. A good 

understanding of the common challenges and why they need to be overcome is also 

a good base to start from. I have made the assumption that you and your company 

are already fairly comfortable that a cloud-based architecture will suit your business 

requirements, taking into account security, cost, admin, and so on. As this book is not 

a full examination of a cloud data platform, often a warehouse sits among many other 

databases, it has to be assumed that you and your company have the ability to connect to 

the cloud and create the necessary resources for testing and proof of concept work where 

needed.

With this in mind, I am aware that readers may arrive at this book from a spectrum of 

job roles. Some may come from an analysis background looking to develop the back-end 

of their reports so that they are more scalable, whereas some may be more comfortable 

with the data engineering concepts and therefore be looking to replicate existing 

solutions but without the overhead and hassle of server management. Either way this 

book will certainly help in making clear the concepts that need to be understood in order 

to create a functioning data warehouse in Azure.
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�The Scope of This Book
In any IT project, scope is key. You need to know what you are getting, so let me make 

this abundantly clear what this book is and is not.

This book is

•	 A guide to cloud data architecture for data warehousing scenarios, 

implemented using Azure SQL technologies, Azure data lake 

technologies, and Azure integration technologies

•	 A guide to ingesting data with Azure Data Factory and developing 

metadata-driven pipelines

•	 An introduction to ingestion patterns that can be automated, be 

driven by metadata, utilize streaming, and make use of data lakes

•	 A point of reference for good practice around logging, auditing, and 

resilience regarding the aforementioned technologies

•	 A guide to developing and using project accelerators to improve the 

pace of development and ensure consistency across teams

This book is not

•	 A detailed description of how to conduct automated deployments to 

an Azure platform.

•	 A guide to data modeling best practice. There will be some mention 

of data modeling as this is key to the structure of Azure Synapse 

Analytics, but this will not be a book on Kimball vs. Inmon modeling.

•	 A manual for data preparation and cleansing. I will explain where 

these elements would slot into the process but not give an abundance 

of material on how to clean and prepare your data.

Throughout this book, there are step-by-step guides to assist you getting to a basic 

level of usage with a service; however, the book as a whole is not a step-by-step guide to 

creating a functional modern SQL data warehouse on the Azure platform.

Introduction
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�Organization of the Book
This book is laid out so that the most important topics are covered upfront and that the 

key elements of a cloud data warehouse are well understood before continuing into how 

the development process can be accelerated and some other more advanced topics. 

However, at the very start, there are some handy sections that cover initial guidance for 

using Microsoft Azure such as subscription organization, security, development tools, 

and a glossary of common terms. For all of the walk-throughs in this book, you will need 

access to an Azure subscription where you have a relatively high level of permission for 

things like setting up service principals.

The bulk of the book begins from Chapter 2, “The SQL Engine,” and focuses on the 

choices to be made when designing your modern data warehouse and how that process 

can be accelerated and improved. The following is a brief summary of the content of 

each chapter to allow you to skip to the most important discussions if needed:

•	 Chapter 2: The SQL Engine. The goal of this chapter is to make clear 

the distinction between Azure SQL Database and Azure Synapse 

Analytics and when one option should be chosen over another. The 

conclusion of this chapter talks about your type of data and what SQL 

engine would be best suited.

•	 Chapter 3: The Integration Engine. This chapter introduces Azure 

Data Factory and explains the key building blocks that make it a 

first-class cloud integration tool and really the only option for data 

movement within the Azure platform. Additionally, an example of 

how to copy data from source to sink is included.

•	 Chapter 4: The Ingestion Architecture. As this will be a modern 

data warehouse that can cope with a much more varied workload, we 

can now consider different types of data processing. You will discover 

how you can capitalize on event-based processing and streaming and 

the additional complexities these options introduce, as well as the 

more traditional batch-based loading technique.
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•	 Chapter 5: The Role of the Data Lake. A revolution in cloud data 

storage has been the advent of the data lake. While the data lake is a 

broad topic, this chapter will relate specifically to its purpose in the 

data warehousing architecture. Effectively, the data lake is a single 

access point for an entire organization’s varied datasets, be it media, 

tabular data, backups, and others. This makes it an ideal staging 

location for the data warehouse and when properly implemented can 

vastly improve the efficiency of the data warehouse.

•	 Chapter 6: The Role of the Data Contract. A large amount of data 

warehouse processing can be automated and defined in metadata. 

Things like file schemas, transformation rules, and processing steps 

can all be stored as metadata in a database of some kind. Throughout 

this chapter, you will gain an understanding of how metadata can be 

used to solve several common problems and how to store, fetch, and 

implement it.

•	 Chapter 7: Logging, Auditing, and Resilience. A crucial piece 

of a production warehouse is the monitoring and auditing of the 

ingestion process and being able to catch and resolve instances of 

bad or mis-shaped data. The concepts outlined here will likely not 

be new if you are an experienced data warehouse developer, but the 

specific implementation covered will tie in closely with the metadata 

mentioned previously in Chapter 6, “The Role of the Data Contract.”

•	 Chapter 8: Using Scripting and Automation. With any Azure 

resource, scripting and automation can be a great asset to assist with 

deployment and management. This chapter will expand on some 

common scripts I often find useful and explain their usage.

•	 Chapter 9: Beyond the Modern Data Warehouse. This chapter 

will talk about how the modern data warehouse can be extended 

to support analytical tools and even application data. We will look 

at integrations with Power BI, Cosmos DB, and Analysis Services, 

explaining the security and reliability concepts at play and describe 

best practice and patterns for implementation.
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CHAPTER 1

The Rise of the Modern 
Data Warehouse
A data warehouse is a common and well-understood technology asset that underpins 

many decision support systems. Whether the warehouse was initially designed to act as 

a hub for data integration or a base for analytical consistency, many organizations make 

use of the concepts and technologies that underpin data warehousing.

At one point, the concept of a data warehouse was revolutionary and the two key 

philosophies on data warehousing, those of Ralph Kimball and Bill Inmon, were new 

and exciting. However, many decades have passed since this point, and while the 

philosophies have cross-pollinated, the core design and purpose has stayed very much 

the same, so much so that many data warehouse developers can move seamlessly from 

company to company because the data warehouse is such a prevalent design. The only 

thing that changes is the subject matter. This is very unlike more transactional databases 

that may be designed very differently to support the specific needs of an application.

As the cloud revolution began, more and more services began to find homes in the 

cloud and the data warehouse is no exception. A cloud-based environment eliminates 

many common issues with data warehousing and also offers many new opportunities. 

First of which is the serverless nature of cloud-based databases. By not having to manage 

the server environment, patching, the operating system (OS) or upgrades, and others, 

the development team can really focus just on the data processing that needs to be 

undertaken. In addition, the architecture itself can be scaled so that businesses pay for 

what they actually use and not for a service that offers growth room for the next five 

years. Instead, the size of the system can be tailed and charged at per hour increments so 

that aggressive cost optimizations can be achieved.

In times gone by, the on-premises architecture of data warehouses meant that there 

were hard limits on the amount of data that could be stored and the frequency at which 

that data could be ingested. Further, the tools used to populate an on-premises data 

https://doi.org/10.1007/978-1-4842-5823-1_1#ESM
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warehouse had limited ability to deal with complex data types or streaming datasets, 

concepts that are now prevalent in the application landscape that feed data warehouses. 

Businesses now require these sources to be included in their reports, and so the data 

warehouse must modernize in order to keep up. At present, Azure provides many tools 

and services to help overcome these problems, many of which can be integrated directly 

into what would now be known as a modern data warehouse.

In addition to modernizing the database, the tools that operate, automate, and 

populate the data warehouse also need to keep up in order for the solution to feel 

cohesive. This is why Azure offers excellent integration and automation services that can 

be used in conjunction with the SQL database technologies. These tools mean that more 

can be achieved with less code and confusion, by creating standard patterns that can 

be applied generically to a variety of data processing problems. Common menial tasks 

such as database backups can be completely automated, making the issue of disaster 

recovery much less of a worry. With the latest features of Azure SQL Database, artificial 

intelligence is used to recommend and apply tuning alterations and index adjustments 

to ensure database performance is at its absolute best. This works alongside advanced 

threat detection which ensures databases hosted in Azure are safer than ever.

Finally, businesses are increasingly interested in big data and data science, concepts 

that both require processing huge amounts of data at scale and maintaining a good 

degree of performance. For this reason, data lakes have become more popular and, 

rather than being seen as an isolated service, should be seen as an excellent companion 

to the modern data warehouse. Data lakes offer the flexibility to process varied data 

types at a variety of frequencies, distilling value at every stage, which can then be passed 

into the modern data warehouse and analyzed by the end users alongside the more 

traditional measures and stats.

In recent years, many organizations have been struggling with the issues associated 

with on-premises data warehousing and are now looking to modernize. The rise of the 

modern data warehouse has already begun, and the goal of this book is to ensure every 

reader can reap the full benefit.

�Getting Started
Microsoft Azure is a comprehensive cloud platform that provides the ability to build 

Platform as a Service (PaaS), Software as a Service (SaaS), and Infrastructure as a Service 

(IaaS) components on both Microsoft-specific services and also third-party and open 
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source technologies. Free trials are available for Microsoft Azure that provide 30-day 

access and roughly £150/$200 worth of Azure credit. This should allow you to explore 

most if not all services in this book and gather more of a practical understanding of 

their implementation. There are also free tiers available for many services that provide 

sufficient amounts of features for reviewing. Alternatively, you or your company may 

already have an existing Azure subscription which could then be used to experiment 

with the technologies listed in this book.

�Multi-region Support
A core element of Azure is its multi-region support. As you may know, the cloud is really 

just someone else’s computer, and in this case, the computer belongs to Microsoft and it 

is stored in a massive data center. It is these data centers that comprise an Azure region. 

If you are based in America, then you can pick from a range of regions, one of which 

will be your local region and will likely offer you the lowest latency; you could however 

deploy resources to a European region if you knew you were supporting customers 

in that part of the world. Most regions have a paired region which is used for disaster 

recovery scenarios, but on the whole it is best to keep related resources in the same 

region. This is to avoid data egress fees which are charged of data that has to be moved 

out of a region and into another. Note, Azure does not charge data ingress fees.

�Resource Groups and Tagging
Once an Azure subscription has been set up, there are a few recommendations to help 

you organize the subscription. First is the resource group. The resource group is the 

root container for all single resources and allows a logical grouping for different services 

that relate to a single system. For example, a modern data warehouse may sit within a 

resource group that contains an Azure Data Factory, an Azure SQL Database, and an 

Azure Data Lake Gen 2 (ADL Gen2) account. The resource group means that admins 

can assign permissions to that single level and control permissions for the entire system. 

As the subscription gets more use, you should begin creating resource groups per 

project or application, per environment, so for a single data warehouse, you may have a 

development, test, and production resource group, each with different permissions.

Chapter 1  The Rise of the Modern Data Warehouse
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Another useful technique is to use tags. Tags allow admins to label different 

resources so that they can be found easily and tracked against different departments, 

even if they are stored in the same resource group. Common tags include

•	 Cost center

•	 Owner

•	 Creator

•	 Application

However, many others could be useful to your organization.

�Azure Security
From a security standpoint, Azure is an incredibly well-trusted platform. With over 90 

compliance certificates in place, including many that are industry or region specific, 

no cloud platform has a more comprehensive portfolio. Microsoft has invested over 

one billion US dollars into the security of the Azure platform, having an army of cyber 

security experts at hand to keep your data safe. These facts and figures offer assurance 

that the cloud platform is secure; however, within your environment, it is important to 

properly secure data against malicious employees or external services. This is where 

service principals are employed. These are service accounts that can be assigned access 

to many of the resources in the resource group without any human employees having 

access to the data, ensuring the most sensitive datasets can remain protected.

Modernizing a data platform is no easy task. There are a lot of new terminology and 

new technologies to understand. In order to work with the demos and walk-throughs 

in this book, I have prepared some initial resources to review so that there is a common 

understanding.

�Tools of the Trade
There are some tools that will make these technologies easier to use. These are easy to 

download and work with and in most cases are cross platform compatible, meaning 

they can work on Apple Macs and Windows machines. The following list explains the 

key tools that will come in handy throughout this book and what technologies they will 

assist with:

Chapter 1  The Rise of the Modern Data Warehouse
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•	 Visual Studio: 2019 is the current version and is the primary 

integrated development environment (IDE) when working with 

Azure and other Microsoft-based technologies.

•	 Visual Studio SQL Server Data Tools: This add-in for Visual Studio 

gives developers the ability to create database projects and other BI-

related projects such as Analysis Services.

•	 Microsoft Azure Storage Explorer: This lightweight tool allows 

developers to connect to cloud storage accounts and access them as 

if they were local to their PC. When working with data lakes, this can 

be very useful.

•	 SQL Server Management Studio: If you are based on a Windows 

environment, then this is a very powerful tool for monitoring and 

managing your SQL databases that has been trusted for years.

•	 Azure Data Studio: This is a cross platform version of SQL Server 

Management Studio. Essentially, this is the go-to place for managing 

and monitoring any Microsoft SQL environment.

�Glossary of Terms
With many new technologies being incorporated into the data platform, a glossary of 

terms is important to help introduce a conformed understanding. Additionally, many of 

these terms can be searched online which will allow development teams and architects 

to research the technologies more fully. The goal of this glossary, shown in Table 1-1, is 

to act as a point of reference for readers of this book, in case some terminology is new to 

them.

Chapter 1  The Rise of the Modern Data Warehouse
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Table 1-1.  Common Azure Terms

Term Definition

Azure Automation A service that allows for the automated execution of PowerShell scripts 

in the Azure platform. Scripts can be scheduled or executed using a 

web hook. Parameters can also be passed in where needed

Azure Synapse Analytics A massively parallel processing (MPP) engine used for storing and 

processing large structured datasets in Azure using the SQL server 

engine over a distributed cluster of computers

Azure SQL Database A symmetric processing engine that specializes in OLTP workloads in 

Azure. Equivalent to a single database in an on-premises SQL server 

environment

Azure Data Factory A cloud-based integration engine capable of copying and transforming 

data at scale

Azure Blob Storage A highly scalable storage platform that can hold data of all types and 

sizes

Azure Data Lake Gen 2 Built on Azure Blob Storage with the addition of hierarchical 

namespaces to allow for granular security with AAD integration

Azure Key Vault A REST-based cloud secret manager that is tightly integrated into the 

Azure platform

Azure Cosmos DB A highly scalable document database that uses a variety of APIs to 

implement different storage paradigms such as SQL, Graph, No SQL, 

and key value pair

Azure Databricks A PaaS implementation of Spark, allowing you to scale and pause your 

cluster with a rich notebook environment

Microsoft Power BI A market leading data visualization and end-to-end BI tool offering 

excellent data exploration and collaboration capabilities

Analysis Services A semantic layer offering from Microsoft that uses Fact and Dimension 

tables to create a compressed and optimized data model

Chapter 1  The Rise of the Modern Data Warehouse



7

Naming Conventions
All development projects can benefit from a rigorous naming convention in my opinion 

and so a modern data warehouse is no different. A good naming convention should 

supply those that read the name enough detail to understand what the object is and 

roughly what it does. Additionally, a naming convention clears up any debate about what 

a particular thing should be called, as the formula to produce the name already exists. 

The naming convention included here is the standard recommended by Azure, which I 

have simply described in a shorter format.

The name of a resource is broken down into several pieces, and so the following list 

describes each section of the name. In the following, I will offer some examples of resource 

names, assuming the project for the book is called “Modern Data Warehouse in Azure”:

•	 Department, business unit or project: This could be “mrkt” for 

marketing, “fin” for finance, or “sls” for sales.

•	 Application or service name: For example, a SQL database would 

be “sqldb,” a Synapse Analytics database would be “syndb,” an Azure 

Data Factory would be “adf.”

•	 Environment: This could be “dev,” “test,” “sit,” “prod,” to name a few.

•	 Deployment region: This is the region in which the resource is 

located and is usually abbreviated such that East US would become 

“eus” and North Europe would become “neu.”

In Table 1-2, I have given examples of some common data warehousing resources 

alongside their suggested names.

Table 1-2.  Example Azure resource names

Resource Resource Name

Azure SQL Database mdwa-sqldb-dev-eus

Azure Synapse Analytics mdwa-syndb-dev-eus

Azure Data Factory mdwa-adf-dev-eus

Azure Data Lake Gen 2 mdwaadlsdeveus

Azure Key Vault mdwa-kv-dev-eus
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CHAPTER 2

The SQL Engine
The focus of this chapter is to break open the mysteries of each SQL storage engine and 

understand why a particular flavor of Azure SQL technology suits one scenario over 

another. We will analyze the underlying architecture of each service so that development 

choices can be well informed and well reasoned. Once we understand how each 

implementation of the SQL engine in Azure processes and stores data, we can look at 

the direction Microsoft is taking that technology and forecast whether the same choice 

would be made in the future. The knowledge gained in this chapter should provide you 

with the capability to understand your source data and therefore to choose which SQL 

engine should be used to store and process that data.

Later in this book, we will move out of the structured SQL world and discuss how we 

can utilize Azure data lake technology to more efficiently work with our data; however, 

those services are agnostic to the SQL engine that we decide best suits our use case 

and therefore can be decided upon later. As a primary focus, we must understand our 

SQL options, and from there, we can tailor our metadata, preparation routines, and 

development tools to suit that engine.

�The Four Vs
The Microsoft Azure platform has a wealth of data storage options at the user’s disposal, 

each with different features and traits that make them well suited for a given type of data 

and scenario. Given the flexible and dynamic nature of cloud computing, Microsoft has 

built a comprehensive platform that ensures all varieties of data can be catered for. The 

acknowledgment of the need to cater to differing types of data gets neatly distilled into 

what is known in the data engineering world as “The 3 Vs” – volume, variety, and velocity. 

Any combination of volume, variety, and velocity can be solved using a storage 

solution in the Azure platform. Often people refer to a fourth V being “value” which I 

think is a worthy addition as the value can often get lost in the volume.

https://doi.org/10.1007/978-1-4842-5823-1_2#ESM
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As the volume increases, the curation process to distil value from data becomes more 

complex, and therefore, specific tools and solutions can be used to help that process, 

validating the need for a fourth V. When attempting to tackle any one or combination of 

the four Vs, it is important to understand the full set of options available so that a well-

informed decision can be made. Understanding the reasons why a certain technology 

should be chosen over another is essential to any development process, as this can then 

inform the code, structure, and integration of that technology.

To use an example, if you needed to store a large amount of enterprise data that was 

a complete mix of file types and sizes, you would use an Azure Storage account. This 

would allow you to organize your data into a clear structure and efficiently increase your 

account size as and when you need. The aspects of that technology help to reduce the 

complexities of dealing with large-scale data and remove any barriers to entry. Volume, 

check. Variety, check.

Alternatively, if the requirement was to store JavaScript Object Notation (JSON) 

documents so that they can be efficiently queried, then the best option would be to 

utilize Cosmos DB. While there is nothing stopping JSON data being stored in Blob 

Storage, the ability to index and query JSON data using Cosmos DB make this an obvious 

choice. The guaranteed latency and throughput options of Cosmos DB mean that high-

velocity data is easily ingested. When the volume begins to increase, then Cosmos DB 

will scale with it. Velocity, check. Volume, check.

Moving to a data warehouse, we know we will have a large amount of well-

structured, strongly typed data that needs to rapidly serve up analytical insight. We need 

a SQL engine. Crucially, this is where the fourth V, “value,” comes into play. Datasets 

being used to feed a data warehouse may contain many attributes that are not especially 

valuable, and good practice dictates that these attributes are trimmed off before arriving 

in the data warehouse. The golden rule is that data stored in a data warehouse should be 

well curated and of utmost value. A SQL engine makes surfacing that valuable data easy, 

and further to that, no other storage option can facilitate joining of datasets to produce 

previously uncovered value as effortlessly as a SQL engine can. Value, check.

However, a wrinkle in the decision process is that Azure provides two types of SQL 

engine to choose from; each can tackle any challenge in the four Vs; however, it is wise 

to understand which engine solves which “V” best. Understanding the nuances of each 

flavor of Azure SQL will help developers make informed decisions about how to load, 

query, and manage the data warehouse.
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The first SQL engine we will examine in this chapter is Azure Synapse Analytics 

(formerly Azure SQL Data Warehouse). This massively parallel processing (MPP) 

service provides scalability, elasticity, and concurrency, all underpinned by the well-

loved Microsoft SQL server engine. The clue is certainly in the former title; this is a 

good option for data warehousing. However, there are other factors that mean this may 

not be the right choice in all scenarios. While Azure Synapse Analytics has a wealth of 

optimizations targeted at data warehousing, there are some reasons why the second SQL 

option, Azure SQL Database, may be more suitable.

Azure SQL Database is an OLTP type system that is optimized for reads and writes; 

however, it has some interesting features that make it a great candidate for a data 

warehouse environment. The recent advent of Azure SQL Database Hyperscale means that 

Azure SQL Database can scale up to 100 TB and provide additional read-only compute 

nodes to serve up analytical data. A further advantage is that Azure SQL Database has 

intelligent query processing and can be highly reactive to changes in runtime conditions 

allowing for peak performance to be maintained at critical times. Finally, there are 

multiple deployment options for Azure SQL Database that include managed instances and 

elastic pools. In essence, a managed instance is a full-blown SQL server instance deployed 

to the cloud and provides the closest match to an existing on-premises Microsoft SQL 

server implementation in Azure. Elastic pool databases utilize a single pool of compute 

resource to allow for a lower total cost of ownership as databases can consume more and 

less resources from the pool rather than having to be scaled independently.

�Azure Synapse Analytics
When implementing an on-premises data warehouse, there are many constraints placed 

upon the developer. Initially there is the hassle of setting up and configuring the server, 

and even if this is taken care of already, there is always a maintenance and management 

overhead that cannot be ignored. Once the server is set up, further thought needs to be 

applied to file management and growth. In addition, the data warehouse itself is limited 

to the confines of the physical box, and often large databases have to utilize complex 

storage solutions to mitigate this issue.

However, if you are reading this book, then it is clear you are no longer interested 

in this archaic and cumbersome approach to data warehousing. By making the move 

up to the Azure cloud, you can put the days of server management behind you, safe in 

the knowledge that Microsoft will take care of all that. And what’s more, Azure does not 
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just provide a normal SQL instance that is purely serverless; they have restructured the 

underlying architecture entirely so that it is tailored for the cloud environment. This is 

then extended further to the point that Azure Synapse Analytics is not only purpose-built 

for the cloud but purpose-built for large-scale data warehousing.

�Understanding Distributions
A key factor that needs to be understood when working with Azure Synapse Analytics 

is that of distributions. In a standard SQL server implementation, you are working in a 

symmetric multi-processing (SMP) environment which means there is a single storage 

point coupled to a set of CPUs and queries are parallelized across those CPUs using a 

service bus. The main problem here is that all the CPUs need to access the same storage 

and this can become a bottleneck, especially when running large analytical queries.

When you begin using Azure Synapse Analytics, you are now in a massively parallel 

processing (MPP) environment.

There are a number of key differences between SMP and MPP environments, and 

they are illustrated in Figure 2-1. The most important is that storage is now widely 

distributed and coupled to a specific amount of compute. The benefit here is that each 

node of the engine is essentially a separate SQL database and can access its own storage 

separately from all the other nodes without causing contention.

Figure 2-1.  Diagram of SMP vs. MPP
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Figure 2-1 shows how in an SMP environment, there can be contention for storage 

resources due to the single point of access; however, this problem is alleviated in the 

MPP environment as each compute node is coupled to its own storage.

In an MPP environment, when a query gets executed, the control node sends a copy 

of the query to each compute node in the engine. From here the compute node can 

access its allotted storage, perform the query, and return the results back to control node 

to be aggregated with the other result sets.

�The First Problem

The concept of separating compute and storage is fundamental to Azure Synapse 

Analytics, and while this produces an ideal platform to run blazing fast analytical 

queries, it can also begin to pose problems. As the service is built to run in the cloud, 

the notion of scaling the resource to meet needs comes into play, and while it is simple 

enough to add and subtract computation resource, scaling up distributed data storage is 

trickier.

Let’s imagine we have ten glasses of water – these are our storage distributions. Now 

let’s add two athletes that need that water as fast as possible – these are our compute 

nodes. An essential consideration here is that we are only as fast as our slowest athlete; if 

the water is poorly distributed and contains skew, then one athlete will have to become 

idle and wait for the other to finish. Now, it would be easy for us to introduce two 

additional athletes and clearly the water would be consumed twice as fast. However, as 

the glasses get more and more full, we decide that we actually need 20 glasses to hold all 

the water to avoid any overflow and so place 10 more glasses on the table. To avoid skew 

and unbalanced consumption, we would now need to completely redistribute our water 

across all 20 glasses, and this action becomes very inefficient when we want to do this 

regularly.

Bringing this back to the warehouse scenario, you can see why scaling storage can 

become problematic when the data needs to be evenly distributed. To get around the 

issue, Microsoft has fixed the number of distributions at 60. Whatever the size your data 

is, you will have to distribute it over 60 storage nodes. This ensures that the compute can 

be scaled up to further parallelize the processing, but the storage layer does not need to 

change at all. It is worth mentioning here that distributed tables are presented as a single 

table, as if they were stored in an SMP type system.

Chapter 2  The SQL Engine



14

However, now that we know our data will be distributed 60 ways regardless of the 

compute size, we are faced with the next question. How do we distribute our data? The 

key thing to remember is that we want to minimize skew. To define skew more clearly, 

it is the imbalance of data being stored on one storage node vs. another. Thankfully 

Microsoft has made it easy for us to monitor skew with some handy Data Management 

Views (DMVs), but I will introduce these fully, later. First let’s understand how we can 

mitigate skew.

�ROUND ROBIN Distribution

The first way to mitigate skew is to use the ROUND ROBIN approach. At the point of 

ingesting your data, Azure Synapse Analytics will assign each row to the next available 

storage node in the system. Figure 2-2 shows how each new incoming row is distributed 

to each compute node sequentially.

Figure 2-2.  Diagram of data begin distributed row by row onto each distribution

The syntax to write an Azure Synapse Analytics table that uses Round Robin 

distribution is documented in Listing 2-1.
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Listing 2-1.  Data definition language (DDL) statement to create a table with 

Round Robin distribution

CREATE TABLE myTable

  (

    id int NOT NULL,

    firstName varchar(20),

    lastName varchar(20)

  )

WITH (

    DISTRIBUTION = ROUND_ROBIN,

    CLUSTERED COLUMNSTORE INDEX

     );

This approach eliminates skew as it is completely removed from the context of your 

data. You guarantee an even distribution. A simple sum of a column grouped by another 

column would perform fine because each node can determine its result and pass it back 

to the control node to be aggregated. However, at some point the data will need to be 

joined back together, only now your data is spread far and wide across the warehouse 

and importantly the server does not know which storage node holds each record.

To analyze the problem further, we can use the scenario of joining a fact table to a 

dimension table. To perform the join, each node needs to obtain the dimension rows 

from the other nodes in the warehouse and store that data on its own storage. Once it 

has those rows, it can perform the join and return the result. This process is called data 

movement and is a large cost on the query plan. Further, this movement is conducted 

at query runtime, and therefore you must wait for these additional steps to take place 

before any results can be obtained. Unfortunately, this movement is performed for each 

query that requires it, and the result is removed once the query completes.

�HASH Distribution

If we are to avoid the problems of data movement, we need to distribute our data more 

intelligently. The method for this is to use HASH distribution, which will create a hash of 

a columns value and locate matching values on the same node. As shown in Figure 2-3, 

when Hash distribution is used, each row is hashed using a set key and then grouped 

with other rows that have the same hashed value.
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The syntax to write an Azure Synapse Analytics table that uses Hash distribution is 

shown in Listing 2-2.

Listing 2-2.  DDL code to create a table with HASH distribution on the “id” column

CREATE TABLE myTable

  (

    id int NOT NULL,

    firstName varchar(20),

    lastName varchar(20)

  )

WITH (

    DISTRIBUTION = HASH (id),

    CLUSTERED COLUMNSTORE INDEX

    );

To use the fact and dimension scenario again, if all the dimension and fact rows are 

stored on the same storage node, then no data movement is required. All the joining 

can be performed in isolation. For this to work, however, the following things need to be 

considered:

Figure 2-3.  Diagram of data being distributed using Hash keys
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•	 Which column to distribute on?

•	 What is the cardinality of that column?

�The Distribution Column

If we are to use the Hash distribution approach, then we must plan which column we 

will use to distribute our data. For a column to be considered as a Hash distribution 

column, it should contain the following properties:

•	 Low cardinality

•	 Even distribution

•	 Often used in joins

•	 Not used in filters

To expand on each of these points, a column with a very low cardinality (less than 

60 unique values) will not use our entire storage allocation as the server will not have 

enough values to distribute the data on. To avoid this and maximize performance, 

an ideal number would be over 600, but really the more the better. Secondly, an even 

distribution means that we can still eliminate the problem of skew. It is unlikely to be 

as smooth as a Round Robin distribution, but by analyzing the data upfront, we should 

get an idea of whether there is a strong favor for some particular values over others, and 

if there is, then it would not be a good distribution column. If the chosen hash column 

is often used in joins, for example, customer or product, then the likelihood of the 

server being able to avoid data movement increases dramatically. Finally, if the column 

is commonly used as a search predicate, then you will be limiting the opportunity for 

parallelism as the filter could remove the need to run the query on certain nodes of the 

warehouse.

If none of your columns have more than 60 unique values, then you should explore 

the possibility of creating a new column that can be a composite of several columns in 

the table, thereby gaining a higher cardinality. To remove the need for data movement, 

you should use this column in the join arguments. You may also notice that in order to 

understand the joins and filters that will be commonly used, you will need to establish 

the types of queries being run on the warehouse by your users. Once you have this 

knowledge, then you can plan your distribution accordingly.
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�How to Check if You Have the Right Column

Ultimately, if you are designing your warehouse with Hash distribution in mind, you 

will choose a column to distribute on. Once you have this and have loaded your data, 

you will need to determine if the distribution played out like you expected or whether 

some unforeseen aspect of the data has made it not a good column for distribution. To 

check your skew and distribution, there are Data Management Views (DMVs). These are 

system views put together by Microsoft that provide easy insight into the inner workings 

of your server. The following SQL code can be used to show one of these DMVs:

DBCC PDW_SHOWSPACEUSED('dbo.myTable');

From the information returned, you may determine that the designated column 

is not the most appropriate, and in that case, you can easily redistribute the data by 

redefining your table with a CREATE TABLE AS SELECT (CTAS) statement.

�REPLICATED Distribution

A third option for data distribution is to utilize the REPLICATED distribution. Rather 

than distributing data across the server, a full copy of the table is placed on each 

compute node of the engine, not storage node. When a query is executed that requires 

joining to that table, data movement can be spared as the data is already in the right 

place. In the context of a warehouse, replicated tables can be very effective when used 

for smaller dimension tables (less than 2 GB on disk – more on how to determine this 

later). When designing the warehouse, there is likely to be some tables that will be joined 

using a column that is not used for distribution. In these instances, data movement 

would be required unless one of the tables was replicated, in which case the data is 

already accessible to the compute node. The syntax to write an Azure Synapse Analytics 

table that uses Replicated Distribution is as shown in Listing 2-3.

Listing 2-3.  DDL statement to create a table using replicate distribution

CREATE TABLE myTable

  (

    id int NOT NULL,

    firstName varchar(20),

    lastName varchar(20)

  )
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WITH (

    DISTRIBUTION = REPLICATE,

    CLUSTERED INDEX (lastName)

    );

Note that in the preceding DDL statement, a clustered index is chosen over a 

clustered column store index. This is because a clustered index is more performant than 

a heap; however, a table that is being replicated is not likely to have enough rows to gain 

any real benefit from the clustered column store index used for the HASH and ROUND_

ROBIN tables.

As with all design decisions, however, there are considerations that need to be made. 

In the case of replicated tables, it is important to consider the logistics of replicating data 

across each compute node. The goal is to reduce the number of rebuilds for that table, 

and the operations that cause rebuilds are the following:

•	 Data is inserted, deleted, or updated.

•	 The warehouse is scaled up or down.

•	 The definition of the table is changed.

The rebuild itself is twofold. When the data is first updated, then the table is copied 

to a master version of the table. This ensures that the insert, delete, or update operation 

can be completed most efficiently. Only once the replicated table is selected from will 

the data be further copied onto the compute nodes in the server. On the first read of the 

data, the query will run against the master table while the data is copied asynchronously 

to the compute nodes. After this, any subsequent queries will run against the replicated 

copy of the data.

Hopefully this explanation of the different distribution types available through Azure 

Synapse Analytics offers some insight into the benefits of massively parallel processing 

and some of the challenges that need to be overcome. Without doubt, one of the 

benefits of the cloud computing model is the separation of compute and storage and the 

flexibility this can provide.
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�Resource Management
Understanding how to manage the resources allocated to an Azure Synapse Analytics 

instance is vital to ensuring the engine performs well for the users it serves but also does 

not cost the Earth to run. Ultimately the amount of compute assigned to your server is 

determined by the number of Compute Data Warehouse Units (cDWUs). This setting is 

a blended metric that comprises CPU, memory, and I/O into a normalized figure that 

can be used to determine performance and is also known as the service objective. As a 

starter, the smallest cDWU setting for an Azure Synapse Analytics instance is cDWU 100. 

This equates to one compute node with 60 GB of memory and is therefore responsible 

for all 60 storage distributions. This could be scaled up to a cDWU 500, meaning that you 

still have a single compute node in charge of 60 storage distributions but now has 300 GB 

of memory. As you get past cDWU 500, you begin to increase the number of compute 

nodes, for example, a cDWU 5000 is 10x more powerful than the 500, meaning you would 

have 10 compute nodes aligned with 6 storage nodes, each with 300 GB of memory. The 

highest setting is cDWU 30000, meaning that each of your 60 compute nodes is attached 

to a single storage node with 18,000 GB of memory available.

�Resource Classes

Given the amount of resource allocated by the service objective, it is up to you to further 

tweak how this is utilized in the server to ensure maximum performance. The first concept 

to grasp is that of resource classes. The purpose of resource classes is to pre-assign the 

amount of compute that is assigned to each query so that you can plan the load on your 

server more accurately. The two levers that are controlled by resource classes are that of 

concurrency and resource utilization, and the interaction between the two is such that a 

larger resource class will increase the resource utilization per query but limit the amount 

of concurrency available to the server. A smaller resource class does the opposite and 

will limit the amount of resource provided to a query but will increase the concurrency, 

meaning more queries can be run at the same time. Concurrency slots is the name given to 

the amount of concurrency available to the server, and this is explained later in the chapter.

The implementation of resource classes is done though user security roles which 

have been preconfigured on the server for you to use. In practice there are two types of 

resource class:

•	 Static resource classes

•	 Dynamic resource classes
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�Static Resource Classes

A static resource class provides a fixed amount of compute to a query regardless of the 

service objective, meaning that as an Azure Synapse Analytics Cluster scales up, the 

amount of concurrency available to run queries is directly increased. There is a range of 

sizes to choose from ranging from staticrc10 up to staticrc80, and each level assigns an 

increasing amount of concurrency slots to a query. Note that the amount of concurrency 

slots assigned to a query does change as you scale up an Azure Synapse Analytics. 

Within Azure Synapse Analytics, concurrency slots are akin to reserving seats at a busy 

restaurant. Each query “books” a determined amount of concurrency slots, and that 

number directly affects the number of other queries that can be run at the same time. As 

soon as that query completes, the concurrency slot goes back in the pool. The static type 

of resource class is tailored for scenarios where the data volumes are well understood 

and consistent. Let’s look at a few scenarios.

If you are using an Azure Synapse Analytics that is scaled to cDWU1000c, you will 

have 40 total concurrency slots. This means your maximum number of queries run 

at any one time is 32. This could be 32 analyst type users running queries under the 

staticrc10 resource class which, at DWU1000c level, assigns 1 concurrency slot per 

staticrc10 query. However, not all of your users will be analysts, and some may be “load” 

users – specific user accounts configured to run batch loads within the warehouse. These 

loads may be large, and for the query to execute in good time, you can assign your load 

user to a larger static resource class so that more memory is assigned for the query. If we 

use a staticrc60, then our query will be gifted 32 concurrency slots, taking up a lot more 

of the available resources. While this query is running, all queries that require more than 

eight concurrency slots will be queued until the query completes.

Now let’s say you have a second load that needs to be processed regularly and 

efficiently alongside your first load. To allow this to happen, you must scale the 

warehouse up. If we were to choose a DWU3000c setting, then we now a have 100 

concurrency slots to play with, and because a staticrc60 query consistently assigns 32 

concurrency slots, we know we can safely run two of these queries side by side with 

some additional head room for user queries on top.
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�Dynamic Resource Classes

Dynamic resource classes work very differently, and rather than assigning the same 

amount of concurrency regardless of the service objective, they actually increase the 

amount of concurrency per resource class as the Azure Synapse Analytics instance 

scales. As a result, there are only four dynamic resource classes:

•	 smallrc: 3% of available concurrency (the default for all users)

•	 mediumrc: 10% of available concurrency

•	 largerc: 22% of available concurrency

•	 xlargerc: 70% of available concurrency

To use the same example, an Azure Synapse Analytics scaled to DWU1000c will allow 

22% of concurrency slots to a largerc workload. Given that there are 40 available slots, 

this equates to 8 being assigned to the query. However, if we found that the queries being 

run under the largerc were becoming slow, we could again increase the service objective 

to DWU3000c and now our query will be granted over 3x the amount of resource with 26 

concurrency slots. While this will ensure our query completes faster, it does not mean 

that more queries can run at the same time. 

Obviously in a full implementation of an Azure Synapse Analytics, you would expect 

to see a mix of both types of resource class being used – some static for predictable and 

consistent workloads and perhaps some dynamic for less routine, occasional workloads.

�Pausing and Resuming the Warehouse

Because the compute and storage resources of the warehouse are not tightly coupled, it 

means that you can have full control over the scale and even status of the warehouse. As 

a user, you can scale the data warehouse at peak times to ensure maximum processing 

power and then scale the server back down when processing is completed. You can 

then turn the server off completely at night and weekends if required so that the cost 

of your warehouse can be dramatically reduced. Bear in mind that while compute can 

be paused, storage cannot, and this will be charged for regardless of compute scale. 

As mentioned previously in this chapter, scale operations can have side effects and so 

should be planned for in advance and not done on a whim. Additionally, pausing and 

resuming the warehouse can take time, and this should be planned for when designing 

the warehouse.
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The operation itself can be performed either through the Azure portal or by using 

a REST API call from Azure Data Factory. Figure 2-4 points out the Pause/Resume 

button.

Figure 2-4.  Diagram of portal button to pause and resume warehouse

Figure 2-5.  A Data Factory pipeline showing how to pause a Synapse Analytics 
instance

The Data Factory pipeline shown in Figure 2-5 demonstrates a method to pause or 

resume an Azure Synapse Analytics instance using Data Factory orchestration of REST 

API calls.

	 1.	 Activity one is a Web activity that obtains a bearer token. This is 

required in order to authenticate the request to pause or resume 

the warehouse. The configuration of this activity is shown as 

follows:

URL: https://login.microsoftonline.com/<tenant-id>/oauth2/

token
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Method: POST

Headers:

"Content-Type": "application/x-www-form-urlencoded"

Body: grant_type=client_credentials&client_id=<service-

principal-client-id>&client_secret=<service-principal-

secret-key>&resource=https%3A%2F%2Fmanagement.azure.com

	 2.	 Activity 2 is also a Web activity and posts the request to the Azure 

management API, using the previously fetched bearer token for 

authentication. The configuration for this activity is shown as 

follows:

URL: https://management.azure.com/

subscriptions/<subscription-id>/resourceGroups/<resource-

group-name>/providers/Microsoft.Sql/servers/<sql-server-

name (without .database.windows.net)>/databases/<database-

name>/pause?api-version=2017-10-01-preview

Method: POST

Headers:

"Content-Type": "application/json"

"Authorization": @concat('Bearer ', activity('Obtain Bearer 

Token').output.access_token)

Note T he “Authorization” header must be entered as dynamic content so as to 
use the value from the previous activity. You can access this pane using “Alt + P”.

Body: {} (A valid body is needed to validate Data Factory but not 

for the actual request.)

This pipeline could then be triggered using a wall clock type schedule or even by a 

custom invocation. These types of invocations will be discussed later in the book.
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A further option for scaling your Azure Synapse Analytics instance is to use Azure 

Automation. This provides a service that allows you to execute run books – read 

PowerShell scripts, on a schedule or using a web hook API. It is important to consider 

that the warehouse can take a short while to come back online, and while it is paused, no 

queries can be run against the data, nor can you access the data by other means.

�Workload Management
Another feature of Azure Synapse Analytics is that of workload management and 

importance. Importance is a feature that allows specific users to be tagged as higher 

priority, and therefore this affects the order in which the server processes queries. As 

mentioned earlier, if there are no concurrency slots remaining, then queries enter into 

a queue and this queue is built up in a first in, first out (FIFO) manner, meaning that the 

first query to queue will ordinarily be the first query to be processed.

However, let’s imagine a scenario where you have two users querying your busy 

warehouse and are waiting in the queue. Let’s say one user is an analyst and the other is 

the CEO who has been tagged with high importance. In this scenario, even if the analyst 

submitted their query before the CEO, the CEO’s query will be pulled off the queue and 

executed first.

Additionally, this importance feature can affect how the server handles locking. 

Locking is used throughout the warehouse to ensure consistent reads and is a 

fundamental concept in any database engine. If we have a table that is regularly updated, 

then there will often be a lock in place on this table, thereby blocking other processes 

until the lock is released. Without importance in place, queries will be handed the lock 

in a chronological order. However, this can be changed with importance, ensuring that 

the important queries obtain the lock prior to the normal queries, thereby ensuring the 

important queries complete quicker.

Finally, importance will even permeate into the optimizer, as this is the part of 

the Azure Synapse Analytics instance that estimates the size of each job and decides 

when to execute them. Usually the optimizer prioritizes throughput and will therefore 

execute jobs as soon as a sufficient amount of resource is available; however, in some 

scenarios, this can cause big delays for larger processes. If there are a number of small 

queries running and some further small queries in the queue, then as the small queries 

complete, the small queued queries will be executed because the required resources 

match up. If a large query enters the queue, it will have to wait until enough resource 

is available at any given time before it can execute. However, if the query is tagged with 
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importance, then the optimizer is aware that it needs to make room for the larger query 

and will avoid continually pulling smaller jobs off the queue. This ensures that required 

amount of resource is available quicker.

�PolyBase
PolyBase is a technology that provides a seamless interface between your data lake 

platform and your Azure Synapse Analytics instance. The data in your data lake can be 

exposed to your Azure Synapse Analytics instance as an external table, meaning the data 

within the file or files can be operated on as if it were a table in the database.

To do this, there are a couple of additional components required which are

•	 Database scoped credential

•	 External data source

•	 File format

The database scoped credential is used to authenticate the Azure Synapse Analytics 

instance into the data lake. The permissions here should be tightly controlled and well 

planned out. Multiple versions of these credentials may be needed to ensure the correct 

granularity. The pieces of required information are the service principal id (and its 

accompanying authentication end point) and the secret or key that is created for that 

service principal. The syntax for the credential creation is shown in Listing 2-4.

Listing 2-4.  The syntax used to create a database scoped credential

CREATE DATABASE SCOPED CREDENTIAL DataLakeCredential

  WITH

    IDENTITY = {service principal id}{OAuth End Point},

    SECRET = {service principal secret key};

The next requirement is the external data source. This now makes the connection 

to your data lake and is used to describe the type of external source, as data lake is one 

of a number of options, while also supplying the root path of the data. It is important 

that the path specified here only goes as far as the top level required as further directory 

navigation can be added on when using the data source from a query. This data source 

also references the database scoped credential, so it is important to ensure that the 

service principal you use has the access that is required for the external data source.  

The syntax for the external data source is shown in Listing 2-5.
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Listing 2-5.  The syntax used to create an external data source for the data lake

CREATE EXTERNAL DATA SOURCE [DataLakeSource]

    WITH (

        TYPE = HADOOP,

        LOCATION = �N'abfss://{container name}@{account name}.dfs.core.

windows.net',

        CREDENTIAL = [DataLakeCredential])

Finally, we need to specify a file format so that our Azure Synapse Analytics 

understands how to read the data it finds in the lake. Here we can set a number of 

options about the files we want to read. A key point to bear in mind here is that the file 

format cannot be parameterized, so it is important to read from a standardized layer in 

your data lake so that you can reduce the number of file formats needed. The syntax for 

creating the file format is shown in Listing 2-6.

Listing 2-6.  The syntax used to create a file format that reads pipe delimited data 

and formats dates into the UK standard format

CREATE EXTERNAL FILE FORMAT PipeDelimitedText

WITH (

    FORMAT_TYPE = DELIMITEDTEXT,

    FORMAT_OPTIONS (

        FIELD_TERMINATOR = '|',

        DATE_FORMAT = 'dd/MM/yyyy',

        STRING_DELIMITER = '"'

    )

);

We can now very easily ingest data into our warehouse by using these components 

to access data in the lake in a secure and robust way. Given these three elements, we can 

utilize external tables to expose the data in the lake as if it were a standard SQL table. 

Alongside this external table, we can also determine what happens to rows that do not fit 

the definition of our external table and where they should be landed. The feature allows 

us to easily handle bad rows, whether they be caused by data type violation or additional 

columns. Listing 2-7 shows how you can define the external table so that it uses the 

previous three components to access data in the lake.
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Listing 2-7.  The syntax to define an external table that reads from the “Read_

directory” which is a subfolder of the root defined in the external data source. 

Additionally, we have specified that PolyBase should fail the ingestion if 100 or 

more rows are invalid, writing the bad rows into the “Reject_directory.”

CREATE EXTERNAL TABLE [dbo].[ExternalTable]

(

    [Col_one]   TINYINT         NULL,

    [Col_two]   VARCHAR(100)    NULL,

    [Col_three] NUMERIC(2,2)    NULL

)

WITH

(

     DATA_SOURCE = DataLakeSource

    ,LOCATION = '/Read_directory'

    ,FILE_FORMAT = PipeDelimitedText

    ,REJECT_TYPE = VALUE

    ,REJECT_VALUE = 100

    ,REJECTED_ROW_LOCATION= '/Reject_directory'

)

The preceding REJECT_TYPE argument can be defined as “VALUE” or “PERCENTAGE.” 

The value reject type means that PolyBase will fail reads from this table if the absolute number 

of rows specified in the REJECT_VALUE argument is exceeded. Alternatively, if the type is set 

to percentage, then the read will fail if the percentage of rows set are invalid. Additionally, you 

must set the REJECT_SAMPLE_VALUE which tells Azure Synapse Analytics how many rows to 

attempt to read as a batch before moving on to the next batch. If the batch size is set at 1000 

and the reject value is 10 (note, not 0.1), then Azure Synapse Analytics will read in the first 

1000 rows, and if more than 100 of those rows fail, the batch will be failed. If less than 100 rows 

fail, then Azure Synapse Analytics will complete the batch and begin reading the next 1000 rows.

In order to finally persist this data into the warehouse, we need to land the data 

in an internal table. An internal table can be treated exactly the same as a regular SQL 

table; however, the data is of course distributed across the 60 storage nodes as defined 

in the table definition. The way to do this is to utilize the CREATE TABLE AS SELECT 

statement which allows you to create a table as the output of a select statement. The 

syntax in Listing 2-8 shows how you can select the contents of the external table defined 

previously (this is a file in the data lake) and land it in an internal table.
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Listing 2-8.  The CTAS syntax to read data from the external table

CREATE TABLE dbo.InternalTable

        WITH

        (

            DISTRIBUTION = ROUND_ROBIN

        )

        AS

        SELECT

             Col_one

             ,Col_two

             ,Col_three

        FROM dbo.ExternalTable

An important point to emphasize here is that this method to ingest data into the 

warehouse is the only to load data in bulk in a minimally logged manner. All other 

methods, such as SSIS, Data Factory, and others, push data through the control node 

which thereby causes a bottleneck. As a result, this route for loading data should be used 

before all others to ensure data is processed as efficiently as possible.

�Azure SQL Database
Azure SQL Database (Azure SQL DB) is a major cloud-hosted database technology 

offering from Microsoft and can be thought of as a Platform as a Service version of a 

traditional on-premises SQL database. There are of course major alterations to the way 

the service is deployed so that as a user, you get the much beloved SQL engine combined 

with the benefits of it being cloud hosted. The point to make clear upfront is that an 

Azure SQL DB is a single database ONLY, there is no server instance surrounding the 

database, and this means no access to the SQL Agent, PolyBase, cross database queries, 

and others; however, there are alternative deployment options that make some of those 

things available. When creating an Azure SQL Database, you will see a logical server will 

be created; however, this is a namespace only and holds none of the items mentioned 

previously. This book is focusing on cloud data warehousing, and it may seem confusing 

why a developer would not just choose Azure Synapse Analytics when designing their 

architecture. This section will outline the reasons why an Azure SQL DB may be a better 

fit for some scenarios and speak about the features that make it so.
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�The Cloud-Based OLTP Engine
Many data warehouse developers will be familiar with the difference between online 

transactional processing (OLTP) systems and online analytical processing (OLAP) 

systems and when to use which system. Generally speaking, an OLAP engine would be 

preferable for a SQL data warehouse, particularly one used for decision support, because 

most queries will be using aggregations and grouping to compute large-scale calculations, 

and therefore the engine is tuned for enhanced query performance over transactional 

inserts and updates. An OLTP type database would be more commonly used as a source 

of data for a warehouse and may be the focal point of a great number of transactions, 

often at very large scale and volume. That said, beneath a threshold, there is no reason 

why a standard OLTP type system cannot handle the analytical queries presented by a 

user; in fact for smaller data warehouses, this may be a more appropriate option.

�The Benefits of Azure SQL Database
When designing a data platform solution, there are several points that need to be 

considered, and, in a number of categories, Azure Synapse Analytics falls short when 

compared to Azure SQL Database. This is not to say that workarounds cannot be created; 

however, some of the following benefits may be a really critical requirement. The rest 

of this section discusses those concepts that may nudge Azure SQL DB in front of Azure 

Synapse Analytics when designing a data platform for analytics.

�Improved Concurrency

One element that is perhaps taken for granted in an on-premises SQL server 

implementation is that of a high level of concurrency. Having the ability to process 

a great number of queries at any given time is often essential, given the nature of a 

database. However, Azure Synapse Analytics has a limit on the number of concurrent 

requests, and even at the highest service objectives, this limit is 128 queries at one 

time. Just to be clear, this means that no more than 128 queries can be run at the same 

time on Azure Synapse Analytics and often this number is smaller, for example, a 

DWU1000c data warehouse has a concurrency limit of 32! If there is a large analytical 

community looking to use the warehouse alongside a host of report and load users, 

these concurrency slots will quickly run out and processes will be throttled unless you 

can afford to scale up. Alternatively, you could review the option of using Azure SQL DB 
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which, due to the nature of being a write optimized OLTP engine, is designed to process 

a high level of transactions concurrently. Because the engine is built using a traditional 

SMP architecture, the processing route for queries is much simpler; they are evaluated 

by the optimizer and then passed to the execution service instead of, as in the case of 

Azure Synapse Analytics, being distributed across a network of compute nodes to then 

be aggregated back together once all nodes have completed.

�Trickle-Fed Data Warehouses

Before embarking on any data warehouse project, it is important to understand the 

data that will be loaded and the queries that will be performed. Once you have a good 

understanding of this, you can begin to make justified decisions about how you will 

load and process the data in your warehouse. In some cases, there may be the need to 

ingest very large files regularly and blend this with equally if not larger tables of existing 

data; this is where Azure Synapse Analytics comes in handy. However, there can also be 

instances where smaller more frequent files are common, and this is where an Azure 

SQL DB may become a more desired option.

In Azure Synapse Analytics, the CREATE TABLE AS SELECT (CTAS) statement is the 

go-to method for loading tables. This approach means that you literally recreate the table 

every time using the result of a SELECT statement. To produce the effect of UPDATES 

and INSERTS, you produce the data in multiple SELECT statements and union them 

together to create the entire table in one query. While this is very efficient for blending 

large datasets, it becomes very inefficient if you only need to add a few records – a simple 

INSERT and UPDATE would suffice. While an INSERT and UPDATE both exist in Azure 

Synapse Analytics, they do not automatically create statistics and therefore any stored 

procedures using these need to do that manually and this additional complexity makes 

the pattern cumbersome and difficult to maintain. In the case of Azure SQL DB, we can 

easily reuse existing logic if it exists or create procedures using common patterns and 

well-understood processes such as upserts or merges.

Further to this, data warehousing is no longer just about processing regular, batched 

up source files; a warehouse should be able to accept event-driven or streaming data 

and often these records can arrive in micro batches (one or so records at a time). Were 

we to use an Azure Synapse Analytics, this would mean rebuilding the entire table every 

few seconds or so just to incorporate a handful of records. Obviously, this approach is 

completely inefficient; however, an Azure SQL DB would handle these micro batches 

easily and allow for a wider variety of data ingestions patterns.
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�Managing Slowly Changing Dimensions

Often the issue of slowly changing dimensions is one to be tackled prior to ingesting any 

data because it is important to document which dimensions will have slowly changing 

elements and what type is needed. To allow for conformed understanding, the three 

main types are

•	 Type 0: Data is not affected at all and no updates are made. The 

dimension is append only.

•	 Type 1: Data is simply overwritten so that the latest state of the record 

is maintained in the dimension table.

•	 Type 2: The latest version of the record is inserted into the dimension 

table and the historical record is marked to indicate it is no longer 

current. This can either be with a set of data bounds or an “is current” 

flag.

While there are additional types that can be implemented, the logic can be derived 

from one of the preceding three options. When using Azure SQL DB, the implementation 

logic of slowly changing dimensions becomes simple because very often we can write 

a single statement that can take care of the update in the case of Type 1 or a collection 

of insert and updates to cover off Type 2. Conversely, in Azure Synapse Analytics, the 

statement needs to be comprised of a number of SELECT statements that then get 

unioned together to form a final result which is the entire table. This means that even 

records that are not changing need to form part of the SELECT statement. Additionally, 

this becomes more awkward to debug and report on as part of a warehouse processing 

routine because the logic is not broken out into steps as is the case in Azure SQL DB.

�Intelligent Query Processing and Tuning

Another feature of Azure SQL DB that makes this technology stand head and shoulders 

above others is that artificial intelligence has been integrated directly into the SQL 

engine to allow for adaptive query processing and automated performance tuning. The 

primary reason for this feature is to compensate for poor statistics in the database and 

ensure that a query is as performant as can be, even once the plan has been sized and 

handed off to the executer. Given a warehouse implementation is all about the ability 

to query and read data, this feature helps to compensate for the fact that there are no 

multiple compute nodes processing the query and instead allows for the warehouse to 
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be proactively pursuing the best possible performance. The intelligent query processing 

and tuning is manifested in a number of features of the SQL engine which are available 

in all deployments of Azure SQL DB.

�Automatic Tuning

The first feature is automatic tuning, which learns from the collective pool of Azure 

SQL Databases and feeds the insights gathered back into your target databases at times 

of low activity. The feature itself can be turned off entirely or applied to a level where 

recommendations are generated but not applied. However, in the full implementation of 

automatic tuning, the service will generate tuning suggestions and automatically apply 

them for you with the additional benefit that the engine will verify the benefit of the 

recommendation and, if there is no discernible improvement, will roll back the change. 

The recommendations will be made up of CREATE and DROP INDEX suggestions and 

FORCE LAST GOOD PLAN suggestions. The CREATE INDEX element will identify 

missing indexes and create them while also verifying the improvement to the workload, 

whereas DROP INDEX will actively remove surplus or duplicate indexes. The FORCE 

LAST GOOD PLAN element will identify queries that are using a query plan that is not as 

performant as a previous plan and will query using the better plan instead of the more 

recent one.

�Adaptive Query Processing

Adaptive query processing is a major change to the way a query is executed in SQL 

server. In a usual query process, the plans are produced and sized with the smallest one 

being chosen and executed; however, there can be times when poor statistics mean 

that the query was incorrectly sized and is therefore not the most efficient. Despite this, 

the optimizer continues to run the query based on the plan. Adaptive query processing 

allows for the engine to adjust the subsequent plan based on the row counts that 

are accumulated throughout execution and becomes effective through a number of 

individual features which are

•	 Batch mode memory grant feedback

•	 Row mode memory grant feedback

•	 Batch mode adaptive join

•	 Interleaved execution

Chapter 2  The SQL Engine



34

�Batch Mode Memory Grant Feedback

The memory grant controls the amount of memory that is given to a query to process 

and is estimated prior to the execution of the query by the optimizer. The reason for this 

is to ensure that the query has enough memory to execute efficiently but not too much to 

drastically reduce concurrency within the database. The value is then stored alongside 

the plan in the plan cache. However, if the memory grant has not been correctly 

estimated, then the performance hit to your query can be devastating. A grant that is 

too low will cause spills onto disk which becomes very expensive compared to reading 

directly from memory. Alternatively, an oversized estimate will unnecessarily reduce the 

amount of parallelism and resource available to other activities in the database. 

With this feature enabled, the SQL engine will review the estimated memory grant 

vs. the actual required to read all rows into memory and update the number attached to 

the plan in the cache. This means that subsequent queries will use the updated estimate 

rather than the initial one that was incorrect.

The same feature is also available for row mode queries; however, at the time of 

writing, this is in preview.

�Adaptive Joins

The adaptive join feature allows the SQL engine to choose a join mode after the first 

input has been scanned, meaning that there is a realistic evaluation of rows before 

deciding on the type of join to be performed. The types in question are Hash mode, 

which is the default, and Nested loop mode. With this feature enabled, a threshold is put 

in place to determine whether the number of rows is small enough to be executed better 

by a Nested loop type join or whether the plan should continue to use Hash mode. If the 

process does in fact switch from Hash mode to Nested loops but has already read in rows 

from the input, then these rows are preserved and do not have to be read again; although 

there is still a slight overhead in the use of adaptive joins, this is still a very useful feature 

for workloads that often vary in size.

�Interleaved Execution

As mentioned previously, a standard query plan will be produced by the optimizer and 

then run by the executor; however, this linear mode of planning and running queries 

can cause performance issues when the estimates are not correct. Currently, without 
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interleaved execution, Multi-statement Table-Valued Functions would always use a 

fixed cardinality estimate of 100, regardless of the actual number. This often means 

there can be large discrepancies between that estimate and the actual number of rows; 

however, interleaved execution allows for the optimization process to be paused, a better 

estimate to be gathered and then resumed with that estimate in hand, thereby informing 

the optimizer of how to write the subsequent plan in the best way. This means that 

subsequent join algorithms are more efficient and memory spills are far less likely to 

occur.

�Hyperscale
By this point, I am sure you can see that there are many reasons why an Azure SQL 

Database may provide a richer feature set than Azure Synapse Analytics and certainly 

an on-premises solution. However, a standard deployment of Azure SQL DB does have 

an upper limit on the size of your database which is currently set at 4 TB, not tiny, but 

not enough by many standards, and that is why Microsoft has completely redesigned the 

architecture from the ground up to be entirely tailored to the cloud. The new approach 

is termed Azure SQL Database Hyperscale and is the latest addition to the V-Core 

purchasing tier. The technology has been tested with databases up to 100 TB although 

this is not a technical limitation and Microsoft actively encourages customers with larger 

databases to push that limit further, claiming confidently that the Hyperscale technology 

will cope with it.

The reason that Hyperscale databases can scale to such large capacities is because 

the entire architecture of the resource has been adapted to exploit the cheap storage 

and flexible compute resources that are made available when working in a cloud-based 

platform. In much the same way that Azure Synapse Analytics separates storage from 

compute, Azure SQL DB Hyperscale does the same. This means that storage can scale 

linearly, but the compute power used to process that data can grow and shrink as 

required. Despite this similarity, the data in Azure SQL DB Hyperscale is not distributed 

like in Azure Synapse Analytics. The architecture still facilitates an SMP approach to data 

access which means that storage is essentially held in one place and only written to using 

a single master compute node.
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�The Hyperscale Architecture

To start from the top of the Hyperscale stack, we have the compute nodes. The compute 

nodes house the relational engine, SQL server, and control all interaction with the rest of 

the Hyperscale service. There will always be a single primary compute node that handles 

read and write transactions for the database; however, this can be supported by multiple 

read-only secondaries that can be used as hot secondaries for failover functionality but 

can also handle read-only workloads – such as hefty analytical queries. Additionally, 

these compute nodes utilize SSD caches, named Resilient Buffer Pool Extensions 

(RBPEX), so that the time to fetch page data can be minimized. A key point of interest 

relating to the purpose of this book is the concept of read-only secondaries. These can be 

utilized by specifying the Application Intent parameter as true in the connection string, 

indicating to the service that this is a read-only query and can therefore be routed to the 

read-only secondary nodes rather than the read-write master node.

Supporting the compute nodes is a set of page servers, which are really what allow 

Hyperscale to reach the scale that it does because there is no finite number of page 

servers in a given Hyperscale implementation. As the database continues to grow, more 

page servers are allocated to the service. Each page server handles a 1 TB subset of the 

data pages and delivers them to the compute nodes on demand, additionally making 

use of the RBPEX caching to avoid network round trips and support the low latency 

guarantees made by Microsoft. Importantly, the page servers are allocated 1 TB at a time, 

so each time a new page server is created, it will handle the next 1 TB of data; however, 

the service itself is billed in 1 GB increments so you do not pay for excessive storage 

although it is allocated to your service anyway. The other role of the page servers is to 

ensure the pages are kept up-to-date by replaying log transactions from the log service.

At the lowest level is remote storage, which is updated by the page servers and is 

the final place for data storage and is therefore used to support the snapshots that are 

created for backups and to enable Accelerated Disaster Recovery.

The final piece of the Hyperscale puzzle is the log service which again is 

implemented very differently to an on-premises transaction log. In an on-premises 

implementation of SQL server, the server itself will maintain a log file that continues to 

populate until it reaches a certain threshold and then begins to overwrite the previous 

log items, giving the impression that the log is circular. With Hyperscale, this is not the 

case. Because cloud storage is cheap, the log can easily be portioned off and stored in 

long-term cold storage, meaning that the log storage is practically infinite. The other 
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key role of the log service is to accept transactions from the primary compute node and 

apply those changes to the secondary compute nodes and the pages stored on the page 

servers. As you can imagine, having to wait for the log service to complete that level of 

activity would add significant latency to a query response so the log service is designed 

so that there is essentially a landing area that persists the transaction record into a cache. 

Once persisted, the transaction is considered to be logged and then the replication of 

the transaction to compute nodes and page servers is done in the background, without 

delaying the query response.

With this architecture in mind, the flow of data through the Hyperscale service 

can be somewhat convoluted. In the first instance, data would be stored in an RBPEX 

cache on the compute nodes and therefore accessed very quickly. Alternatively, if the 

data is not on the compute node, then the read may have to go back to the page servers 

to fetch the data from there. When doing writes, the transaction is passed from the 

primary compute node to the log service. It is then the role of the log service to apply 

the transaction to the secondary compute nodes and the page servers; finally the page 

servers apply the change to the remote Azure Storage files.

�Accelerated Disaster Recovery

A key concern for anyone managing a large database is “how long will it take to restore 

were it to go offline.” In Hyperscale, this operation can be done very efficiently regardless 

of the size of data. It makes no difference to the restore activity whether the data is 1 TB 

or 100 TB which is an incredible level of comfort to provide for whoever must answer 

that question. Were the database to go offline and require a restore, the only activity 

that is needed is to repopulate the page servers with the data stored in Azure remote 

storage. Given that this operation can be scaled out by the number of page servers in 

the instance, it means that only a single TB must be restored onto any given page server 

regardless of the size of the database. To put this into perspective, a restore operation of a 

50 TB Hyperscale database would mean that 50 page servers are created and populated 

with a TB of data from the remote storage; Microsoft has demoed this 50 TB restore 

completing in just 8 minutes.

While it is of course possible to manage a large, multi-terabyte database  

on-premises, a restore of that database would take considerably longer than 8 minutes. 

These kinds of disaster recovery options simply could not be achieved with the box 

version of SQL server because of the scale out operations required to facilitate them. 
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�Azure SQL Deployment Options
When assessing the features that set Azure SQL Database and Azure Synapse Analytics 

apart, a key consideration is the deployment options. Often this can drive a number of 

conversations, that of cost, maintainability, management overhead, and alike. As both 

are cloud native solutions, scalability and compute size can be tailored with ease. Even if 

an initial deployment is very small and lightweight, a production scale up can easily be 

planned and implemented. Further to this, the size and scale of each solution can then 

be further tailored to meet the needs of users/processes throughout the day or week 

using Azure Automation scripts.

Both Azure SQL DB and Azure Synapse Analytics have support from Visual Studio 

SQL Server Data Tools (although Azure Synapse Analytics is in preview currently) 

allowing for seamless deployment and schema compare via Visual Studio. This means 

that from a development perspective, there should be little change between current 

on-premises practices and cloud practices; both are maintained and source controlled 

through Visual Studio.

Even though the development experience may be roughly the same between the two 

Azure SQL options, the target deployment platforms can vary greatly. Azure Synapse 

Analytics has a single deployment option as a stand-alone resource managed through 

the Azure portal. The deployment can be automated through the use of ARM templates; 

however, this only makes the deployment of that single Azure Synapse Analytics instance 

more efficient. Conversely, Azure SQL DB has a variety of options that can make the 

move to the cloud easier due to the flexibility of the platform.

�Azure SQL Database Managed Instances
A managed instance is the closest cloud alternative to a traditional on-premises 

deployment of SQL server. Without a managed instance, you would create a logical 

SQL server that is no more than a namespace to group individual databases; however, 

with a managed instance, there is a real SQL server instance that hosts the databases 

and therefore access to the SQL Agent, Database Mail, Linked Servers, cross database 

queries, change data capture, and others. While this offers a level of comfort and the 

ability to reduce the amount of application rework, you also benefit from the Platform as 

a Service gains that Azure has to offer. Features such as automatic patching, automated 

backups, and v-nets are all configured out of the box without any management overhead 
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for the business. For users looking to simply migrate to Azure with minimal disruption, 

this can be a very useful deployment option; however, significant cost optimizations are 

available if the stand-alone database deployment option can be used.

�Azure SQL Database Elastic Pools
A second deployment option is that of elastic pools. Here, a pool of resources is created 

and shared between a multitude a single databases so that there is a single cost to pay 

and also a lot more ability to deal with sporadic spiking in database usage. Elastic pools 

work well when multiple databases need occasional high levels of performance but 

generally average at quite a low eDTU setting especially when the peaks are at varying 

times. In the scenario that you are supporting multiple databases that occasionally 

require high performance, without elastic pools, you would need to trade off between 

scaling to a tier that can handle peak usage and overpay the rest of the time and scaling 

to a lower tier and sacrificing performance, particularly at peak times. When designing 

an Azure SQL DB deployment, if elastic pools seem like a good option, then it is 

important to plan the size of the pool, the service tier of the contained databases, and the 

times at which those databases peak. You will need to know how many databases can 

spike at any given time while still remaining within your elastic pool size but also how 

you ensure that you have enough activity in the pool to make it more cost efficient than 

scaling the databases separately.

�Azure SQL Database V-Core Tiers
When Azure SQL Database first arrived, the scale, and therefore pricing, of your database 

was configured using DTUs (Database Transaction Units). A single DTU is an abstracted 

metric that comprises storage, memory, and CPU to provide an easy single figure that is 

directly related to the overall performance of the database. However, the arrival of the 

V-Core option allows you to scale storage and compute separately, meaning the database 

can be completely tailored to your individual needs. When creating the database, 

you would choose the number of V-Cores to instantiate and then set a max storage 

size. The V-Core purchasing model is also available at different tiers, offering different 

performance characteristics and high availability/disaster recovery options.

Chapter 2  The SQL Engine



40

•	 The lowest tier is General Purpose, being the standard for most 

business workloads.

•	 Next is Hyperscale which offers compatibility for databases  

above 4 TB while also guaranteeing high performance even at  

very high scale.

•	 Last is the Business Critical tier that offers the highest level of 

performance and reliability although still limited to a 4 TB maximum.

A point worth mentioning is that Hyperscale databases use the V-Core purchasing 

model but vacillate between the General Purpose and Business Critical tiers in terms of 

performance. When data is stored directly on the compute node’s local RBPEX, then the 

performance will be at Business Critical scale without the cost overhead. Only when the 

Hyperscale service gets a cache miss on the compute node’s local RBPEX would it have 

to go back to the page server, and this performance would replicate that of a General 

Purpose tier.

Inside of the V-Core tier is the ability to choose a “provisioned” deployment and a 

“serverless” deployment. The provisioned deployed means that the deployed resource 

is always active and therefore chargeable. Alternatively, a serverless deployment 

allows the service to be paused and resumed as needed, meaning you would only pay 

for what you actively use. This can provide a huge cost saving in development and test 

environments but may not be suitable for a production deployment. The base reason 

for this is that once the database is paused, the first query issued to the service will 

resume it but not complete successfully. Once resumed, all other queries will complete 

as expected unless the specified inactivity threshold is reached, and the service will 

pause again automatically. If this deployment option is of interest, it is possible to 

orchestrate a dummy query as an early part of the ETL process so that the service is 

running when needed. 

�Azure Synapse Analytics vs. Azure SQL Database
Now that the fundamentals of each technology option have been outlined, it is important 

to understand the attributes about your data that may drive you to use a particular Azure 

SQL engine over another.
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�The Right Type of Data
The first thing to confirm in this design process is that your data is going to be structured 

in a tabular format. These two SQL options only support tabular data and therefore 

should not be used to store non-/semi-structured data such as documents, JSON data, 

or multimedia files directly, unless stored as text in a tabular column. For JSON data, 

you could consider Azure Cosmos DB, and non-structured data and multimedia can 

be stored in the data lake. Of course, there may be scenarios where you need to process 

JSON from a source system into the data warehouse in which case you can load the 

JSON into a NVARCHAR (MAX) column and then read it using the OPENJSON table-

valued function. If the data you need to store cannot be loaded and queried using a SQL 

database engine, then neither of these options are for you.

�The Size of the Data
When choosing your SQL engine, the size of data plays a key role. If your database is less 

than 1 TB and not likely to increase beyond that point, then Azure Synapse Analytics is 

not a good option and you should look to use Azure SQL DB. Conversely, if the database 

is already 1 TB or bigger and is expected to grow, then Azure Synapse Analytics is firmly 

back on the table. If your data volumes are between 1 and 4 TB, then the cheaper option 

sits with Azure SQL Database – here we see a 2 TB database costing roughly £1.3k per 

month vs. an Azure Synapse Analytics at the same size costing £3.9k. When we scale this 

up to 100 TB, then there are a number of changes to be aware of. Firstly, only an Azure 

Hyperscale SQL Database can support a database that large, so your options are limited 

to using Hyperscale if you want to use an Azure SQL Database. Alternatively, you could 

swap to using an Azure Synapse Analytics as at 100 TB; you are able to really benefit 

from the massively parallel nature of the architecture. Full disclosure, the Azure Synapse 

Analytics instance is still more expensive but importantly will likely perform large-scale 

analytical queries better than a Hyperscale database due to the distributed nature of 

the database, especially when the data is correctly spread across distributions ensuring 

that common joins are heavily optimized given that the Hyperscale database cannot 

store data in this way. Ultimately, an Azure SQL Database will always be cheaper than 

Azure Synapse Analytics instance; however, it is also not optimized for analytical loads 

and does not contain features such as PolyBase, and so at small scales of data, a SQL DB 

will almost always be a better option. However, as the volumes increase, performance 

becomes more critical and this is where Azure Synapse Analytics earns its place.
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�The Frequency of the Data
Given this book is focused around data warehousing, I am discounting the need for 

traditional OLTP workloads; however, there are very often scenarios where a data 

warehouse needs to be trickle fed. In these scenarios, the patterns that are often used 

in Azure Synapse Analytics become inefficient and cumbersome; however, when the 

opposite is true, and data arrives at massive scale at more regular intervals, then the 

PolyBase and CTAS pattern make Azure Synapse Analytics a much more efficient 

processing option. When planning the ingestion process for your warehouse, it is 

essential to understand the needs of your users and the availability of your data. If you 

need to have rapidly refreshing dashboards that can be loaded from an event-based 

source system, micro transactions are needed and therefore an Azure SQL Database 

is likely a better option. Should you only need to refresh a dashboard once or twice 

a day with data that arrives with row counts in the billions, Azure Synapse Analytics 

will be able to ingest and process that data much faster. Should you need to combine 

approaches, then you could experiment with a SQL DB that processes your micro 

transactions into batches and loads them in Azure Synapse Analytics or explore the 

lambda architecture that is detailed later in this book.

�The Availability of the Data
Any data warehouse project comes with a bunch of nonfunctional requirements, things 

that are required to satisfy the brief but don’t necessarily deliver a functional advantage 

to the solution. Often these requirements include the recovery point objective (RPO), 

the amount of data lost after an incident, and the recovery time objective (RTO), the 

time it takes to get a system back up and operational. In Azure Synapse Analytics, 

regular automatic restore points are taken throughout the day and kept for a default 

of 7 days; however, you can also manually create restore points after significant events 

in the warehouse to ensure the maximum granularity of restore options and therefore 

minimal RPO. Conversely, Azure SQL Database also has very good options for RPO and 

RTO, and particularly within Hyperscale, giant databases (e.g., 50 TB+) can be restored 

in under 10 minutes with a 0-minute RPO due to the limitless page servers that simply 

need to be populated from the snapshots in Azure Storage. In addition to the RPO and 

RTO requirements, concurrency can heavily affect the availability of your data, and in 

Azure Synapse Analytics, availability is limited depending on the cDWU setting you have 
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configured, whereas Azure SQL DB has a much higher concurrency given that it is an 

SMP system. If there are a very large number of concurrent users looking to query the 

warehouse, then an Azure Synapse Analytics may struggle to cope with this requirement 

without the use of Azure Analysis Services or another database on top.

�The Integration of Data
Both flavors of Azure SQL integrate seamlessly with Azure Data Factory – the cloud 

integration tool of choice when working in Azure. However, Azure Synapse Analytics 

can make use of PolyBase providing a seamless layer between the data lake and the data 

warehouse.

In summary, Azure SQL Database is a cheaper option and potentially more flexible 

to a number of scenarios; however, there are specific features of Azure Synapse Analytics 

that make it a candidate for any data warehousing scenario assuming the data volumes 

are larger than 1 TB. When designing the warehouse, a worthwhile exercise is to write 

down all the pooled knowledge of the incoming data, incoming queries, ingestion 

patterns, and others and determine where each one of those attributes would be served 

better. From there, you can begin to discuss the features that mean the most to you and 

your organization and ignore those that are not essential. A final point to touch upon, 

and a pretty fundamental one, is that while the core concepts of each technology remain 

consistent, the features do change and improve over time, and it is important to keep up 

with each technology in case a really key feature comes about that changes the way you 

think about a particular technology.
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CHAPTER 3

The Integration Engine
The concept of data integration often sparks a lengthy and convoluted debate as to the 

best approach and technology for the given sources and destinations. In addition to 

the out-the-box products such as SQL Server Integration Services (SSIS), there is also a 

wealth of open source tools to consider, not forgetting the third-party connectors and 

bespoke, source system–specific integration tools that all help to muddy the water. 

When operating on the Azure platform, the established convention is to use Azure 

Data Factory (ADF) V2. This is the primary integration and orchestration engine for any 

data movement in to or out of Azure, and the goal of this chapter is to remove the need 

for any upfront debate about tooling by justifying why Azure Data Factory is a one-stop 

shop for data integration. 

�Introduction to Azure Data Factory
Within Azure, there is really only one option for cloud scale data integration and this is 

Azure Data Factory (ADF). No other engines exist within the Azure service itself, and 

while this may seem limiting, it is actually refreshing because there is no real debate to 

be had; if you want to remain on the Azure platform, you use ADF. 

Some developers may be warned off Data Factory and there may be good reason for 

this. In its first carnation, Azure Data Factory V1, many developers were expecting SSIS 

in the cloud and unfortunately this service fell well short of that mark. While the concept 

had promise, the service itself had some initial limitations. In this first iteration, the 

concept of parameters was not realized, and the only authoring option was to manually 

write JSON into the portal or in a local editor to be deployed using PowerShell. Far from 

the orchestration capabilities on offer today, in ADF V1, dummy datasets would have to 

be created, not to produce any kind of output but just to be used as an interface between 

daisy-chained activities. The limitations also extended to the triggering of Azure Data 

Factory which was based around tumbling windows. With these triggers, you could set 

up a start and end date and Data Factory would divide that time span into specified 
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chunks, for example, days. ADF would then pre-populate these chunks in its execution 

queue and run the Data Factory every time a new window came into scope. However, 

there were no other triggering options to speak of. 

As a user of ADF V1, easily the biggest pain point was the total lack parameters 

and variables; everything had to be hard coded upfront and could not then adapt to 

changes in the runtime environment, nor could you pass information between chained 

activities. Often when performing data integration, indeed in any programming task, 

you look to build generic elements that can be reused efficiently when supplied with 

varying parameters and this simply was not possible. Ultimately, Azure Data Factory V1 

was difficult to work with and offered little to the developers looking to replace an on-

premises SSIS implementation with a cloud alternative. 

Luckily, Microsoft had many improvements up their sleeve, and Azure Data Factory 

V2 quickly became a much more exciting prospect. From a user’s perspective, it appears 

as though the learnings gained from developing a well-matured integration tool such 

as SSIS had been blended with the recognized need for a cloud-based alternative as 

the software itself now does a lot more out of the box and has options for implementing 

many common programming routines. At first the focus was not on traditional ETL 

(extract, transform, load) but more on an ELT (extract, load, transform) approach which 

meant that data could be moved from source to sink and then transformed using the 

compute power of the destination, but some of the newer features of ADF V2 mean that 

either ETL or ELT can be implemented, depending on the scenario. 

Initially there was a small step back – the only way to work with ADF V2 for the 

first few months was by writing JSON locally and deploying it to the ADF service using 

PowerShell. There was no way to visualize the objects that had been created, nor 

could you monitor the run of a pipeline. However, this did give users a great way of 

understanding the key concepts that underpin Data Factory, and even though there is 

now a full UI, the underlying JSON is still accessible and often is the easiest way to debug 

an issue. This inconvenience was forgivable though as we now had parameters to play 

with, and flexible, parameter-driven data processes that make use of reusable generic 

routines were now an option. In addition to this, we also began to receive other forms of 

activities such as the “If” activity and “Execute Pipeline” allowing developers to operate 

conditional logic and execute different pipelines depending on the result. With more and 

more features regularly arriving, we now have an integration engine that can live up to 

the demand, and what’s more, it is fully integrated with Git and can even execute SSIS 

packages in the cloud. This chapter will focus solely on ADF V2 and the features that 

make it an all-round integration engine.  
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�The Data Factory Building Blocks
When starting out with Azure Data Factory V2, it is important to understand the different 

elements that give it the ability to move data and orchestrate activities in a disparate 

cloud environment. Those key elements are

•	 Linked services

•	 Triggers

•	 Datasets

•	 Pipelines

•	 Activities 

Each of these elements can be configured from within the Azure portal or scripted 

locally and deployed to the service using PowerShell or via source control (Git is the only 

source control option for ADF currently). 

�Linked Services
To begin with, the Data Factory needs to be able to make connections to the services 

it will copy data between or orchestrate jobs for. These connections are made through 

linked services, and these objects hold all the required parameters such as connection 

strings and credentials. Any credentials being used by Azure Data Factory should be 

stored in key vault as this ensures that your passwords and connection strings can easily 

be managed and updated in one place rather than having to track down every instance 

of a password that needs changing. To make use of Azure Key Vault, you would first need 

to create a key vault resource within the subscription and set up your secrets there. Once 

your key vault resource is in place, you can create a linked service connecting to that key 

vault account and your secrets will be automatically pulled from there when they are 

referenced through your Data Factory Linked Services. The steps to create a key vault 

and link it to your Data Factory instance via a linked service are described in the section 

“Getting Started with Azure Data Factory.” 

Typically, a data store linked service would connect to a service at a very high level. 

For example, if we use a linked service to connect to an Azure SQL Database, then it  

does only that; any logic to access a certain table with a certain query is routed through  

a dataset which sits on top of the linked service, more on this later in the chapter.  
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From within the UI, you can create a linked service connection to over 80 different data 

stores, some of which are Azure native such as Azure SQL Database and Azure Data 

Lake, while some are totally outside of Azure and even Microsoft such as Salesforce, 

Amazon S3, HDFS (Hadoop distributed file system), and local file systems on virtual 

machines (VM). As each of these data stores have different connection protocols you 

will find that you will need different pieces of information for each linked service option. 

Again, another reason why key vault is a preferable option over the native Data Factory 

credential management is because all these disparate pieces of information can be 

stored and maintained through one resource. 

Data store linked services allow you to fetch data or deposit data; however, you can 

also create Compute Linked Services that allow you to execute jobs on Azure-based 

compute resources such as Azure Databricks, Azure Functions, and Azure Synapse 

Analytics, to name a few. This capability means that you can create processes and 

solutions outside of Data Factory that can then easily be executed as you run your Data 

Factory pipeline. Some examples of how this may work could include creating an Azure 

Databricks notebook that cleans and standardizes the data within a cloud data store 

before it is processed into your warehouse. Alternatively, you could utilize the Azure 

Batch compute service to create a scalable C# application that handles a particularly 

tricky or bespoke piece of logic that may have been implemented using an SSIS custom 

activity in an on-premises solution. This added flexibility makes Azure Data Factory 

more than just a service to copy data between storage locations but an orchestrator of 

cloud integration patterns executing jobs across your Azure subscription at scale! 

A fundamental part of any linked service is the connection credentials, and there 

are several options supported here depending on the service you are connecting to 

although, as always, there are some best practices to be aware of. Most organizations 

prefer to administer permissions across an Azure subscription using Azure Active 

Directory groups as this allows for a single configuration of the permissions and then the 

group can just be populated as new users join or need that permission set. Additionally, 

this means that both service accounts and individual users can be added to a group 

ensuring that service accounts are not secret backdoors to a higher level of permission 

than was intended. 

When applying this to a linked service connection, it means that we can use a service 

principal to authenticate our Data Factory and then just ensure that the service principal 

is added to a group that has access to the resource we want to connect to. In most cases, 

a service principal is an option for the connection credentials and needs only to be 
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supplied with the service principal app id and the authentication key which could be 

supplied via key vault. In some cases, you may decide that you need a single connection 

that can read data from a given source but then only write into a particular folder in your 

cloud data store and then a second connection that can only read and write to different 

folders within the data store. This configuration means that writing into your data store is 

tightly controlled, as data can only arrive in one place due to permissions, and that data 

cannot leave the data store without explicitly creating a third connection or modifying 

an existing one. To support this scenario, you would need to create two linked services 

specifying the different service principal connection details on each. 

Another option that is commonly available is to utilize the Azure Data Factory 

Managed Service Identity (MSI), which is essentially a service principal that represents 

the Azure Data Factory instance. This can be a useful option as it allows you to grant 

permissions explicitly to your Data Factory, knowing that you are not inadvertently 

granting permission to a different service you were not aware of. Also, the MSI is 

managed by the Data Factory service, so you do not need to manage the credentials of 

the identity through key vault or any other method – you simply tell the linked service to 

authenticate using the MSI. Of course, you still must provide the MSI with permission 

onto the service you want to connect to, and you can locate the MSI application id by 

following the setup instructions later in this chapter.  

�Integration Runtimes
Underpinning all activity in Azure Data Factory is the integration runtime (IR). This is 

the scalable, cloud compute resource that actually does the heavy lifting when copying 

data from one place to another or routing jobs to the required external compute 

resources. In most cases, you can default to using the Azure Integration Runtime 

which leaves the provision of the compute resource up to Azure itself and requires no 

further thought on the part of the developer. When executing jobs in external compute 

resources, there is no need to scale the compute as the process is simply to route the 

job to the correct resource. However, when doing data movement, you may want to kick 

the compute up a notch in order to get the job running quickly. The number of data 

integration units and degree of parallelism can easily be configured in the settings of 

the Copy Data activity within your Data Factory pipeline. Examples of how to do this are 

later in the chapter.  
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�Self-Hosted Integration Runtime
When connecting to an on-premises data store, the connection must go via a Self-

Hosted Integration Runtime (SHIR), which is a special gateway that is configured on 

the machine you are connecting to. For clarification, an Azure Virtual Machine (VM) 

falls under the bracket of on-premises even though it is technically IaaS. The reason a 

Self-Hosted Integration Runtime is needed is primarily focused around security. The 

Azure Data Factory service is exposed through a set of public IP addresses, and therefore 

without the Integration Runtime, you would have to configure an inbound connection 

to your network, undermining many security best practices. The SHIR means that the 

Azure Data Factory service simply needs to post a request to the Integration Runtime 

queue, which is then responded to as an outgoing connection from the machine. 

This is now far more secure as no inbound traffic is required. When connecting to 

the on-premises server, you will need to create the standard username and password 

credentials and these should be stored in key vault to ease administration. 

There are some considerations to bear in mind when configuring the SHIR. The 

first is that only a single SHIR can be installed on a given machine; however, you do 

not need to install the SHIR on to the machine that holds the data. In the scenario that 

two Data Factories need to access the same dataset separately, you can create a second 

SHIR on a different machine in the same network and allow it access to the dataset. 

Consider that the second SHIR is further away from the data source and therefore may 

incur some degree of latency over the SHIR that is on the same machine as the data 

source. Alternatively, you can configure the sharing feature of the first SHIR so that it can 

be shared between Data Factories. Another point to consider is that a single SHIR can 

access multiple on-premises data sources, meaning that, in most cases, a single SHIR 

within your network is enough to cover off most scenarios. The recommendation from 

Microsoft is to install the SHIR on a separate VM than those that host the data source as 

this removes the risk of resource contention. In most implementations, a separate VM is 

created solely to support the SHIR.  

�Azure SSIS Integration Runtime
In some cases, there is a need to simply migrate existing SSIS packages from their on-

premises environment into the cloud. This enables the cloud first approach but can 

avoid the need to rebuild logic and processing steps that are perhaps well tested and 

mature already. In an ideal world, these packages would get rebuilt eventually using 
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pure Azure Data Factory components, but if time is of the essence, then this is certainly a 

worthwhile option. 

In response to this need, Data Factory has the ability to execute SSIS packages using 

its cloud-based architecture so that you get the PaaS benefit but can also reuse your 

existing code base if needed. In order to make use of this, you will need to create the 

Azure SSIS Integration Runtime (IR) and also maintain a separate Azure SQL Database 

that will host your SSIS DB Catalogue. When creating the Azure SSIS IR, Data Factory 

will create the SSIS DB Catalogue for you on the nominated database. When configuring 

the Azure SSIS IR, you can specify the node size and the node number which allows you 

to configure your scale up/scale out requirements. For example, to run large, compute 

heavy packages, then you should choose a large node size, and if you want to be able 

to run many of these in parallel, you should choose a large node number. Of course, if 

you want to run many small packages in parallel, then you can choose a small node size 

and a large node number. At later stages in the process, you will also be asked to specify 

connection strings for your SQL database and the degree of parallelism to use when 

running the packages. 

In order to deploy and run packages using Data Factory, you will need to create a 

connection to the Azure SQL Database that is running the SSIS DB Catalogue and deploy 

the SSIS project using the deployment wizard that can be accessed by right-clicking the 

project and choosing “Deploy Project….” 

Finally, to run and monitor the SSIS package execution, you can simply choose to 

execute using the SSMS dialog, passing in any parameters or settings for connection 

managers as needed. Once the package is running, the overall status can be monitored 

using the Azure Data Factory UI which can also report back the SSIS DB Operation ID to 

allow for a more detailed view to be surfaced using the SSMS execution report. 

As you can see, this method does allow a fairly painless adoption of a PaaS-based 

architecture while maintaining the same processes and tools that would be used were 

this to be running in an on-premises solution. It is worth remembering however that 

while this approach does allow for backward compatibility, the goal should be to make 

the move into the cloud a decisive one and rebuild the existing functionality using the 

native Data Factory tools. The result of this will be a drastic reduction in maintenance 

overheads as no SSIS IR or SSIS DB Catalogue is required, but also your developers will 

have a much fresher, cleaner development experience that thrives in a big data scenario 

where sources and sinks are widely distributed.  
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�Triggers
Triggers are the method by which pipelines are invoked and allow ADF to support a 

variety of types of automation. When developing a Data Factory pipeline, you can test 

the pipeline in debug mode which allows the pipeline to execute fully only on a debug 

cluster and does not require a publish action. You can monitor your pipeline from within 

the authoring UI and check the input and output of each activity as execution occurs. 

Additionally, any activities that are configured to run in parallel will be run sequentially 

so that you can easily step into any activity in the pipeline. An alternative to the debug 

method that can be used once the development process is completed is to publish the 

Data Factory definition to the service and trigger the pipeline from the UI, effectively 

testing the pipeline against runtime conditions. This is called a manual trigger and can 

be monitored not from the authoring UI but from the Azure Monitor UI. The reason 

for this is that ADF understands that this invocation is no longer just for testing and 

therefore fully logs the pipeline execution while also honoring the parallel configuration 

of activities. Once you are satisfied that development is complete and that appropriate 

testing has been completed using a manual invocation, automatic triggers can be 

established so that processing can occur at defined intervals or at acknowledgment of a 

specific event. The automatic triggers cater for a wide variety of automation options and 

fall under three categories which are listed here:

•	 Schedule triggers

•	 Tumbling window triggers

•	 Event triggers 

The first of these, the schedule trigger, will execute the specified pipeline based on 

a given recurrence and can be set to run on a regular interval based on minutes, hours, 

days, weeks, or months. The start time is the root of the schedule, and so it is important 

to set this correctly when building the trigger as the intervals that are defined are then 

based as an offset of that date and time. For example, to set a schedule that would 

run twice a day, you would set the interval to be “hours” and the recurrence to be 12. 

Assuming the trigger was started at 12:00, you would get two executions of your pipeline 

in a 24-hour window, once at midday and once at midnight. A common requirement 

however is to run pipelines multiple times in a day but not on a symmetric schedule like 

the preceding example but perhaps on a workday schedule such as at 08:00 and 17:00. To 

support this scenario, you would have to create two triggers, each set to run once a day, 

that start at the desired times. 
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The tumbling window trigger is maintained in Data Factory from version 1 and 

works in some ways similar to the schedule trigger but does have some key differences. 

To make use of this trigger, it is important to know at what intervals your source data 

is refreshed because the upshot of the tumbling window is that it will automatically 

create slices of data based on its configuration. For example, if you know that the source 

data is refreshed daily, then you can create a trigger that has an interval of daily and 

recurrence of one, and then Data Factory will create a daily slice of data for each day 

from the start date up to the current date. As soon as the next day comes around, and 

therefore the next slice of data, then Data Factory creates a new data slice and execute 

the Data Factory pipeline to process it. This type of processing can be really useful when 

loading historical data into a cloud data store as you often want to maintain some sort of 

date/time-based partitioning even though the data is historical. If you need data from 5 

years ago to be loaded and partitioned by day, then you simply set your start date to be 

5 years in the past, set the recurrence to be once daily, and then Data Factory will churn 

through each of those 1825 data slices sequentially. Furthermore, you can configure the 

concurrency of this type of execution to ensure the Data Factory does not consume too 

many resources while it runs. 

The issue with both of these types of triggers is that they do not understand what 

is going on in the source data, and so if the data is held up for any reason, they will still 

execute the pipeline and potentially process old data if the proper precautions have now 

been put in place. What is more, the triggers do not actually filter any source queries you 

may have configured in the dataset, so while Data Factory may know when the window 

of data you are interested in starts and ends, it does not actually enforce that onto the 

data source. This must be done by the developer by accessing the trigger properties 

using notation such as @trigger().outputs.windowStartTime and passing the dates/

times of that trigger into your query. 

To get around this, there is a final type of trigger which utilizes events to invoke the 

Data Factory rather than a clock. Events in this instance are constrained only to when 

blobs are created or deleted in a Blob Storage account, and while ideally this would be 

slightly less constrained, this method of invoking Data Factory does allow the process to 

be run once the source data is ready to be processed and not before. When configuring 

this type of trigger, you can optionally specify filters that ensure you are only listening for 

events created by blobs in a particular container or folder or alternatively blobs that have 

a certain name of extension.  
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�Datasets
With a linked service, you have a connection, but you now need to add a layer on top of 

that to implement logic that allows you to access specific tables, files, directories, and 

others. This layer is known as the dataset and you can specify as many of these as needed 

that utilize the linked service. A common usage of a dataset is to specify a specific folder 

location in a cloud data store that you may want to load data from or copy data to. At the 

time of data movement, the dataset is used to reference a specific file to copy or write to 

and passes its configuration via the linked service to the data store and either fetches the 

file or writes to the specific location. 

Further to this, datasets can be used to compress or decompress files after a 

Copy Data activity and even understand the metadata of the file so that it can be fully 

accessed by Data Factory. With this capability, you can configure the elements such as 

the file format, column delimiter, and row terminator to be used when reading the file 

and then specify different metadata to write the file using. With this capability, you can 

easily read text files from the raw source but then drop them into a cloud data store in an 

optimized format such as Parquet or Optimized Row Columnar (ORC). Conversely you 

could unzip a collection of files and either flatten their hierarchy to give you a single level 

of files in your copy destination or preserve the hierarchy to ensure consistency between 

your source and destination. A final option is the use of binary copy which removes the 

complexity of trying to read the file and simply copies the file as is into your destination. 

This is particularly useful if you want to copy totally unstructured data across your 

subscription. 

As this book is focused around data warehousing, I will make the assumption that 

the majority of loading done through Data Factory is with structured source files that 

are either in a raw text-based format such as CSV or already in an optimized format 

such as ORC or Parquet. Depending on which stage of your data processing pipeline 

you are building in Data Factory, you may wish to enforce a schema on your file to 

ensure consistency is maintained. Of course this is optional, as often when reading 

files from a source system, you may want to disregard the fact that some rows may not 

conform to your schema because ultimately you would rather have the data in a domain 

that is accessible to you as a developer. When creating schemas in Data Factory, you 

first need to input the schema for each dataset. This is where heavy parameterization 

of your datasets can become problematic as you will need to import the schema for 

each file it will read, but assuming a dataset aligns to a table, then this should be pretty 

simple. Data Factory even offers an “Import Schemas” option that reads the metadata 
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of your database and creates the schema for you. Once you have a schema for both 

your source and your sink, you can then provide those to the Copy Data activity. In the 

Copy Data activity configuration there is a “Mapping” tab which allows you to do just 

that – map each source column to a sink column. Here you can either choose to map an 

incoming column directly or utilize an expression to populate the sink column. Also you 

can remove a sink column if you do not wish to map a value to it.  

�Pipelines and Activities
Azure Data Factory Pipelines are the heart of engine. They define the routine of activities 

that are to be executed and can be roughly likened to the control flow concept in SQL 

Server Integration Services. Underneath the covers, every object in Data Factory is just 

a JSON definition that is interpreted by the service, and while both linked services and 

datasets are stand-alone objects, a pipeline definition contains multiple JSON objects 

called activities. In addition, the pipeline also holds the definition of any parameters 

and variables that may be utilized throughout the pipeline as part of an activity. Without 

pipelines, a Data Factory is really a collection of data source connections and pointers 

to specific locations within those sources. It is the pipelines that make sense of these 

connections and define how one source feeds data into another while also providing a 

parameter-driven interface so that these connections and pointers can be dynamic and 

reusable depending on the specific runtime environment. Additionally, pipelines allow 

for interconnectivity across the Data Factory by having the ability to pass parameters 

into subsequent pipelines and receive parameters from prior pipelines. We can go a 

level deeper, however, and reveal that pipelines are more of a canvas for you to distribute 

activities on, applying an operating scope for parameters and variables to interact 

within. Activities themselves can take many shapes and forms depending on the type of 

activity and what the activity is doing; these are examined in the next section.   

�Activity Types
Activities are highly specialized JSON objects and provide the ability to do just one 

action. If you want to use the Databricks activity, then you must specify which Notebook 

or Python job to execute as well as the cluster linked service. Alternatively, if you want 

to call a web service, then you must provide the web URL of the service, the header 

and body values, as well as any authentication parameters that are needed. For that 

Chapter 3  The Integration Engine



56

reason, it is worth the time and effort before development begins to plan and structure 

the activities you need in your pipeline so that you can define patterns upfront to avoid 

creating unnecessary activities that require further maintenance and understanding. 

Additionally, some activities execute compute jobs, some perform data movement, 

some run nested activities, while others implement control logic and looping. This huge 

amount of variety is what makes ADF so flexible but also requires prior thought to ensure 

the right activities are used. 

Broadly speaking, the activities within Data Factory can be bucketed up into four 

groups. These are

•	 External compute activities

•	 Internal copy activities

•	 Iteration and conditional activities

•	 Web activities 

�External Compute Activities
As previously mentioned, Azure Data Factory is heavily used to orchestrate external 

resources and can efficiently execute, monitor, and report the result of jobs being run 

outside of Data Factory. The activities that fall into this category include

•	 Custom: Scalable C# activities that are executed using Azure Batch compute.

•	 Databricks: Notebooks, Python Scripts, or compiled .jar files 

executed on a Databricks job cluster.

•	 Data Lake Analytics: Jobs written in U-SQL executed using the Data 

Lake Analytics service.

•	 HDInsight: Spark, Pig, MapReduce, and Hive job executed against an 

HDInsight cluster.

•	 Machine Learning: Execute machine learning tasks such as batch 

scoring against an Azure Machine Learning resource.

•	 Stored Procedure: Call a stored procedure on a linked SQL service. 

Be aware that this is a non-query execution and will not return a 

result set to Data Factory even if one is generated by the stored proc. 

Of course, you can pass parameters into the stored procedure which 

can even be derived by Data Factory parameters or variables. 
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For each of these resources, you would need to create a linked service to store the 

authentication and connection details; however, a dataset is not required as you are not 

referencing a dataset. An additional consideration with the external services is that of the 

timeout and retry policies. As these services are not directly controlled by Data Factory, 

there can be scenarios where the first attempt at the connection fails but the second will 

succeed, so be sure to specify a retry attempt number and interval.  

�Internal Activities
Probably one of the most used activities in Data Factory is the Copy Data activity. This 

is because it allows you to move data, at scale, from one disparate data store to another 

with very little complexity. To make use of this activity, you will need both a linked 

service and at least one dataset although assuming you are moving data from one place 

to another, you would have two for each. The nomenclature of the Copy Data activity 

describes the origin of your data as the “source” and the destination as the “sink,” and 

you can also specify configuration properties about the Copy Data activity such as

•	 The number of integration units to use (the scale of the job).

•	 The degree of parallelism to utilize.

•	 The fault tolerance setting: When you make use of the copy 

schemas, you can either set this to fail on first incompatible row, 

skip incompatible rows, or log and skip incompatible rows. Rows 

commonly fail if the data type is not supported by the .NET type 

system or if the source type is not compatible with the destination 

type; however, it can also conduct primary key validation. 

Another option in the internal activities is the Delete activity, allowing you to use a 

dataset to define files for deletion; again you can fully utilize parameters to make this 

highly dynamic. In this activity, you also have the option to log the deleted file names to 

a storage account. 

A relatively recent addition to these internal activities is that of data flows which 

allow for proper data transformation activities to be applied to your datasets. The data 

flows are authored and configured separately to the pipelines and can then be executed, 

monitored, and daisy chained just like any other activity in your pipeline. Under the 

covers, the information about how to perform the data transformation is packaged 

up and executed using Databricks clusters which allows for configurable scaling and 
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compute type selection. However, the management of the Databricks cluster abstracted 

from you, the developer, does not incur the need for an additional linked service. To give 

a flavor of some of the transformations that a data flow can perform, there are four main 

categories of transformation which are listed here with some examples included:

•	 Multiple inputs/outputs: Branching, joining, and lookups – break 

up datasets into multiple processing flows and look up data from 

sources using a lookup key

•	 Schema modifier: Derived columns, aggregations, windowing, 

and pivoting – transform the schema of the file by computing new 

columns or performing aggregations and grouping

•	 Row modifier: Select, filter, and sort data with the additional 

capability to apply updates, inserts, and deletes to individual rows in 

the dataset

•	 Destination: Add an output destination to land the transformed 

dataset into one of the supported sinks 

In addition to these transformations, data flow also supports options for allowing 

schema drift and validating that incoming data meets the specified schema before 

processing in the data flow to allow flexibility or enforce consistency depending on the 

scenario.  

�Iteration and Conditional Activities
One major piece of functionality that was missing from the first version of Azure Data 

Factory was the ability to implement some very common programming concepts such 

as looping and conditional logic. With version 2, we can now use activities that allow us 

to write these kinds of procedures into the control flow. The activities that fall into this 

bucket are

•	 Set and Append variable: Two separate activities that allow 

developers to create variables that exist with the scope of the pipeline 

and optionally append further values to an array variable. Note that 

parameters can be passed between pipelines, however variables 

cannot.
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•	 Execute Pipeline: Using this activity, parent and child pipelines can 

be created that allow for layers of logic to be built up rather than have 

single gargantuan pipelines. This also facilitates passing parameters 

into the executed pipeline and can be very easily called from within 

a loop. For example, iterate a list of file location and execute a copy 

pipeline for each one.

•	 Get Metadata: Returns a configurable list of metadata attributes 

about the target file or directory.

•	 Lookup: This is a useful activity that allows the developer to access 

a data store, retrieve values, and then assign them into variables or 

pass them into subsequent activities as parameters. Importantly 

this activity can be run against SQL datasets using queries or 

stored procedures but also cloud data stores such as Blob Storage 

meaning configuration metadata can be stored in JSON format and 

read in at runtime using the Lookup activity.

•	 Wait: Implements a delay in the pipeline of a specified interval.

•	 For Each Loop: This is one of the major developments in ADF V2 that 

allows developers to really make their pipelines more than just many 

repeated activities. You can pass an array of items into this activity 

and then execute a nested activity for each item in the array. What is 

more, you can access the items inside your array using the @item().

{arrayitem} notation, meaning you can very simply Lookup a list of 

files to process and then pass their locations into Copy Data activity 

nested within a For Each loop, accessing the file location as an 

attribute of the list on each iteration. Finally, this activity can be run 

either sequentially or in parallel. If parallel is chosen, then a batch 

limit can optionally be specified to control the amount of concurrent 

executions.

•	 If Condition: As described in the name, you can use the If Condition 

activity to assert conditional logic on your pipeline. By first writing 

an expression that evaluates to either true or false, you then nest 

the various activities to be called in each scenario. Be aware that 

the subsequent activities do have to be nested within the activity 
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definition, so the best practice when having many activities following 

an If Condition is to utilize an Execute Pipeline activity based on the 

output of the expression. Additionally, there is a restriction on the 

activities you can call when you are working within a nested activity 

already. For example, you cannot call another If Condition, For Each 

loop, or Until Loop when you are defined the set of actions to be 

nested within one of these activities. The reason is to prevent infinite 

looping that can occur when nested activities continually call further 

nested activities.

•	 Until Loop: This loop executes the nested activities until the 

specified expression evaluates to true. Here the developer could 

utilize variables to control the number of iterations from within Data 

Factory or make use of the Lookup activity and parameters to control 

the iteration from outside of Data Factory. 

With the exception of the Lookup and Get Metadata activities, none of these 

activities require datasets or linked services as they execute internally to Data Factory, 

but they may require a good working knowledge of the expression builder as many of 

these require the ability to access array items using expressions or determine a valid 

Boolean result using an expression.  

�Web Activities
The final category of activities are the web activities, and the reason for these being 

separate and not considered as external compute is that these are not for heavy lifting of 

data. These are designed to be “chatty” rather than chunky and are great for facilitating 

lightweight messaging and alike. In truth, they are simply a way to call a REST API, so 

they are generally very flexible, but any large-scale data processing that needs to use 

C# or another programming language should be written using Azure Batch and the 

custom activity. The Web activity can make generic HTTP calls to any web service when 

provided with a URL and the required headers, body, and authentication, while an Azure 

Function does essentially the same but means that you can simply create the linked 

service and then call the function by name, rather than having to specify the full URL.  
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�Output Constraints
It is worth making the point that all Data Factory activities will report on their 

completion status, and so if an activity does fail, you can create a separate branch of your 

pipeline that handles the failure in the appropriate way. Further to this, you can create 

multiple output constraints on any given activity that allow for several branches to be 

created depending on the job’s outcome. The possible configurations for these output 

constraints are

•	 Success: Execute subsequent activities only if the job succeeds

•	 Failure: Execute subsequent activities only if the job fails

•	 Completion: Execute subsequent activities whether the job fails or 

succeeds but is run

•	 Skipped: Execute subsequent activities even if this activity is skipped 

At this time, the output constraints are AND only, meaning that all constraints must 

be met in order to execute the subsequent activity. This is not generally an issue but 

does make handling errors perhaps slightly more cumbersome than it needs to be. The 

approach for any pipeline should be a standard error handling routine that logs the 

error and alerts an individual at the very least. Once a routine has been built, this can 

be hooked into each one of your activities so that they can all benefit from this method; 

however, if you use multiple failure outputs, then all of the connected activates MUST 

fail in order to execute your error handling process. Unfortunately, the best alternative 

is to abstract the logic into a separate pipeline and connect an “Execute Pipeline” task to 

every activity that you want to handle errors for.   

�Implementing Azure Data Factory
With any technology decision, there should always be a discussion beyond the 

theoretical benefits of using a given tool. This discussion should look at the real-world 

usage of the item in question and examine it through a number of lenses, for example, 

security, developer productivity, and source control. This next section unpacks these 

topics to offer assurances about how Azure Data Factory can be used in the real world by 

real developers. 
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�Security in Azure Data Factory
The essential feature of Azure Data Factory is being able to connect up to a wide variety 

of data sources and either read data from them or write data into them. Of course 

nearly all of these sources have some form of security in place, and, depending on 

the number of sources, there is a high likelihood that you will need to store a good 

number of credentials. As discussed earlier in this chapter, best practice dictates 

that any credentials are stored in key vault and referenced with your linked service 

definition. This means that the security of these sources is transparent to ADF and allows 

for administrators to update passwords and details without making any changes to 

ADF. Often credentials are not only usernames and passwords but may also be service 

principal details, which are Azure service accounts used for interacting with Azure native 

services, and this too can be configured as an option on your linked service. Using either 

of these options means that Data Factory will execute as the given service principal or 

user when interacting with a connected service.  

�Using the Managed Service Identity
An alternative option for authentication in Azure Data Factory is to use the managed 

service identity (MSI), which is essentially a service principal that represents the Data 

Factory instance. All Azure Data Factories are created with an MSI and the details of 

this can be collected from the Azure portal. Providing these details are then granted the 

appropriate permissions, you will be able to utilize the MSI when running Data Factory 

jobs by choosing the “Managed Service Identity” options when configuring the linked 

service. To locate the MSI details, you can follow these steps:

	 1.	 Navigate to the Azure Data Factory resource from within the Azure 

portal – you cannot use the Azure Data Factory UI for this guide.

	 2.	 Choose “Properties” and locate the “Service Identity Application 

ID.” You can copy this ID and configure permissions for it as you 

would a usual service principal.

	 3.	 Navigate to your data lake and grant permissions to access the 

data needed for the Service Identity Application ID.

	 4.	 Once you have set the appropriate permissions, then you can 

choose the “Managed Identity” option in the “Authentication 

type” drop-down.  
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�Source Control of Azure Data Factory
As with any ETL tool that is used in a production system, source control is crucial. In 

Data Factories’ formative years, there was no integrated source control and the only 

option was to store the JSON definition files in a source-controlled folder. This meant 

that developers had to go through several manual steps in order to protect their work 

and remember to do those steps in the first place! Nowadays, Data Factory can be 

integrated directly into a Git repository hosted either on GitHub or within an Azure 

DevOps workspace, thus ensuring changes are automatically detected and committed 

when working in the Azure Data Factory UI. By default, the Data Factory instance will 

not be connected to source control of course, and therefore changes are made to the 

single Data Factory version. If left unchanged, changes can easily be overwritten and 

lost as there is no option for branching or merging. When specifying your source control 

option, you can define the account and project to associate your ADF instance to and 

then easily choose from any branch in the repo to begin updating. What you will notice 

when working in this way is that you can save and run your Data Factory in debug mode; 

however, you will need to create a pull request in order to publish code back to the 

master Data Factory instance and trigger the process in a non-debug way.  

�Templates
Templates allow developers to define a pipeline and then save it into the template 

repository. For this feature to work, your Data Factory instance must be connected to 

a source control option. Once created, all developers can benefit from the templates 

by pulling the definition into their workspace, thereby removing the need to create any 

objects that might be considered standard throughout the solution.  

�Solution Structure
When creating a Data Factory solution, indeed any ETL solution, the structure is very 

important as this dictates how the objects are organized. A well-defined and logical 

structure here ensures that even as your Data Factory instance grows, the essential items 

are no more difficult to find. To maintain a good solution structure, the following points 

should be considered:

Chapter 3  The Integration Engine



64

•	 Use folders: Folders allow you to group similar objects together 

within the scope of pipelines, datasets, and data flows. As Data 

Factory often deals with source systems, it is good practice to create 

a folder for each source system and place the relevant objects within 

it. Additionally, if some pipelines deal with ingestion from source and 

some deal with data cleaning, then a hierarchy of folders can be used 

to further partition the objects.

•	 Use a clear naming convention: A strong and consistent naming 

convention means that items are easily identified without developers 

having to review any code to understand what the object is for. 

Source system names, source and sink references, pipeline purpose, 

and others are all useful attributes to highlight in the object name.

•	 Use templates: Templates ensure that developers can easily pick 

from agreed patterns when building a Data Factory, therefore 

increasing efficiency standardization. This is particularly useful when 

addressing common requirements such as logging mechanisms.   

�Getting Started with Azure Data Factory
In order to create the Azure Data Factory V2 resource, you will need access to an 

Azure subscription and resource group with contributor or owner access. With these 

permissions in place you can use the “Add” button within the resource group and search 

for “Data Factory” to create the resource. Once you have this, you can start to work 

through the subsequent configuration steps to perform an initial Copy Data activity. The 

following steps provide a basic starting point from which to further develop your use of 

Data Factory. The first piece of configuration to prepare is that of the linked service. In 

the example here, we will be performing a common data movement task that is required 

in almost all data warehousing scenarios by copying a file from a cloud data store into an 

Azure SQL Database, and to complete this action, we will need two linked services, one 

for the data store and one for Azure SQL Database. 
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�Create Linked Services
The following steps will explain how to create a linked service in Azure Data Factory. 

This particular walk-through will use Azure Data Lake Gen 2 as the source connection 

but will also make use of a key vault linked service to ensure security best practice.

	 1.	 Navigate to the resource group containing your resources and 

click add in the top left corner. Search for “key vault” and choose 

the “Azure Key Vault” resource. Navigate through the wizard and 

use the form to supply a name, region, and pricing tier (standard 

is all that is needed here). Figure 3-1 shows a completed form.

Figure 3-1.  A completed form to create an Azure Key Vault
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	 2.	 Click “Next: Access Policy” and click “Add access policy.” Use 

the form to choose the “Secret Management” access policy 

template. By clicking the “Select principal” field, a new blade 

will appear on the right where you can select which principal 

is attached to this access policy. Type the name of your Data 

Factory and this will automatically select the Managed Service 

Identity. See Figure 3-2.

Figure 3-2.  Adding an access policy for the Data Factory managed identity
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	 3.	 Once selected, click “Add” to get back to the main key vault wizard 

shown in Figure 3-3.

	 4.	 Click “Review + create” to complete the setup and validate the 

deployment by opening the resource once finished.

	 5.	 To create the linked services, navigate to the Data Factory resource 

and click the “Author & Monitor” button. This will open the Azure 

Data Factory UI. Figure 3-4 highlights this button. 

Figure 3-3.  Access policies created for the key vault

Figure 3-4.  The Author & Monitor button
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Tip  Use the link https://adf.azure.com to navigate straight to the Data 
Factory UI

 	 6.	 In the bottom left corner, you can choose “Connections” and click 

“New” in the connections pane. Figure 3-5 shows the Data Factory 

UI and points out the key elements.

Figure 3-5.  The key elements of the Data Factory UI
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  	 7.	 From the menu, choose “Azure Key Vault.” Using the form that 

pops up, supply a name and choose the key vault resource as 

shown in Figure 3-6. 

Now that you have the key linked service, you can utilize this with all other linked 

services.

	 8.	 Add a new connection, and from the menu that opens on the 

right, select “Azure Data Lake Storage Gen2” and hit “Continue.” 

See Figure 3-7 for an example.

Figure 3-6.  Creating the key vault linked service in Data Factory
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	 9.	 Here you can now provide the following:

•	 Name and description: Use a name and aim to conform to a 

standard naming convention like the one included in Chapter 1, 

“The Rise of the Modern Data Warehouse”.

•	 Integration runtime: You can use the Azure IR by default as this 

leaves the resource negotiation to the Azure platform.

•	 Authentication method: There are a few options here to choose 

from. The first being Account key which allows you to simply 

specify the key for your Blob Storage account. Other methods 

include using a service principal or using the ADF MSI as 

mentioned previously.

Figure 3-7.  Choosing the Azure Data Lake Storage Gen2 option for a linked service
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•	 For the Account selection method, choose “Enter manually” and 

then select “Azure Key Vault.” You can now choose your key vault 

linked service and specify the secret name. Leave the Secret version 

field blank to ensure the latest version of the secret is always fetched.

•	 Finally, test the connection and ensure you have successfully set 

up the linked service via key vault as per Figure 3-8.

Figure 3-8.  A completed Azure Data Lake Gen2 linked service, utilizing key vault secret
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	 10.	 Once you have navigated back to the main linked services pane, 

click “New” again to begin setting up the Azure SQL Database 

Linked Service.

	 11.	 From the list that opens on the right, choose “Azure SQL 

Database” and supply the name, subscription, server name, and 

database name to the linked service.

	 12.	 You can now choose the type of SQL authentication. For 

simplicity, we can use SQL authentication and you should only 

need to supply the username and password.

	 13.	 Again, test the connection and ensure the linked service is set up 

correctly.  

�Creating Datasets
Now that we have the base level connection, we can configure datasets to operate these 

connections as desired, and in this scenario, we will need to create a dataset for the Data 

Lake Gen 2 and the Azure SQL Database.

	 1.	 Hovering over the dataset folder header, you can see the ellipses 

button become visible. Open this menu and choose “New dataset” 

as shown in Figure 3-9.

Figure 3-9.  Creating a new dataset in Data Factory
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	 2.	 Choose “Azure Data Lake Storage Gen2” and then “DelimitedText.” 

Click “Continue” to navigate to the next form. Figure 3-10 shows 

the selection of data lake storage and delimited text.

	 3.	 Supply a name and choose your existing Data Lake Gen 2 linked 

service in the “Linked service” drop-down and then enter the 

following details:

FilePath: File system = “datalake”, Folder = “RAW”,  

File = “DemoSales.csv”. See Figure 3-11 for an example.

Figure 3-10.  Choosing a delimited text option for Azure Data Lake Storage Gen2
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	 4.	 Tick the “First row as header” box to ensure the column names 

are removed from the data. Also, set the Import schema option to 

None for the time being.

	 5.	 Click “Continue” and you will see your new dataset appear on the 

left of the authoring view. Select the “Connection” tab and review 

the settings, noting the different parameters that can be supplied 

to help ADF read your file.

	 6.	 To create the second dataset for your SQL database, you can 

follow the same logical steps as before, only instead of choosing 

Data Lake Gen 2, you should choose Azure SQL Database.

	 7.	 Once chosen, you will be prompted for a name and a linked 

service and can then choose a table from the database to be 

attached to the dataset. 

�Creating Pipelines
Finally, we can use the pipeline to execute a set of activities that utilize the datasets and 

linked services that have been previously created:

Figure 3-11.  Entering the directory details for Data Lake Gen 2 dataset
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	 1.	 Hover over the Pipelines header and open the ellipsis menu, 

choosing “Add Pipeline” from the list of options as shown in 

Figure 3-12.

	 2.	 In the “Activities” tool bar on the right, expand the “Move & 

transform” node and drag the “Copy Data” activity onto the design 

surface. Provide a name to the activity. See Figure 3-13 for an 

example.

Figure 3-12.  Creating a new pipeline

Figure 3-13.  An example of a copy data activity
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	 3.	 Move to the “Source” tab. Here you can choose your Azure Data 

Lake Gen 2 dataset. Note the tick box “Recursively” which allows 

you to specify a folder to the dataset and allow Data Factory to 

copy each file as it navigates through the subfolders. Further 

to this, you can specify wildcard folder paths and file names to 

enable maximum flexibility and efficiency when reading data.

Figure 3-14 shows the configuration for this dataset.

	 4.	 Move to the “Sink” tab and choose the SQL Database dataset 

previously created. Depending on the sink you use, there are 

different options available here, and as we have a SQL sink, we can 

use the table name specified in the dataset definition or supply 

a stored proc name. To use the table name, simply leave the 

configuration as their default values. Doing so allows for maximum 

copy throughput as the data movement is done in Bulk mode and 

minimally logged. Selecting the Stored Proc option means you 

could process the data into the target table using a merge/upsert 

proc applying custom logic as required; however, this is then 

performed as a transacted operation and is much less efficient. 

Additionally, the pre-copy script could be used to truncate data or 

other cleanup activities prior to the Copy Data activity starting.

Figure 3-14.  Setting the source dataset property for the Copy Data activity
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Figure 3-15 shows the configuration for this activity.

	 5.	 You now have a configured pipeline that can copy data between 

two systems and you can optionally debug the pipeline in place, 

which will execute the process on a debug cluster and allow you to 

watch the activities progress or trigger the pipeline manually and 

observe the pipeline execution through the monitor window. 

The JSON definition of all of these objects can be found alongside all of the other 

artifacts at the following GitHub repo: https://github.com/MattTheHow/Modern-Data-

Warehouse-In-Azure  

Figure 3-15.  Configuring the sink dataset for the copy data activity
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�Debugging Your Pipelines
An essential part of any programming scenario is the ability to easily debug the activities 

and methods that are being executed by the service. Azure Data Factory offers the ability 

to debug your pipelines from the author window using the “Debug” button. Rather 

than needing to save and publish your changes to the service, you can simply execute 

the pipeline in debug mode and the Data Factory service deploys the configuration to a 

debug environment for execution. When in debug mode, the developer is free to make 

use of break points to pause execution but can also closely monitor the state and values 

of variables and parameters by using the “Output” tab in the pipeline editor. This makes 

tracking the lineage of data very easy as each activity will show as a row in the output 

window with its inputs and outputs available through the UI so you can clearly see 

what the activity is passing across into subsequent activities. Additionally, each activity 

will report back any errors that may have occurred throughout the execution. A key 

difference between the debugging and fully triggering a pipeline is that any activities that 

were configured to run in parallel will now be run sequentially. This is so that they can 

easily be analyzed one by one, but bear this in mind when debugging, as many activities 

that would usually run in parallel will now take much longer to execute.  

�Monitoring Your Pipelines
In debug mode, the pipeline only executes in the debug environment and is not logged 

through the main monitoring UI. The monitoring UI only shows data for pipelines 

that have either been manually triggered or invoked by a trigger created through the 

“Triggers” panel. Inside the monitoring portal, each pipeline is represented as a row in 

the table which can be filtered by the final status of the pipeline and also the execution 

start date. From this view, you can see some useful metrics such as the start time, 

duration, and resulting status of the pipeline, and you can also access the parameters 

that were specified at the time of pipeline invocation as well as any errors that occur 

within the pipeline. As each pipeline is a collection of activities, you can use the [ ] 

button to retrieve the detail of each activity that was executed as part of the pipeline. 

In the activity view, you see a similar table as that in the debug mode, therefore giving 

access to inputs, outputs, and errors. Additionally, you can rerun the entire pipeline 

from this view or choose a specific activity to rerun the pipeline from. This means that 

lengthy pipelines are much easier to fix and maintain. See Figure 3-16 pointing out the 

aforementioned features.
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In this view, the parameters dialog can be expanded and the parameter values 

shown can be added to the main monitor view above by clicking “Add column,” as 

demonstrated in Figure 3-17.

Finally, there is also a dashboard view that uses log analytics data to show the 

number of successful pipelines, activities, and trigger runs in the last 24 hours although 

the time period is configurable. 

�Parameter-Driven Pipelines
In almost all data integration scenarios, there is a high level of repeatable code and 

reusable connections, and the role of a good data integration engine is to allow the 

developer to efficiently manage these common elements so that the resulting code is 

clean, easy to maintain, and efficient. Azure Data Factory uses parameters and variables 

to enable these concepts in much the same way that SSIS did before. A definition of the 

difference between an ADF variable and a parameter is the following. 

Figure 3-16.  An example of Data Factory monitor view

Figure 3-17.  Adding input parameters to the monitor view
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A variable is scoped to a single pipeline and can only be assigned to, and read 

from, using activities within that pipeline. There are specific activities available to set a 

variables’ value and to append elements to it if it were an array. 

A parameter is defined within the pipeline but can accept values when the pipeline 

is invoked whether that be from an “Execute Pipeline” activity or via a totally separate 

calling service such as a trigger, PowerShell, or an Azure Function. 

When operating within a pipeline, a variable and a parameter are very similar. Either 

can be assigned to almost every aspect of the Data Factory’s configuration, whether 

that be an attribute of the pipeline or even a dataset or linked service. A common 

use is to configure the specific file or location that the dataset refers to at runtime by 

either passing in the directory path when it is called or deriving the value by using an 

expression (such as if you were to need today’s date as part of the file path). To use an 

example, we could create datasets that are at a 1:1 ratio to linked services where the 

linked service expresses the connection and the dataset is parameterized to the point 

that it can access every conceivable location within the linked service that stores the 

data. A common problem with this level of parameterization is that of varying file 

formats; however, when authoring an object in Data Factory, you will often see the 

“Add dynamic content [Alt+P]” button that allows you to dynamically supply the value 

associated to that attribute either through expressions or direct parameter and variable 

values. All of those common attributes for reading files, such as column delimiters and 

row terminators, are able to be defined as parameters and variables and assigned to 

when the pipeline is invoked or “looked up” from a metadata store. Later in this book, we 

will utilize a metadata-driven approach to allow us to make full use of these parameters 

to define the reading attributes for each file at runtime. 

�Getting Started with Parameters
Extending on the previous guide, we can now utilize parameters to make the process 

more flexible. To achieve this, you should follow these steps:

	 1.	 Create a new pipeline and name it something similar to your 

original pipeline but with some text that distinguishes it as a 

parameter-driven pipeline.

	 2.	 Navigate to the parameter tab and click “New.” You will now be 

able to create the following three parameters:
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	 a.	 SchemaName

	 b.	 TableName

	 c.	 FileName

	 3.	 Now create replicas of your original datasets; only rename them to 

denote them as parameter driven. 

Tip  Use the “Clone” feature to quickly recreate your existing datasets and pipelines.

	 4.	 Once you have created both of the new datasets, navigate to the 

SQL database dataset and choose the “Parameters” tab. Here you 

create the TableName and SchemaName parameters.

It may seem confusing to have to create these parameters twice; 

however, they are needed for two different objects. The pipeline 

needs them so that they can be passed in from the service that 

invokes the pipeline and the dataset needs them so that the values 

can be passed in from the pipeline and then applied to the dataset.

  	 5.	  Now navigate to the data lake dataset and create a TableName 

parameter.

  	 6.	  Once you have these parameters created, you can navigate to the 

connection tab for each dataset and specify the connection to use your 

parameter values instead of the hard-coded ones provided before.

	 a.	 For the SQL dataset, check the “Edit” box and click the first empty 

text field. Hit Alt+P to enter edit mode and then you should see 

a “SchemaName” parameter available at the bottom of the “Add 

Dynamic Content” pane. You can repeat this process for the 

TableName parameter.

	 b.	 For the data lake dataset, click the third box under the “File path” 

header and use Alt+P to enter the dynamic content window. You 

can then supply the “FileName” parameter to this dataset.

  	 7.	   If you now save and debug your pipeline, you will notice that you 

are prompted to provide values for your three parameters. This is 

because they are defined on the pipeline. 
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All of the code for this guide can be found using the following GitHub link: https://

github.com/MattTheHow/Modern-Data-Warehouse-In-Azure 

In the next guide, we will extend this further by looking up the parameter values from 

the control database, thereby replicating the movement of metadata throughout the 

ETL system.  

�Using the Lookup Activity
The Lookup activity in Azure Data Factory allows for the developer to call out to a remote 

service and retrieve some values to be utilized later in the data processing pipeline. 

Most of the data store connections can be used as a lookup source, but some common 

examples include

•	 Cosmos DB: JSON data stored in a document database

•	 Azure SQL Database: Structured tabular data accessed with a query

•	 File system: JSON files stored locally or on a remote VM

•	 Blob Storage/data lake: Files stored in cloud storage

•	 HTTP: Web endpoints

•	 Third-party sources: Salesforce, ServiceNow, Jira, and others 

To utilize the lookup, you simply need a dataset that is associated to a linked service 

for the given source of data, and then this can be referenced in the Lookup activity 

configuration pane. There is a limitation on the amount of data returned by the Lookup 

activity which is 5000 rows or 2 MB depending on the source. However, whatever the 

source, the data arrives back at Data Factory in JSON format, so in order to access a  

value in the first item of the array (or the first row), you can use the following syntax:  

@activity('Lookup').output.value[0].AttributeName 

Using this expression, you can assign a given value to a parameter or a variable or 

even assign the entire set of rows to an array so that it can be used at any point in the 

pipeline. 

To explore some examples, a Lookup activity can be particularly useful when 

implementing logging in your data processing. If we create a stored proc in an Azure SQL 

Database that logs a record for each run of an ADF pipeline and returns the unique id of 

that record after creating the row, then we can call this stored procedure from the Lookup 

activity. The stored procedure code may look something like the code shown in Listing 3-1.
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Listing 3-1.  A stored procedure used to log a pipeline run and return the unique id

CREATE PROC logging.logPipelineRun (

    @pipelineName VARCHAR(50) NOT NULL

)

BEGIN

    INSERT INTO logging.PipelineRun

    VALUES (@pipelineName, GETDATE())

    SELECT @@Identity AS loadId

END 

To use this proc in conjunction with the Lookup activity, we can create a linked 

service and dataset that reference that proc. When you configure the lookup, you just 

need to select the dataset from the drop-down. If you created a parameter in the pipeline 

called loadId, then you easily assign the unique id of the pipeline run returned by the 

SQL proc by using the following expression:

@activity('Lookup').output.value.loadId 

Additionally, because we know that our proc returns only a single value, we can 

check the “Return first row only” box that signals to Data Factory that it will be a single 

record or scalar value returned and not an array. Once the value of the loadId is stored in 

a parameter, you can pass that into any child executions or even pass that load id back to 

the SQL source when the pipeline completes to log whether the pipeline was successful 

or not. As you can see, using this method allows lightweight pieces of data to be traded 

between sources and Data Factory to enable logging or other granular transactions. 

An alternative scenario is using the Lookup activity to retrieve an array of values, such 

as a list of tables to load or files to process. These can then be passed into a For Each 

Loop activity, executing a child pipeline for each file or proc in the array in parallel. Once 

you are operating inside of the array, you could pass each file location or proc name into 

a single dataset that is parameterized to receive an input. Of course you could use both 

approaches in parallel by fetching a load id at the top of the pipeline and passing that 

into each child pipeline so that the child executions are logged against the parent. 

We will go into more depth about these scenarios later in Chapter 7, “Logging, 

Auditing, and Resilience.”  
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�Getting Started with the Lookup Activity
This guide will extend the previous guide to utilize the Lookup activity to fetch the 

required values from a control database:

	 1.	 Create a new pipeline – this could be a clone of your parameter-

driven pipeline – and specify its new name.

	 2.	 For this guide, we will only need to change the pipeline definition 

and not the datasets or linked services.

	 3.	 Add a new “Lookup” activity to the pipeline which is located 

under the general node of the activities menu. Give the activity a 

sensible name.

	 4.	 From this new activity, you can now create a new linked service and 

dataset that is linked to the Demo Control Db. This database can be 

created using the script located using this link: https://github.

com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/

SQL/Control%20Database/Scripts/CreateDatabase.sql. Once 

created, use the “Settings” tab of the new Lookup activity, you can 

optionally choose a Table, Query, or Stored Procedure. By choosing 

“Stored Procedure,” you can see the Guide.ObtainSampleValues 

proc that should be used here. You can leave “First row only” ticked.

Now that we have the Lookup activity, we can plumb the returned 

values into the subsequent Copy Data activity. In order to access the 

returned values from the Lookup activity, you should use the syntax: 

@activity('Lookup Metadata').output. This snippet can also be 

acquired by using Alt + P to open the dynamic content window and 

choosing the appropriate value under the “Activity Outputs” section. 

This snippet only gets you some of the way; however, you still need 

to specify the required attribute from the output object. Because 

the “First row only” option was left ticked, the object immediately 

beneath the output object is named “firstRow.” Inside the firstRow 

object are the named attributes returned by the SQL database, using 

the column names, and so if we are to obtain the file name value, we 

would extend the preceding snippet to resemble the following:  

@activity('Lookup Metadata').output.firstRow.FileName.
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	 5.	 In order to complete the pipeline, you should replace the 

FileName, TableName, and SchemaName parameter placeholders 

with the following values:

	 a.	 FileName: @activity(‘Lookup Metadata’).output.firstRow.FileName

	 b.	 TableName: @activity(‘Lookup Metadata’).output.firstRow.TableName

	 c.	 SchemaName: @activity(‘Lookup Metadata’).output.firstRow.SchemaName

	 6.	 Finally, you can debug your pipeline to see how Data Factory 

retrieves the data from the SQL database and passes the values 

into the Copy Data activity.

�Additional Azure Data Factory Elements
This section advances on the essential elements of Azure Data Factory and discusses 

some of the additional concepts that can influence design choice and developer practice. 

�Additional Invocation Methods
In addition to the manual and automated triggers mentioned previously, you can also 

create a new execution of the pipeline using either PowerShell or the REST API. A 

PowerShell execution of Data Factory means that ADF pipelines can easily be scripted 

and gives developers a flexible method of calling pipelines based on events and 

processes outside of Data Factory. For example, if you wanted to do a one off copy of 100 

sequentially incremented files from a folder into a SQL server instance, you could easily 

create a loop within PowerShell and invoke a single pipeline containing a Copy Data 

activity on each iteration of the loop. The alternative, using an ADF-only approach, 

would mean creating an exterior pipeline to look up the 100 tables to process and then 

creating several activities to increment variables and execute interior pipelines. For a 

one-off exercise, this is perhaps a little excessive, although this depends on how familiar 

you are with PowerShell. Additionally, many database professionals use PowerShell 

to automate any number of menial administration tasks, and given that ADF can be 

triggered from PowerShell, they can now trigger Data Factory pipelines at appropriate 

times in their scripts – for example, after a backup/restore. 
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Listing 3-2 gives an example of how to call a Data Factory pipeline using PowerShell.

Listing 3-2.  Invoking Data Factory pipelines using PowerShell

$paramObj = @{

    InstanceName = "MDWA-Instance"

}

Invoke-AzDataFactoryV2Pipeline `

    -DataFactoryName "mdwa-datafactory" `

    -PipelineName "Pause Synapse Analytics" `

    -ResourceGroupName "moderndw" `

    -Parameter $paramObj 

As mentioned before, pipelines can accept parameters, and so when invoking 

pipelines from PowerShell, you can declare a parameter object containing each value 

and pass that into ADF. This method is shown in the preceding code listing, passing in 

the parameter name “InstanceName” with the value “MDWA-Instance.” 

Another invocation approach outside of Azure Data Factory is to use Azure 

Functions. Azure Functions are serverless pieces of C# code that allow developers 

to hook into HTTP events and triggers without having to go through the lengthy 

configuration process of servers. When coupled with Azure Data Factory, they act 

as an extension to the already existing trigger schedule option. Currently, the trigger 

schedule option only listens to events arising from Blob Storage; however, Azure 

Functions provide a much broader interface and, once triggered, can call the Azure 

Data Factory invocation API so that essentially your Data Factory can be invoked from 

a much wider variety of sources. A similar approach in terms of execution is to use 

Azure Logic Apps; however, this approach allows for a no code solution to much the 

same problem. Logic Apps are heavily integrated across Azure and beyond, having 

many useful third-party triggers straight out of the box, and also have the ability to call 

Data Factory with a simple activity. 

All of the preceding invocation methods extend the ability to integrate Data Factory 

with existing or new processes that are not accessible to Data Factory out the box.  
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�Mapping Data Flows
Azure Data Factory Mapping Data Flows provide a graphical interface to enable detailed 

data manipulation in a step-by-step, left-to-right format. Without this feature, you could 

copy data and transform its storage format, but any actual manipulation would have to 

be performed within an external compute service. Passing data around external services 

requires a degree of orchestration to ensure the jobs are executed correctly and that 

the outputs are then properly passed further down the pipeline. With Mapping Data 

Flows, this process can be built directly into the pipeline so that debugging becomes 

much more seamless and external compute resources are not required. In fact, the 

computation itself occurs on a Databricks cluster that is managed by the Data Factory 

service, and there is no need for the developer to configure or understand any aspect of 

Databricks. However, the developer should be familiar with the idea of ETL vs. ELT as 

Mapping Data Flows mean that data can actually be transformed in flight akin to tools 

such as SQL Server Integration Services. 

An advantage of Mapping Data Flows is that they have some useful options for 

analyzing the source data before it progresses into the flow itself. Primarily the developer 

can choose to “Allow schema Drift,” meaning that data will always be accepted into 

the data flow and passed through to the sink. This is very useful when the source data 

changes frequently. Alternatively, Mapping Data Flows can validate the schema of the 

source data and fail if any columns do not match what is set out in the dataset. These 

options mean that the developer can cater for a much wider array of scenarios with 

a minimum degree of effort. In any data integration process, there will always be an 

element of schema drift, and while sometimes it is best to reject this, there are definitely 

times when it is preferable to capture the data as it arrives and handle the schema 

changes later in the pipeline. Alternatively, this could be used to raise a detailed alert to a 

developer that schema drift has occurred. Even if it does not progress further through the 

pipeline, being able to capture the data in its new schema rather than it being rejected 

with an error is likely to be a better solution. 

The transformations that are available closely resemble those that were available 

through SSIS and fall into several categories which are

•	 Multiple Inputs and Outputs

•	 Schema Modifier

•	 Row Modifier 

Chapter 3  The Integration Engine



88

�Multiple Inputs and Outputs

This collection of transformations allows for data to be joined, split, unioned, and looked 

up. It is good to point here that the lookup transformation is not the same as the Lookup 

activity in the Data Factory pipeline editor. Rather than returning single values or an 

array that can be used in processing, this uses a column value to join to another table 

and retrieve an associated value, such as providing a business key to a dimension table 

to retrieve its surrogate key. 

�Schema Modifier

This collection of transformations provides the ability to modify the actual shape 

of the data that is passing through the data flow. This includes activities such as 

derived columns to create additional columns using calculated values or expressions, 

aggregations to summarize data, and also pivoting, windowing, and the ability to create 

surrogate keys. In particular the ability to summarize data within the data flow and apply 

surrogate keys can be very useful in a warehousing scenario as this means that logic can 

be removed from being implemented with stored procs in the SQL engine and placed in 

the Data Factory. While this approach may not be ideal in all scenarios, it does provide 

the ability to implement these concepts in a low or no-code fashion.  

�Row Modifier

The final collection of transformations provides the ability to change the number of rows 

that flow through the data flow. This implements filtering, sorting, and exists concepts as 

well as selecting a set of columns to be passed through to the next transformation step. 

Additionally, this set of transformations contains the “Alter Row” transform which allows 

the developer to specify one to many Boolean expressions that when evaluating to true can 

execute different activities for each row of the dataset. These can be one of the following:

•	 Update

•	 Insert

•	 Delete

•	 Upsert 

These activities can only operate on databases sinks (destinations), and each type of 

activity must be explicitly enabled on the sink itself.   
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�Execute Mapping Data Flows
To use a Mapping Data Flow as part of your pipeline, you simply choose the activity from 

the “Move & transform” segment of the activity list. Here you can configure the activity 

name, the data flow name, and the runtime to utilize for the execution. Additionally, you 

can specify the compute type and core count of the Databricks cluster that will execute 

the data flow through the settings tab of the activity. Figure 3-18 shows how the pipeline 

can be configured to invoke a Mapping Data Flow. 

Figure 3-18.  Using the Mapping Data Flow activity to invoke a Mapping  
Data Flow
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The following steps walk through how to configure a simple Mapping Data Flow 

process that performs some basic ETL steps.

	 1.	 Hover over the Data Flows node and click the ellipsis, choose “Add 

Data Flow,” and this will take you into the Mapping Data Flow UI 

where you can begin creating your Data Flow. In order to avoid 

waiting later on, switch the “Data flow debug” on. Note this does 

incur an additional cost.

	 2.	 Click “Add Source” to begin configuring the source activity of the 

data flow. You can supply a name and choose which dataset will 

be used to supply your source data. Uncheck “Allow schema drift.”

Tip N ote the other options on offer here which can be very useful for more 
complex data integration scenarios.

•	 On the “Source options” tab, you can choose to add actions 

that occur after completion such as deleting or moving  

source files.

•	 On the “Projection” tab, you can tailor your schema which is 

defined in the source dataset. My preference is to leave these 

all as strings to avoid any early typing errors as we will address 

these later in the flow.

•	 Finally, on the Optimize, Inspect, and Data preview tabs, all 

defaults can remain the same. 

Figure 3-19 demonstrates how to set the schema using the “Projection” tab.
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	 3.	  Click the + icon in the bottom right corner of the source activity 

and choose “Sink” from the drop-down list. Here we can configure 

the output of our flow which in this case will be a SQL database.

•	 Specify the name and choose an existing SQL database 

connection if you have one or create a new one.

•	 On the “Settings” tab, you can choose which methods can be 

used by ADF when working with your table. These can be any 

combination of Insertion, Deletion, Upserting, or Updating. Also, 

you can define actions to occur in the database before loading the 

data such as recreating the entire table or truncating the existing 

table before loading into it.

•	 Finally, on the “Mapping” tab, you can map columns from source 

to sink. Be aware that any columns that are not strings in your 

database will not be mapped until the data typing has occurred. 

Figure 3-20 shows the mapping configuration. 

Figure 3-19.  Using the Projection tab to tune the schema
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At this point, Mapping Data Flow is performing a basic copy; however, we can begin 

doing the actual transformation.

	 4.	 The first transformation will trim whitespace from columns. 

Click the + icon and choose “Derived column’s settings.” Within 

the “Derived column’s settings” tab, you should add each of the 

columns in your source dataset and then enter the following 

expression for each one in the expressions editor: trim({column 

name}). This expression will remove any whitespace from the 

column value ensuring the database receives a clean value. 

Figure 3-21 shows how this should look once completed.

Figure 3-20.   Mapping fields from source to sink in Mapping Data Flow  
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	 5.	 The next transformation step will standardize any NULL-Like 

values into true NULL values.

•	 Click the + icon again and choose “Derived column’s settings.” 

Similar to the preceding step, add an entry in the “Derived 

column’s settings” tab for each column, and use this expression 

to replace empty and “Unknown” values with database NULLs: 

replace(replace({column name}, " ',"),'Unknown',").

•	 In some cases, there may be the need to cast string values as 

other datatypes such as ints or decimals. To do so, the preceding 

expression can be wrapped in a toInteger() or toDecimal() 

function as shown in Figure 3-22.

Figure 3-21.  Applying a trim function to incoming columns
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	 6.	 A final check should be done on the sink activity to ensure that 

the casted data types have been pulled through. By navigating 

to the sink activity and choosing the “Mapping” tab, you can 

ensure the correct columns are selected from the drop-down 

menu. Figure 3-23 shows how the mapping is configured for 

the sink activity. 

Figure 3-22.  Adding data types to column values
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At this point, the data flow should consist of four steps that resemble the preceding 

screenshot. Once your Data Flow debug session is online, you can debug the data 

flow and see the cleaned values load into the database. While completing these steps, 

I recommend reviewing the Inspect and Data preview tabs. The Inspect tab gives a bit 

more information about what steps are taking place on the data in that activity and the 

Data preview will show you how the data will look, although the Debug session needs to 

be active for this to work. Finally, the Optimize tab allows you to set the partitioning of 

the data using techniques such as Round Robin, HASH, and range distribution.   

�Azure Data Factory Processing Patterns
When designing your Data Factory instance, it is essential to consider the methods and 

configurations used for loading data in certain scenarios. These methods are known as 

patterns and can be used to reference a whole collection of activities or perhaps just a 

single configuration option. In my experience, the best way to remove confusion in any 

debate about a Data Factory implementation is to define the pattern used and then refer 

Figure 3-23.  Mapping the columns into the sink dataset
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to the pattern specifically. This means that however complex the pattern, it can easily be 

referenced in conversation and documentation. The next section introduces a number of 

orchestration patterns that can be implemented using Azure Data Factory. 

�Linear Pipelines
The simplest pipelines are linear and execute activities from left to right, in sequence. In 

Data Factory, an example of linear pipelines could be a copy process that moves data from 

a file-based data source into a database. The pipeline may accept parameters to determine 

which source and which destination to connect to, but the process is encapsulated into a 

single pipeline only. A diagram showing the linear pattern is shown in Figure 3-24.

�Parent-Child Processing
The parent-child pattern in its simplest form describes a two-level process; however, 

any number of tiers could exist to implement the pattern much like grandparents having 

children who then produce grandchildren and so on. At any level, there will be the concept 

of an exterior pipeline, the parent, and an interior pipeline, the child. The parent pipeline 

is responsible for initiating a process using an Execute Pipeline activity and then optionally 

awaiting the result of that pipeline or continuing to move through the rest of the activities. 

The child is then in charge of accepting the values passed from the parent, executing the 

“heavy lifting” of data, and then passing execution back to the parent when complete. 

The benefits of this pattern are several:

•	 Simpler error handling: Handling multiple errors in a single 

pipeline requires the need for the same error handling activity to be 

copied for each activity that needs to be covered. This is cumbersome 

and difficult to maintain, whereas with a parent-child pattern, a 

single error handling activity can be placed on the “On Failure” 

output of the Execute Pipeline activity, thereby catching any error 

that happens in the child pipeline. See Figure 3-25 for an example.

Figure 3-24.  An implementation of a linear pattern
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•	 The ability to await a child process: Data processing pipelines are 

often comprised of different tiers of activities and there is usually 

at least one or two that must complete before anything else can 

continue. Conversely there may also be some long running processes 

that do not need to be awaited. By using the Execute Pipeline activity 

with the “Wait on completion” box ticked, Data Factory will ensure 

no further processing is started before the child activity begins. 

This is useful when orchestrating sequential segments of a larger 

pipeline, for example, data acquisition or ingestion. With the “Wait 

on completion” box unticked, Data Factory will fire and forget the 

child pipeline, meaning that process is not depended on at all and 

processing will continue immediately. This is useful for running 

logging activities or error handling routines.  

�Iterative Parent-Child Processing
A slight extension to the parent-child process can be achieved by preceding it with 

a Lookup activity. The Lookup activity can be used to collect a list of items to be 

processed from the metadata database, and this list can then be iterated by a For Each 

Loop activity, executing the child pipeline for each element in the list and passing in the 

necessary information at the point of invocation. This pattern has a few benefits over the 

linear pipeline:

Figure 3-25.  An image of single error handling activities being hooked to the “On 
Failure” outputs of Execute Pipeline activities, avoiding the need for duplicated 
error activities

Chapter 3  The Integration Engine



98

•	 Parallel execution: Data Factory can be configured to execute a set 

number of child pipelines at once, meaning ETL windows can be 

shortened as data can be copied more efficiently.

•	 Logical batching of tasks: As a list of work has to be obtained by the 

parent pipeline, these tasks can be batched together to ensure related 

processes happen together. This also allows for better options around 

error handling and logging. More detail on error handling and 

logging is discussed in Chapter 7, “Logging, Auditing, and Resilience.” 

Figure 3-26 describes a basic implementation of the iterative parent-child pattern. 

In practice the parent-child pattern is implemented very simply in Azure Data 

Factory with the key elements being a For Each Loop activity and an Execute Pipeline 

activity. The For Each Loop activity accepts an array of JSON objects; this is essentially 

the list of jobs to complete. Then, nested within the For Each Loop activity is the 

Figure 3-26.  An implementation of the iterative parent-child pattern. The boxed 
activities sit within the For Each Loop activity
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Execute Pipeline activity which should accept a set of values passed in by the iteration 

context (the “row” the For Each Loop activity is on at that time) and execute the 

specified pipeline with the aforementioned values as parameters. This ensures that 

the pattern is very flexible, as the array passed to the For Each Loop activity can easily 

be extended to include any values as required and then the receiving pipeline just 

needs to have a parameter configured to accept those values. An added benefit of this 

pattern is Azure Data Factory’s ability to parallelize items in a For Each Loop activity. 

While sequential execution can be chosen, and is sometimes appropriate, more often 

than not developers can maximize processing efficiency by starting multiple child 

pipelines at a single time. If the array happens to contain a large number of items, then 

a maximum batch count can be set to limit the number of jobs that are executed at any 

one time.

�Dynamic Column Mappings
A key component of data movement technologies is the ability to map source columns 

to destination columns. In Data Factory this is available through the “Mapping” tab, but 

in order for this to be done visually, you have to import the schemas into the source and 

sink datasets. In doing so, you fix these datasets for that single table or file structure and 

not exploiting the full dynamic nature of Data Factory. A further issue is the ability to 

handle files without header rows. Of course you can derive the schema from the file and 

create a mapping; however, this again locks the schema to the dataset, crippling your 

flexibility.

The recommended approach is to use a column mapping JSON object which is 

supplied to the mapping tab by way of a parameter. This method allows the developer to 

create a JSON mapping object at runtime and use that to define how Data Factory routes 

the columns, instead of having to pre-populate the mapping object. The required JSON 

object is built using an array of mapping objects, and each mapping object has a source 

and sink attribute, making it very clear which columns are to be used where. By using the 

metadata stored as part of the data contract, a query such as the following can be used 

to create a stored procedure that can generate these mapping objects as required. This 

stored procedure is documented in Listing 3-3.
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Listing 3-3.  Stored procedure code to create a dynamic mapping object

DECLARE @EntityName VARCHAR(100)

SELECT (
    SELECT
        'TabularTranslator' AS 'type',
        JSON_QUERY(
            (   SELECT
                    SourceColumnName AS 'source.name',
                    'String' AS 'source.type',
                    ColumnName AS 'sink.name'
                FROM [Metadata].[EntityColumn]
                WHERE EntityCode = @EntityName
                FOR JSON PATH
            ), '$') mappings
    FOR JSON PATH, WITHOUT_ARRAY_WRAPPER

) AS JsonMapping 

The preceding code generates a mapping object like the one shown in Listing 3-4.

Listing 3-4.  The output JSON from stored procedure shown in Listing 3-3

{

    "type": "TabularTranslator",

    "mappings": [

        {

            "source": {

                "name": "UserId",

                "type": "Guid"

            },

            "sink": {

                "name": "MyUserId"

            }

        },

        {

            "source": {

                "name": "Name",

                "type": "String"
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            },

            "sink": {

                "name": "MyName"

            }

        },

        {

            "source": {

                "name": "Group",

                "type": "String"

            },

            "sink": {

                "name": "MyGroup"

            }

        }

    ]

} 

This object could be fetched from the SQL database using a Lookup activity and 

pushed into the dynamic mapping object value using the Mapping tab in the Data 

Factory portal as per Figure 3-27. 

Figure 3-27.  An image of the dynamic mapping setup in Azure Data Factory
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With this approach, the source and sink columns both need to exist in the database; 

however, a similar but slightly different approach could be taken if the mapping needs to 

be derived each time a file is loaded. By using a Get Metadata activity prior to the Copy 

Data activity, the columns in a file could be detected and mapped as needed at runtime.  

�Partitioning Datasets
When working with large amounts of data or highly volatile data, it is important to utilize 

partitioning to either maximize parallelism or eliminate parts of the larger dataset that 

are not relevant to the query. SQL tables often get intelligently partitioned, by year, for 

example, to facilitate data warehousing performance, and this is handled by the SQL 

engine. Unfortunately, using a CETAS pattern to write data back into the lake from 

SQL (as described in Chapter 4, “The Ingestion Architecture”) will only create a non-

partitioned table, even if the source table is partitioned. This same issue is apparent even 

if you decide to use the Azure Data Factory native Copy Data activity. 

In order to write data out of the database with intelligent partitioning, Azure Data 

Factory Mapping Data Flows can be used. This technology has the ability to partition 

datasets in a number of different ways:

•	 Round Robin: Each row is handed to a different partition 

incrementally up to the max number of partitions. This guarantees an 

even distribution of data across partitions and avoids skew.

•	 Hash: Each value of the designated column(s) is hashed and 

matching values are stored in the same partition.

•	 Dynamic range: ADF will determine the correct ranges for 

partitioning based on the number of partitions set by the developer 

and the column designated for partitioning on.

•	 Fixed range: The developer can set the ranges used for partitioning 

with an expression.

•	 Key: Every distinct column value for the designated column incurs 

a new partition. This should be used when the number of distinct 

values is fairly low. 

The use of this part of Azure Data Factory incurs the cost of a Databricks cluster and 

so should be carefully considered before being built. 
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The following steps describe the process of loading a file from a source database and 

landing that in a data lake, partitioned by year and company name:

	 1.	 Following a similar set of steps as the Mapping Data Flow guide 

mentioned previously, create a pipeline and add a Mapping 

Data Flow activity. Once in the UI, create a source activity and 

choose a SQL dataset that needs to be stored in the data lake with 

intelligent partitioning.

	 2.	 Add a sink activity and ensure the connection string of the sink 

does not have a specified file name; it must be just a path. Be 

aware that the partitioned files will be deposited using a GUID for 

their name.

	 3.	 Open the “Optimize” tab of the sink and choose a partition 

strategy. By selecting “Key,” the Mapping Data Flow will create a 

folder for each unique value of the specified column and place 

the partitioned data inside. Figure 3-28 contains an image of the 

optimize options in a Mapping Data Flow. 

Figure 3-28.  Choosing the “Key” partitioning option in a Mapping Data Flow
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The configuration shown in Figure 3-28 produces the folder structure in the data lake 

that is shown in Figure 3-29.

Figure 3-29.  A portioned dataset in Azure Data Lake Gen 2
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CHAPTER 4

The Ingestion Architecture
Data does not stand still. As data warehouse developers, this is a known fact on which 

our careers are based. For data to have value, it has to be reliably moved to a place where 

that value can be realized and the method by which we move data should depend on the 

needs of our users and the frequency of the data, not on the physical or technological 

limits of the system. As this book examines a modern data warehouse, we need to 

research beyond the traditional defaults such as batch-based ingestion and simple lift 

and shift extract, transform, and load (ETL) patterns and explore how we offer more 

flexibility to the end users. This chapter outlines an approach for warehouse loading 

that promotes efficiency and resilience, moving on to describe three ingestion modes. 

By defining the risks and benefits of batch-based, event-based, and streaming modes, 

you will know how to implement each approach while also being aware of the additional 

complexities of each, ensuring a successful implementation.

�Layers of Curation
ETL describes the process of lifting and changing data so that it can be used in an 

analytical data warehouse. Often this process requires many complex steps involving 

data cleaning, data transformation, and data integration, and in some systems, there is 

an attempt to negotiate all of these steps in once single process. Arguments are made 

regarding the efficiency or compact nature of such an approach, but ultimately, these 

ETL designs nearly always become slow, difficult to maintain, and a primary reason for 

rebuilding ETL pipelines.

For these reasons, it is crucial to partition the ETL work up into clearly defined 

layers that separate loading and cleaning concerns from transformation and integration 

concerns.
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�The Raw Layer
The initial layer in your data warehouse loading process should hold your source data 

in its rawest format. No cleaning, no filtering, just data exactly as it arrives from your 

source provider. This convention should be followed even in the instances where you 

collect data directly from a database yourself. Even though that data could go directly 

into another database, having the forethought to snapshoot the data in a raw layer will 

have numerous benefits downstream. Additionally, data in this area should be truly 

immutable (never deleted or updated). By storing data in this way, you ensure that in 

the worst possible case, your warehouse can be truncated and rehydrated from data 

that exactly matches how it arrived in the first place - an ultimate rollback option from 

any given point in time. Additionally, if your source datasets need to be consumed and 

integrated by other areas of the business, you can easily provide access to this consistent 

raw layer without the need to make any changes to your ETL processing pipeline.

Because of the demands of this layer, the most fitting technology is a data lake. 

Primarily, data lakes have the ability to scale to limitless capacity and can store files of 

any type and size without the need for a set column structure or data types, as would 

be the case in a database environment. In order to make your data lake as efficient as 

possible, it should be a developer lead initiative that promotes clear organization and, 

while allowing datasets to be easily ingested, should also enforce a rigorous convention 

for placing datasets in a well-defined, logical directory structure. In almost all cases, 

this structure should have an initial layer that is divided by source system. This is so 

that cleaning and sensitivity concerns can be considered separately and ensures that 

changes to one source systems processing should not have any knock-on effects to other 

source systems. Beneath this source system–driven layer, you should then split data by 

individual dataset with further year, month, and day partitioning below that. This instills 

a degree of metadata into the lake directory itself but also helps to derive chronology and 

lineage in a very intuitive way. An example of this structure is shown in Figure 4-1.
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�The Clean Layer
The first step in moving data from its raw source format into a curated, data warehouse–

ready format is to clean and standardize that data. By cleaning your data, you ensure 

that bad records are not processed into the warehouse and the standardization allows 

you to integrate data consistently across your platform. Depending on the quality of data 

that arrives from your source systems, you may find that cleaning rules can become very 

complex, hence why they should be performed in their own layer so as not to interfere 

with your immutable source but also so that value adding business logic is not hindered 

by complex cleaning rules.

The output of the clean layer should be stand-alone datasets that are primed and 

ready to be integrated, and this could mean that data has been filtered, columns have 

been removed, or that values have been transformed in some way so that they will align 

better with similar type values from different systems.

�The Transformed Layer
The final movement of data in this layered system is from its clean location into 

an analytical data warehouse. The demands of this layer require data to be joined, 

aggregated, and integrated, and again the processing logic can get very complex. Of 

course, this is made simpler because you know you are only working with clean, valid 

Figure 4-1.  A folder hierarchy showing the RAW directory with one source system 
and two datasets
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data and can therefore focus solely on the business logic that is required. Ultimately this 

layer will have to implement slowly changing dimensions, surrogate keys, conformed 

dimensions, as well as many other warehousing concepts and therefore should attempt 

to utilize patterns that perform each operation consistently as opposed to designing each 

flow per dataset. In much the same way as you would want to clean strings consistently 

across all inputs, you would also want to implement data warehouse concepts 

consistently so that debugging and maintenance can be simplified. Additionally, new 

feeds of data can then be integrated very quickly because the patterns exist; it is simply a 

matter of choosing the right pattern and supplying the right columns.

Now that you understand the layers of processing that go into building the 

warehouse, and the justification for each layer, we can discuss how the differing 

processing architectures can interact with each layer.

�Understanding Ingestion Architecture
At the start of a modern data warehousing project, there should always be a phase of 

planning and discovery. Part of this phase should be spent understanding the methods 

by which data arrives and then using this knowledge to plan how that data will be fed 

into the warehouse. For example, if a source provider delivers datasets at a single point 

on a daily basis, then there is no need to ingest that data into the warehouse more than 

once a day. Streaming this data constantly would provide no benefit to the users as 

nothing would change. Conversely, if a source provider has the ability to stream data 

into your environment, then this opportunity should be realized. There should be no 

reason why the users cannot see the data in near real time. By understanding each of 

the potential ingestion scenarios, you can begin to plan how your data warehouse might 

handle each of these.

�Batch Ingestion
By far the most tried and tested method of populating a data warehouse is to use 

batch ingestion, a process where data is loaded from raw through clean and into the 

warehouse in regular, predefined, scheduled increments. The reason for this method 

being so popular is that it promotes resilience and stability above all other attributes. 

Optimizations can be made for speed and efficiency, but the batch is still a batch, with 
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a start and an end and a relatively stable amount of processing in the middle. Were 

the batch to fail, then we can safely say that the entire batch failed and that it would 

need to be processed again. Additionally, batch loads often have to conform to a fixed 

window and so users can easily grasp the schedule by which their data arrives and know 

when to refresh reports and dashboards. For a long time, batch ingestion suited nearly 

all scenarios; however, there are of course increasing needs to have data arrive more 

frequently or perhaps not based on a schedule but on the occurrence of an event.

�The Risks and Opportunities of Batch Ingestion
The term “risks” is applied loosely here as batch ingestion is by far the most stable 

ingestion method; however, there are certainly things it cannot do, the risk being you 

may need to do those exact things some other way.

�The ETL Window

In nearly every batch-based scenario, there is an allowable start and end time. This 

window is known as the ETL window, and it is the role of the developers to ensure that 

the entire end-to-end processing occurs within these times to avoid disruption to the 

business. Generally, these times are set to ensure the processing starts a safe amount of 

time after the last daily transaction and then to complete a safe amount of time before 

the next day begins. Often between midnight and 5am are peak processing times for ETL 

solutions. The rigid nature of this scheduled window gives developers key metrics to 

work toward, and its simplicity comes from being analogous to a calendar date. All being 

well, report users can rely on their data being no more than one day out of date and can 

live in certainty that no numbers will change between the first glance at a dashboard in 

the morning and a last check before going home.

However, as data feeds increase, it is not long before what may have seemed like a 

generous ETL window begins to feel constricting. More and more pressure will be placed 

on performance, but ultimately, things can only go so fast, and while speed is a focus, 

reliability is likely to suffer. Of course, you can explore options around splitting batches, 

prioritizing certain workloads, or beefing up servers; however, these are only kicking the 

can down the road. Ultimately, there is the risk that your batch can become too big for 

your ETL window. Of course there is always the risk that a user may require data to be 

processed outside of the ETL window; now you have to handle the fact that transactions 

are happening throughout your batch load, greatly increasing the chance for error.
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A final issue with the ETL window is that there can be times when data arrives late. 

How can you process a critical dimension if the data of the required day has not yet 

arrived? What is more, your batch is only aware of schedules, so unless this delay is 

pre-arranged, there is a high chance of failure or worse, success, but with the wrong 

data! Ensuring that scenarios such as this are handled is critical to a batch processing 

architecture, and often the ability to programmatically decide to halt or postpone a batch 

using a series of checks saves a large amount of headache further down the line.

�The ETL Anti-window

Given that a batch process happens within a set window, it means therefore there is 

an anti-window, the passage of time that is not considered critical for processing. This 

regular ETL anti-window means that the development teams have a prime opportunity 

to deploy new code or data feeds into the batch process without the risk of immediately 

creating problems. New solutions can be deployed and tested safely with the knowledge 

that if the tests fail, the deployment is rolled back, and the batch continues as normal, 

again, reiterating the point that batch equals resilience and stability.

�Failure Investigation and Troubleshooting

Continuing from the idea of the anti-window, this also provides the development team a 

chance to investigate and resolve any issues that occurred in a nightly batch. Knowing that 

the system does not need to operate again for several hours allows team members free reign 

to investigate issues without the risk of accidentally interfering with some ongoing process. 

Once an issue is determined and a fix implemented, this can be tested and then promoted 

into the production environment all within the relative safety of the anti-window.

However, while this activity is going on, there are potentially two problems that are 

unfolding in the background. The first is that an analyst or C level exec is waiting for a 

report to arrive. Because the issue happened overnight, often issues are not discovered 

until the next morning, and even if an on-call service is provided, there needs to be 

significant investigation to determine if the whole batch is bad or if only part of the batch 

needs rerunning.

The second problem is that regardless of whether you must completely restart a 

batch or can operate on a subset, you will likely still have some amount of processing 

time ahead once the issue is resolved. The point of a batch is that it is a larger amount 

of data processed at a convenient time. However, in this occasion, you could be dealing 

with a large amount of data that needs to be processed at a very inconvenient time.
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�The Batch Ingestion Tools

An implementation of batch ingestion could be stood up using a variety of tools. 

Most SQL engines lend themselves nicely to batch-based tasks, and I imagine most 

developers reading this will have tools in mind to perform such a solution. To elaborate, 

Azure Synapse Analytics can connect directly to several cloud data stores and utilize 

PolyBase and external tables to read data straight from a file, into an internal SQL table. 

This approach requires only that Azure Synapse Analytics is running and that it has a 

connection to the relevant data store; no other tools would be required.

However, the more common scenario is that a database does not have PolyBase 

technology, for example, Azure SQL Database, and will need to be fed using some kind 

of integration engine. In this case, Azure Data Factory is by far the best tool as it supports 

a multitude of connectivity options and has specialized activities for the task of loading 

databases. Of course, SQL Server Integration Services (SSIS) is an alternative option here; 

however, it cannot scale to the realms of big data as easily as Azure Data Factory can.

Finally, there may be times when files are simply too large or too complex to be read 

using SQL engines, and therefore, extended processing to a data lake–based tool may 

be required. One such tool is Azure Databricks, a PaaS implementation of Spark, which 

will be discussed later in this book as a potential alternative when data exceeds the 

reasonable limits of Azure SQL engines. 

�Batch Ingestion for Azure Synapse Analytics

Reading large batch files efficiently is something Azure Synapse Analytics does very 

well, and when reading from a data lake, there is a huge efficiency gained from using the 

PolyBase engine. A common pattern is to define an external table root location that is the 

starting point for a partitioned set of data made up of any number of files, for example:

/Raw/Sales System/Daily Sales/...

This root location is then the starting point for PolyBase when it begins searching for 

data in the lake. Underneath the root location, you could create many files and folders; 

PolyBase will be able to see and read them all. Often you would extend from the table 

root with a year/month/day structure although you could use other partitions as well 

such as customer, product, and so on.
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Many file types are not type safe, meaning the data within each column may not 

conform to a set data type. In these cases, it is important to either remove the offending 

rows using the PolyBase rejected rows functionality, or assuming you do not want to lose 

data, set each column of the external table to be NVARCHAR(1000). However, a Parquet 

file type is type safe and therefore the external table can be strongly typed also, removing 

the need to cast as part of the ETL, and this is a major reason for choosing Parquet files 

when performing ETL a large scale.

Once the data is visible to Azure Synapse Analytics through the use of an external 

table, it needs to be read into a persisted table in the database. There are a few ways to do 

this; however, the CTAS method provides a minimally logged option that also surfaces 

the most flexibility for the developer.

The Create Table As Select statement is the staple method to move data around in 

Azure Synapse Analytics. The reason for this is that it works in a parallelized manner 

but also provides a great deal of control to the developer. With a CTAS statement, many 

key parts of the DDL can be changed, such as the distribution type, the index type, the 

partition values, and even the columns data type. These inherent capabilities make the 

CTAS statement ideal for loading data through a layered processing pipeline because 

each transformation can be optimized down to the index, distribution, and partitioning 

level. The following steps show how the CTAS pattern can be used to facilitate ETL 

through each layer of the warehouse:

	 1.	 A raw CSV file in the data lake would be exposed as an external 

table with NVARCHAR(1000) type columns. By using the Create 

Table As Select statement, the DDL of the produced internal table 

will be derived from any casting or transformation implemented 

by the developer. Additionally, indexing and distribution can be 

configured intelligently as opposed to relying on the defaults. An 

example of CTAS for this layer is documented in Listing 4-1.

Listing 4-1.  A CTAS statement used to load data into a clean area

IF OBJECT_ID('Clean.DirtyCSVFile') IS NOT NULL

DROP TABLE Clean.DirtyCSVFile;

CREATE TABLE Clean.DirtyCSVFile

WITH

(
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    HEAP,

    DISTRIBUTION = HASH([OrderNo])

)

AS

SELECT

    ISNULL(CAST([ID] AS INT),'0'),

    ISNULL(CAST([SkuItemId] AS VARCHAR(18)),''),

    ISNULL(CAST([CustomerId] AS INT),'0'),

    ISNULL(CAST([OrderNo] AS INT),'0'),

    ISNULL(CAST([Quantity] AS INT),'0'),

    ISNULL(CAST([Price] AS DECIMAL(10,2),'0'),

FROM [Ext].DirtyCSVFile

OPTION (LABEL = 'Clean.DirtyCSVFile.CTAS');

Note that in the preceding code, the index has been defined as a HEAP; this is 

because there is an overhead to creating a formal index, and as the whole dataset will 

be loaded, there is no benefit to be gained. A further detail is the distribution being set 

to hash on OrderNo. This ensures that all data relating to the same order will be stored 

on the same storage node of the server and therefore provide better performance for 

joining downstream. In the SELECT itself, all the columns definitions have an ISNULL 

and CAST statement which enforces a NOT NULL and the CASTED data type on the 

destination table (Clean.DirtyCSVFile in our case). Finally a label has been added 

which allows the engine to identify this query later for gathering aspects such as row 

counts and error details. 

	 2.	 The now clean data is to be joined and integrated with other 

tables. The resulting dataset will no longer resemble the source 

datasets, and so the CTAS offers maximum capability in terms 

of table definition but also in optimizing the data for its new 

purpose; now it has been enriched. A CTAS statement to carry out 

this step is shown in Listing 4-2.

Listing 4-2.  CTAS statement to create a warehouse fact table

CREATE TABLE Warehouse.DirtyCSVFile

WITH

(
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    CLUSTERED COLUMN STORE,

    DISTRIBUTION = HASH([OrderNo])

)

AS

    WITH

    cte_Orders    AS

    (

        SELECT

            OrderNo,

            SkuItemId,

            CustomerId,

            Quantity,

            Price

        FROM Clean.DirtyCSVFile

    ),

    cte_DimCustomer AS

    (

        SELECT

            CustomerKey,

            CustomerBusinessKey

        FROM Dim.Customer

    ),

    cte_DimProduct AS

    (

        SELECT

            ProductKey,

            SkuItemId

        FROM Dim.Product

    )

    SELECT

        CAST(o.OrderNo AS INT) AS OrderNo,

        CAST(dc.CustomerKey AS INT) AS CustomerKey,

        CAST(dp.ProductKey    AS INT) AS ProductKey,

        CAST(o.Quantity AS INT) AS Quantity ,

        CAST(o.Price AS DECIMAL(10,2) AS Price
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    FROM cte_Orders AS o

    INNER JOIN cte_DimCustomer AS dc ON dc.CustomerBusinessKey = o.CustomerId

    INNER JOIN cte_DimProduct AS dp ON dp.SkuItemId = o.SkuItemId

OPTION (LABEL = 'Warehouse.DirtyCSVFile.CTAS');

In the preceding code, the index definition has changed from HEAP to CLUSTERED 

COLUMN STORE so that the data is more efficient for analytical queries such as 

aggregations; however, the distribution configuration has not changed which will ensure that 

the lowest amount of data movement should occur. The SELECT part of the statement uses 

more complex logic by employing common table expressions (CTEs); these are common in 

data integration and demonstrate that all SELECT capabilities exist within the CTAS.

While the CTAS pattern offers a number of efficiencies, there is a functionality gap 

in that when data is selected from the external table, any filter predicates in the WHERE 

clause cannot be pushed down to the data lake. In practice, all of the data below the root 

is read and only then is the filtering done – obviously this is not the most efficient way to 

extract a small daily batch from what may be a much larger set of data.

One solution to this problem is to use an active partition, where the most recent data 

is stored, and an inactive partition, where the less recent data is located. As the data is 

ingested, it can then be copied into the inactive partition so that it is available if needed 

but will not unnecessarily increase the volumes of data to be loaded to Azure Synapse 

Analytics. The structure for this might look like that shown in Figure 4-2.

Figure 4-2.  An example of a file structure used to load active data and obstruct 
loading of inactive data
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In this case, the external table definition would resemble the code in Listing 4-3.

Listing 4-3.  Data definition language (DDL) statement to create an external table 

in Azure Synapse Analytics

CREATE EXTERNAL TABLE External.DirtyCSVFile

(

    [ID] NVARCHAR(1000) NULL,

    [SkuItemId] NVARCHAR(1000) NULL,

    [OrderNo] NVARCHAR(1000) NULL,

    [CustomerId] NVARCHAR(1000) NULL,

    [Quantity] NVARCHAR(1000)) NULL,

    [Price] NVARCHAR(1000) NULL,

    [LastUpdateDateTime] DATETIME2 NULL

)

WITH (LOCATION='/Raw/Sales System/Active/Sales',

      DATA_SOURCE  = DataLakeSource,

      FILE_FORMAT  = CSV,

      REJECT_TYPE = VALUE,

      REJECT_VALUE = 0);

You can see that by specifying active in the location string, the inactive data will not 

be read. An alternative solution is to use a stored procedure containing dynamic SQL to 

create a new external table each time an ETL process is kicked off. This could have the 

specific location string passed in as a parameter, meaning that only a single file is read at 

that specific time.

�Create External Table As Select (CETAS)

When working with batched data and Azure Synapse Analytics, there may be a need to 

write transformed data back out into the data lake for consumption by other systems. The 

way to do this using Azure Synapse Analytics is to use the CREATE EXTERNAL TABLE AS 

SELECT (CETAS) statement. When considering this statement, remember that a CREATE 

TABLE AS SELECT (CTAS) statement generates a brand new internal table based on the 

select that is provided and a CETAS is no different other than the data for the table is stored 

externally, that is, in the data lake. Provided that the required PolyBase objects are created 

(the external data source and the file format), the SQL engine can use PolyBase to push 

data back to the lake. The syntax for this statement is shown in Listing 4-4.
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Listing 4-4.  Creating an external table as SELECT

CREATE EXTERNAL TABLE ext_FctOrders

WITH (

        LOCATION='/DWH/Fact/Oders.pqt',

        DATA_SOURCE = DataLake,

        FILE_FORMAT = PqtFormat

) AS SELECT TOP 100 PERCENT FROM Warehouse.FctOrder;

One consideration here is that the produced file will be written to the data lake and 

partitioned according to the storage engine and not how the data was partitioned in 

Azure Synapse Analytics. There is a method to achieve intelligent partitioning and this is 

described in more detail in Chapter 7, “Logging, Auditing, and Resilience.”

�Event Ingestion
Event ingestion is not dissimilar to batch ingestion although instead of multiple files 

being processed at once, now a single file is considered your batch. Of course, the 

challenges and opportunities of single file batches are much closer to traditional batch 

processing than stream processing, which is based on a record by record flow. The 

primary difference is that files are processed the minute they arrive within the agreed 

location and not based on an arbitrary schedule. In nearly all cases, this means that 

files are processed as a single unit, without any dependence on other files that may also 

arrive throughout the course of the day.

A warehouse will almost always require multiple files to be ingested in order to be 

refreshed; however, the early cleaning and validation stages for those files can be entirely 

independent.

Many services within Azure can generate events when things happen, and also 

many services can listen to these events and take actions when they do. An example is 

Blob Storage, and therefore Azure Data Lake Gen 2; the storage engine can fire events 

when new files are added or existing files are deleted. Subsequently, Azure Data Factory 

can listen for those events and then trigger a pipeline, utilizing the metadata provided 

with the event, for example, file name and location. Generally speaking, event data 

is implemented using JavaScript Object Notation (JSON) because many services can 

process and understand this simple object type while it also is not schema bound, 

meaning additional attributes can be added to the object without disrupting existing 
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processes. The Azure platform also has a wide number of tools for managing and 

working with event data, some of which will be discussed later in this section; however, 

an exhaustive list of event-enabled services is out of scope for this book.

�The Risks and Opportunities of Event-Based Ingestion
The primary benefit of event-based ingestion is that files can be processed quicker and 

the warehouse can be updated sooner. If a file arrives early, then the processing can be 

completed earlier. Although if a file arrives late, this should not collapse the integration 

process because the process would not have started until the file arrives. In batch 

ingestion, files could arrive at any point during the day but still not be processed until 

the evening, assuming a nightly ETL window is implemented. The only other way to 

manage file ingestion in such a way is to build intraday ETL loads, but this would require 

managing multiple schedules and ETL windows; ultimately this can quickly become 

very complicated. The reason for event-based ingestion being better is that the trigger is 

the event, perhaps a file arriving in Blob Storage, and the integration engine knows how 

to respond to the event because of the associated metadata of that event.

This seems like a great way to build upon a batch process; however, it is not without 

its own pitfalls. In a more simplistic event-based application, you have to realize that you 

are relinquishing the ability to decide when files are processed. You are no longer telling 

the engine to get to work when you know the environment is ready; you are granting the 

data provider that ability. Even if this is done with no intention to negatively affect your 

system, you must ensure that the platform is always able to process data, day or night. If 

for some reason it cannot, then you need other options for storing events and returning 

to them later in the day.

Finally, you will need a mechanism to determine when all the required files have 

arrived in clean and therefore the warehouse is ready to be refreshed. This can often start 

out as a simple stored procedure but can quickly become a complex mesh of intertwined 

dependencies that becomes very difficult to navigate and resolve. The risk here is that 

the data warehouse will never be processed because the necessary files were never all 

ready at the right time; it is essential that you manage this process closely and ensure 

that your warehouse will not be starved. 
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�Implementing Event Ingestion
As discussed, event-based processing can present many benefits, but there are also 

challenges and technical considerations. This next section aims to focus on the real-

world implementation considerations needed when working with events.

�Decoupled Processing

The essence of decoupled processing is in the absence of unnecessary dependencies. 

When datasets are dependent on each other, there is a higher chance of failure, and 

particularly at early stages of an ETL pipeline, there is little reason to enforce these 

dependencies. Instead, each dataset can be processed independently, and if there 

was a failure, this should not disrupt any of the other datasets being processed at the 

same time.

Often ETL designs originating from a batch-based paradigm tend to favor complete 

success or complete failure, whereby all datasets are coupled, and a single error means 

the entire batch must be fixed and reprocessed. The issue is that this is inefficient in 

terms of compute power, every second counts in a cloud-based environment, but also 

in the amount of time, it takes to deliver insights to your users. Instead, all successful 

datasets can be handled according to their individual needs.

In a data warehouse scenario, decoupled ingestion allows the loading process 

for an individual file to be triggered by an event, usually the file arriving in a storage 

repository. An event could occur at any time of day and be handled in several different 

ways, but this concept allows the file to be ingested as soon as it arrives, allowing 

BI teams to move away from a single, monolithic nightly ETL load. This approach is 

illustrated in Figure 4-3.
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In the preceding diagram, files 2 and 4 both have failures between layers; however, 

files 1 and 3 can be fully processed into the warehouse, if appropriate.

Assuming the cleaning process completes successfully, the next procedure is to 

transform and integrate datasets to produce warehouse tables. In contrast to the load and 

clean routines, the transformation procedure needs to interact with multiple datasets in 

order to add value. With the possibility that some datasets may fail to reach the clean layer, 

a special type of query is needed that can check the dependencies for each warehouse table 

and tell the ETL engine which tables can be created and which are not yet ready to run.

Referring to the preceding image, a warehouse table that was dependent on files 1 

and 3 could be created; however, a file that required files 1 and 2 could not. In order to 

resolve this kind of processing logic, a dependency resolution engine is required.

A dependency resolution engine can take many forms depending on the prevalent 

technologies in your platform though one common method may be to use a stored 

procedure. This assumes you are storing your dataset processing runs, high watermarks, 

and dependency mappings in an auditing database, as is the pattern recommended 

and explained in more detail in Chapter 7, “Logging, Auditing, and Resilience.” A 

dependency resolution query would be triggered each time a dataset is successfully 

cleaned and would comprise of several steps. These are described as follows using 

dataset 1 as the dataset just cleaned, with the warehouse tables depending on datasets  

1, 2, and 3 in order to be refreshed: 

Figure 4-3.  A decoupled process loading data between layers
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	 1.	 Knowing the identifier of the dataset just cleaned, query for all of 

the subsequent tables that are dependent on that dataset.

	 2.	 Using those identifiers, query for all the other datasets that would 

be required to fulfil each list of dependencies.

	 3.	 Using the high watermarks, determine which of those datasets 

have a watermark that is greater than the warehouse table 

enforcing the dependency.

	 4.	 For those where all high watermarks are greater, run the proc to 

generate the table. For the others, do not run the proc and check 

again when the next file arrives into the clean layer.

A more visual example of these steps is shown in Figure 4-4.

Figure 4-4.  An example of a simplistic dependency resolution process

More complex scenarios can develop of course, and a common requirement is 

to daisy chain dependencies together, otherwise known as recursion. This can be 

implemented simply by triggering the dependency engine query from later stages in 

the process. In Figure 4-5, a warehouse table needs to be produced in order to generate 

subsequent warehouse tables and so the dependency query would be called as the 

datasets arrive in clean but also when tables are refreshed in the warehouse layer.
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Figure 4-6.  Showing how optional and mandatory files can ensure processing is 
not held up by late or infrequently arriving files

Figure 4-5.  Using a dependency resolution engine to resolve a meshed dependency 
structure. In this second scenario, all subsequent processing is blocked until file 
2 arrives. If file 2 was a low-priority dataset or did not change often, but its data 
was still required as in the preceding scenario, it would be reasonable to question 
whether this is a worthwhile endeavor. To overcome this, we can overlay the 
dependency engine with a simple policy concept that can override the fact that a 
required file was not refreshed. This is exemplified in Figure 4-6
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In the preceding figure, files 1 and 3 are mandatory; however, file 2 is optional and 

therefore should not delay processing. A real-world example could be to have file 1 as 

a product file, file 2 as a product type file, and file 3 as a product sales file. The types 

change infrequently, so we are happy to take a latest version of that file even if it is not as 

recent as the other files.

�Listening for Events

The ability to listen to events being raised across an Azure subscription is fairly common. 

While there are many services that can manage and process events, the most relatable to 

the content of this book is Azure Data Factory, which has the ability to be triggered by either 

a blob creation or blob deletion event. The event has to come from a Blob Storage account 

and so Azure Data Lake Gen 1 (ADL Gen1) is out of the question; however, the architecture 

of Azure Data Lake Gen 2 means that it is compatible with this event trigger. A limitation 

here however is that the event can only be filtered by the name of the file triggering the event 

although there is the ability to wildcard this filter to a point. When filtering for events, you 

can either choose to react to blobs that have a certain prefix or suffix, and this means you can 

either be entirely specific about a particular blob to look out for or very generic to pick up on 

any event that occurs within a set directory. See the following Table 4-1 for some examples.

�Queuing Events

In an event-driven architecture, the goal is to listen and process events in real time; 

however, this is not always possible. Whether it be agreed downtime with the business 

to maintain analytical consistency throughout the day or a scheduled maintenance 

window to allow for deployments, there is guaranteed to be a time when your platform 

Table 4-1.  A table demonstrating some implementations of event filters

Filter Type Filter Expression Would Find

Blob path begins with (prefix) Sourcefiles/SalesDetail/ Any file in the SalesDetail folder in 

any container

Blob path begins with (prefix) /Sourcefiles/ Any file in the Sourcefiles container

Blob path ends with (suffix) .csv Any CSV file in any container

Blob path ends with (suffix) /Sourcefiles/SalesDetail/

sales.csv

Any files named sales.csv in the 

specific directory
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cannot respond immediately to events. During these windows, it is essential that the 

platform has a robust mechanism for queueing the events in the correct order so that 

they can be processed at a later date or time.

To tackle this, delayed event processing can be employed to listen to all events; 

however, only process them outside of the agreed downtime, similar to an ETL window. 

Events that happen within the downtime should be stored in order and processed when 

the platform resumes. See Figure 4-7 for a diagram of how this would work.

Figure 4-7.  A diagram showing an implementation of delayed event processing

Figure 4-8.  A diagram showing an implementation of selective event processing

A similar but alternative pattern is to implement a period of selective event listening 

whereby some files are allowed to process as they will not disturb the other activities 

going on in core business hours. However, some may be withheld until the ETL window 

opens. A diagram for this pattern is shown in Figure 4-8.
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The benefit in both delayed event processing and selective event processing is that 

your stable period throughout the day is maintained; however, throughout the course of 

the evening, data is allowed to process freely as and when it arrives, alleviating pressure 

vs. a single batch load. Further to this, now that file processes are decoupled, a failure 

for one file has absolutely no bearing on whether any other files will fail to process or 

not. This can make debugging much simpler because the affected file will be clearly 

identified and there is less work to do once the issue is resolved. A full explanation and 

implementation of this pattern is held in Chapter 8, “Using Scripting and Automation.”

�Event Ingestion for Azure Synapse Analytics

The method for ingesting event-based datasets in Azure Synapse Analytics is broadly 

the same as for batch-based data. The additional consideration is that you may receive 

smaller volumes of data more frequently. Because the standard pattern in Azure Synapse 

Analytics is to use the CREATE TABLE AS SELECT (CTAS) syntax, you essentially have to 

re-create the entire table for every dataset you want to append, and also you will be more 

frequently using up limited concurrency slots. In some scenarios, however, you may 

find there is a disconnect between the rate your data arrives and the frequency that your 

users need it. Therefore, you should be open to the possibility of batching your data to a 

frequency that is agreed with your users. Fortunately, because of PolyBase technology, 

your multiple files can remain separate and Azure Synapse Analytics will be able to read 

the data in one pass.

�Event Ingestion for Azure SQL Database

Azure SQL Database is a good fit for event-based ingestion because it is architected 

to be more transactional than Azure Synapse Analytics. This means that data arriving 

in smaller and more regular batches is easily ingested at the same frequency as the 

originating events, unlike Azure Synapse Analytics where you may group datasets 

together. Of course, without PolyBase, you still need to use an integration engine such as 

Azure Data Factory to push the data into the database.

�Stream Ingestion
When reading about event-based and batch-based processing, you will see that there 

are a number of similarities between the two modes. Both use files that can be processed 

in a decoupled manner although event based perhaps processes smaller files more 
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regularly and is more responsive than a scheduled batch process. Ultimately, however, 

there is a regular interval in which data is processed and clear beginning and end to 

the process routine. This third mode, stream ingestion, is completely different from 

the previous two and relies on a constant flow of data from a source which can then be 

landed into files or passed directly into a destination system. Many modern systems are 

now able to offer the ability to tap into data streaming outlets, and with the increasing 

dependence on Internet of Things (IoT) technology, stream-based ingestion is becoming 

increasingly popular. Azure has a whole set of technologies dedicated to streaming 

capabilities, and this is in addition to the open source technology options, such as 

Databricks that can support a streaming architecture.

�The Risks and Opportunities of Stream Ingestion
Data streaming presents a number of benefits against the slower pace of batch- and 

event-based ingestion, and while the available technologies go a long way to making 

this approach simple, there are still challenges that need to be overcome. The most 

obvious benefit is the speed at which data is available to your users. Mere moments after 

transactions occur in your source system, they will be available to your users via their 

analytics dashboards and reports. This can lead to incredibly efficient decision making 

and the ability to react to changes in real time, not hours or days later. This can not only 

have a commercial benefit to a business but also can allow for critical systems to be 

monitored continuously. By streaming events from IoT sensors, businesses are able to 

monitor attributes of hardware such as temperature or pressure to detect the possibility 

of failure before any real problems occur.

A further benefit of data streaming is the size of data being processed through 

the system is likely to be very small, usually single records or micro batches of one or 

two records at a time, and this means that architecture components can be relatively 

inexpensive as there is no memory pressure.

Though the speed of data streaming is arguably the key benefit it also presents the 

primary challenge. The rate of the arriving data means that solutions must be always 

running and available to process records successfully or at least store them securely in a 

system that can preserve the order in which records arrived. Additionally, the speed of 

the arriving data means you want to limit the number attributes arriving through your 

stream to only what is needed to be displayed in real time. This could perhaps mean 

that some attributes are being removed and therefore a mop-up routine that pulls the 

remaining data into your data warehouse for later analysis could also be required.
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A further challenge is the granularity and isolation of the data. Because each record 

is isolated from all other records and also not processed in the same scope as any other 

records, aggregating data to achieve a different grain cannot be done as part of the 

constant stream but would have to be completed in a subsequent processing phase. 

This can delay the records arriving in your destination and should encourage you to 

keep data as granular as possible right through to the destination. The other side of this 

challenge is the isolation. Unlike in event or batch processing where we, at some point at 

least, have a chunk of static data for a period of time which can then be used to join and 

transform, the data is constantly in motion, although streamed records could be joined 

to reference datasets.

Finally, the layered approach used in both batch-based and event-based processing 

does not really apply here; the data does not sit still for long enough. Therefore, data 

cleaning and standardization needs to be written directly into the stream and requires 

developers to maintain multiple sets of cleaning logic.

�Implementing Stream Ingestion
In this section, we will look at a method for stream-based ingestion. The core of this 

method utilizes event hub and stream analytics; however, there are some differences 

depending on the location. While one version writes data directly into a destination 

database, the other writes data into a Blob Storage account and assumes the streamed 

data will be batched and processed in batch mode. At the time of writing, hierarchical 

namespace-enabled storage accounts are only supported in preview mode.

�Stream Ingestion with Azure Event Hub’s and Stream 
Analytics Jobs

As mentioned, the core of this method uses Azure Event Hubs, which by design makes 

many sources available as inputs to your streaming job, and likewise, there are many 

options for destination. This gives ultimate flexibility when working in Azure as streams 

can be routed to wherever needed through a very simple interface. Another great 

advantage to this method is that the streaming jobs are written in an approximation 

of SQL and so are easy to pick up for developers already working in a SQL-based 

environment. The actual development of these streaming jobs is performed from within 

the Azure portal and can easily be tested using the UI. This does however pose a problem 

from a source control perspective, as the streaming jobs themselves cannot be source 

controlled other than in ARM templates.
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A key feature of Azure Stream Analytics Jobs is the ability to integrate with reference 

datasets. Because records are being loaded very regularly and may only have a minimal 

amount of data, such as an IoT device, the reference data allows for the streamed records 

to be enriched while in flight. Azure Stream Analytics supports reference data stored in 

Blob Storage or in an Azure SQL Database. In the case of Blob Storage, the data is stored 

under a set path and then split by date and time values as lower levels of the directory; 

the reference query can then load each set of data as and when it becomes relevant. 

Alternatively, Azure SQL Database reference data can either be queried fetched once 

at the start of the job and used throughout or periodically refreshed down to the grain 

of a minute. For very static data then, a single dataset will likely suffice; however, if you 

have regularly updated values, then you can make use of this periodic refresh capability. 

Additionally, if the dataset is very large, then a delta query can be supplied to avoid 

lengthy operations that would result in timeouts. Reference data is loaded into memory 

by the streaming runtime, and this allows for very quick joining of data. However, this 

dataset is limited to a size of 300 MB at a level of six streaming units and above. Less 

than six and the limit is half of that if not smaller. This means that care needs to be taken 

when writing the reference data queries to ensure that the snapshot times are correct 

and that deltas are employed if needed. Further to this, compression is not supported for 

reference data.

�Stream Ingestion for Azure Blob Storage

As previously mentioned, Azure Data Lake Gen 2 is not a generally available destination 

for a streaming analytics job; it is currently in preview for select regions and therefore 

not a reliable production option. While this does present an issue from an architectural 

conformity perspective, it does make the route for inputting data from streaming 

devices simpler. Data is simply written into a file that is hosted in a specific directory. In 

order to assist with file management, the stream analytics config UI allows for dynamic 

placeholders to be used so that file names and directory locations can accurately 

describe the window of data that is contained. Examples of these are shown as follows. 

Alongside these placeholders, a minimum batch row count and maximum time 

window can be set to restrict the size of each batched file. For example, the maximum 

time parameter can be set so that a batch is written every 5 minutes, even if that does 

not meet the minimum row count. In this scenario, an event can be raised by the Blob 
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Storage account when the batch is completed, which is then interrupted and processed 

by Azure Data Factory. These batch windows can be 1 minute or greater, and while 

this is not quite record by record immediacy, it certainly is near real time and would 

comfortably cover off many fast-moving data scenarios.

�Stream Ingestion for Azure SQL Database

The preceding streaming approach shows how a stream can be rolled into a batch and 

then ingested; however, direct integration is also very simple to achieve by using Azure 

SQL Database as a destination. Records can be inserted near to the rate of generation if 

required, and while this speed is clearly a benefit, it can pose issues when it needs to be 

integrated with other datasets. Without the rigorous structure of the ETL processing, you 

must assume that the data arriving from a stream may have some cleaning problems that 

are only acceptable given the speed at which the records arrive. To work around these 

problems and blend the data with the slower moving batch or event-based data feeds, 

you should employ a lambda architecture.

�The Lambda Architecture
The lambda architecture approach is defined as a blend of streaming and batch-based 

ingestion that allows for historical, well-curated data to be seamlessly integrated 

with high-velocity data, allowing for a cohesive and contextualized view of real-time 

information. The technical challenges when implementing a lambda solution are not 

generally the individual feeds; while streaming and batch-based feeds can present their 

own challenges, the main issue to overcome is that of integrating the data. Slow-paced, 

batch, or event data will be well cleaned, prepared, and accurate; however, streamed 

data will often be very raw and close to its original source format. For this reason, there 

is the need to have a serving layer that can tightly control the way in which data is 

presented to querying applications and users. Additionally, a modicum of cleaning can 

be applied here at the frequency defined by the business requirements without slowing 

down or interfering with the stream.
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�Blending Streams and Batches
In all cases, stream data should be loaded into a separate table that is designed 

specifically for the stream and never into a pre-existing warehouse table. This is so that 

the accuracy and integrity of your warehouse is not compromised but also so that long 

running processes for loading dimensions and facts are not continually interrupted by 

frequently arriving stream data. Given the two tables of information, a view should be 

built that consistently picks common attributes from both tables and present them in a 

way that is transparent to the end user or application. Due to the nature of streamed data, 

the records in this table will be far less enriched than those of a proper warehouse table, 

and therefore the view should utilize logic that can provide defaults or lookup values in 

order to make the streamed records meaningful alongside the warehouse datasets.

�The Serving Layer
Any tables or views that are exposed to a user or application need to be carefully 

designed; however, with a lambda solution, this is even more critical. The requirements 

of the reports need to be well understood so that the real-time data can deliver the 

metric values to fulfil these requirements but also the absolute minimum set of 

dimension attributes so that the aggregated values can be sliced and diced. In some 

cases, the warehouse data may already be aggregated and stored at a higher grain than 

that of the streamed data. In those cases, the logic behind the view layer will need to 

aggregate the granular data to the correct grain and then blend the two datasets.

As mentioned earlier, a degree of cleaning could be performed in this layer and in fact 

this is highly recommended. By allowing the stream processors to focus solely on pushing 

data to your database or file system, you ensure that records are passed off quickly and 

reliably. Any increase in complexity midstream only makes the process more likely to 

fail while also consuming more streaming units without a returnable benefit. Even if the 

serving layer was queried every 30 seconds, this would allow ample time to apply common 

data cleansing techniques on the delta of records since the previous 30 seconds.

In most lambda scenarios, the records arriving from the speed layer would be 

considered fact information in that they are individual transactions or readings from a 

sensor, for example. Each of these records is then loaded and stored at their lowest grain 

and aggregated into the serving layer. To enrich the existing fact data, streamed records 

can be unioned, that is, to join the data vertically like stacking to the existing data. The 

key here is that both sets of data must have the same schema, and so the stream records 
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must hold a minimum set of attributes to allow this to happen or at least be enriched to 

that point, within the serving layer. There is however the possibility that the stream data 

applies to existing dimension records, for example, customer statuses that are regularly 

changing. In this scenario, dimension data that is already enriched is then further 

enriched with real-time data. In this case, speed data is joined horizontally and so needs 

to have at least one joining characteristic, for example, customer id, so that both versions 

of the record can be aligned.

The following code shows how a core warehouse table and a stream table can be 

unioned together to present a consistent set of facts to an end user. Additionally, the 

streamed data is being enriched with product names as part of the view definition, 

instead of these taking up part of the stream. Listing 4-5 shows how the two tables can be 

unioned to create a single presentation view. 

Listing 4-5.  Creating a single presentation view

CREATE VIEW Warehouse.Sales

AS

    SELECT

         [SalesPerson]

        ,[SalesAmount]

        ,[ProductName]

        ,[ProductId]

        ,[CustomerId]

    FROM [Clean].[Sales]

UNION ALL

    SELECT

         'Anon Sales'

        ,[SalesAmount]

        ,p.[ProductName]

        ,p.[ProductId]

        ,[CustomerId]

    FROM [Stream].[Sales] AS s

    INNER JOIN Warehouse.DimProduct AS p

        ON p.ProductId = s.ProductId

SELECT * FROM Warehouse.Sales
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�Assessing the Approach
The goal of this chapter was to outline a range or ingestion architectures that can be 

employed in varying degrees across a data warehouse ETL solution. By having a full 

understanding of the risks, opportunities, and implementation considerations of each 

approach, you can determine how each might fit with the data you have to process 

into your data warehouse. The approaches in this chapter were laid out in order of 

complexity, and so if ETL in Azure is a new concept to you and the developers you work 

with, then a batch-based architecture is a great starting point. By implementing this 

and doing it well, you will have the fundamental building blocks for an event-based 

architecture. Only once you have a solid grasp of how these two methods hydrate your 

warehouse should you begin to plan how streamed data could be used to further enrich 

your data warehouse.

Chapter 4  The Ingestion Architecture



133
© Matt How 2020 
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_5

CHAPTER 5

The Role of the Data Lake
As the data needs of a business change, the methods to store, organize, and audit 

data need to change as well. Big data is the buzz word of the day, and big data needs a 

scalable storage platform. Multimedia files such as images, videos, and audio files need 

to be co-located and reported against, and so a platform that can accommodate such 

diverse data types is required. A modern data platform may also need to ingest data at 

incredibly high speeds, and having a platform that can cope with streaming and scale 

accordingly is essential. There is such a variety of requirements for data storage with 

modern businesses that managing and maintaining storage systems specifically for each 

would be impossible. What is needed is a simple option that implements a “less is more” 

approach to offer the scalability and diversity required. What is needed is a data lake.

The term data lake was first used in 2010 by founder and former chief technical 

officer of Pentaho, James Dixon, who was speaking about the inherent restrictions 

of a regular data mart. These of course are size, time to deliver value, and research/

experimentation capabilities.

If you think of a Data Mart as a store of bottled water, cleansed and pack-
aged and structured for easy consumption, the Data Lake is a large body of 
water in a more natural state. The contents of the Data Lake stream in from 
a source to fill the lake, and various users of the lake can come to examine, 
dive in, or take samples.

—James Dixon 2010  
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

The way the data lake overcomes these restrictions is by being a much more generic 

store for raw data, meaning that users can easily deliver data of any type into the lake 

while rapidly deriving insight from it because the data does not need to be coerced and 

bound to the schema of a data mart. No longer will analysts have to wait for months 

to even begin exploring a dataset, only to discover that the essential data they need 

has been aggregated away into the ether. Now they can dive straight into the data lake, 

https://doi.org/10.1007/978-1-4842-5823-1_5#ESM
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
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doing as much cleaning as necessary, and once a proven value has been asserted, a 

proper process can be built to funnel the data into a warehouse. In practice, the high-

value datasets may well go via the data lake and more or less immediately into a data 

mart; however, with the limitless storage capabilities of a data lake, there is never 

a reason to throw data away. In fact, these datasets often can hold unprecedented 

insight that can only be discovered when enough of the data is held in the same place 

and in its raw, low-level format.

Additionally, users can benefit from unstructured datasets such as images and 

videos that could never be represented in a traditional data mart. This capability is 

of particular interest to data science teams looking to extrapolate tags or metadata 

about images before blending that data with some other dataset such as customer or 

product. What’s more, in a data lake environment, the data can be nicely co-located so 

that a semi-structured JSON file can easily be joined to a Parquet file which can then 

be updated to hold the output of some AI algorithm – the possibilities are truly endless 

when data storage is not a barrier.

The key point here though is that the data in a data lake is in a raw, untranslated state 

and cannot easily be read or evaluated using traditional SQL-based methods. Depending 

on the user and their intention this can be beneficial, often data science teams prefer to 

do all cleaning and loading from raw to model stage themselves; however, to fuel a data 

warehouse, a degree of structure is required. In order to use a data lake in conjunction 

with a data warehouse, we must use the lake as a raw storage area that is used as a 

landing and staging platform. Crucially, we need a structure for the lake that allows us 

to properly segment business areas for security or logical reasons. Without this kind of 

structure, we would find ourselves in charge of a data swamp – a place where data comes 

to die and insights cannot be discovered.

�The Modern Enterprise and Its Data Lake
Any organization will likely have a data lake although they may just not call it that. They 

may call it SharePoint, or “The Intranet,” or even just the shared network drive. Branded 

data lake technologies such as Azure Data Lake Gen 1 and Gen 2 are flagship products 

that specialize in being data lakes; however, these other systems can also compete in 

some areas. Just because a data lake is not called a data lake doesn’t mean it doesn’t 

do the same job. Often however, a cloud-based data lake holds a special place between 

these technologies – it is not quite so user friendly as to be used daily by a nontechnical 
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user, yet it is much easier to access and load data to than an SFTP site. What’s more, the 

Azure Data Lake technologies make use of AD integrated security and can be closely tied 

in with existing security configurations.

So, if your organization does not have an Azure data lake, but you do already use 

some sort of large-scale file repository, do you still need a data lake? The answer is yes. 

Whereas systems like an Intranet or SharePoint are built to maximize collaboration, 

the data lake should be a developer lead initiative so that the structure is conducive to 

warehouse loading and data science research if required. This may mean breaking apart 

data silos; where data was previously kept together in isolation, files should be relocated 

so that they can be loaded more efficiently, and because the lake is easily accessed and 

defined by users with the right permission, development of the lake in this way can be 

rapid and agile, lest we forget that the lake is also scalable to almost limitless capacities. 

It requires very little maintenance or up keep as there are no servers that you need to 

worry about, Microsoft takes care of all of that for you; the only concern to the business 

is the structure and quality of the data in the lake. This founding feature of cloud data 

lakes means that there is never a reason to throw data away without a very good reason 

(GDPR, etc.). Any data stream that is identified in the enterprise should be directed 

to output data into the lake in some capacity. Even if there is no actual processing or 

defined purpose for the data, the fact that it is captured means that it can be profiled, 

analyzed, and built upon when the time is right.

�Azure Data Lake Technology
The Azure platform has three offerings that can be considered candidates for a Data Lake 

which are

•	 Azure Data Lake Gen 1

•	 Azure Data Lake Gen 2

•	 Azure Storage

From a functional perspective, these products are obviously fairly similar; however, 

there are aspects about them that are different, and these distinguishing features are 

important to understand. Additionally, Microsoft are fully bought into the concept of the 

data lake and therefore continually develop their offerings to ensure they are competitive 

products that lead the market.
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�Azure Data Lake Gen 1
The initial data lake offering, Azure Data Lake Gen 1 (ADL Gen1) is a well-matured 

product at this point and has been the go-to data lake technology in Azure for a good 

number of years. While this has been moved on in the form of Azure Data Lake Gen 2 (ADL 

Gen2), it is worth a few sentences to explain why this product was beneficial and how 

the architecture was structured. ADL Gen1 is built using an Apache Hadoop file system 

(HDFS) and exposes the WebHDFS REST API Layer to calling applications. This means it 

is easily integrated into other technologies that understand those APIs such as Spark and 

Hive. A feature of an HDFS type file system is that it can store files of any type and size; 

there are no restrictions whatsoever. Files can range from bytes to petabytes in size, and 

ADL Gen1 will have no problems storing, reading, and writing them. In fact, when files are 

deposited into the Azure Data Lake Gen 1, they are split across a number of storage servers 

to offer maximum resiliency but also parallel reading capabilities. This splitting of data 

means that analytical compute resources that run on top of the lake, such as Spark, Hive, 

and Azure Synapse Analytics, are able to run as efficiently as possible. Lastly, ADL Gen1 

implements Active Directory integrated security, so that access to folders and files can be 

managed through groups to a high degree of granularity.

�Azure Blob Storage
Before Azure Data Lake Gen 2 became generally available in February 2019, the only 

alternative to Azure Data Lake Gen 1 was Azure Storage or Blob Storage as it is commonly 

known. Azure Storage also uses the HDFS-based file system client and therefore offers 

optimizations for parallel reads and analytical queries; however, it exposes its own 

set of Azure Storage APIs rather than the more generic WebHDFS APIs using its own 

Windows Azure Storage Blob (WASB) driver. One more major difference between the 

two technologies is the way that files and folders are implemented. In Azure Data Lake 

Gen 1, folders are true folders in that they are stand-alone objects in the system, and this 

is known as a hierarchical file system. In Blob Storage, the files are stored as objects in a 

container which is a flat namespace. The concept of folders does not really exist; however, 

virtual directories can be implemented using part of the object name. Despite this, all the 

tools to work with Blob Storage use the name “folder” to describe levels in the system; 

however, if you create an empty “folder” and navigate away from it, you will notice that the 

folder does not appear to exist and this is because there is no object that has that folder 

as part of its name. Therefore, the “folder” does not exist either. This can be confusing 
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at first although in practice this is rarely an issue. A further benefit that Blob Storage has 

over the Azure Data Lake Gen 1 is the concept of redundancy. In ADL Gen1, data is locally 

redundant, meaning copies are stored within the same Azure region. However, Blob 

Storage can offer locally redundant, zone redundant, and globally redundant levels of 

geo-redundancy making the recovery options a bit more flexible.

�Azure Data Lake Gen 2
Finally, we have Azure Data Lake Gen 2, which is essentially the marriage of ADL Gen1 and 

Azure Storage. Mostly the technology is based on Azure Blob Storage so that costs are low 

and features such as geo-redundancy are implemented by default. There are, of course, 

a couple of differentiating factors that make this a true data lake technology optimized 

for big data analytics instead of a generic object storage engine. The first is hierarchical 

namespaces. This feature allows a directory structure to be realized physically rather than 

being mimicked as is the case in Azure Blob Storage. As mentioned earlier, the folders 

do not technically exist in Blob Storage, and so any changes to the directory structure 

incur the need to iterate each object and perform an update. With the implementation of 

hierarchical namespaces, a directory update becomes a simple metadata change in the 

storage engine and data access is simplified greatly, thereby improving query performance. 

Another addition is that of the ABFS driver, which is a driver that is available in all 

Apache Hadoop environments such as Azure Databricks and Azure Synapse Analytics 

and is specifically optimized for big data analytics. Previously, the WASB driver was 

used to complete the complex mappings between the HDFS semantics and the object 

store interface used in Azure Blob Storage. However, due to the arrival of hierarchical 

namespaces, the system semantics are now aligned and therefore the mapping exercise 

is no longer required making reads much more efficient. The security implementation 

for Azure Data Lake Gen 2 is very similar to that of Gen 1 now that folders are no longer 

virtualized. Azure Active Directory is fully integrated and permissions can be set for each 

file and folder. The permissions themselves can be assigned through the Azure Portal and 

also using Azure Storage Explorer.

Each of these data lake technologies interacts excellently with Azure Synapse 

Analytics as the PolyBase engine and can make full use of the distributed storage 

structure to read data into the instance in parallel. However, Azure SQL DB on the other 

hand is not a distributed system that has support for HDFS type file storage, meaning 

that data moving from any of the preceding data lake options into Azure SQL DB must be 

loaded via an integration engine such as Azure Data Factory.
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�Planning the Enterprise Data Lake
When you first begin using an operating system (OS), such as Windows, the first thing 

you probably take for granted is that all the files are neatly packaged into folders for 

you and the OS provider will usually have already created some empty ones that are 

preconfigured for things that you use regularly such as downloads, music, images, and 

others. Despite this, there will always be an area where you are encouraged to put in your 

own organization structure – this is your documents folder for users of Windows. Here, 

the file system has been well thought out so that when new data arrives in your system, 

there is a clear place for it to go and files can easily be located when needed. Imagine 

firing up your PC to find that every file on your machine was stored in a single folder. 

You would be completely lost! Additionally, some folders are purposefully locked down 

to avoid you accidentally deleting something that it critical to your system, again, good 

planning of the file structure.

Moving out of the realm of a user’s PC and into that of cloud data lakes, the same 

principles still very much apply. A data lake without a folder structure is a data swamp 

and is of very little use to anyone, in much the same way as a machine with all its files 

stored in one place would be. The first step is to define the purpose of your lake and 

determine which parts of the data processing pipeline will be hosted in the data lake. 

Commonly, the data lake is used to store data in its rawest form. However, there are 

tools that can perform complex cleaning and relational logic to data, all within the data 

lake. This next section will explore when to use a data lake to fulfil various needs that are 

common in data warehouse scenarios.

�Storing Raw Data
The primary usage of the data lake should be storing files in their raw format and so a 

specific directory should be defined for that purpose. Once data arrives in this directory, 

it should be immutable (never overwritten or changed) so that you can always roll back 

to a previous point in time if needed. Additionally, keeping all files in their raw state 

means that future solutions developed outside of your data warehouse do not have a 

dependence on your cleaning and transformation logic, thereby reducing the need for 

regular changes to the ETL processing. It is also best practice to group data by source 

system, again to ensure that future solutions can easily be developed without interfering 

with warehouse processing.
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In terms of security, the data in this directory should be tightly locked down so that 

files cannot be deleted or overwritten, and only new files can be added. Often, the Azure 

Data Factory responsible for copying the data into this directory would have write-only 

access, and a separate Data Factory (or at least linked service) with read-only access 

would be used to move data out of this directory. Generally, only an administrator would 

have both read and write access, and this configuration ensures that there is isolation 

of concerns for each Data Factory that is working with the files. This directory could be 

called “RAW” and an example structure is shown in Figure 5-1.

Figure 5-1.  A folder hierarchy showing the RAW directory with one source system 
and two datasets

�Storing Cleaned Data
Often a SQL engine is used for all processing once RAW data has been ingested because 

it has all the cleaning capabilities available out of the box. Azure Synapse Analytics and 

Azure SQL DB could be used to clean and standardize your data from its RAW state into 

a prepared state, and this is a recommended approach for most integration scenarios; 

however, there are some exceptions. If, for example, your data is particularly large, 

it may be much more efficient to leave it in the data lake and use a compute engine, 

such as Spark or Hive, that can operate on data that is stored in the lake without the 

need for data movement. Additionally, if your data is a complex semi-structured file or 

completely unstructured media files, the logic to read and standardize that data may 

be easier to implement using Spark or Hive. In these scenarios, I recommend cleaning 
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your data within the data lake, and as files are cleaned, sterilized, and perhaps batched 

or split, they should be stored in a new area that indicates that the aforementioned 

activity has taken place. It is important to separate this data because it is no longer true 

to its source and therefore may obscure some detail that is required by another team or 

process perhaps now or in the future. This could be called “Clean” and is the first step 

to distilling value. The security here could be more relaxed as there may be analysts 

wishing to access this cleaned but still relatively untouched data. As with Raw, this 

space should continue to group data by source system and will very closely resemble the 

structure of Raw so that the path from Raw to Clean is easily followed. Figure 5-2 shows 

how both Raw and Clean could be laid out.

Figure 5-2.  A folder hierarchy showing the RAW and CLEAN directories with one 
source system and two datasets
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�Storing Transformed Data
As with the clean directory, simple tabular data that needs to be transformed in some 

way should be loaded into a SQL engine. Again, all the capability is built into the engine, 

and often development teams have pre-agreed patterns or methods for transforming 

data so that it is ready for ingestion into a data warehouse. However, the same exceptions 

are still valid because at this point your large or less structured files are cleaned and 

prepared but not necessarily any smaller or more structured. If they were not tabular to 

begin with, then they most likely are still not tabular, and therefore it may again be easier 

to read and transform the data using an HDFS-based engine such as Spark or Hive. The 

goal of this processing step however is to coerce the data into a tabular format so that it 

can live in a SQL table as part of your data warehouse. That said, avoid the temptation 

to transform and load your data into the data warehouse in one step. While this might 

seem more efficient, having the process split out makes maintenance much simpler and 

provides a clear checkpoint for data before it arrives in your warehouse. As such, a new 

directory should be created to store these transformed files separately to your raw and 

clean files. This new directory will no longer follow the source system-based structure, 

as nearly all data transformation steps alter the files schema or join rows across datasets, 

and we should now start to group data by its logical usage. An example would be the 

processing of customer records from multiple source systems into a single conformed 

dimension. This file no longer belongs to any single source system and therefore should 

be grouped under “Customer.” As you can see, the data stored here would closely 

resemble facts and dimensions and so this directory should be called “Warehouse.” 

Here you may have both analysts and applications consuming your data, so security 

needs to be heavily considered here. Figure 5-3 shows how the data lake may support the 

Warehouse directory.
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�Facilitating Experimentation
If you have users that want to experiment in the lake, by perhaps transforming data in 

new, unexplored ways, this may also require a separate “Experiments” area so that the 

data arriving here will not affect the more defined movement of data through the lake. 

The security here is very much dependent on the scenario; however, you could have 

user-specific folders where the security is set up as such. Generally, the usage of this area 

varies although most organizations that use this concept successfully have analysts or 

developers pull data from Raw into their own defined spaces and build proof or concept 

reports to whet the appetite of the business. When a report is considered valuable, then 

the processing created in the Experiments area of the lake can be replicated easily on top 

of Raw because the data is in the same state. Figure 5-4 shows how user-specific folders 

can be used to copy Raw data from RAW that can be used for experimentation.

Figure 5-3.  A folder hierarchy showing the RAW, CLEAN, and WAREHOUSE 
directories
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�Implementing the Enterprise Data Lake
When implementing an enterprise data lake on Azure, it is important to remember that 

the lake should be for the benefit of every single employee – even those users without 

requirements currently may well have business-critical data in the future, and the goal is 

to create a solution that is generic and future proof enough to ensure these scenarios can 

be implemented with the least amount of developer effort. This can easily be achieved 

with proper planning of directory structure and security, but as the lake develops over 

time, this principle is important to keep in mind. Despite this point, we are looking at 

data warehousing and how a warehouse can be feed from a data lake. Therefore, we will 

begin to discuss the specifics of this approach, but in practice, these steps should only 

form part of the lake and not dictate the entirety of its purpose.

Another key attribute of the lake is its relative cost compared to its value. A data 

lake is a way to store immense amounts of data while paying very little to do so, with the 

added benefit that the implementation of the HDFS APIs means data is very efficiently 

Figure 5-4.  An implementation of an EXPERIMENT area where Joe Bloggs can 
experiment with Raw data without affecting the warehouse processing
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read from the lake. For any solutions that have a tight budgetary constraint, a data lake 

means that the expensive compute resource is only spent deriving actual analytical 

value and not cleaning and transforming data, a task that can be done by a lower-level 

technology. In this section, we will discuss cleaning opportunities in the lake and how 

these activities can be completed without the use of an expensive SQL engine.

�Security Configuration in Azure Data Lake
Before explaining the details for each directory in the lake, it is important to discuss 

the nature in which permissions are applied in Azure Data Lake Gen 1 and Gen 2. The 

permissions that can be set are either

•	 Read: The ability to read a file or list the contents of a folder

•	 Write: The ability to add, delete, and overwrite folders and files

•	 Execute: The ability to iterate through a folder and access the 

subfolders within it

Each folder and file are treated as a separate object in the hierarchy and therefore 

have their own set of permissions. A common “gotcha” for people new to administrating 

a data lake is that of the EXECUTE configuration. This permission is essential when a 

process needs to navigate through the data lake, as the READ permission alone does 

not permit access to any subfolders in a directory structure. Figure 5-5 shows how to 

correctly configure permissions for file access.

Figure 5-5.  The correct permission setup to allow for file access

A key aspect to keep in mind is that permissions do not inherit from their parent 

folders. Where a principal has access to a folder, new files and folders added to that 

folder will not, by default, be accessible to that principal. This sounds problematic at 

first because any new file or folder incurs the need to update permissions; however, if 

we know that a principal will need access to every new addition into the parent folder, 
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we can create a default permission entry that ensures the security configuration of the 

parent is applied to every new object for that principal. This concept is illustrated in 

Figure 5-6.

Figure 5-6.  Default permissions are configured on the “Sales” folder to allow for a 
new file to be accessed by a principal

If there is a chance that folders will be added to the “Sales” folder, then the “Sales” 

folder would need READ and EXECUTE configured as Default. Figure 5-7 shows how to 

configure these permissions correctly.

Figure 5-7.  A diagram showing the correct configuration for folders that may 
become parent folders
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�Applying Security in Azure Data Lake Gen 2

In order to apply security configurations to Azure Data Lake Gen 2, you must have the 

Storage Explorer application downloaded. Assuming you have this application, follow 

these steps to configure security for either a service principal or AD group:

	 1.	 The key piece of information you need is the AD object id of the 

group or principal. This can be found by accessing the Azure 

Active Directory resource via the Azure portal. See Figure 5-8  

for reference.

Figure 5-8.  Highlighting where Azure Active Directory can be accessed

	 2.	 From here you can locate any of the key principles that you may 

need to configure security for. Figure 5-9 shows the main areas of 

interest.
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	 3.	 Within each of these areas is the ability to search for a group or 

principal by name or application id, and the Object id is then 

easily located either within the search result itself or by clicking 

the application and locating the object id item. For reference, an 

object id is a GUID that could resemble the following: 1abc6475-
79cd-4292-8203-c6c926b3b679.

	 4.	 Once you have your Object id for the object you want to configure 

permissions for, open the Azure Storage Explorer application and 

locate your Data Lake Gen2 instance from the tree menu on the 

left-hand side. Click it to open the folder view in the main window 

and right-click the first folder to see the dialog box shown in 

Figure 5-10.

Figure 5-9.  Emphasizing the key areas to configure security in Azure Active 
Directory
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	 5.	 In the bottom text box, copy the object id in and click Add. 

Once the object id is validated, you will see the new object id 

highlighted and the boxes below unchecked. From here you can 

check the “Access” boxes to determine what permissions are 

applied directly to the folder and the “Default” boxes to determine 

what permissions are applied to new files and folders that are 

created underneath the selected object.

Figure 5-10.  An image showing the “Manage Access” dialog in Azure Storage 
Explorer
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�Implementing a Raw Directory
As mentioned previously, the first area for inbound data should be the Raw directory 

of the data lake. The route into this area should be simplistic and low maintenance so 

that there is little to no barrier to entry and data can quickly be consumed and stored 

securely away in a place where it will not be lost. Immediately within the Raw folder 

should be top-level source system folders that group related data together. By operating 

in this way, security can be configured to meet any requirement. If you have a source 

system that is capable of writing data directly into the lake, then this system can be 

granted access to write into this single folder without the ability to affect any other source 

systems. Conversely, if you need to obtain data yourself using Azure Data Factory, then 

you could allow this Data Factory the ability to write into each of the folders as required. 

Further to this, with the advent of GDPR, there is the need to understand and process 

sensitive data separately to nonsensitive data. For reference, sensitive data includes 

attributes such as race, ethnic origin, politics, religion, genetics, and others that can be 

linked to specific individuals by either a unique identifier or more natural aspects such 

as name, email address, and phone number. As such it may be prudent to subcategorize 

Raw into Sensitive and Non-Sensitive, also ensuring that any processes that are writing 

into the lake are only able to do so into the correct folders. This could therefore mandate 

the need for two Data Factories, one that operates with Sensitive and one that operates 

with Non-Sensitive.

A further key benefit of the Raw directory is the resilience that it offers to the overall 

solution. By storing data redundantly in the lake, you can ensure that you always have 

the ability to rehydrate your data warehouse should the need arise. Of course, the larger 

the data volumes, the more difficult a full hydration may be, but at least with the data 

stored in Raw, you always have the option.

�Partitioning

A common pattern in any file system that is updated daily is to partition the data 

by a batch id or arrival date. This is so that deltas can be easily derived and lineage 

accurately tracked. A data lake is no exception to this, and it is encouraged that any 

writing processes can create a daily folder or batch folder for each of the loads. Were the 

frequency to be even higher, for example, hourly or minutely, then you could weigh up 

the pros and cons for partitioning the structure to that level or grouping data by date. 

If you are receiving data from a source provider, then it should be mandated that they 
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create date folders within the lake, underneath their source system folder. Alternatively 

if you have to obtain data yourself with Data Factory, then these folders can easily be 

created using an expression. Listing 5-1 shows some code that could be inserted into the 

sink dataset directory to create folders for the year, month, and day.

Listing 5-1.  Data Factory expression to concatenate current datetime values with 

directory paths

@concat(

    'raw/Source System 1/',

    formatDateTime(utcnow(),'yyyy/MM/dd'),

    '/'

)

Once this pattern is in place, most tools that operate over a data lake (including 

Azure Synapse Analytics) can begin reading data at the table root level which in this 

case would be /raw/Source System 1/. All of the date partitioning and subfolders 

underneath are completely transparent to the engine, and the data can therefore be 

treated as a single dataset, regardless of which year, month, or day partition the file is 

stored under. It does not matter how many files are included within the hierarchy; Azure 

Synapse Analytics will have access to them all. A key point to understand here is that 

over-partitioning of data can be a bad thing. This is known as the small file problem and 

generally arises when files are split up to a point that the overhead to read multiple files 

exceeds the benefit that is generated through parallelism. Essentially the engine has too 

many files to read, and because the files are so small, the engine reads them too quickly 

and then has to go through the overhead of reading the next file. Depending on the scale 

of your data warehouse, you can achieve different amounts of parallelism when reading 

data from your data lake. For example, an Azure Synapse Analytics running at 500 cDWU 

can have a maximum of 40 external readers, meaning that 40, 512 MB chunks of data can 

be read at once. Be aware that compressed files can bottleneck performance because 

although there may be less data to retrieve from disk, PolyBase cannot open multiple 

threads on a compressed file.

An additional consideration when implementing an enterprise data lake that 

needs to feed Azure Synapse Analytics is that the PolyBase engine cannot push filtering 

predicates down onto the data lake layer. This means that an external table that is 

pointed at the table root will have to read the full dataset every single time, and this will 

gradually degrade performance over time. In order to mitigate this issue, files could be 
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loaded into an Active table location so that only relevant files are exposed to the external 

table and any nonrelevant files are moved out of this location so that a full history can be 

accessed when needed, but daily loads are optimized.

�Choosing a File Format

A major consideration with any data platform implementation is that of the file formats 

used throughout the system. In principle, the data lake can house files of any type; 

however, best practice dictates that a standard file type convention is used so that 

standards can be maintained. The formats available to PolyBase are

•	 Delimited text files: CSV files and alike.

•	 RC files: Record columnar format that generates groups of rows and 

then processes these into key value pairs.

•	 ORC files: Optimized row columnar format that uses encoding and 

lightweight indexes.

•	 Parquet: Similar to ORC files, however also lend support for nested 

attributes and hard data typing. PolyBase, however, cannot read 

nested Parquet files but can utilize the internal metadata that defines 

data type information.

With delimited text files, the data types are not enforced, and so the external table 

should define each column as a NVARCHAR(1000) type so that any value can be read in. 

However, this also then mandates that an additional processing step is implemented to 

coerce the untyped values into strongly typed values. To mitigate this, Parquet files could 

be your default because the files themselves contain metadata describing each column, 

meaning data does not have to be loaded into an untyped table and then transformed 

into a table that is strongly typed.

�Implementing a Clean Directory
Up until now we have discussed mostly the Raw area of the data lake, and while this is 

arguably the most critical area to get right, there are other areas to focus on. Depending 

on how you choose to clean your data, there are some major considerations to evaluate 

and the route into this area can vary greatly depending on the technology choices of the 

platform.
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�Cleaning Within a Database

Both Azure SQL Database and Azure Synapse Analytics are highly capable of applying 

complex and repeatable cleaning rules to datasets, and therefore if your data is all 

tabular, then this should be your primary method. The T-SQL language that is native to 

both Azure Synapse Analytics and Azure SQL DB contains reams of functions designed 

to help developers achieve these goals. Common functions that are used heavily are 

TRIM, SUBSTRING, LEFT, RIGHT, UPPER, LOWER, COALESCE, REPLACE, CAST, 

CONVERT, and CONCATENATE, and often they are used in conjunction with each 

other. Further benefits of this approach include easier deployment and source control 

using Visual Studio. While the code to clean the data can be common across both Azure 

SQL engines, the method to hydrate your database with Raw data to be cleaned would 

be different. Of course, Azure Synapse Analytics would use PolyBase to obtain the data 

directly from the data lake, while Azure SQL DB would have to use Azure Data Factory 

to bulk copy the data. When using Data Factory, you may be tempted to call a cleaning 

stored procedure from the copy activity itself as per Figure 5-11; however, this is poor 

practice as this changes the insert from a minimally logged bulk operation into a highly 

transacted one, and this hits performance. Figure 5-11 shows the configuration to use a 

stored procedure as part of the Data Factory copy activity.

Figure 5-11.  Image of Data Factory using stored procedure called from Copy 
activity

There is of course a redundancy benefit to writing the cleaned data out into the 

lake which could also enable subsequent solutions that require clean data to piggyback 

on this output. Were this to be of interest, then Azure Synapse Analytics can again use 

PolyBase to do the opposite of the import. By creating an external table from an internal 

table, you create a new file in the data lake that could be picked up by a subsequent 

process. An example of this is shown in Listing 5-2.
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Listing 5-2.  An example of a Create External Table As Select (CETAS) statement

CREATE EXTERNAL TABLE dbo.CleanCustomer

WITH

(

    LOCATION = '/Clean/Sales System/Customer/',

    DATA_SOURCE = AzureStorage,

    FILE_FORMAT = TextFile

)

AS

SELECT TOP [N]

*

FROM

clean.Customer;

The preceding code shows how to create the external table from the internal 

clean.Customer table specifying the location and file type. Additionally, note the 

use of TOP here. This is used to force all the data into the control node of the Azure 

Synapse Analytics engine and thereby producing one file instead of 60, one per storage 

distribution.

While processing data in Azure SQL engines should be your primary choice, 

there are also issues with this approach. The first is that Azure Synapse Analytics is 

expensive. The massively parallel processing (MPP) engine that is the core of Azure 

Synapse Analytics is designed for blazing fast analytics and should not be thought of as 

a regular SQL engine in terms of cost or capability. To maximize on your investment in 

Azure Synapse Analytics, you want to ensure that you are using it to serve users queries 

across giant datasets rather than consuming concurrency slots to perform menial ELT 

tasks. To avoid placing these activities on your Azure Synapse Analytics, you could of 

course utilize the cheaper SQL engine, Azure SQL Database. The drawback here is that 

data movement pipelines need to be defined and orchestrated to move data into and 

out of your SQL engine. Figure 5-12 shows how data can be moved between different 

components of a solution.
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�Cleaning Within a Data Lake

A different approach is to leave the data in the lake and not move it into a SQL engine at 

all. This relies on specialist data lake processing tools which are becoming increasingly 

popular due to their flexible nature and their ability to really capitalize on the underlying 

storage engine. Databricks is one such processing tool and is built upon the Apache 

Spark engine, therefore using clusters to scale out compute jobs and in-memory storage 

to enhance performance. Working with Databricks to clean data is beyond the scope of 

this book; however, all required cleaning activities can be easily undertaken using either

•	 Spark SQL: A SQL language that abstracts a set of dataframe APIs

•	 Python: The world’s most popular programming language with a 

whole heap of external libraries to solve every possible scenario

Figure 5-12.  A diagram showing a polyglot approach to ingest, process, and egress 
data to and from the data lake
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•	 R: Traditionally a statistical language that can perform complex data 

transformations

•	 Scala: The native language of Spark and the language that Spark SQL, 

Python, and R compile into

The benefits of this approach are that the data does not have to move as far; 

Databricks connects to the data lake by impersonating a service principal and then 

exploits its deep integrations with the HDFS ecosystem. Additionally, a truly immense 

file that would be difficult or too time consuming to load into SQL can easily be 

processed by Databricks as its partitions will be exploited and the workload parallelized. 

Databricks can also rack up a cost; however, be cautious with features such as auto 

scaling and default sizing as often you can begin to consume compute resources long 

before you realize how much it is costing and be sure to terminate a cluster when not 

needed.

�Cleaning Within Azure Data Factory

A final option that coincides nicely with the topic of Databricks is that of Azure Data 

Factory Mapping Data Flows. These are graphical data flows that are created using Azure 

Data Factory but executed as Scala jobs on a Databricks cluster. They allow developers 

to drag and drop well-defined activities into a left to right flow and configure properties 

at each step. Similar to SSIS Data Flows, they can perform row- and column-based 

transformation operations while also handling aggregations lookups and filtering. At the 

time of writing, Mapping Data Flows were recently released (May 2019) and are therefore 

a fairly immature offering at this stage; however, they do provide a low/no code option to 

working with data not within a SQL environment.

�Implementing a Transformed Directory
Once again, certain characteristics of your data may dictate that the role of your data lake 

extends all the way to implementing business logic using Spark or Hive instead of using 

a traditional relational engine. In this case you would want to carve out a further area of 

the data lake likely to be named “Warehouse.” “Warehouse” is the area where clean data 

is joined and transformed into a shape that resembles facts and dimensions, although 

the data has not been surrogate and dimension keyed or undergone slowly changing 

dimension logic. The operative word here is “joined” and joining requires a relational 
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engine because often we are combining two or more source entities to create a single 

conformed warehouse entity that encompasses the constituent parts. Databricks has 

a relational capability through the implementation of Spark SQL and PySpark, which 

allows a developer to write traditional looking SQL that can perform joins without the 

need to actually move data into a SQL engine. This approach can drastically decrease the 

overhead to process data as the relational engine is brought directly to the data, rather 

than the data being brought to it. Additionally, Spark’s performance is founded upon 

processing data in memory and can perform such tasks at a very large scale due to its 

distributed architecture.

Regardless of SQL or data lake being chosen for each step, all of the cleaning and 

warehouse operations can be orchestrated using Azure Data Factory. ADF can call stored 

procedures in either SQL engines and also invoke Databricks “notebooks,” like repeatable 

scripts, and this means that wherever the processing of the data is done, the orchestration 

and control of the processing is handled by ADF. This approach is now known as ELT.

•	 Extract data from source files or source database.

•	 Load data into a SQL engine or data lake.

•	 Transform data using SQL stored procs or notebooks that are 

executed by Azure Data Factory.

This approach is most effective when datasets begin to cross the boundary into 

that of “big data” as the data is now transformed, aggregated, processed, and so on in 

a proper engine that can have the scale to cope with such a task, rather than inflight 

between a source and destination, as is the pattern with SQL Server Integration Services. 

Essentially the compute resource is brought to the data and is transformed in place.

In summary, the role of the enterprise data lake is to support a SQL engine when the 

data becomes too large or too loosely structured. And in either of these cases, there is 

very little trade-off between using the data lake against using SQL because of the quality 

of tools that are available, such as Databricks. Further, the integrations between the lake 

and Azure Synapse Analytics mean that the two can work cohesively to provide a “best 

of both” solution. Of course the data lake holds another benefit in that no matter what 

the data, the lake can handle it. Whether it be multimedia files, frequently arriving log 

files, or ginormous data files, the lake cannot only store this data but provide a base for 

rich analytics against these datasets. Of course, multimedia files cannot be read into a 

relational SQL data warehouse, but by being in an accessible location, their metadata 

can be used for reporting and analytics if needed.
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Another key point is that when a new stream of data is uncovered, it can simply 

be pointed at the data lake to be stored away safely until a team of developers is ready 

to do something with it. With no limits on storage, there is never a reason not to store 

everything. Even if no value is derived specifically from that data immediately, by storing 

the data in a platform such as a data lake, it is ripe for analytics as soon as the need 

arrives. While I mention that technologies such as SharePoint and Shared drives can 

be treated as data lakes in many organizations, the offerings within the Azure platform 

implement features that ensure the storage platform is not only limitless and accessible 

but also easily integrated into database engines and existing security structures. This 

ensures the data lake is flexible to the needs of the business but robust enough to 

underpin mission critical systems such as a data warehouse.

�Example Polyglot Architectures
The following figures and explanations discuss a number of different ways the 

technology offerings could be blended to produce a solution that covers all bases.

�Example One
Figure 5-13 contains a diagram displaying a solution with the following characteristics:

•	 Small/medium data warehouse that ingests moderate amounts of 

data per day

•	 Has little need for processing data back to lake after RAW

•	 May have a need for regular micro inserts or updates
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�Example Two
The diagram in Figure 5-14 displays a solution with the following characteristics:

•	 Large warehouse that ingests massive amounts of data per day

•	 Has need for processing data back to lake after RAW

•	 Ingests data only in large batches – no micro batches

Figure 5-13.  A diagram showing a polyglot architecture with a SQL preference
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�Example Three
Figure 5-15 displays a solution with the following characteristics:

•	 Small/medium warehouse that needs Spark or Hive to clean complex 

or ginormous datasets

•	 Has ability to accept smaller batches or micro inserts

•	 Needs to serve a broader analytical community of analysts

Figure 5-14.  A diagram showing a polyglot architecture with a blend on Azure 
Synapse Analytics and Azure Data Lake Gen 2
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�Example Four
Figure 5-16 displays a solution with the following characteristics:

•	 Large warehouse capable of processing highly complex and 

ginormous datasets

•	 Has ability to ingest giant datasets from the lake in parallel

•	 Seamless lake integration via PolyBase

Figure 5-15.  A polyglot architecture that utilizes Databricks to assist with data 
cleaning and preparation
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Figure 5-16.  A polyglot architecture that utilizes mostly lake processing, with a 
SQL engine layer for presentation
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CHAPTER 6

The Role of the Data 
Contract
In all data integration projects, there is always a concern about datasets changing their 

properties. This could be changing columns, changing data types, or even changing the 

degree of quality instilled in the data. The technical name for this is “Schema Evolution,” 

sometimes known as Schema Drift, and whether that be new columns arriving or 

known columns dropping off, how these situations are handled can have a huge effect 

on the success of the project. At a basic level, you need to be able to detect and react to 

occasions when a datasets schema has evolved, and with the vast amount of file and 

database types available, this task is getting more complex. Not only do you need to 

detect changes in tabular data (CSV files, database extracts) but also in semi-structured 

datasets such as JSON and XML. Expanding on this basic concept, you need to be able 

to handle the schema drift so that you can continue to integrate the data without having 

to manage multiple extraction methods for the same type of data. This may be manual 

to begin with, but there are tools out there now that can automatically handle schema 

evolution. As you begin to write ingestion procedures, remember that maintaining these 

schemas through schema evolution needs to be simple. If you get to a point where you 

are ingesting over 20 different files or datasets, then you do not want to have to visit each 

script to update the schema. Instead we need a centralized schema store so that we can 

easily make updates in a controlled way.

Another major component in data integration is the rules that are applied to data to 

transform and clean it, ready for ingestion to the data warehouse. Often these rules are 

used all over the integration solution, and there may even be a subset of these rules that 

are applied to all values, such as a trim to remove excess whitespace. Of course, the bane 

of a developer’s life is duplication of code as this causes consistency and maintenance 

issues, and so to avoid having versions of these rules in every script, the rule definition 

itself should be stored centrally and distributed as needed. This means that as the 
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understanding of the incoming data matures, and therefore the rules implemented 

change and develop, all rules across the solution are updated together but from a 

single source. An additional benefit here is that anybody looking to understand the 

transformation and cleaning logic applied in the ETL phase can simply look in one place 

to review the entire set of rules.

Any integration system that ingests data from more than one source likely needs 

to manage scheduling and dependencies to some degree. Often these schedules and 

dependencies can become intertwined in complex ways, and if they are spread out 

across scripts, then locating an out-of-date schedule or invalid dependency can become 

very difficult. Ultimately this makes debugging and maintenance very difficult, and given 

that you may need to change scheduling and dependencies frequently, it makes sense to 

store this information centrally so that changes are made once and in a single place.

All these problems are common and have been solved many times and in several 

different ways. However, the solution that I always opt for is that of an overarching set of 

metadata known as a data contract. In much the same way as a legal contract enforces 

obligations to partaking parties and specifies details of how they can operate together, 

the data contract does the same for how the data should look when it arrives and how it 

should be treated in the solution. Because the data contract is stored centrally, it ensures 

all the key elements as mentioned previously are managed from a single access point. 

Importantly, however, a data contract should not have to be long winded and difficult 

to read like a legal contract. In fact, they should only hold exactly what is needed to be 

useful and nothing more.

�What Is a Data Contract?
In reality, a data contract could take several forms; however, the nature of this book 

suggests that a set of related SQL tables is the best option for a reader who is a data 

warehouse specialist. Of course, the concepts can be applied to many other data storage 

platforms such as document databases and key value pair stores, but it is important 

to remember that the data contract will be called upon frequently and so should be 

in a format that is comfortable with your development team and will fit easily into 

your intended architecture. To satisfy basic requirements, your data contracts should 

store the incoming and intended schemas of datasets; however, these could then be 

extended to include transformation rules and scheduling logic. Arguably the easiest 

way to understand a data contract is to see one and there is an example of a SQL table 

implementation in Figure 6-1. 
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As you will see, the diagram is relatively simple to understand and is normalized 

so that rule definitions are only stored once. And clearly data contracts do not need to 

be complex to be useful as their benefit comes from their consistency. Being able to 

connect to the database and know exactly how to retrieve the schema, or the cleaning 

rules, or both, in every single ingestion scenario can make ETL development much more 

efficient. Common patterns for implementing the schema or rules can be built and then 

used across the platform wherever needed.

�Working with Data Contracts
Data contracts can be useful for any organization or integration solution, and there are 

two main elements to consider for the implementation to work well. First is how you 

will design your data contracts so that they cover all requirements consistently. Second 

is how you will integrate the contracts into a solution so that the contract can become 

useful. This next section will focus on both design considerations and integration 

considerations respectively.

Figure 6-1.  An entity diagram showing how the primary elements of a data 
contract can be implemented in SQL tables. A detailed SQL script to create the 
tables shown in Figure 6-1 is included in the appendices
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�Designing Data Contracts
The strength of a data contract is in its consistency. Because you will have repeatable 

methods to fetch each aspect of the contract, the overall solution can be built out much 

more efficiently. However, because of this consistency, which is partly enforced by the 

virtue of SQL table definitions, all contracts need to contain the same attributes. To look 

at this another way, if one particular entity requires a special configuration option, you 

would need to design your SQL tables to hold this option and therefore supply a value 

(e.g., NULL) for every other entity in your solution. Therefore, before implementing a 

system that uses data contracts, there needs to be a discovery and planning exercise 

to determine what should be stored in the contract and how it should be translated 

into the solution. Without this, it is all too easy for the contract and the solution to miss 

each other in the middle, incurring rework of either the solution or the contract. When 

planning your data contracts, there are several points to consider. These are

•	 Generating data contracts: How you will create and populate data 

contracts in a consistent way?

•	 Storing data contracts: Determining a location that is easily 

accessed by your integration components.

•	 Modifying data contracts: Detailing the process for ongoing work 

with data contracts including how to handle schema drift.

�Generating Data Contracts

The way in which data contracts are built can greatly affect their uptake in an 

organization. Having to manually write INSERT statements for schemas that have 

many columns is not going to be a fun exercise, and because these contracts will be 

largely repeatable, there should be a thought given to the possibility of automation. 

However, you may decide that due to the importance of these contracts, you want to 

ensure a human has validated the contract before it is deployed to the metadata store. 

Of course, you may also find that the sheer number of contracts needed renders the 

task of manually creating them impossible to achieve in the given time frames. Bear in 

mind that the contract structure may go through several iterations as they are first being 

introduced.
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An easily adopted option for automating the creation of data contracts is PowerShell, 

which provides an easily scripted approach to the generation process. There needs to be 

a balance here of course as automation requires metadata, and we are now at a point of 

creating metadata to then create more metadata. An ideal solution would be to read a file 

and inherit its data types and column names. This would mean that you could point your 

script at a repository of source files – ideally with one source file of each type – and have 

the script iteratively generate metadata for each file in a consistent and repeatable way.

The output of this script could of course be SQL insert or merge statements that can 

write data directly into the metadata store or be added to post deployment scripts that 

are executed each time the database is deployed from Visual Studio. This ensures that 

the metadata is regularly up-to-date and also offers developers a consistent way to work 

with metadata. Chapter 8, “Using Scripting and Automation,” will go into more detail 

about how a script such as the one described could be written; for now, consider that 

data contract generation should be automated as much as possible. An example of a post 

deployment script that uses a MERGE statement to insert data into the Entity table is 

shown in Listing 6-1.

Listing 6-1.  A post deployment script for merging entity metadata

SET IDENTITY_INSERT Metadata.Entity ON;

MERGE INTO Metadata.Entity AS tgt

USING (

    VALUES

        ('1','Daily Sales', '1'),

        ('2','Product', '2'),

        ('3','Product Category', '2')

) AS src ([Entity Id], [Entity Name], [Source System Id])

ON src.[Entity Id] = tgt.[Entity Id]

-- UPDATE MATCHED ROWS

WHEN MATCHED THEN

UPDATE

    SET

        [Entity Name]   = src.[Entity Name],

        [Source System Id]  = src.[Source System Id]
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-- INSERT NON MATCHED ROWS

WHEN NOT MATCHED BY TARGET THEN

INSERT

    (

        [Entity Id],

        [Entity Name],

        [Source System Id]

    )

VALUES

    (

        src.[Entity Id],

        src.[Entity Name],

        src.[Source System Id]

    );

SET IDENTITY_INSERT Metadata.Entity OFF;

The preceding script uses a SQL MERGE statement to allow for entities to be inserted 

into the metadata store if the entity does not exist. If, however, the entity does exist, then 

it can be automatically updated to reflect any changes. This approach allows metadata to 

be created automatically using scripting but can also be tweaked easily by developers as 

and when needed.

�Validating Data Contacts

Regardless of how the contracts are generated, it is essential that there is a degree of 

validation before they are deployed into the metadata store. These contracts will define 

how the system operates and so a faulty contract could cause a wide swathe of issues 

across your solution. Of course, with SQL tables, there is the reliability of a schema that 

enforces correct data types and that essential values are not left NULL; needless to say, 

these best practices should be followed. In addition however, there may also need to 

be a business sense check to ensure that a dataset is handled properly and this is why 

contract authoring should be limited to a small group of super users and each contract 

supplied should be approved by a data steward before being committed to the system.

Any contracts that are found to be invalid or non-(business) sensical should be 

rejected and sent back to the author. This could be done with some kind of alerting 

mechanism depending on how sophisticated the validation mechanism is.
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�Storing Data Contracts

When storing data contracts, there are some critical considerations to bear in mind. In 

order to protect your SQL engine that would host your data warehouse, it is important 

to store data contracts on a separate SQL database. For this job, Azure Synapse Analytics 

would not be suitable as the volumes are small and transactions and concurrency are 

potentially quite high. A further benefit is that changes to metadata can be deployed 

without affecting any of the business-critical processes that run the data warehouse. 

Figure 6-2 shows how such an architecture would be deployed.

Figure 6-2.  A diagram showing the data contract host database as a pivotal 
element in the processing of data between data lake and the SQL engine

Once the data contracts are located on an independent SQL database, the next 

consideration is that of versioning. It is key that as a schema of a file evolves, the contract 

is evolved with it. However, it is also key that the previous schema is preserved so that 

comparisons can be made and that older files can be reconciled to newer versions if 

required. As you can see from the data model shown in Figure 6-1, the Entity Column 

table contains a version attribute that allows each set of columns attached to an entity to 

be associated to a particular version of that entity.
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The second consideration of the metadata store is that it is central to your solution 

and widely available. It is likely that this metadata will be called upon very frequently 

and by a variety of services, so ensuring that the store can interface with every required 

service is crucial. One solution may be to surface all data using SQL stored procedures 

and ensure that all services that require metadata can execute those stored procedures.

�Modifying Data Contracts

In some scenarios, you may want to modify data contracts. This may be the case when 

the schema itself has not evolved but you want to change something less critical such as 

the rule configuration used for a particular column. In these scenarios, it is important to 

be able to rely upon your source control system to provide versioning and the ability to 

roll back if needed. A system such as Git allows for developers to deploy changes to the 

repository while also maintaining a full lineage of the file in question.

�Integrating Data Contracts
The design of the data contract is critical but is only half the battle. Even the best 

designed contract will be useless unless it is well integrated. The essential requirements 

for integrating metadata are the following:

•	 Fetching metadata: Retrieving metadata in a way that can be used by 

the required systems

•	 Utilizing metadata: Using the metadata to facilitate orchestration or 

provide entity information

•	 Harmonizing schema evolution: Writing scripts that can move files 

with an older schema to a newer schema

•	 Utilizing orchestration metadata: Using scheduling metadata to 

ensure processes run at the correct time and in the correct sequence

�Fetching Metadata

The method by which your system fetches its metadata should be well thought out. It is 

important to consider if other solutions outside of your data warehouse processing will 

need to read your metadata and if so, how you will facilitate that. Additionally, given the 

size and scale of your ETL processing, how available and powerful the mechanism is that 

powers the metadata fetch.
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�Fetching Orchestration Metadata

Orchestration metadata is generally needed at runtime to determine the way in which 

the processing should proceed. This could be scheduling information or details on how 

to fetch the relevant data. Given that Azure Data Factory is the primary Azure native 

integration engine, a simple starting point is to use Data Factory’s native connectivity to 

query your metadata store and fetch the elements you need.

As mentioned in previous chapters of this book, Azure Data Factory has the ability 

to connect to a great number of data stores. These can be databases, semi-structured 

stores, and even file storage engines, both on premises and in the cloud. This means that 

however you decide to store your data contracts, there is a very strong chance that Data 

Factory can connect and read the metadata from them. While Data Factory will not limit 

which data store you can connect to, you want to ensure that Data Factory can actually 

query the data store, so that you can fetch specific metadata as and when you need it.

The key activity to facilitate the metadata fetching in Data Factory is the Lookup 

activity. This activity provides the ability to either execute a query or stored procedure 

and then expose the result to Data Factory in a way that can be utilized later in the 

processing pipeline. A simple and common request might be to fetch a SQL query string 

that is used to obtain the correct data from a table. A query performed using the lookup 

activity against a SQL metadata store, using the database structure shown previously, 

might resemble the code in Listing 6-2 and the result set shown in Figure 6-3.

Listing 6-2.  SQL code used select an entity record using the Lookup activity

SELECT

     [EntityName] AS EntityName

    ,[EntityObtainString] AS EntityObtainString

FROM [Metadata].[Entity]

WHERE [EntityId] = 1

The preceding code would fetch the entity name and obtain SQL string for entity 1.

Chapter 6  The Role of the Data Contract



172

However, when the result of this query is returned to Data Factory, it must be in 

JSON format, as that is the object notation used by Data Factory. Therefore, the following 

query would return a result set resembling the JSON code shown in Listing 6-3.

Listing 6-3.  JSON code that represents the query results shown in Figure 6-3

{

    "count": 1,

    "value": [

        {

            "EntityName": "Sales",

            "EntityObtainString": "SELECT * FROM dbo.Sales"

        }

    ],

    �"effectiveIntegrationRuntime": "DefaultIntegrationRuntime (West Europe)"

}

As you will notice, the tabular result of the query is now transformed into a JSON 

array of objects where each column of the table is represented as a JSON attribute within 

the object. When creating this type of activity in Data Factory, be sure to untick “First row 

only.” It is on by default but will restrict your query to returning only one row and will 

also change the attributes that are included in the response. To walk through a guide on 

using the Lookup activity, refer to section “Getting Started with the Lookup Activity,” in 

Chapter 3, “The Integration Engine.” Now that we can access the data, we need to start 

using it in Azure Data Factory.

Figure 6-3.  An image showing the query results that will be returned to Data 
Factory
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�Utilizing Orchestration Metadata

In the preceding example, we use a lookup activity to fetch a simple SQL select query 

that we could use to fetch a relevant set of records. In order to utilize this metadata in a 

way that ensures reusability, we need to be able to reference the object and attributes 

that are returned. This is the reason why it is so crucial to use a Lookup activity in Data 

Factory and not a standard stored procedure activity, only the Lookup makes the result 

available for later use.

To use the obtained SQL string, we need to pass it to the “Query” attribute for the 

dataset that is linked to the source of a Copy activity. This is easily done using the Data 

Factory UI, and provided the Lookup and Copy activities are connected, the syntax 

shown in Listing 6-4 can be used to reference an attribute from a previous activity output.

Listing 6-4.  Data Factory expression to fetch value from previous activity

@activity('Metadata Lookup').output.value.EntityObtainString

This same approach can be used for any number of attributes that need to be passed 

around your processing pipelines and can also be used to provide parameter values for 

child pipelines executed using an Execute Pipeline activity.

You may notice however that the preceding method of identifying an attribute 

assumes there is only a single entity object returned. If multiple entity objects were 

returned, such as the JSON snippet shown in Listing 6-5 you would need to handle each 

individual record iteratively.

Listing 6-5.  Multiple entities returned from the metadata lookup

{

    "count": 2,

    "value": [

        {

            "EntityName": "Sales",

            "EntityObtainString": "SELECT * FROM dbo.Sales"

        },

        {

            "EntityName": "Product",

            "�EntityObtainString": "SELECT * FROM dbo.Product WHERE 

ProductName IS NOT NULL"
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        }

    ],

    "effectiveIntegrationRuntime": "DefaultIntegrationRuntime (West Europe)"

}

The preceding expression would not be able to determine which entity obtain string 

to fetch. In these scenarios, we would want to iterate the result objects using a ForEach 

activity. This is simple to do; however, the key difference is that we now have to obtain 

the required values from inside the scope of the For Each loop so that we can reference 

a single object, even though multiple were returned. Because each iteration of the loop 

is anonymous (we don’t know which item we are on while iterating the objects), we can 

use the @item()syntax to reference the necessary attributes:

@item().EntityObtainString

Now, depending on whether you are working with a single entity or multiple, you 

can use these approaches to utilize the obtained metadata in your downstream data 

processing.

�Fetching Entity Metadata

The primary purpose of entity metadata is to grant your solution the ability to 

understand the datasets that you will be processing. By telling your system what columns 

are needed and how they should be treated, you can automate much of the repetitive 

processing. However, complex, business-driven transformations cannot be automated 

without a great deal of complex metadata, more than I could possibly describe in this 

book. While full automation could be achieved, the developer would need to consider 

the following as a start:

•	 Complex transformations such as pivoting and mapping

•	 Columns that use layered conditional logic such as CASE statements 

and IIFs

•	 Joins that use several different predicates and span multiple tables

To refer to the layered structure mentioned previously, entity metadata should allow 

you to process data from raw to stage to clean very efficiently. Subsequent processing 

would need to be written by hand and tailored to each specific target dataset.
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With this in mind, it is clear that entity metadata needs to be implemented at the 

point where data is cleaned and standardized. In a traditional on-premises ETL solution, 

cleaning was regularly done in SSIS packages, meaning the data was altered “in-flight” 

as opposed to at rest. Due to the potential scales of modern data warehouses, an “in-

flight” approach is not always appropriate due to the increased overhead of picking the 

data up, cleaning it, and then putting it back down again. Not to mention, the current 

Data Factory solution, Mapping Data Flows, cannot be parameterized to a point where 

data cleansing pipelines can be generically applied to any given dataset. Therefore, it 

is clear that SQL stored procedures are the most appropriate way to approach this task, 

albeit with Data Factory invoking those procedures at the appropriate time. In short, we 

need to provide entity metadata to the appropriate SQL engine, although without using 

cross database queries (cross database queries are not supported in Azure SQL Database 

unless using a managed instance).

�Utilizing Entity Metadata

As you now know, you need to pass metadata into your SQL engine so that it can 

dynamically check column names, enforce data types, apply rules, and transform values 

so that they are ready to be ingested into your data warehouse. The most reliable method 

I have found for this is code generation.

�Code Generation

Code generation describes the process of generating all of the SQL artifacts (stored procs, 

table definitions, etc.) ahead of time and then deploying them onto the database ready 

for execution at runtime. The role of the data contract here is to supply entity metadata 

to the code generation tool in order to produce all the required scripts. This approach 

is so reliable as it ensures the orchestration is kept simple but still allows developers to 

update stored procs relatively quickly when a schema evolves. Additionally, the objects 

that are deployed to the server are readable and easily maintained. This is opposed to be 

a dynamic SQL approach whereby values are supplied at runtime. While this approach 

may be more agile, it makes debugging a troublesome stored procedure very tricky.

To implement code generation, I often use a PowerShell script that queries for the 

metadata, does some text replacement against a preformatted template, and then saves 

the new .sql files back into a source-controlled folder structure. The program flow for 

such a script would resemble the diagram shown in Figure 6-4.
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�Getting Started with Code Generation

The following guide walks through how to use a PowerShell script to create completed 

SQL objects from pre-existing templates and metadata fetched from a SQL database:

	 1.	 Check that the correct proc exists on your Azure SQL Database. 

The name of the proc is Metadata.ObtainEntityMetadata and the 

result of the proc when run should be three tables resembling that 

in Figure 6-5.

Figure 6-4.  An example program flow diagram for a code generation application
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	 2.	 Locate the GenerateScripts.ps1 file from the GitHub repo. It can 

be found in the following directory: PowerShell/Code Generation/

GenerateScripts.ps1. Be sure to open this script in the 64-bit 

version of PowerShell ISE, not x86.

	 3.	 Update the critical parameters. As you can see from the 

screenshot in Figure 6-6, there are some key parameter values 

that are used to create a connection to your SQL database and 

template repo.

Figure 6-5.  An image showing the correct result of the ObtainEntityMetadata 
stored procedure

Figure 6-6.  An image showing the critical parameters in PowerShell
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TemplateRepo: The folder that contains the templates. This can again be 

downloaded from the GitHub repo (https://github.com/MattTheHow/Modern-Data-

Warehouse-In-Azure/tree/master/SQL/Control%20Database/Templates); however, 

you may need to change the location here slightly to match the location of your repo.

AzureDatabaseServer: The name of the SQL database server. This can be found via 

the portal. Use Figure 6-7 as a guide to help locate the correct property.

Figure 6-8.  An image showing the three completed templates

Figure 6-7.  An image highlighting where you can obtain the server name property 
for your Azure SQL Database in the Azure portal

AzureSQLDatabaseName: The name of the SQL database

AzureSQLDatabaseAdminUserName: The admin username supplied when 

creating the Azure SQL Database

AzureSQLDatabaseAdminPassword: The admin password supplied when creating 

the Azure SQL Database

Query: The query to be run against the SQL database. In this case, it is just executing 

the proc shown previously.

	 4.	 Once these parameters are completed, you should be able to 

execute the script using F5. By default, the script will create a 

new “Complete” folder within your TemplateRepo and drop the 

completed files in there. Check this folder once the script has 

completed. You should see the templates as per Figure 6-8.
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	 5.	 Now that the files have been generated, they can be deployed to 

the SQL engine that will host your data warehouse. The output 

of the script is a stored proc that copies and cleans data between 

stage and clean schemas and two table definitions, one de-typed 

for the “Stage” schema and another typed definition for the 

“Clean” schema.

By using the preceding approach, you can see how the metadata provided from 

the data contract can drastically improve your ability to onboard new datasets. As 

these new datasets arrive, all that is needed is some data profiling to understand 

the columns and required cleaning. Once these elements are known, they can be 

implemented as a data contract and the code generation can build all the SQL 

required to process those new datasets. Couple this with orchestration metadata and 

the process becomes even more efficient.

For a more detailed walk-through and explanation of this process, refer to Chapter 8, 

“Using Scripting and Automation.”

�Harmonizing Schema Evolution

As datasets change over time, a key task of a data warehouse developer is to update 

the processing routines so that they keep step with the dataset provider. To assist with 

this process, data contracts can store schema versions, meaning every change to the 

dataset can be tracked over time. When the time comes to harmonize files with differing 

schemas, the delta between the two structures can very easily be determined. The term 

harmonize here refers to the process of updating older versions of a dataset so that they 

match a newer version. By instilling this consistency, it ensures tools such as PolyBase 

and Data Factory can easily read all the data when needed, without having to hold 

multiple definitions of that dataset.

In some simple cases, datasets can be harmonized automatically. If you imagine a 

scenario where a dataset simply has one additional column and all the other columns 

remain identical, a script could easily be written that would match columns by name, 

identify the new column, and simply provide NULLs for new column in the older 

datasets. See Figure 6-9 for an example diagram.
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While the preceding change is very simple, it is very common for schema drift to be 

much more complex. In fact, it is likely that a developer would need to write a bespoke 

script in order to harmonize data, as often you may want to provide more than NULL to a 

new column. In these cases, it is highly recommended that data harmonization occurs as 

soon as possible and that the scripts are stored and source controlled so that should the 

harmonization need to happen again, it can be done so consistently.

Figure 6-9.  A diagram showing how two tables with a simple difference could be 
harmonized using SQL
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CHAPTER 7

Logging, Auditing, 
and Resilience
Things will go wrong in your data processing pipeline. I wish there was a less blunt 

way to say it, but it is true. In the majority of cases, it may not even be the fault of the 

platform or the developers. It could be the source provider updating their software, 

or an intermittent loss of connectivity to an Azure service, or even a harmless comma 

manually entered into just the wrong place. Whatever the fault is or how trivial it may be, 

they all have the ability to disrupt your warehouse and ultimately cause loss of service to 

your users.

Something to bear in mind is that your platform is about data integration, and rarely 

do source system designers consider downstream data warehouse processes when they 

build systems, and you can never expect them to put off updates that may well contain 

breaking changes to your platform. For that reason, you and your development team are 

obliged to not just know how your platform behaves when running smoothly but also to 

have a deep understanding of how it behaves when things go wrong. In these moments, 

when processing grinds to a halt and all the little green ticks turn to red crosses, what 

your platform tells you about what is happening and why will make all the difference to 

how efficiently that issue is resolved.

�Logging the Data Movement Process
Imagine a scenario where no logging is in place, a large yet critical file that is essential 

to one of your most used reports fails to load. Manually checking the file indicates that 

the data is not corrupted and the correct number of columns are present; however, 

eyeballing each row is not an option due to sheer volume. Checking the SQL database 

is online proves successfully and all credential checks come back positive. As you begin 

to take calls from impatient users expecting the report, you begin to suspect the issue is 
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with the SQL Db layer, although without any evidence to suggest whether the problem 

is with the table, column, or a single value, you realize you need to look at the data row 

by row. Perhaps a PowerShell script would work? Maybe a profiler session while the data 

is run through a second time? Either way, you are hours away from implementing and 

testing a fix for this issue. Logging is a must.

Now, fast forward a few weeks and logging is fully enabled. A similar issue occurs, 

so you check your audit database. Against the problem file is an error message captured 

using data factory that states there is an extra field on line 356,789. Depending on the 

contents, you reject the file back to the user or fix the issue yourself and reprocess. The 

logging here enables the fix to be done confidently and in minutes. 

While logging is always a good idea, excessive logging can be painful to work with, 

and applications that are too chatty in the logs will frustrate developers and support 

teams more than they help them. Finding the right balance of logging, and layering 

different sets of logs, is therefore important to ensure your solution does not log itself 

into disuse.

�Basic Logging Requirements
To avoid over-logging, there should be some basic log requirements that are met. These 

ensure that a base level of information is held consistently without it disrupting the day-

to-day running of your platform.

�Where to Store Your Logs

The first question to ask when planning a logging approach is “where should we store 

our logs?” The answer is simply somewhere that is easy to access for all users, being you, 

your team, and Data Factory, and also somewhere that provides the ability to be queried 

efficiently. Logs can often get large and generally have a fair amount of repetition, and 

so the ability to write detailed filtering logic is very useful. For these reasons, Azure SQL 

Database is always my recommendation and I generally embed a logging schema in the 

same database that would serve as a metadata store. These databases could be separated 

if that was required by the teams managing the different parts of the solution, although 

bear in mind that it can be occasionally useful to join logged data to entity metadata. An 

example Audit schema is shown in Figure 7-1.
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Some users may be tempted to use a completely Azure native logging strategy, 

employing Azure Monitor and the Operations Management Suite; however, I 

personally find this cumbersome and liken it to a square peg in a round hole. I feel 

strongly that there is no substitute for well thought-out, customized logging routines.

Azure SQL Database is one of many options that could be employed here; 

however, the only other option that I feel is really worth mentioning is Azure Cosmos 

DB. Cosmos DB is a document database that stores semi-structured JSON documents 

and can be very efficient for logging due to its less structured nature. Essentially 

log records can take any shape and do not have to conform to a set schema the way 

SQL records do. If, for example, a log from an ingestion routine holds vastly different 

attributes to that of a transformation routine, then Azure Cosmos DB would allow 

you to store these two differing records side by side in the same database. Of course, 

a SQL log platform requires that every log entry holds the same attributes or has to be 

loaded into a different table. Additionally, Cosmos DB uses extensive indexing that 

can be queried using a SQL-like language, so it can offer up log insights very quickly 

and easily.

Figure 7-1.  An example schema that logs pipeline execution and provides storage 
for alerting metadata
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�Events to Be Logged

There is an argument to say that every activity in your platform should be logged. 

Surely if everything is tracked, then nothing can slip through the net; however, this 

kind of approach often obscures the critical information from the people who need it 

as important records get lost in the purely informational log entries. For an initial setup 

of logging to be successful, there should be a handful of key events that are logged, but 

anything on top of that should be determined through necessity and not purely because 

of technical capability. The first events to be logged should be the start and end of each 

pipeline that is run in Data Factory. By top and tailing each pipeline with a log entry, you 

have the ability to frame each of your processes and derive a success or failure value for 

each. As a minimum, the platform should track

•	 Load id: The load identifier that is assigned to the individual 

execution of the pipeline

•	 Date and time: The date and time the log event occurred

•	 Pipeline name: The Data Factory pipeline name pulled from a system 

variable

By logging these basic attributes, additional insights can be established such as 

duration of process and even duration of process based on time of day, a very important 

metric when working with a system that has fluctuations in usage. By trapping these 

two events, you have the ability to know which pipelines have failed and when, but you 

can also begin to plan when those pipelines are run in order to achieve the shortest 

durations.

Importantly, any pipelines that are executed as a child of a parent pipeline should 

log not just their own unique load id but also that of the parent, so that a hierarchy can 

be established. This allows developers and support staff to understand the context in 

which a child pipeline was run, providing critical detail when trying to debug a failure. 

Figure 7-2 shows how top and tail logging should be implemented for all pipelines in a 

hierarchy.
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Logging in such a way can easily be captured and Figure 7-3 is an example of such a 

logging structure.

Figure 7-2.  Diagram showing the structure of top and tail logging

Figure 7-3.  An example table showing the how parent-child processes can be 
tracked in a SQL table

This logging structure means that infinite descendant pipelines of the parent can be 

captured; however, in order to tie each back to the original, you need to use a query like 

the one shown in Listing 7-1 which employs a recursive common table expression (CTE) 

to recreate the hierarchy.
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Listing 7-1.  A recursive common table expression used to monitor multiple 

levels of pipeline invocation

WITH cte_PipelineLoad

AS

(

    SELECT

        pl.LoadId,

        pl.ParentLoadId,

        pl.PipelineName

    FROM

        Audit.PipelineLoad AS pl

    WHERE

        LoadId = 101042

    UNION ALL

    SELECT

        pl.LoadId,

        pl.ParentLoadId,

        pl.PipelineName

    FROM

        Audit.PipelineLoad AS pl

    INNER JOIN cte_PipelineLoad AS cte

        ON cte.LoadId = pl.ParentLoadId

)

SELECT * FROM cte_PipelineLoad

ORDER BY LoadId

The preceding code locates every descendant pipeline of load id 101042 and 

produces the result set shown in Figure 7-4. Related pipelines have been highlighted in 

darkening shades of blue, showing how the hierarchy is constructed.
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The next set of events to be logged are anything that involves an external process. 

If the pipeline calls a SQL activity, log the output. If the pipeline calls a web service, log 

the output. Particularly if the pipeline relies upon an external compute resource, log the 

output. These integration points are common areas for failure, as the execution has to be 

passed outside of Data Factory, and so logging a success or failure with an accompanying 

message can shortcut a great deal of investigative work that would have to be otherwise 

carried out. Often these external services return varying amounts of information. Some 

may provide standard error messages, and some may pass back a detailed stack trace. 

However, others may just provide a link to their own suite of logging reports. In these 

cases, it can be useful to use the Cosmos DB logging approach mentioned before as 

the schema-less nature of a document database is conducive to data that regularly has 

different attributes. The alternative is to store the JSON data returned to Data Factory in a 

text column within your SQL database. With this approach, you can easily store the data 

consistently and also neatly package the additional detail into a single structure. You can 

then use the JSON_QUERY functionality to read that data when needed.

The table in Figure 7-5 shows that schema-less JSON data can be stored in a SQL 

column. Note that the rowsSkipped value does not exist for the first row within the 

Pipeline Info column.

Figure 7-4.  A result set highlighting how a processing hierarchy can be reported or 
queried
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Listing 7-2 shows the code to read the table shown in Figure 7-5.

Listing 7-2.  Code used to extract JSON data from the Audit.PipelineLoad table

SELECT

    LoadId,

    JSON_VALUE(PipelineInfo, '$.rowsRead') AS RowsRead,

    JSON_VALUE(PipelineInfo, '$.rowsCopied') AS RowsCopied,

    JSON_VALUE(PipelineInfo, '$.rowsSkipped') AS RowsSkipped,

    JSON_VALUE(PipelineInfo, '$.throughput') AS KbThroughput

FROM

    Audit.PipelineLoad

The code in Listing 7-2 uses the JSON_VALUE function to extract several scaler 

values from the JSON stored within the table. This query will produce the result set 

shown in Figure 7-6; note the NULL value returned for the missing rowsSkipped value.

Figure 7-5.  A table showing JSON data stored alongside regular tabular data, 
allowing for schema-less information to be logged
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�Extended Logging Capabilities
The events mentioned previously should be considered mandatory when creating a 

reliable platform; however, there are additional events that may also be considered 

useful of even mandatory depending on the type of workload your platform undertakes. 

One such example is when you need to schedule the startup of an external compute 

resource. Often in Platform as a Service (PaaS) environments, services can be paused 

to save cost and therefore need waking up again before they can do any processing. 

When working with these services, you may find you need to schedule the “waking up” 

of a resource and regularly check to see if that resource is ready or not. In these cases, 

you are likely to want to log the fact that a check happened and the result of that check. 

Additionally, if the resource is paused, then you should log that you had to start it and 

couple that with a final start time or “duration to start” type calculation. By storing these 

events, you can begin to see if your processing speeds are being extended purely through 

wait times for services to become available. If this were the case, then you could review 

their busy times and bring the schedule forward by 10 minutes to avoid those waits in 

future.

A further “nice to have” logging opportunity is when you refresh any semantic 

layers that sit on top of but outside of your data warehouse, for example, Azure/SQL 

Server Analysis Services (SSAS). The Analysis Service database itself will track when it 

was last refreshed, but it can be very useful to you as a developer to know how long the 

process took to complete and then also at what point in time the data that is presented 

to a user was last refreshed. Often teams measure success by delivering on service level 

agreements (SLAs), and the time that it takes to refresh the presentation layer is often a 

critical key performance indicator (KPI). By logging the semantic layer process complete 

time, this KPI can easily be calculated.

Figure 7-6.  The result set of a query that blends tabular data with schema-less 
JSON data fed from the Data Factory pipeline
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�Aggregating Your Logs

In some cases, a single log record does not warrant much attention although several 

hundred of a similar nature may well indicate a significant problem. When relying 

regularly on external compute services, you may occasionally get transient failures where 

the service is offline for short periods of time. These may log a single failure and would 

be rectified with a simple retry; however, were you to see many of these type of failures 

in a given time window, you would be fairly certain that there was a problem with that 

service that needs to be investigated or worked around.

The preceding example is common but not very close to the actual data. There 

could also be scenarios where a particular type of file occasionally has specific errors 

on a column. Again, single instances of failures might be expected and can be resolved 

with some specific data cleansing; however, if every file of that type begins failing, you 

could make the assumption that the file has changed significantly and therefore some 

work needs to be done on the data contract. Similarly, when loading very large files, it 

is often preferential to accept an amount of failures or data quality issues in the interest 

of loading the majority of rows into the warehouse. Despite this, a threshold should still 

be maintained to ensure that the quality of data in the warehouse is not lowered too 

drastically.

In both of these cases, your logging system would need to be smart enough to know 

that some types of log records are only a problem when they are aggregated together 

and that simply tracking individual failures does not go deep enough. This is where the 

logging tables can actually take on a dual role and act akin to a fact table in an analytical 

system. By regularly running jobs to aggregated failures of a certain type or that are 

attached to a certain entity, you can easily start to flag alerts that are only relevant at 

that aggregated level. In order to support these scenarios however, you should design 

the table with this in mind and ensure all the attributes that you may need to group by 

are first-class attributes of the logging table. This means that queries over many rows 

can perform sufficiently. To further support this type of log analysis, you should store 

threshold values at the appropriate grain which can then be joined to the fact table as 

per the diagram in Figure 7-7 and Listing 7-3.
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Listing 7-3.  Code to count the number of each failure type and flag any types 

that exceed the threshold

SELECT

     rtp.EntityId

    ,pa.FailureId

    ,COUNT(pa.FailureId) AS FailureCount

    ,eft.ThresholdValue

INTO #tmpError

FROM

    audit.PipelineLoad AS pa

INNER JOIN audit.RowCountLog AS rtp

    ON rtp.LoadId = pa.LoadId

INNER JOIN audit.EntityFailureThreshold AS eft

    ON    eft.EntityId    = rtp.EntityId

    AND    eft.FailureId    = pa.FailureId

GROUP BY

    rtp.EntityId,

    pa.FailureId,

    eft.ThresholdValue

HAVING

    COUNT(pa.FailureId) >= eft.ThresholdValue

IF @@ROWCOUNT > 0

BEGIN

Figure 7-7.  A diagram showing how a threshold table can be related to an audit 
table to generate threshold-based aggregated log analysis
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    �DECLARE @errorMessage VARCHAR(250) = 'Errors were encountered that 

exceeded the threshold. Error Details: '

    SELECT

        @errorMessage += STRING_AGG('Entity '

            + CAST(EntityId AS VARCHAR)

            + ' exceeded threshold for failure '

            + CAST(FailureId AS VARCHAR)

            + '. Threshold: '

            + CAST(ThresholdValue AS VARCHAR)

            + ' Failure count: '

            + CAST(FailureCount AS VARCHAR)

            ,', ')

    FROM #tmpError

    RAISERROR(@errorMessage, 16,1)

END

The code in Listing 7-3 counts the number of specific failure types according to 

the threshold table and entity values and will return any combinations that exceed the 

threshold. It will then raise a detailed error message back to Data Factory detailing the 

entities that failed and what the failures were. By using the RAISERROR function, an “On 

Failure” path can be used in Data Factory which could fire off an alert email as detailed 

later in this chapter.

�Auditing the Data Movement Process
Logging that data movement occurred is perhaps the most important part of your 

platform, given its use when things go wrong. However, there will always come a time 

when you need to know what normal looks like for your platform so that you estimate 

what a strenuous load might look like. This is particularly important in sectors such as 

retail where seasonal milestones can cause huge peaks in traffic. While a data warehouse 

is unlikely to be too heavily involved in an operational process that utilizes many 

transactions, if your users are expecting downstream reports to be refreshed frequently, 

then being able to estimate peak data processing needs is important.
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�Basic Auditing Requirements
There are two main basic auditing requirements that will allow you to measure what 

normal looks like for your solution. These are

•	 Data volumes: The amounts of data flowing through your platform

•	 Processing times: The frequency of ingestion jobs and the time it 

takes to complete them

•	 Watermarks: The max values for each dataset after each ingestion 

run, helping to detect change

�Auditing Data Volumes

By tracking volumetric information about the data that flows through your platform, you 

can begin to assess the need to scale services, increase storage sizes, and spot potential 

issues before they become problematic. The most common metric when talking about 

data volumes is row counts. This metric succinctly indicates the amount of data a file 

may hold in a single integer and is also generally easy to get hold of. Certainly Microsoft 

SQL engines provide useful functions to get this number, as does Data Factory and 

Databricks if you were to be working more in a data lake.

When working within Data Factory, a successfully completed copy activity 

can, depending on the source and sink settings, produce 22 data points that detail 

the specifics of that action. The most useful of these regarding row count audit 

information are

•	 rowsRead: The number of rows read from a data. source

•	 rowsCopied: The number of rows copied into the sink.

•	 rowsSkipped: The number of rows that were skipped. For rows to be 

skipped, a setting needs to be configured on the copy activity.

•	 redirectRowPath: The path to the “skipped rows” file that sits within 

the Blob Storage location of the Azure Storage account, supplied 

when configuring the “rowsSkipped” setting.

In order to obtain these values from within Data Factory, you can use the following 

snippets in any activity that comes after the copy activity, assuming it is connected:
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rowsRead: @activity('Copy Data').output.rowsRead

rowsCopied: @activity('Copy Data').output.rowsCopied

rowsSkipped: @activity('Copy Data').output.rowsSkipped

redirectRowPath: @activity('Copy Data').output.redirectRowPath

These snippets could be used to assign values to stored procedure parameters as 

per Figure 7-8, which passes the rowsCopied and rowsSkipped values into a logging 

stored procedure.

Figure 7-8.  An example showing how copy activity outputs can be passed into a 
SQL stored procedure for logging in the control database

Once datasets have been copied into a warehousing database, the movement will be 

done using stored procedures and not through the Data Factory copy activity, meaning 

the copy activity outputs will not be available. In order to audit this information and log 

row counts, they will need to be obtained using the stored procedure and passed back to 
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data factory so that the numbers can be pushed into the logging database. Critically, any 

stored procedures that are called from Data Factory, where an output is expected, must 

use the Lookup activity, not the stored procedure activity. A stored procedure activity 

will not produce an output to Data Factory, even if one is generated from the stored 

procedure.

Listing 7-4 shows how an insert statement can be written in SQL that will produce 

the associated row count of that statement.

Listing 7-4.  SQL code to execute an operation and store the row count into a 

variable

DECLARE @InsertCount INT = 0

INSERT INTO dim.Product

SELECT

     ProductName

    ,ProductCategory

FROM clean.Product

SET @InsertCount = @@ROWCOUNT

In Listing 7-4 the @@ROWCOUNT system function is used immediately following 

the insert statement and assigns the value to a variable, storing its value for later use. 

These exact same methods can be used against UPDATE and DELETE statements also. 

In order to surface these values back to Data Factory, a simple select of the variable 

values at the end of the procedure will suffice:

SELECT

    @InsertCount AS InsertCount

Full implementation of the methods used in Listing 7-4 can be seen as part of the 

Code Generation pattern in Chapter 8, “Scripting & Automation”. Once the Lookup 

activity has completed, the InsertCount output can be retrieved from the output using 

the following snippet:

@activity('Exec SQL Stored Proc').output.firstRow.InsertCount

The “firstRow” element is used to avoid the use of an array in the activity output.
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While knowing row counts are useful, it doesn’t cover all bases, as rows themselves 

can massively vary in size, and so 1000 small rows could in fact store less data than 

5 massive rows. This is why it is also useful to audit data sizes, as these give a truer 

impression of the load on your platform. Similar to row counts, Data Factory has some 

useful copy activity outputs that can be fetched and logged very simply. The following 

snippets should be considered when logging data size:

dataRead: @activity('Copy Data').output.dataRead

dataWritten: @activity('Copy Data').output.dataWritten

throughput: @activity('Copy Data').output.throughput

The “dataRead” and “dataWritten” values will provide either the data read from 

source or written into the sink as an integer in bytes. The throughput value details the 

kilobytes per second for the data transfer operation.

By logging row count information and file sizes against each incoming dataset, you 

can begin to analyze the load on your system by file type. Once you have a base level of 

data, you could compare the new, incoming values to a rolling average to quickly catch 

any datasets that arrive outside of the normal boundaries. This could help you avoid 

processing bloated files that contain additional data that is not required or empty files 

that could fail validation steps.

�Auditing Processing Times

Row counts and data sizes are useful when plotting the storage used within your system; 

however, they only offer half of the story. When coupled with processing times, you can 

build a fuller picture of the capability of your platform.

Again, Data Factory offers some valuable data as part of the standard output from 

the copy activity, and so when using Data Factory to physically move the data, this audit 

information is easily gathered. The key values that are returned from the copy activity are 

listed here:

•	 copyDuration: The total number of seconds the copy activity 

executed for.

•	 throughput: The number of kilobytes per second at which Data 

Factory copied the data.

•	 queueingDuration: The number of seconds before the integration 

runtime (IR) began running the copy. Large value here on a self-

hosted IR can indicate the need to scale according to your workload.
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•	 preCopyScriptDuration: The number of elapsed seconds between 

the start of processing by the IR and the completion of the pre-copy 

script.

•	 timeToFirstByte: The number of seconds between the completion 

of the pre-copy script and the retrieval of the first byte of data. Long 

durations here indicate poor-performing SQL or under-powered 

servers. This value is for non-file-based sources only.

•	 transferDuration: The number of elapsed between the first byte and 

the last byte.

The copyDuration and throughput can be gathered in the same way as the 

preceding row counts; however, the later four values are actually contained within a 

detailedDurations object which itself is contained within an executionDetails array. 

Therefore, some additions to the preceding snippets are required so that the values can 

be recovered. An example for queueingDuration is as follows:

queueingDuration: @activity(

'Copy Data').output

.executionDetails[0]

.detailedDuratons

.queueingDuration

Note that while these values are available, the schema may change and null checks 

should be used when fetching these values from Data Factory.

Once data is stowed inside the database, you can use logging stored procedures to 

mark the start and end of group of tasks. If needed, this could be very granular such that 

you log the start and end time either side of each activity. Alternatively, you could simply 

log the start and end of the entire pipeline, giving a total figure for the process including 

any overhead processes. Finally, you could use SQL inside of the stored procedure to 

derive the required duration information and report it back to Data Factory so that it can 

be used in a log entry. Listing 7-5 shows how that could be achieved.

Listing 7-5.  Code to report on the start time and end time of processes with SQL

DECLARE @StartTime DATETIME = GETUTCDATE()

DECLARE @EndTime DATETIME

DECLARE @Duration INT
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INSERT INTO dim.Product

SELECT

     ProductName

    ,ProductCategory

FROM clean.Product

SET @EndTime = GETUTCDATE()

SET @Duration = DATEDIFF(Second, @EndTime, @StartTime)

SELECT

    @StartTime AS StartTime,

    @EndTime AS EndTime

    @Duration AS Duration

These outputted values, which must be called using a Lookup activity, can be 

retrieved as per the following snippet:

@activity('Exec SQL Stored Proc').output.firstRow.Duration

�Storing High Watermarks

Storing high watermarks allows developers and support staff to track incoming data 

using a simple mechanism. Additionally, a high watermark can be used to resolve 

dependency constraints that may be placed on the system. A watermark can be 

implemented using either a sequential ID column, something that is very common in 

transactional systems, or a date column such as record creation date. In some cases, a 

source system may use a globally unique identifier (GUID) which is great for ensuring 

uniqueness but is not sequential, and therefore it is not possible to identify the latest of 

records using it.

A high watermark should be maintained at the entity level so that is can be used as 

a point of comparison between source entities that may form part of a target entity. In 

order to obtain the watermark value on each load, a simple MAX function should be 

applied to the selected column, or columns, as the data is loaded using a SQL stored 

procedure. This MAX value can then be passed out of the stored procedure using 

a mechanism similar to the one described in Listing 7-3 and logged in the auditing 

database using Data Factory.
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A key value of this watermark is its ability to indicate change. For example, if there 

are two source datasets that produce a single target dataset, a simple comparison can be 

made between the two source watermarks and the target high watermark to work out if 

the data has changed in source and therefore needs refreshing in the target table.

By engaging one or more of these logging mechanisms, you should be able to build 

up a repository of telemetry and volumetric data which can be helpful when planning for 

new datasets or monitoring the current scale and state of the services that make up the 

platform. Be sure to consider what metrics are important to you and whoever supports 

to solution however, as excessive logging can be problematic and can even obscure the 

data that is giving you the real insight.

�Incorporating Resilience into the Data Movement 
Process
Logging information about steps that have happened within a data processing pipeline 

is useful when looking retrospectively; however, to become resilient, there needs to be 

a native ability to handle problems that might occur. Additionally, being able to alert 

certain members of a team when something has gone wrong also drives toward a more 

resilient platform.

�Basic Resiliency
As with audit information, there is a base level of data that should be captured and 

then there are numerous ways in which that can be extended to offer specific insight 

into an area that may be of particular interest. The first step toward resiliency is to 

incorporate some basic defensive checks, allowing the platform to detect problems 

before they become problematic. The second is then being able to act on those problems 

autonomously, whether that be by alerting a person or redirect the logical flow so that 

downstream issues do not occur.
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�Using Metadata for Troubleshooting

Throughout several previous chapters I have mentioned metadata and how it can be 

used for a number of different purposes, well here is another. By using metadata to tell 

the platform about what inbound data should look like, you can check to ensure that 

that image aligns with reality, and if not, steps are taken to ensure the data does no harm 

downstream.

The sooner these defensive checks can be performed, the better, and so Data Factory 

is an ideal place to conduct such activities. Given its ability to read and copy files at 

scale, it can also be used to profile such files and detect if there any differences to what is 

expected.

Primarily these checks are conducted using the Get Metadata activity which, when 

pointed to a particular dataset, can return a variety of attributes about the data. For a 

basic level of checking, the primary attributes to obtain are listed as follows:

•	 itemName: This can be used to fetch name of a file or folder. You 

could then compare this value to some metadata to ensure the file 

name has the correct date or other attributes within it.

•	 Size: By retrieving the size of a file before copy, you could pre-

emptively scale a set of resources or delay loading until a less busy 

period of the day.

•	 childItems: This attribute can confirm that a folder contains files or 

other folders, thereby indicating some processing needs to occur. 

Where this check to come back empty, you can pause processing or 

alert a user of an upload failure.

•	 columnCount: By fetching the number of columns to be copied, you 

can easily detect if additional columns have arrived; be aware that 

this does not check column order.

See Figure 7-9 for an example of how the Get Metadata activity can be configured 

to retrieve these values and feed them into a downstream stored proc. By using a stored 

procedure, you can easily develop logical checks in SQL, using metadata, which can then 

pass instructions back to Azure Data Factory (ADF).
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Listing 7-6 shows the code for such a checking stored procedure.

Listing 7-6.  Code to check the metadata of the given file

CREATE PROC Audit.CheckFileMetadata

(

    @EntityId INT,

    @ColumnCount INT,

    @Filename VARCHAR(100)

)

AS

BEGIN

Figure 7-9.  Configuration of Data Factory to pass metadata values into 
subsequent activities from the Get Metadata activity
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    -- Check the filename

    IF NOT EXISTS (

        SELECT

            EntityId

        FROM

            Metadata.Entity

        WHERE

            @Filename LIKE '%' + FileIdentifier + '%'

        AND EntityId = @EntityId

    )

    BEGIN

        RAISERROR('The filename did not match the specified identifier' ,16,1)

    END

    -- Check the column count

    IF NOT EXISTS (

        SELECT

            EntityId

        FROM

            Metadata.EntityColumn

        WHERE

            COUNT(EntityColumnId) = @ColumnCount

        AND EntityId = @EntityId

    )

    BEGIN

        �DECLARE @ErrorMessage VARCHAR(100) = 'The column count ' +  

@ColumnCount + ' does not match the specified column count'

        RAISERROR(@ErrorMessage ,16,1)

    END

    Further procedure logic...

END
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�Creating Alerts Using Azure Data Factory Alert Rules

There will be occasions when you need a specific event, such as the result of a metadata 

check or a connection failure, to trigger an alert immediately. Initially, you may decide 

that the majority of platform issues should raise alerts as this will help uncover issues 

and bugs more efficiently. At present, Data Factory does not have a “Send Mail” task, as 

was available when using SSIS, and so any custom email alerts will be delivered using 

an alternative method. However, what Azure Data Factory does support is the use of the 

Azure native alerting service which uses Azure Monitor to detect instances where certain 

metrics, such as number of failed activities, exceed a threshold. At these times, alerts are 

fired to members of an action group, detailing which metric was exceeded and when.

To configure a Data Factory alert rule, you can follow these steps:

	 1.	 Open Data Factory and navigate to the monitor UI using the red 

icon on the left-hand menu. Choose “Alerts & metrics.”

	 2.	 Click New alert rule as shown in Figure 7-10.

Figure 7-10.  Creating a new alert rule in ADF

	 3.	 Name the alert appropriately and choose an appropriate severity. 

Click “Add criteria” to begin nominating the events that will raise 

an alert event. There are many options to choose from here; 

however, the most useful to begin with is likely “Failed activity 

runs metrics.” See the example in Figure 7-11.
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	 4.	 Choose “Continue.” Here you can select certain dimensions 

that will filter failure events, meaning that you can set specific 

thresholds for each activity, activity type, failure type, or pipeline 

name. This allows the logging to be highly flexible and granular.

	 5.	 Set conditional logic to determine what constitutes an alert 

event by specifying the condition, the time aggregation, and the 

threshold count.

	 6.	 Specify the period over which to evaluate failures by setting the 

period and the frequency. Refer to Figure 7-12 for an example.

Figure 7-11.  Image showing the metrics available for flagging alerts
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Tip U se the chart at the top of the configuration pane to see the history of the 
selected metric over a range of time values.

Figure 7-12.  An image showing the configuration of the alert
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	 7.	 Choose “Add criteria” to create the alert event. Further criteria can 

also be added if required.

	 8.	 Choose “Add notification.” The notifications are submitted using 

Azure action groups, and so if you have existing action groups, 

these can be supplied here. Otherwise you can create new ones.

	 9.	 To create a new action group, supply an action group name and 

short name as per the example shown in Figure 7-13.

Figure 7-13.  Creating the action group

	 10.	 Choose “Add notification” and give the action a name. Now 

you can select the notification options that you want to add 

to the group. These can be either Email, SMS, Azure app push 

notification, or Voice.

	 11.	 Supply at least one “Email” and any others you feel appropriate as 

per the example shown in Figure 7-14.
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Figure 7-14.  Creating a notification for the action group

	 12.	 Choose “Add notification” and then “Add action group.” Finally, 

ensure “Enable rule upon creation” is set to on and choose 

“Create alert rule.”

	 13.	 You can now test the rule in your Data Factory pipeline and view 

the alert messages produced.
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�Creating Custom Alerts from Azure Data Factory

The Azure Data Factory native alerting is useful for a quick and easy implementation; 

however, you may find that they are slightly limiting due to the information they provide 

and the way in which they are displayed. Given the nature of data integration platforms, 

you may want to customize the alerts so they show more detailed error information, 

assisting support teams with debugging, or to be more visually pleasing in case they 

are being delivered directly to end users. A useful technology choice for this kind of 

extension to Data Factory is Azure Logic Apps. Logic Apps allow you to implement many 

different logical outcomes to a given failure code and can be invoked using a REST API 

call from Data Factory. You can follow these steps to create a logic app that will alert 

users with an email and is called from Data Factory:

	 1.	 Open the Azure Portal and navigate to the desired resource group. 

Click “Add” in the top left corner and search for “Logic App.”

	 2.	 Ensure all the settings are correct including the Resource group, 

Subscription, and Region. Supply a sensible name as shown in 

Figure 7-15.

Figure 7-15.  Creating a logic app in the North Europe region
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Figure 7-16.  Highlighting the correct template to begin your Logic App

	 3.	 Click “Review + create” and click “Create” to complete the step. 

Once the deployment is finished, choose “Go to resource.”

	 4.	 From the designer page that opens up, choose the “When a HTTP 

request is received” option shown in Figure 7-16.

	 5.	 Now in the Logic Apps Designer, add the following JSON schema 

into the “Request Body JSON Schema” input box:

{

    "type": "object",

    "properties": {

        "AlertMessage": {

            "type": "string"
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        }

    }

}

This is also shown in Figure 7-17.

Note T his schema will accept a simple JSON object with one value, 
“AlertMessage.” You can add more values in here to provide more flexibility.

Figure 7-17.  Configuring the “When a HTTP request is received” trigger

	 6.	 Click “New step” and search “Send email.” Scroll through the list until 

you see the Office 365 Outlook option and choose “Send an email 

(V2)” as shown in Figure 7-18. You will notice many other providers 

are on offer here if you already subscribe to a mailing service.
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Figure 7-18.  Choosing the “Send an email (V2)” activity
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	 7.	 You will be prompted to sign in to the outlook service. Enter 

the required details and you will eventually be returned to the 

configuration view for the activity. Figure 7-19 shows a recipient 

in the “To” field and a subject in the “Subject” field. As you click 

the Body field, a “Dynamic Content” box will appear offering you 

the “AlertMessage” parameter that is parsed from the input JSON 

object. Click this parameter to populate the Body with its value.

Figure 7-19.  Adding a parameter value in the Body of the email

Note T his technique can be used to parameterize any aspect of this activity and 
pass it in from the caller, for example, Azure Data Factory.

Tip  You can add other parameters such as CCs, Attachments, and importance 
here also.

Your Logic App is now complete. Click Save and then copy the “HTTP POST URL” 

from the “When a HTTP request is received” trigger. Move back to Data Factory to create 

the activity that will call the Logic App.

	 1.	 Navigate to Azure Data Factory and create a pipeline. Add a single 

Web activity that can be selected from the General folder.
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Figure 7-20.  Configure a Data Factory Web activity to call an alerting Logic App

	 2.	 Figure 7-20 shows how to configure the Web activity. Firstly paste the 

URL copied from the Logic App into the “URL” field of the activity. Set 

the method to POST and set the Body to the following JSON object:

{

    "AlertMessage": "Data Factory Failed!"

}

Chapter 7  Logging, Auditing, and Resilience



214

This pattern can then be used anywhere in your Data Factory pipelines and hooked 

onto the “On Failure” constraint.

�Extending Resiliency
Implementing a basic level of resiliency will give you the confidence to run and manage 

your platform day to day. However, there will be scenarios that this basic level of 

checking will not cater for. For some solutions, these scenarios may not even occur; 

however, for those that do, having the logging and resiliency patterns available can 

resolve numerous issues.

�Utilizing Data Factory Fault Tolerance

Data Factory has built in fault tolerance which is supported when using the copy activity 

in a nonbinary copy mode. The goal of fault tolerance is to detect rows that either fail 

data type validation between the source and sink, do not contain the correct number of 

columns for the sink, or violate primary key constraints applied to the sink table. From 

the settings tab, one of the following settings can be chosen:

•	 Abort activity on first incompatible row: This is the default setting 

and will ensure that the copy activity will fail as soon as a single row is 

deemed incompatible.

•	 Skip incompatible rows: Choosing this setting allows incompatible 

rows to be skipped over by Data Factory and not written to the sink.

•	 Skip and log incompatible rows: This setting skips the bad rows but 

also logs their values into an Azure Storage account.

Copy activities that permit skipping of rows will detail the number of rows that were 

skipped in their activity output and also provide the redirect path for logged skipped 

rows if so configured. All logged rows get stored as CSV files with the original data 

enhanced with two additional columns, listing the error code and the error message so 

that debugging can be conducted.
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�Checking File Structure Using Data Factory

As part of a basic resiliency setup, you may count incoming columns and compare that 

number to the number of columns stored in metadata; however, this will not tell you if 

columns change position or are swapped for different columns. In order to get this level 

of detail, you should call upon the structure attribute from the Get Metadata activity. By 

specifying the structure attribute as per the basic attribute listed previously, Data Factory 

will return a more complex array of column objects that contain column names and data 

types. An example of this structure is shown here:

{

    "structure": [

        {

            "name": "Column One",

            "type": "Int64"

        },

        {

            "name": "Column Two",

            "type": "String"

        }

    ]

}

Given this object from Data Factory, you could easily generate what should be a 

matching object from your control database using SQL and then compare the two strings 

to determine a match. In order to generate the preceding object from your SQL tables 

that store your data contract, you can use the query shown in Listing 7-7.

Listing 7-7.  SQL code used to generate JSON objects for use in Azure Data Factory

SELECT

    ColumnName AS 'name',

    DataType AS 'type'

FROM

    Metadata.EntityColumn

FOR JSON PATH, ROOT('structure')

If this check were to fail, then you could send off an alert and halt the file loading 

process without causing any downstream issues.
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�Creating Alerts from Skipped Rows

When working with large files, often the approach leans toward skipping and/or logging 

bad data rows than failing the entire file out of principle. This is because consistency 

can be achieved eventually, and it is often more important to get the majority of the data 

into the system than depriving the warehouse of data. However, there may be a point 

at which it is no longer acceptable to load rows as the failures are too numerous. For 

example, if a file with 1,000,000 rows has 10 rows that are incompatible, it is clearly better 

to process the 900,990 rows into the warehouse and worry about the 10 later. However, 

if 100,000 rows were incompatible, perhaps you want to fail the file as there is clearly a 

more significant issue.

Data Factory’s copy activity can produce a skipped row count and a copied row 

count which can be used to determine if the ratio between these two numbers exceeds a 

given threshold. For this to be available, skipping rows must be turned on using the fault 

tolerance settings in Data Factory copy activity. The following snippet can be placed in 

the expression for an IF activity to calculate the ratio between the two numbers:

@greaterOrEquals(div(activity('Copy File').output.rowsSkipped, 

activity('Copy File').output.rowsCopied), 0.5)

This expression will derive a true or false depending on whether 50% or more of 

the file is skipped during the copy. This approach means that the loading process can 

have a degree of intelligence about it when processing large files. However, it does not 

understand the types of failure, just that the row was incompatible.

�Monitoring the Data Movement Process
The auditing and alerting methods mentioned already are useful tools, enabling instant 

notification in case of failures or anomalies. Being able to react quickly to these scenarios 

can drastically reduce the time it takes to resolve any damage caused to your data 

warehouse. These systems can be greatly complemented however with a less instant, 

steadier paced monitoring method that allows developers to peek at the platforms health 

and performance through easy-to-understand dashboards and reports. Often these then 

form the basis of regular canned reports that go out to management to give detail of data 

volumes, failure percentages, and average durations. As time goes on and the maturity of 

your platform increases, these reports can begin to highlight numerous other data points 

such as platform running costs, data quality scores, and even report usage.
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Ultimately the richness of these reports comes down to what is logged into your 

Audit schema, and clearly a base level of logging will only enable a base level of 

reporting. Think carefully about the platform elements that need to be reported on when 

designing the Audit schema.

The most basic method of platform monitoring is a set of views that sit on top of 

your Audit schema tables. Views such as this provide an easily customizable approach to 

monitoring that can be flexible to your developing requirements. See Listing 7-8 for an 

example view definition.

Listing 7-8.  A definition of the SQL view to report on the data movement process

CREATE VIEW [Audit].[ExecutionReport] AS

SELECT

     child.ParentLoadId AS [Parent Load Id]

    ,child.LoadId AS [Load Id]

    ,child.PipelineName AS [Pipeline Name]

    ,CASE child.PipelineStatusTypeId

        WHEN 1 THEN 'In Progress'

        WHEN 2 THEN 'Successful'

        WHEN 3 THEN 'Failed'

     END AS [Pipeline Status]

    ,SourceSystemName AS [Source System]

    ,EntityName AS [Entity]

    ,parent.PipelineName AS [Parent Pipeline]

    ,child.PipelineName AS [Pipeline]

    ,child.StartTime AS [Start Time]

    ,child.EndTime AS [End Time]

    ,child.Duration AS [Duration]

    ,rt.ValidRows AS [Valid Rows]

    ,rt.BadRows AS [Bad Rows]

FROM

    Audit.PipelineLoad AS child

    LEFT OUTER JOIN Audit.PipelineLoad AS parent

        ON child.ParentLoadId = parent.LoadId

    INNER JOIN Audit.RowCountLog AS rt

        ON rt.LoadId = child.LoadId
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    INNER JOIN Metadata.Entity AS e

        ON e.EntityId = rt.EntityId

    INNER JOIN Metadata.SourceSystem AS s

        ON s.SourceSystemId = e.SourceSystemId

Eventually views such as this will become relied upon, and so in order to make 

consumption easier, some form of data visualization is usually required. The tool itself 

is nonspecific; so long as it can connect to your control database and be developed and 

accessed by the relevant people, then the tool is the correct choice, although I generally 

choose either Power BI or excel.
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CHAPTER 8

Using Scripting 
and Automation
A common attribute of many developers is the desire to do things quickly, consistently, 

and once only. To address this desire, scripting and automation are often used as they 

provide a hyper consistent method to complete regularly occurring tasks. This chapter 

aims to walk through three of my most used scripts in the hope that they can also be 

useful to readers of this book. All the scripts featured in this chapter are written in 

PowerShell and operate or automate key pieces of a modern data warehouse, the SQL 

engine, Data Factory, and data lake.

�The Power of PowerShell
PowerShell is the go-to scripting language for system administrators and power users 

looking to rapidly automate common tasks across their enterprise. As an open source 

language built on .Net, the command-based shell and integrated scripting environment 

provide an intuitive way to write scripts that can easily be extended as per the needs 

of the developer. Developers looking to craft their own PowerShell scripts will find the 

language rich with useful functionality complimented by lots of documentation online 

and the ability to integrate their scripts with many Azure services. In honesty, this 

chapter does very little to expose the true power of PowerShell; however, entire books 

are written for that purpose and I strongly recommend Don Jones and Jeffrey Hicks’ 

Learn Windows PowerShell in a Month of Lunches if the reader wants to enhance their 

PowerShell skills.

https://doi.org/10.1007/978-1-4842-5823-1_8#ESM
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�Commonly Used Scripts
The following sections of this chapter describe in detail the scripts and patterns that I 

use very often when developing data warehouse solutions in Azure. All of these can and 

should be further developed to meet any specific needs, but my hope is that these scripts 

guide the way for what can be achieved with a low level of effort when using PowerShell.

�Code Generation
Code generation is an accelerator that allows warehouse projects to get off the ground 

quickly. Often one of the most time-consuming tasks when starting a data warehouse 

project is fetching the data in order to begin development against it, and so the goal of 

code generation is to use a pattern that works for all scenarios and replicate this quickly 

as many times as needed. There are three elements that are required to facilitate a code 

generation approach. These are

•	 Data contracts: SQL tables and procedures that hold the entity-

specific metadata

•	 SQL templates: Predefined SQL procedures and tables that will have 

placeholders for text replacement

•	 The PowerShell script: A PowerShell script that unions the other two 

elements to create numerous implementations of a pattern within 

seconds

Data contracts play a major role here as it is the contracts that supply the specific 

configurations that make each implementation of the generic pattern work for each 

data source.

To begin working with this script, the metadata database needs to contain the 

following objects:

•	 Metadata.Entity: The main table that stores a row for each dataset, 

otherwise known as an Entity.

•	 Metadata.EntityColumn: This table is logically aligned to Metadata.

Entity; however, it stores a row for each column of the related entities.

•	 Metadata.RuleDefinition: This table stores a row for each rule 

definition. A rule can be any valid SQL code.
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•	 Metadata.ColumnRule: This table is a bridge between RuleDefinition 

and EntityColumn as columns can have many rules and rules can be 

applied to many columns.

•	 Metadata.ObtainEntityMetadata: This stored procedure pulls 

information from each of the preceding tables and presents it to the 

PowerShell script in a uniform way.

These tables and procs are discussed in more detail in Chapter 6, “The Role of the 

Data Contract,” and Figure 6-1 shows how the tables relate to each other. The full set 

of DDLs for the metadata scheme can be obtained from this link: https://github.

com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control%20

Database/Scripts/CreateDatabase.sql

The next objects that are required are the templates. The code generation templates 

are pre-written SQL scripts or table definitions that have placeholders for various items 

produced by the PowerShell code. For example, a template may have a generic statement 

such as

SELECT

    <ENTITY-COLUMNS>

FROM

    <ENTITY-TABLE>

In this case, the <ENTITY_NAME> and <ENTITY-TABLE> values would be generated 

by the PowerShell script and replaced in the template to produce valid and properly 

configured SQL script. When adopting a code generation approach, it is important to 

review these templates to ensure the required patterns and processes are implemented 

properly but that any specific components are supplied by the PowerShell code. 

Generally, this will mean that the earlier stages of the data processing are code 

generated, whereas the more volatile and business-oriented transformations are written 

manually until such time as they can be scripted. The templates supplied using the 

following link illustrate how ingestion and cleaning processes can be scripted for code 

generation: https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/

tree/master/SQL/Control%20Database/Templates

The final piece of the code generation setup is the PowerShell script that unions the 

other two elements. The script itself is nearly 200 lines of PowerShell and so too long to 

paste directly in this chapter; however, the script is well commented to aid understanding 

and I will now describe the code as blocks, instead of individual lines.
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From lines 0 to 41, the script is configured so that it connects to the correct SQL 

database and executes the Metadata.ObtainEntityMetadata stored procedure. The 

script then assigns the output of that stored proc to PowerShell variables for use later 

in the script.

Lines 44–159 do the bulk of the code generation work. Initially there is a check to see 

if the entity requires SCD type 2 logic and if so sets up a variable that contains a string 

that can be used to create HASH values. SCD changes are detected using HASH values as 

this avoids the need to check each and every column.

From line 78, the script enters a series of ForEach loops which perform various 

actions at different levels. First is the iteration over each entity; this ensures that the 

code is specific for each entity and generates and replaces each placeholder before 

moving onto the next entity. Within this outer loop is a ForEach loop over each column 

that belongs to the given entity. This allows specific column lists to be created, some 

with full-type and nullability definitions for tables and others with just column names 

for simple SELECT statements. Additionally, an isMapped attribute is used to allow a 

simple method to trim columns from source datasets that are not required for further 

transformations. A further ForEach loop is then used to process each rule that is applied 

to each column. This level of operation allows each rule to be nested so that a single SQL 

statement is created from potentially numerous separate rules. In particular, this means 

that rules can be written to be granular and not duplicated to cover off specific column 

needs. If a rule definition needs to change, then it only needs to change in a single place 

in order to be updated in all instances of that particular rule.

From lines 162 to 182, the PowerShell script performs replace operations for each 

placeholder in the template. Each placeholder has a corresponding variable value 

generated by the PowerShell script for that specific entity.

Finally, the lines 185 to the end simply name each output file and save it into the 

output folder specified in the variables at the start or the script.

�Invoke Data Factory Pipeline
The ability to invoke and monitor a data factory pipeline from PowerShell can come 

in handy when performing specific tasks. Remember that Data Factory has its own 

scheduler and event handling capabilities and so rarely is this method used in 

production. However, the following scenarios do highlight why this script can be 

useful:
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	 1.	 Scripting a process that copies data from one data lake into another.

	 2.	 Fetching data for an environment that is created using PowerShell.

	 3.	 Sequentially invoking long running processes that require 

different configurations each time. I have often used this approach 

when needing to populate large tables overnight and, instead of 

configuring many versions of the same ADF pipeline, would rather 

script this using PowerShell.

The code for invoking a Data Factory pipeline is very simple. This is because ADF is 

native to Azure and therefore the PowerShell support is very strong. The code shown in 

Listing 8-1 shows the most basic way of invoking a Data Factory pipeline.

Note I n order to access any Azure service, you must log in interactively via the 
PowerShell terminal with Connect-AzAccount.

Listing 8-1.  PowerShell code used to invoke an Azure Data Factory pipeline

$resourceGroupName = "moderndw"

$dataFactoryName = "mdwa-datafactory"

$pipelineName = "Copy Sales Data - Lookup"

$invokeParams = @{

    resourceGroup = $resourceGroupName

    dataFactoryName = $dataFactoryName

    PipelineName = $pipelineName

}

$runId = Invoke-AzDataFactoryV2Pipeline @invokeParams

Write-Host "Run ID: $runId"

The preceding scripts can be broken down into three parts. The first three lines 

assign resource-specific values to variables that will be used throughout the script. 

The next five lines create an object that contains all the variables we want to pass 

into our invoke function. This technique is known as PowerShell splatting and can be 

investigated further here: https://docs.microsoft.com/en-us/powershell/module/

microsoft.powershell.core/about/about_splatting?view=powershell-7
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The final two lines invoke the Data Factory pipeline as specified in the parameters 

and assign the returned Run Id to the variable, “$runId,” so that it could be used later 

in the script if needed. Of course, this script could be extended in numerous ways 

as alluded to in the list contained in the section title “Invoke Data Factory Pipeline”, 

however the next obvious requirement is the ability to then monitor the pipeline also 

using PowerShell (required when creating scenarios similar to number 3 in the list).

Tip P ipelines invoked by PowerShell are still shown in the monitor view of ADF 
alongside every other executed pipeline.

By adding the code from Listing 8-2, the script will then continually check in on the 

pipeline every 30 seconds until a completion status is reached.

Listing 8-2.  PowerShell code used to monitor an Azure Data Factory Pipeline 

run using a specific Run Id

while($True) {

    $pipelineRun = Get-AzDataFactoryV2PipelineRun -DataFactoryName 

$dataFactoryName -PipelineRunId $runId -ResourceGroupName 

$resourceGroupName

    if($pipelineRun) {

        if($pipelineRun.Status -ne 'InProgress') {

            Write-Host "Pipeline run finished. Status: $($pipelineRun.Status)"

            break

        }

        Write-Host "Pipeline is running"

    }

    Start-Sleep -Seconds 30

}

While these scripts show some of the Az-DataFactory cmdlets (the name of 

PowerShell functions), there are a great deal more that can display things such as

•	 Activity-specific outputs and status/error messages

•	 Static objects such as datasets and pipelines

•	 Integration runtime metrics and credentials.
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�Recurse Data Lake Structures
This script is very useful when reviewing an existing data lake that you need to become 

more familiar with or as a way of scripting functionality that can check if certain folders 

have been created by an ETL process. Essentially the script is made up of a PowerShell 

function that can be called recursively, thereby by continually working through a folder 

hierarchy flushing out all folder names as it goes. The function definition is shown in 

Listing 8-3.

Listing 8-3.  PowerShell code that allows developers to recurse data lake 

strucutures to determine entire folder hierarchies

Function Recurse-DataLakePath

{

    param

    (

        [Parameter(Mandatory=$true)]

        [ValidateNotNullOrEmpty()]

        [string] $startPath,

        [Parameter(Mandatory=$false)]

        [ValidateNotNullOrEmpty()]

        [int] $level = 0

    )

    if($level -eq 0)

    {

        Write-Host $startPath

    }

    $level++

    $adlParams = @{

        FileSystem = "datalake"

        Path = $startPath

        Context = $ctx

    }
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    �Get-AzDataLakeGen2ChildItem -FileSystem "datalake" -Path $startPath 

-Context $ctx |

    ForEach-Object {

       if($_.IsDirectory)

       {

           �Write-Host "$(" " * $level * 2)|- $($_.Path -replace $startPath, 

'' -replace '/', '')"

           Recurse-DataLakePath -startPath $_.Path -level $level

       }

    }

}

$ctx = New-AzStorageContext -ConnectionString <your connection string goes here>

Recurse-DataLakePath -startPath "RAW/"

The first eight lines define the parameters for the function. These are the input 

path from where we want to start our search and the level at which the function 

has recursed to. This parameter should not be configured by the user and is used 

for internal purposes. The next important part of the function begins at “Get-

AzDataLakeGen2ChildItem” and this is where the actual query is run against the data 

lake. This cmdlet will return each child item of the directory specified in the input path 

and write its name out into the output window. Note the filter on the “IsDirectory” 

attribute which ensures the function only records folders and not files; however, the 

function could easily be adapted to list out files within each directory.

Once the function has logged the children of the current path, it passes each child 

path into itself, creating a recursive process that continually navigates the hierarchy until 

every folder has been explored.

The final part of the script, outside of the function, simply defines a storage context 

which is required in order to connect to a storage account and then call the function for 

the first time supplying the starting path. If this function is called with a start path of “/”, 

then the function will traverse the entire lake; however, any path could be supplied, and 

the function will only look in folders below that path in the hierarchy.
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The output of this script over a simple data lake is shown here:

 RAW/

  |- MarketingSystem

    |- Campaign

      |- Recipients

      |- Responses

    |- Customer

    |- Opportunity

  |- SalesSystem
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CHAPTER 9

Beyond the Modern  
Data Warehouse
In days gone by, a data warehouse stood as a slow-moving, often large, unwieldly 

part of a wider decision support system. While tools and technologies that feed to or 

read from the data warehouse may develop, the complexity of such an artifact and 

the investment in its development mean that the warehouse would rarely benefit 

from such upgrades. Throughout this book, I have explained and demonstrated 

the highlights of building a modern data warehouse in Azure – one which can be 

developed rapidly and be highly flexible to source system requirements, one which 

can move and develop with the times and not cause sleepless nights worrying over the 

SQL version going out of support, one which can ingest in batch-, stream-, or event-

based modes offering ultimate speed and time to insight. The focus of this final chapter 

is now to look at what sits beyond the modern data warehouse. There is a wealth of 

BI products in the market that provide a range of capabilities and visualizations to 

the end user, and it can be very difficult to choose between them without a thorough 

review. This chapter is not a thorough review of BI products but instead give examples 

of downstream options for warehouse data. Initially this chapter will look at Power BI, 

as that is the de facto visualization tool for any data but will also examine some other 

Microsoft products for data as it leaves the data warehouse such as Azure Analysis 

Services and Azure Cosmos DB.

For each technology, we will examine a use case and flesh this out into a walk-

through example.
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�Microsoft Power BI
Microsoft Power BI (Power BI) is the flagship data visualization and BI product from 

Microsoft that burst onto the market in 2014. In its early days, it boasted some excellent 

visualization capabilities but has now extended that to include ETL tooling, interactive 

functionality, and a host of built-in connectors, making Power BI a leading product in 

the marketplace. At its heart, Power BI uses the same analytical engine that is used for 

Analysis Services, optimizing analytical queries over tabular data using in-memory 

processing, although this is coupled with a rich set of visualization capabilities that 

allows developers to easily experiment with chart types.

�Working with Power BI
Power BI provides a first-class visualization platform for data and offers enterprise 

grade capabilities for slicing and dicing all kinds of information. Wherever users 

require regular, pre-built reports, Power BI should be the delivery platform for those 

reports. With the tools available through Power BI, both IT-led reports can be built and 

self-service capabilities can be realized, meaning users can be in charge of their own 

reporting. This can be dangerous if done wrong but liberating if implemented correctly.

Power BI is made up of several key components:

•	 Power BI desktop: The primary development tool for Power BI files 

that is free to use for all report developers.

•	 Power BI report builder: The report builder used for creating 

paginated reports as opposed to dashboards.

•	 Power BI service: The web-based portal where dashboards and 

reports are published to. This is accessible to users with Power BI Pro 

licenses and extends to mobile devices such as phones and tablets.

All reports should be developed using Power BI desktop or report builder and then 

published up to the service for wider consumption. The service supports the concept of 

workspaces allowing users to collaborate on reports and dashboards.

The data for Power BI can be derived from a widespread of sources and mashed 

together to form consolidated datasets. This could mean blending public data with 

internal data from a data warehouse or analyzing multiple Excel sheets alongside files 

in a data lake. Additionally, Power BI can be connected to Azure Analysis Services in a 
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method known as live connection, which allows the Power BI front end to push queries 

back to the Analysis Service engine, meaning that data does not have to undergo a 

lengthy import operation.

�Building a Power BI Report
Building a Power BI report is simple and intuitive and getting started is simple. This 

walk-through will explain how to connect Power BI desktop to your data warehouse, 

whether that be in Azure SQL Database or Azure Synapse Analytics.

	 1.	 Download and open Power BI; this link is regularly updated 

with the latest version of Power BI desktop: https://powerbi.

microsoft.com/en-us/blog/category/uncategorized/

	 2.	 From the splash screen shown in Figure 9-1, choose “Get data.”

	 3.	 From the “Get data” menu, choose “Azure” and then the 

appropriate SQL engine from the list. For this walk-through,  

I have chosen Azure SQL Database. Click “Connect” as shown  

in Figure 9-2.

Figure 9-1.  The Power BI Desktop splash screen
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	 4.	 Add the server information and specify the database name if 

needed. At this point, you can specify the connection mode, 

whether that be Import mode, where data is imported into Power 

BI, and any updates require a refresh operation, or DirectQuery, 

where data remains in the source database and the Power BI 

engine queries the source directly. For much larger datasets, it 

is recommended to use DirectQuery, but for this walk-through, 

Import mode will be best. Configure each option and click “OK.” 

See Figure 9-3 for an example.

Figure 9-2.  The Power BI Desktop “Get Data” menu
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	 5.	 Enter your SQL login details and click “Connect.” This will prompt 

the data preview dialog as per Figure 9-4. Choose the tables you 

want to load and click “Load.”

Figure 9-3.  Supplying the Azure SQL Server and database details to Power BI 
Desktop
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	 6.	 Once the data finishes loading, you will be returned to the main 

report designer. Click the Model view and preview the data model 

that has been imported into Power BI. As per Figure 9-5, you  

should notice that Power BI has included relationships 

automatically.

Figure 9-4.  The data preview pane in Power BI Desktop
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If required, you can build new relationships between tables here, 

and in some cases, such as when in live connection mode to 

Analysis Services, it is necessary to build them in Power BI as they 

are not imported.

	 7.	 Open the Data view shown in Figure 9-6 so you can preview 

the actual columns and rows contained in the model. Here you 

can create new columns, measures, and hierarchies as per the 

requirements of your reports.

Figure 9-5.  The Power BI model view, showing automatic relationships
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	 8.	 Navigating back to the main designer, you can begin building 

charts, graphs, cards, tables, and other visualisations until you 

are satisfied with the result. To create a basic bar graph, select 

the “Clustered column chart” visual from the “visualizations” 

pane and drag it onto the design surface. Prior to adding data, the 

report should resemble the image shown in Figure 9-7.

Figure 9-6.  The Power BI Desktop data view showing rows and columns in 
the dataset
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	 9.	 Now drag the “Sales Amount” column from the 

“FactInternetSales” table onto the chart to see the total sales 

amount as a bar. Then, drag the “EnglishOccupation” column 

from the DimCustomer table onto the graph to act as a slicer. 

Figure 9-8 shows the result.

Figure 9-7.  The basic design pane in Power BI Desktop
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�Publish Report to Power BI Service
In order to publish a report to the service, you will need a work or school account. 

Assuming this is the case, then you can proceed.

	 1.	 Click “Publish” in the ribbon bar. Figure 9-9 highlights the location 

of the button.

Figure 9-9.  Close-up of the “Publish” button in Power BI Desktop

Figure 9-8.  A basic column chart in Power BI Desktop
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	 2.	 As shown in Figure 9-10, you will be prompted to sign in with your 

work or school account and then choose a workspace to publish 

the report to.

	 3.	 Once the Publish has completed successfully, you will be offered 

a link to the report as it is in the service. Click this to check out 

the report. Figure 9-11 shows the report displayed in the Power 

BI service.

Figure 9-10.  The workspace selection pane in Power BI Desktop
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�Azure Analysis Services
Azure Analysis Services (AAS) is simply a PaaS implementation of the on-premises 

product that came as part of the SQL Server Data Tools pack. The nice part of this 

implementation is that the development experience is exactly the same as before. All 

models, measures, calculated columns, and security are created in Visual Studio, and 

the vertiPaq (www.sqlbi.com/tools/vertipaq-analyzer/) engine that makes Analysis 

Services so powerful is unchanged in the Azure implementation. The difference is 

that you deploy the model to an Azure server instead of an on-premises server. Of 

course, using a PaaS-based platform means that additional benefits can be derived 

as well. First and foremost, AAS can support scale-out replicas, meaning that client 

queries can be distributed across these replicas at times of peak usage. Additionally, 

processing activities can be separated from the query pool so that the act of processing 

an AAS model does not disrupt the execution of incoming queries. It’s important to 

note here that only the initial synchronization is automatic, allowing for new replicas 

to be hydrated from the primary node at the point of creation. From this point on, the 

synchronizations are invoked manually (or by an orchestration tool – read Data Factory) 

Figure 9-11.  A published report in the Power BI service
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using the REST API, a PowerShell cmdlet, or the Analysis Services management aspect of 

SQL Server Management Studio (SSMS). A further PaaS benefit is that the instance can 

be paused when not in use, providing better cost optimization. Bear in mind that queries 

will not be answered while the instance is paused.

�The Basics of Azure Analysis Services
For those not familiar with Analysis Services, there are two types of calculation 

engine that can be used in an on-premises deployment; however, if you are to deploy 

the Analysis Service to Azure, you would need to build a tabular model and not a 

multidimensional cube. The differences between the two types are minimal to an end 

user but can have important differences for developers. While multidimensional cubes 

will still be around for a while, my view is that tabular models are the way forward and 

should be used as a matter of default.

Azure Analysis Services provides an ability to scale the model to meet demands 

of processing and querying. To begin with, you must determine service tier which can 

be either Developer, Basic or Standard. Developer is a cheap tier that provides all the 

functionality of the Standard tier only with some limitations. This allows developers 

to evaluate the service before investing in a standard tier service. The Basic tier is best 

for smaller tabular models that have limited data processing needs and can get by with 

lower concurrency allowances. The Standard tier is for full production workloads that 

have scalable concurrency needs and complex data refresh requirements. This tier 

ranges from an S0, which has a 10 GB model storage limit, all the way to an S9, which has 

a 400 GB model storage limit. As a general rule, data stored in Analysis Services models 

benefit from roughly 10x compression meaning the largest dataset available could be 

around 4 TB. The details of this compression are covered later in this chapter.

�Analysis Services as a Semantic Layer
Often it is asked why Analysis Services is required at all, when the data warehouse is 

designed specifically for the job of performing analytic queries. The answer is that the 

data warehouse is a storage layer, whereas Analysis Services is a semantic layer. This 

layer of semantic abstraction allows for much more flexibility when joining the worlds of 

a BI developer and an end user. It means that column names can be made friendly with 

spaces and capitalization, unwanted values can be hidden but not removed, hierarchies 
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can be shaped based on custom logic, and role-based access control (RBAC) can be 

implemented at a very granular level. Without this semantic layer, it would be very 

difficult to meet the needs of the end user without a huge amount of complexity on the 

part of the developer.

�Analysis Services Security Model
The security for Analysis Services is based around roles which can be associated with 

individual users or entire Active Directory groups, meaning access to models can be 

controlled by a centralized IT function and not solely by the BI team.

The primary security mechanism in AAS is a role, which can have model level 

assigned permissions, row filters, and object level controls to give a very fine-grained 

level of access to users. The permissions that can be assigned to a role are

•	 None: Members of this role have no access to the model.

•	 Read: The model can be read by the users of this role but not 

processed.

•	 Read and process: This permission allows users to both read the 

model and also process new data into the model from SSMS or the 

Azure Portal.

•	 Process: Members of this role cannot read the model but can 

process it.

•	 Administrator: The level of permission allows users full access to do 

anything with the model. The model owner is an administrator by 

default.

Row filters provide the ability to filter the entire model when users of the role view 

data. A good example is filtering by region, assuming a region code is applied to the 

fact table, this could be used to ensure European analysts were confined to see data 

that corresponds only to their region. Also, within roles developers can specify object 

level permissions which control whether a user can see a specific table or column. The 

following figures show how these two aspects of roles are configured.

Often there is a temptation to use perspectives to implement security; however, 

these are not designed for this purpose. Perspectives are built to allow role-based users 
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the ability to see a subset of a larger model (a perspective), purely to avoid excessive 

numbers of objects being displayed in the model viewer.

Even more fine-grained security can be implemented using dynamic, row-based 

security. This method involves creating filters in DAX, the functional language used in 

Analysis Services Tabular projects, that uses the USERNAME() function to look up the user 

against a table which stores the access permissions of the user. In the following example, 

the user ACL/MIH has access to region 3 in the “User Security.” When this user signs into 

the model, this filter is then passed through the territory dimension onto the fact table, 

thereby only revealing data from the fact table that is associated to that region. This 

traversal is demonstrated in Figure 9-12.

�The Vertipaq Engine
The vertiPaq engine is the proprietary calculation engine that underpins all versions of 

tabular Analysis Services and also Power BI. The power of this engine is that it stores all 

data in memory and therefore makes running large calculations very efficient. The trade-

off is that large amounts of data require large amounts of memory, and so a key aspect of 

the vertiPaq engine is its ability to compress data. There are a number of algorithms that 

are used; they are listed as follows:

	 1.	 Value encoding: This algorithm applies a mathematical operation 

to numeric data with the goal of reducing the number if bits 

required to store each value. The reverse operation is then carried 

out when the data is read by a query. Figure 9-13 shows this more 

clearly.

Figure 9-12.  An example relationship to implement dynamic security within the 
Analysis Services model
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	 2.	 Dictionary encoding: Because mathematical functions won’t work 

on text values, dictionary encoding is used to transpose a set of 

words into an indexed dictionary. By storing the dictionary in the 

model and replacing the text value with its dictionary id, a great deal 

of compression is achieved. This effect is highlighted in Figure 9-14.

	 3.	 Run length encoding (RLE): The goal of this algorithm is to remove 

the amount of redundant data in the model. Often in tables of data, 

the same value is repeated row after row and RLE reduces this by 

storing the value and the number of rows it runs for in a separate 

Figure 9-13.  An image explaining the implementation of Value encoding

Figure 9-14.  An image explaining the implementation of Dictionary encoding
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dictionary which can then be interrupted at query time. The original 

column and its corresponding dictionary are shown in Figure 9-15.

RLE can also be used in conjunction with Value and Dictionary 

encoding, compounding the amount of compression available for 

each individual column.

The next few walk-throughs will help you get started using Analysis Services by 

creating the project in Visual Studio, deploying the model to Azure and processing new 

data into the deployed model.

�Creating an Analysis Services Project
This walk-through requires you have Visual Studio 2019 with Azure Analysis Services 

Projects installed. The Analysis Services Project add-in can be downloaded from 

here: https://marketplace.visualstudio.com/items?itemName=ProBITools.

MicrosoftAnalysisServicesModelingProjects

	 1.	 Open Visual Studio and click “Tools” and then “Options.” Scroll 

through the options to find “Analysis Services Tabular” and 

expand that node.

	 2.	 In the “New project settings” submenu, set the compatibility level 

to “SQL Server 2019/Azure Analysis Services (1500)” and tick “Ask 

default project settings….” Older version can be used; however, 

they will not have the richest set of features.

Figure 9-15.  An image explaining the implementation of Run Length encoding
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	 3.	 Select “Workspace Database” and check “Integrated workspace.” 

Also tick “Ask new project settings…”
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	 4.	 Click “File,” “New,” and then “Project,” and type “Analysis Services 

Tabular” into the search box. Give the project a name and click 

“OK.” All settings should then be correct because of the previous 

steps, but now you can change them if needed.

Note A zure Analysis Services only supports tabular projects, not 
multidimensional.

	 5.	 From the solution explorer, open the Model.bim file; you should 

enter the “Tabular Model Explorer” view.

	 6.	 Open the “Extensions” menu and choose “Model” and then 

choose “Import from Data Source.” Select “Azure” and then “Azure 

SQL database” and choose “Connect.”

 

	 7.	 Provide the required details – Server and Database name  

(use the adventure works one that was deployed using the 

script). Click “OK.”
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	 8.	 On the following screen, provide your SQL username and 

password, then select all the listed tables except for those 

regarding firewall rules.
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At this point, you should note the similarities here between 

the Analysis Service “Get Data” wizard and the Power BI “Get 

Data” wizard. The reason for this similarity is that they are 

fundamentally built on the same Power Query engine, meaning 

the experience is largely the same.

	 9.	 Choose “Load,” and once the import is complete, you should see 

data in the main Visual Studio window with the tables listed as 

tabs across the bottom.

 

�Create Analysis Objects
You now have an Analysis Services project where you can build measures, calculated 

columns, hierarchies, roles, perspectives, and others. The next walk-through shows how 

to build some of these analytical objects.

�Create a Calculated Column

	 1.	 Open Visual Studio and access the Model.bim file in data  

view mode.

	 2.	 From the tabs across the bottom of the data table, choose 

DimCustomer. Between “LastName” and “NameStyle,” right-click 

and choose “Insert Column.”
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	 3.	 When the new column appears, double-click its header to rename 

it to “FullName.” Now in the formula bar, add the following:

=DimCustomer[FirstName] & " " & DimCustomer[LastName]

	 4.	 Complete the calculated column by pressing Enter.

�Create a Measure

	 1.	 With the Model in data mode, navigate to the  

FactInternetSales table.

	 2.	 Locate the “SalesAmount” column and click the first cell of the 

measure grid underneath that column. In that cell, type the 

following:

Sum Of Sales:= SUM('FactInternetSales'[SalesAmount])

	 3.	 Press Enter to complete the measure. Open the properties dialog 

box by pressing F4. Locate the “Display Folder” property and type 

“Customer Analysis.”

 

	 4.	 In the next column across, “TaxAmt,” click the first cell of the 

measure grid beneath that column and open the “Auto sum” 

menu . From the drop-down, choose “Average” to create an 

automatic average for the “TaxAmt” column. Open the properties 

dialog box by pressing F4. Locate the “Display Folder” property 

and type “Customer Analysis.”
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	 5.	 To test the preceding objects, click the “Analyze in Excel” button to 

open the model as a pivot table in Excel.
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	 6.	 Once Excel has opened, in the pivot table, open the 

“FactInternetSales” measure set and then the “Customer Analysis” 

display folder. From here, drag “Sum Of Sales” into the values box. 

You should see a large value appear in the pivot table view.
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	 7.	 Expand the “DimCustomer” table and locate the “FullName” 

calculated column created earlier. Drag this into the “Rows” box to 

validate your measure and your column can interact.

�Create a KPI

	 1.	 Back in Visual Studio, select the “Sum Of Sales” measure created 

previously and then click the “KPI” button.
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	 2.	 In the KPI dialog box, check “Absolute value” and type 10000000. 

Set the sliders so that green is 10m and above, amber is 9m and 

above, and red for everything less than 9m.
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	 3.	 Once the KPI is done, click “OK” and then analyze the model in 

Excel again.

	 4.	 Drag the “Sum Of Sales” measure into the values box to display 

the total sales across all dimensions. Expand the “KPI’s” node 

recursively until you locate “Values” (Sum Of Sales,” “Goal,” and 

“Status”). Drag each of those into the values box.

 

	 5.	 Now locate the “DimSalesTerritory” table and drag the 

“SalesTerritoryGroup” column into the Rows box. You should now 

see the KPI values split by Europe, North America, and Pacific.
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�Create a Hierarchy

	 1.	 Go back into Visual Studio and open the model in Diagram 

view. Locate the DimSalesTerritory table and right-click the 

“SalesTerritoryGroup” column. From the context menu, choose 

“Create Hierarchy” and name it “Sales Territory.”
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	 2.	 Now drag the “SalesTerritoryCountry” and “SalesTerritoryRegion” 

columns onto the hierarchy parent (SalesTerritoryGroup). Once 

done, right-click each column and rename to match the following 

image.

 

	 3.	 Save the model and analyze in Excel. Once Excel opens, expand 

the “DimSalesTerritory” table and note that all fields are now 

grouped under “More Fields.” The hierarchy is also named and 

kept at top level.

	 4.	 Drag the “Sales Territory” hierarchy into the “Row” box. In the 

pivot table is each level of the hierarchy which can be expanded as 

required.
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�Create a Perspective

	 1.	 Go back into Visual Studio and open the model in Data view. Click 

the “Perspectives” button  . Click “New Perspective” and give 

the perspective a name. Select a subset of tables, columns, and 

measures to add into the Perspective.
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	 2.	 Click “OK” and analyze the model in Excel. When prompted, 

choose your new perspective from the drop-down menu.

 

	 3.	 Once Excel opens, you will see that the list of tables is now 

reduced to only those listed in the perspective.
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�Creating Roles (RBAC)

	 1.	 In Visual Studio, open the Model.bim file in data view and open 

the Roles dialog box . Here you can create and manage all roles 

for the Analysis Services model.

	 2.	 Click “New.” Give the role a name and set the “Permissions” value 

to “Read.”

	 3.	 In the “Row Filters” box, locate the “FactInternetSales” row and 

enter the following DAX expression:

=YEAR(FactInternetSales[OrderDate]) = 2011

	 4.	 Move over to the “Tables and Columns” tab and tick every box 

excluding “FactInternetSales” and “DimSalesTerritory.”

Note A  tick here EXCLUDES that table from the role.

	 5.	 Test the role is working by analyzing the model in Excel and 

choosing the Role that you created (similar to how you would 

choose a perspective). The following image should be similar to 

what you can see:

 

Complexity can be layered within numerous different roles for different levels  

of access
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�Deploy Analysis Services to Azure

	 1.	 Navigate back to the Azure portal and create an Azure Analysis 

Services instance. Supply a name, configure the Resource Group 

and Location, and choose “D1” for the Pricing tier. Ensure the 

Administrator is correct and leave the storage key expiration as 

“Never.” Click “Create.”

	 2.	 Once the resource is deployed, click “Go to resource” to validate 

the deployment completed successfully.

	 3.	 From the newly deployed AAS server, open the “Overview” tab 

and locate the “Server name” property. Copy it to the clipboard.

	 4.	 Go back into Visual Studio and open the “Solution Explorer” view. 

Right-click the tabular project and choose “Properties.”

	 5.	 Set the “Server” to the one copied to your clipboard and ensure 

the “Database” name is correct/descriptive. Click “OK.”

Note Y ou can rename the model here; otherwise it will be named “Model.”
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	 6.	 Right-click the tabular project again and choose “Deploy.” This 

will prompt SSDT to build the project, and provided it builds 

successfully, deploy it to your Azure Analysis Services server.

 

	 7.	 Validate that the model deployed successfully firstly by connecting 

via SSMS. Open SSMS and click “Connect.” Choose “Analysis 

Services” from the drop-down menu.

	 8.	 Pop back into Azure and fetch the Management Server Name from 

the overview blade.

	 9.	 Use this property in the “Server name” property of the connection 

dialog and click “Connect.” You may need to use MFA to  

connect here.

	 10.	 Once the connection is complete, review the tables, connections, 

and roles that can be managed using SSMS.

	 11.	 Open Excel and choose the Data tab. Click “Get data,” “From 

Database,” and then “From Analysis Services.” Use the “Server 

name” from the portal and supply your windows account.

Chapter 9  Beyond the Modern Data Warehouse 



263

	 12.	 Once the connection is made, you will be offered to choose either 

the full model or a specific perspective. Choose the full model and 

click “Next.”

	 13.	 You can change the connection name if you want to reuse. Once 

done, click “Finish” and “OK” on the subsequent dialog. You 

should then see a pivot table appear, exactly like the one seen 

using “Analyze in Excel.”

	 14.	 Once finished with testing/development, be sure to pause the 

Analysis Services server to avoid any unwanted costs.

�Processing an Azure Analysis Services Model
Once an Analysis Services model has been developed, it will contain not only data 

but also analysis objects such as calculations (or measures), calculated columns, and 

hierarchies. Obviously, the data contained in the model does not stand still and so these 

objects regularly need to be refreshed and recalculated to ensure they are accurate. 

Azure Analysis Services tabular models are easily refreshed using common protocols 

such as REST or PowerShell cmdlets.

A processing job can be carried out in a number of ways and at a variety of levels; the 

options are listed as follows:

	 1.	 Process default: This option at a model level processes any 

unprocessed tables and calculates all columns and hierarchies. At 

a partition or table level, the same steps are carried out but only 

for the objects in the partition or table.

	 2.	 Process full: This option will do a full process of all the objects in 

the model, partition, or table depending on the processing option, 

as well as calculating columns and hierarchies.

	 3.	 Process data: This option simply processes data into the model, 

partition, or table; however, it does not recalculate any columns or 

hierarchies.

	 4.	 Process clear: This final option clears data from a model, 

partition, or table.
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In order to invoke any of these actions at any of the potential levels in an automated 

way that can be orchestrated along with the other ETL elements, a Data Factory pipeline 

can be deployed that uses Web Requests to interface with the Analysis Services server. 

The steps to build such a pipeline are described as follows.

The first job is to create a service principal that will be used to authenticate the 

process request:

	 1.	 Open Azure AD and locate the “App Registrations” blade. 

Click “New Registration” and supply a name, for example, 

“ASProcessor.”

	 2.	 Open “API Permissions” and click “Add permission.” Switch to the 

“APIs my organization uses” and type “Azure Analysis Services” in 

the search box. Click this API and click “Add permissions.”

	 3.	 Open the “Certificates & Secrets” blade and create a new client 

secret with the name “Primary Key.” Be sure to copy that secret 

into a text doc for later use.

	 4.	 Navigate back to the “Overview” tab and open “Endpoints.” Locate 

the “OAuth 2.0 token endpoint (v1)” and copy it to a notepad.

With the service principal created, it now needs to be added to the server as an 

admin so that it is authenticated to perform the request:

	 1.	 Open SQL Server Management Services and connect to the 

Analysis Services instance.

	 2.	 Right-click the server node and choose “Properties” and then 

“Security.” Click “Add” to reveal the security dialog box.

	 3.	 In the “Manual entry” box, type “app:” followed by the service 

principal client id and the tenant id joined by an “@” sign. An 

example is shown here:

app: <service principal client id>@<tenant id>

Now that the authentication is in order, the Data Factory pipeline can be built:

	 1.	 In ADF, create a new pipeline named “Process AS Database.” Add 

two web activities to the pipeline and join them together with the 

“On Success” predicate.
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	 2.	 On the first activity, set the URL to the endpoint copied earlier. 

Set the method to “POST” and add a content_type header of 

“application/x-www-form-urlencoded.” Name the activity 

“Fetch Access Token.”

	 3.	 In the body, add the following:

grant_type=client_credentials&client_id=<your app id> 

&client_secret=<your client secret>&resource=https%3A%2F% 

2Fnortheurope.asazure.windows.net

Note T he preceding code snippet works only for an Analysis Services instance in 
the North Europe region; you can change the region as required.

Be sure to replace the values with your new SPN details.
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	 4.	 On the second web activity, set the URL to

https://northeurope.asazure.windows.net/servers/<Your server 

name>/models/<Your model name (with spaces replaced with "%20")

	 5.	 Create a content-type header with "application/json"  

as the value

	 6.	 Create an “Authorization” header and choose to “Add dynamic 

content…” for the value. In the dynamic content box, paste the 

following:

@concat('Bearer ', activity('Fetch Access Token').output. 

access_token)

	 7.	 Set the body to the following:

{

    "Type": "Full",

    "CommitMode": "default",

    "MaxParallelism": 10,

    "RetryCount": 2

}
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	 8.	 Now debug your pipeline to kick off the refresh operation.

	 9.	 Validate the debug run finishes and review the outputs of each 

activity.

	 10.	 To validate the refresh has completed, connect to your AAS 

database using SSMS and right-click the database node 

and choose “Refresh.” Once the refresh is complete, choose 

“Properties” and note the date of the “Last Data Refresh” 

property – it should be today.

�Azure Cosmos DB
The previous two examples explore analytical routes for data moving on from the data 

warehouse; however, a final route to explore is less about analytics and more about 

further integration. This example will dig into Azure Cosmos DB and look at how 

analytical data can be obtained from the warehouse and integrated into a website’s back-

end database. This integration can allow a degree of analytical intelligence to be exposed 

via the website without placing any unprecedented load on the data warehouse, as this is 

absorbed by Cosmos DB.

�The Cosmos DB Architecture
Cosmos DB is a NOSQL (Not only SQL) database that provides the ability to store JSON 

documents in a globally distributed, highly resilient environment that offers unrivaled 

service level agreements and extremely low latency times, therefore making it an ideal 

platform for web development. Cosmos DB also boasts a multi-model capability, 

meaning it can be treated as a SQL-like document database, a table storage database, 

or a graph database built using Apache Gremlin. Figure 9-16 shows how a Cosmos DB 

account is structured to provide this multi-model capability by implementing the notion 

of a container that stores JSON items that can fulfil different purposes depending on 

the model type chosen. Figure 9-17 explains how each container is broken down into 

resource partitions based on contextual partition keys.
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�Horizontal Partitioning

The data stored with a container is horizontally partitioned using a customer provided 

partition key and managed by resource partitions. As the container is scaled up by a user, 

the system internally manages resource partitions to deliver on the throughput required 

by the scale.

Figure 9-16.  A diagram explaining the layers of a Cosmos DB account

Figure 9-17.  A diagram showing how documents are organized into resource 
partitions based on a user specified partition key
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In addition to the horizontal partitioning explained previously, which always 

happens within a region, there is also the ability to replicate the data globally, into 

other Azure regions as specified through either the portal or an API request. This 

also enables multi-master capabilities whereby data can be written from multiple 

regions and read from all others within seconds. It is this global distribution of data 

that allows Cosmos DB to provide such low latency times to application users in 

any part of the world. Figure 9-18 shows how the preceding diagram is extended to 

partition globally.

�Resource Units

As with DTUs and cDWUs, Cosmos DB uses Resource Units (RUs) as the handy metric 

that abstracts the complexity of the internal IOPs, memory, and CPU consumption so 

that developers can manage a single slider instead of several. RUs can be provisioned at 

two levels, either the container or the database, and the same metric is used regardless of 

the container model type. The number of RUs provisioned to a container is often referred 

to as throughput, and the throughput is spread evenly across each physical partition 

of the container, assuming a good partition key is chosen and resource partition skew 

is low. Container level RU assignment is recommended when consistent throughput 

Figure 9-18.  This image shows how locally replicated resource partitions are 
further replicated globally, across Azure regions 
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is required; otherwise database level RU assignment can be used and this spreads 

the throughput across each container, therefore not making the performance of each 

container consistent.

When thinking about Resource Units, there are some things to consider:

	 1.	 As documents in the database increase in size, the number of RUs 

required to read the document will increase as well. One RU is 

equivalent to reading 1Kb of data from the database.

	 2.	 As items are written, by default they are indexed. If a document 

has many items, then this will require a large number of RUs to 

complete; however, this default behavior can be changed so that 

some attributes are not indexed automatically. 

	 3.	 More complex queries will incur more RU usage, so think carefully 

about the partitioning and modeling of the database to reduce the 

strain on the database.

�Consistency

Consistency refers to the state of the data within the system and is a particular concern 

when data is distributed across the globe. Often there are two extremes. Strong 

consistency ensures data in all regions reconciles although this incurs greater latency 

when performing reads. Alternatively, eventual consistency means that data is much 

more available but make programs more difficult to write as data does not reconcile all 

the time.

Azure Cosmos DB offers more than two extremes and instead proffers a spectrum of 

consistency options, with several levels between strong and eventual consistency. The 

full spectrum of consistency options are listed as follows:

	 1.	 Strong: This level guarantees all reads from the database return 

the most recently committed version of a record. No uncommitted 

or partially written data will be returned to a client.

	 2.	 Bounded staleness: This level allows developers to create a 

boundary of either record versions (updates) or time. Global 

consistency is guaranteed outside of this boundary for all 

regions except where writes are accepted; in these cases, strong 

consistency guarantees are applied.
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	 3.	 Session: Reads within a single client session have the ability to 

read your own writes; however, there is not a guarantee that the 

read is based on the latest record version. That said, the reads 

are supplied in order, meaning the data read is approaching 

consistency.

	 4.	 Consistent prefix: Reads that are made show some set of all the 

previous record versions with no gaps. This level guarantees that 

reads will not see out-of-order writes.

	 5.	 Eventual: There is no ordering guarantee for reads and so 

consistency is eventually achieved by the lack of incoming writes.

Now that Azure Cosmos DB is better understood, the steps here can be followed to 

copy some warehouse records into Cosmos DB so they could be presented to website 

users, regardless of their position on Earth.

�Write Data to Azure Cosmos DB

	 1.	 To begin with, you will need to create an Azure Cosmos DB 

account using the Azure portal. You will simply need to provide a 

name, resource group, and a region. Once the account is created, 

you should open the “Data Explorer” blade and create a database 

and container.

DATABASE CREATION IMAGE…

	 2.	 Navigate to Azure Data Factory and create a new linked service to 

connect to the Cosmos DB account.
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	 3.	 Create a new dataset that uses this linked service.
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	 4.	 Now that you have the connection, a simple copy activity can be 

used to move the records from a SQL warehouse into the JSON-

based Cosmos DB.

 

The following query is used here to create a sum of sales and count of orders record 

for each customer in the fact table.

SELECT TOP 10

    CustomerKey,

    SUM(SalesAmount) AS TotalSalesAmount,

    COUNT(*) AS OrderCount

FROM

    [dbo].[FactInternetSales]

GROUP BY CustomerKey
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Set the sink option to be the newly created Cosmos DB dataset.

	 5.	 Debug the pipeline and validate it completes successfully. Once 

done, navigate back to Cosmos DB and refresh the list of items. 

You should now see ten records in the database, each with a sum 

of sales and order count attribute in a semi-structured JSON 

format.

 

These records could then be integrated with a front-end website to 

provide analytical enrichment to existing customer records.
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