
Azure
Internet of Things
Revealed

Architecture and Fundamentals
—
Robert Stackowiak

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Azure Internet of
Things Revealed

Architecture and Fundamentals

Robert Stackowiak

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Azure Internet of Things Revealed: Architecture and Fundamentals

ISBN-13 (pbk): 978-1-4842-5469-1			 ISBN-13 (electronic): 978-1-4842-5470-7
https://doi.org/10.1007/978-1-4842-5470-7

Copyright © 2019 by Robert Stackowiak

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484254691. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Robert Stackowiak
Elgin, IL, USA

www.allitebooks.comwww.allitebooks.com

https://doi.org/10.1007/978-1-4842-5470-7
http://www.allitebooks.org
http://www.allitebooks.org

Dedicated to my wife and long-time partner Jodie
–the adventure continues

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

v

Chapter 1: Modern IoT Architecture Patterns�� 1

The Evolution of the Internet of Things�� 2

Typical IoT-Based Business Solutions�� 4

Agribusiness Examples�� 5

Automotive Examples��� 5

Aviation Examples�� 6

Communications and Media Transmission Examples��� 6

Construction Examples��� 7

Consumer Packaged Goods Examples��� 7

Education and Research Examples�� 8

Environmental Controls Examples�� 8

Financial Banking and Trading Firm Examples��� 9

Healthcare Payers and Providers Examples��� 9

High Tech and Industrial Manufacturing Examples�� 10

Insurance Company Examples��� 11

Law Enforcement and Emergency Services Examples��� 11

Media Content and Entertainment Examples��� 11

Oil and Gas Examples��� 12

Pharmaceutical and Medical Device Examples�� 12

Retail Examples�� 13

Transportation and Logistics Examples�� 13

Utility Company Examples�� 14

About the Author�� xi

Acknowledgments�� xiii

Introduction��xv

Table of Contents

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

vi

IoT Reference Architectures��� 15

How IoT Fits in Your IT Architecture��� 17

Why Cloud Computing and IoT��� 21

Other IoT Concepts and Considerations��� 24

An Evolution in Needed Skills�� 26

Chapter 2: Azure IoT Solutions Overview�� 29

Microsoft Azure PaaS and IoT�� 30

Azure IoT Hub��� 32

Azure Digital Twins��� 33

Azure Stream Analytics�� 33

Azure Time Series Insights��� 34

Azure Databricks�� 34

Azure Data Lake Storage�� 35

Azure HDInsight�� 35

Cosmos DB��� 37

Other Azure Data Stores��� 37

Tools, Frameworks, and Services��� 37

Non-Microsoft Components in Azure IoT��� 38

IoT SaaS Solutions in Azure��� 40

Azure Management and Deployment��� 41

Subscriptions and Resource Groups�� 41

Azure Portal�� 43

Designing for Resiliency and Availability�� 47

Azure Security Considerations��� 50

Microsoft Intelligent Edge�� 51

Azure IoT Edge�� 52

Azure Sphere�� 52

Windows 10 IoT�� 53

Choosing the Right Component Model��� 54

Table of Contents

vii

Chapter 3: IoT Edge Devices and Microsoft��� 55

Edge Sensor and Device Selection�� 56

The Azure IoT Edge Runtime�� 61

The IoT Edge Device As a Gateway Device��� 62

Deployment of Containers�� 64

Azure IoT Edge and Device Security��� 65

The Azure IoT Device Catalog��� 68

Chapter 4: Azure IoT Hub��� 73

IoT Hub Capabilities��� 74

Configuring the IoT Hub��� 75

Managing the IoT Hub�� 78

Message Routing and Event Routing�� 79

IoT Hub Performance Monitoring��� 81

IoT Hub Device Provisioning��� 83

IoT Hub Availability and Disaster Recovery�� 84

Chapter 5: Analyzing and Visualizing Data in Azure��� 87

Azure Stream Analytics�� 88

Time Series Insights��� 89

Azure Databricks�� 91

Semi-structured Data Management��� 95

Azure HDInsight�� 95

Cosmos DB��� 97

Azure Machine Learning�� 99

Azure Machine Learning Studio�� 99

Azure Machine Learning Service�� 101

Cognitive Services��� 104

Data Visualization and Power BI�� 108

Azure Bot Service and Bot Framework�� 117

Table of Contents

viii

Chapter 6: IoT Central and Solution Accelerators��� 119

Azure IoT Central�� 120

IoT Solution Accelerators��� 129

Remote Monitoring�� 132

Predictive Maintenance��� 134

Connected Factory��� 138

Device Simulation�� 141

Chapter 7: Infrastructure Integration�� 145

Preexisting Sources of Data��� 145

Integrating and Finding Data Sources�� 147

Azure Data Factory��� 148

Query Services Across Diverse Data�� 151

Connecting On-Premises Networks to Azure�� 153

Bulk Data Transfer�� 156

Azure Data Catalog��� 158

Data Historians and Integration to Azure��� 160

Chapter 8: Developing a Plan for Success��� 163

Identifying the Right Initiatives�� 164

Observe and Research��� 167

Problem Definition�� 169

Ideation��� 173

Prototype Creation�� 180

Testing�� 181

The Agile Sprint Approach�� 183

Moving from Prototypes to Implementation��� 184

Measurable Return on Investment��� 185

Operational Considerations�� 187

Implementation Strategy�� 189

Preparing an Implementation Roadmap��� 190

Some Final Thoughts��� 191

Table of Contents

ix

Appendix: Published Sources�� 193

Microsoft Online Documentation Sources�� 194

Other Web Site Sources��� 196

Index�� 199

Table of Contents

xi

About the Author

Robert Stackowiak is Data and Artificial Intelligence

Architect and Technology Business Strategist at the

Microsoft Technology Center in Chicago, Illinois, USA. He

regularly conducts executive briefings, business discovery

workshops, and technology architecture sessions with many

of North America’s most leading-edge companies across a

variety of industries and with government agencies. Bob has

spoken at numerous industry conferences internationally,

served as a guest instructor at various universities, and is an author of several books,

including Remaining Relevant in Your Tech Career (Apress), Big Data and the Internet of

Things (Apress), Oracle Big Data Handbook, and Oracle Essentials. He joined Microsoft in

May 2016 after a 20-year career at Oracle where he was most recently Executive Director

of Big Data. You can follow him on Twitter @rstackow, and read his articles and posts on

LinkedIn.

xiii

Acknowledgments

I have learned a lot about the Internet of Things since being the lead author on the

topic for an Apress book about 4 years ago. My clients have deployed a variety of these

solutions and increasingly look for cloud-based resources, such as those found in

Microsoft Azure, to scale the analysis of incoming data. More recently, many of these

clients are also deploying Microsoft’s intelligent edge.

I have found particularly useful my meetings with major manufacturers and other

companies, especially as they shared their vision and experiences. Many are using

data from sensors for monitoring their connected factories, monitoring the remote

devices that they build, and analyzing data from equipment and devices in performing

predictive maintenance. Thanks to them for sharing.

During IoT briefings for clients, I frequently collaborated with other specialists

within Microsoft. I would like to call out Michael Walton and Eddy Saad for helping our

clients see a vision of what is possible.

Microsoft has a broad array of partners helping clients design and deploy these

solutions. Some of those that I have worked with include Accenture, Avanade, and

Hitachi Solutions, as well as many of Microsoft’s analytics partners and solution

providers. Thanks especially to Jerry Hawk and his team for their support and guidance

in many of these opportunities.

As I wrote this book, extensive changes were occurring in the Chicago Microsoft

Technology Center where I worked. I would especially like to thank my former Director,

Beth Malloy, and my current Director, Adetayo Adegoke, and long-time associates

Charles Drayton and Ross LoForte for their support.

Of course, this book would not be possible without the efforts of Microsoft engineers

and product managers who bring these offerings to market. The documentation that

they produced was extremely useful in building the content presented here. Thanks

for continuing to respond to our clients’ needs by providing a comprehensive set of

offerings.

Writing and publishing a book usually takes about 9 months, and that period can be

a time of smooth collaboration with a publisher (including continuity of support from a

few key players) or one in which the key players come and go. I have experienced both.

xiv

This is the third book that I have written for Apress, and they have become my favorite

publisher. Jonathan Gennick, Assistant Editorial Director, once again saw the need and

value for a book like this and gained swift approval for its production. He and I have

now collaborated on producing books for over 20 years. Jill Balzano was once again the

Coordinating Editor, my third collaboration with her. She makes staging a book like this

one extremely easy.

This book was written on my long daily commutes on the train or evenings and

weekends. It did require that I make some hard choices regarding where I would spend

my time. Hopefully, my wife Jodie found that my writing of this book was not quite so

noticeable as some of my earlier efforts. (Writers can get cranky at times.) The support

from Jodie has been amazing over the years. Now that retirement from full-time work

is just around the corner, I hope she doesn’t mind if I write another book or two in

the future!

Acknowledgments

xv

Introduction

The Internet of Things (IoT) has been widely discussed and written about over the past

decade. So, why did we believe this book was needed?

As many companies began deploying IoT solutions, new needs became evident.

These needs drove advances in components and changes in IoT architecture. Microsoft

was at the forefront of this development, responding to these requirements with new

Azure backend analytics tools and data management solutions, an Azure IoT Hub

enabling the landing data streams in the cloud and managing of devices, and pushing

analytics and other functions to the devices themselves.

As the number of components and options for deployment has increased, Microsoft

has sought to simplify deployment for certain scenarios by producing solution

accelerators. Many of Microsoft’s partners have also embraced some or all these

components in commercial product and service offerings.

It occurred to us that the time was right to describe all these components and offerings

in a single volume since the complexity of all of this can appear to be overwhelming. Our

goal in this book is to explain the capabilities, options, and architecture patterns that you

might choose to incorporate in your own designs and implementations.

The book begins with a chapter covering generic architecture patterns and key

components in IoT. In the second chapter, we provide an overview of major Microsoft

components typically found in the architecture.

In Chapters 3 through 7, we provide more detail regarding the Microsoft components

and include chapters on IoT devices, the Azure IoT Hub, analyzing and visualizing

data in Azure, IoT Central and the solution accelerators, and infrastructure integration

considerations.

We conclude the book with a chapter describing how you might develop a plan for

success using proven techniques that include design thinking.

We realize that this book is likely the start of your exploration of this topic or that you

are using the book to refresh your knowledge with what is new and current. As further

exploration of these topics will likely be desired, we’ve included an extensive list of

sources at the end of the book.

We hope that you will find the book to be a valuable reference wherever you are on

your IoT journey.

1
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_1

CHAPTER 1

Modern IoT Architecture
Patterns
Today, Microsoft Azure footprints are often designed to be part of a broader architecture

that includes Internet of Things (IoT) devices. Though you might be new to this type of

solution, the need for such an architecture did not suddenly appear overnight. IoT itself

has a long history that predates the cloud and Big Data.

Today’s architectures feature highly scalable event handling enabling real-time

analysis in what Microsoft has named the “intelligent cloud” and deployment of

machine learning at the “intelligent edge” in the devices. As more advanced IoT solution

components and capabilities have become available, previous architecture patterns

evolved to take advantage of these new capabilities and enable more sophisticated

business solutions to be deployed.

This chapter introduces IoT and covers its history and relevancy in solving a host of

business problems in a variety of industries. We explain some of the basic terminology

and typical architecture patterns that you will encounter. You should come away from

this chapter ready to understand how Microsoft’s technology components align to these

patterns as we introduce them and then dig deeper into them throughout much of the

remainder of the book.

Appropriately, this chapter is divided into these sections:

•	 The evolution of the Internet of Things

•	 Typical IoT-based business solutions

•	 IoT reference architectures

•	 How IoT fits in your IT architecture

2

•	 Why cloud computing and IoT

•	 Other IoT concepts and considerations

•	 An evolution in needed skills

�The Evolution of the Internet of Things
The Internet of Things (IoT) consists of sensors, devices, and/or actuators that are

networked in order to gather data for processing and trigger actions or alerts enabling

appropriate responses to be made. IoT architecture solutions are frequently deployed

to enable intelligent and automated equipment that is deployed in homes, businesses,

factories, vehicles, and outdoor locations. The products and solutions are designed to

help solve industry specific problems and needs.

Intelligent devices at the edge of the architecture can both transmit and respond to

data, sometimes by controlling other components or equipment present. Networking of

the devices enables data sharing among them and transmission of data to a data center

through a gateway for further processing and analysis. Today’s IoT footprint can respond

in real time and perform analysis on massive numbers of incoming events. This footprint

represents the latest stage in the evolution of the key components in IoT.

The first device that many define as a sensor was the thermostat, invented in 1883.

Motion sensors and infrared sensors first began to appear in the 1940s and the early

1950s. In the 1960s, sensors and associated computing devices were greatly reduced

in size to meet the demands of the space program and were key in the development of

spacecraft capable of landing men on the moon.

Networking software began to appear during this same time period to be used

in linking computers and devices. The ARPANET was introduced in 1969 to transmit

messages from computers and devices across wide distances, and it eventually evolved

into the Internet. Early adopters of these networks included the oil and gas companies

that needed to transmit exploration data gathered from sensors in drilling equipment to

powerful backend computers used in performing analytics on the data.

RFID tags and UPC codes began to appear in the early 1970s, and widespread usage

occurred in the following decade. By the late 1990s, RFID tags were linked to the Internet

at MIT. Kevin Ashton referred to this work in a 1999 speech at Procter & Gamble as the

“Internet of Things.”

Chapter 1 Modern IoT Architecture Patterns

3

This was an era in which relational databases were commonly used to store and

analyze all data. Data historians built upon relational database management systems

became popular for analyzing time series data coming from sensors, programmable

logic controllers (PLCs), and other similar devices.

In the early 2000s, new alternatives to relational databases began to gain wider

adoption. Companies that built Internet search engines found that the data they needed

for analysis arrived in streams and contained delimiters and other miscellaneous data

intermixed with the data of value. The data streams required pre-processing to fit into

relational databases since relational databases store data in tables neatly formatted into

rows and columns. This data conversion introduced latency and complexity that soon

became unacceptable to the search engine companies.

New database management systems were introduced to handle such semi-

structured data streams. Often referred to as NoSQL databases, Hadoop clusters

became especially popular initially for rapidly loading and analyzing large amounts of

semi-structured data. Since data coming from many of the devices at the edge also was

generated in a semi-structured form, IoT architectures began to include these new data

management engines in the backend infrastructure. A “Lambda architecture,” described

in a subsequent section of this chapter, became popular in IoT deployment for handling

streaming data and traditional batch data feeds.

Sensors continued to evolve, becoming smaller and cheaper, requiring less energy,

and providing more functionality. The number of sensors and intelligent devices

deployed experienced explosive growth throughout the 2010s.

New IoT use cases and growing data volumes drove a need to apply analytics

and machine learning in real time at the location where the data was being gathered.

Microsoft was among the first to refer to the devices containing sensors and featuring

local compute capabilities as the intelligent edge.

Figure 1-1 illustrates the timeline of IoT evolution that we just described.

Chapter 1 Modern IoT Architecture Patterns

4

Before we look at how these technologies come together to form modern IoT

architecture patterns, let’s look at some of the IoT business solutions that leverage

these patterns.

�Typical IoT-Based Business Solutions
IoT architectures are used to solve a variety of business problems. The types of

problems solved are often industry-dependent. Just as form follows function in classic

architecture, one should first understand the kinds of problems that IoT solutions can

solve and relevant business problems present in your company or organization before

pursuing an IoT project.

In this section, we provide examples in agribusiness, automotive, aviation,

communications and media transmission, construction, consumer packaged goods,

education and research, environmental controls, financial banking and trading, healthcare

payers and providers, high-tech and industrial manufacturing, insurance, law enforcement

and emergency services, media content and entertainment, oil and gas, pharmaceutical

and medical devices, retail, transportation and logistics, and utility companies. As you can

see from this list, IoT-based solutions can be applicable to almost every industry.

1880

1900

1920

1940

1960

1980

2000

2020

invented

devices

motion sensors

▪ ARPANET

& PCs

Database NoSQL databases

edge

▪ Thermostat

▪ 50 billion

▪ Infrared &

▪ Minicomputers

▪ Relational

▪ Network attached RFID

▪ Hadoop &

▪ Data warehouses / marts

▪ RFID & UPC

▪ 1 million devices

▪ Intelligent

▪ “Internet of Things”

Figure 1-1.  Timeline of IoT evolution

Chapter 1 Modern IoT Architecture Patterns

5

We suspect that if you work in one of these industries, you might immediately want

to jump to that subsection in this chapter. However, many companies that grow adept

at building IoT solutions begin to look beyond their industry for expanded business

opportunities. So, you might find value in understanding what is top of mind in

industries outside of where you work today.

�Agribusiness Examples
Agribusiness refers to farming-related activities that include the growing and harvesting

of crops, the nurturing of livestock, and the delivery of these products to market.

IoT-related agribusiness applications that are deployed include

•	 Automated guidance of equipment used in the farm field for plowing,

planting, fertilizing, irrigating, and harvesting

•	 Data collection from sensors in the field or drones capturing images

that are analyzed to determine soil conditions (such as moisture and

nutrient content), crop health, and crop maturity

•	 Livestock data collection that reports on their health and is used

for changing feeding schedules and mixtures, for managing

environmental conditions, and for suggesting optimal mating timing

•	 Coordination of transportation and logistics management of

equipment and vehicles that transport the harvest or livestock to

market

�Automotive Examples
Robotics in automotive plants have relied on sensors and embraced IoT concepts for

many years. These robots are involved in the manufacturing of key parts and in the

assembly of vehicles.

Today, IoT is playing an increasing role in the driving and operation of vehicles in the

following ways:

•	 Navigation of automobiles and trucks including automated parallel

parking, detection of nearby obstructions that could cause damage,

and self-driving vehicles with minimal driver intervention required

Chapter 1 Modern IoT Architecture Patterns

6

•	 Vehicle predictive maintenance and problem determination

•	 Scheduling of servicing based on driver usage of the vehicle

�Aviation Examples
Commercial and military aircraft contain hundreds of sensors today. Until recently,

while a limited amount data was transmitted to the ground while the aircraft was in-

flight, the remaining massive data volumes gathered during a flight were downloaded

after the aircraft reached an airport in preparation for later detailed analysis. Since more

analysis is now possible onboard and transmission bandwidths and data compression

techniques continue to improve, expectations are more, and real-time analysis and

transmission will take place and drive

•	 Better and more timely predictive maintenance guidance, including

scheduling of service during optimal portions of journeys

•	 Optimized flight operations including improvements in utilization of fuel

•	 More timely and better routing of aircraft in dense traffic patterns

•	 Better optimized baggage and cargo handling

•	 Timely on-ground determination of in-flight problems

•	 Improved capture of in-flight situations for simulation used in

problem-solving, training, and certification

�Communications and Media Transmission Examples
Communications, transmission of media assets, and other network providers

increasingly rely on IoT gathered data for

•	 Improved network monitoring and problem determination

•	 Transmission line inspection (through image capture and analysis)

for more timely repairs and safer inspections

•	 Improved preventive maintenance and service scheduling through

predictive analysis

•	 Evaluation of potential new infrastructure and testing through digital

simulation

Chapter 1 Modern IoT Architecture Patterns

7

�Construction Examples
Companies involved in the construction of buildings, roads, and other infrastructure

have deployed and/or are evaluating a variety of IoT-related solutions including

•	 Tracking of assets and people via location-based searches, used

to direct people to equipment and tools and determine where

equipment and tools are being used

•	 Safety problem identification (through image capture and analysis)

such as workers appearing in danger zones, not wearing appropriate

safety equipment, or operating/storing tools in unsafe states

•	 Monitoring of data from tools and other equipment to guide optimal

usage and assure quality outcomes, speed work, and prevent damage

to equipment

�Consumer Packaged Goods Examples
Consumer packaged goods (CPG) companies manufacture, manage, and promote the

items that we buy, marketing them through familiar brands and private labels. Such

companies most closely monitor relationships with the channels that they sell their

goods through. However, most now see a need to also directly connect with the ultimate

buyers of their products, the consumers.

Examples of IoT-related initiatives include

•	 Supply chain optimization through better monitoring of supplies on-

hand and in transit

•	 Better quality control and accountability through monitoring of the

state and location of supplies and manufactured goods in transit

•	 Utilization of smart displays, sometimes linked to consumer

personal mobile devices, to more quickly understand consumer

buying behavior, promotional effectiveness, and impact of product

placement in stores

Chapter 1 Modern IoT Architecture Patterns

8

�Education and Research Examples
IoT-related initiatives touch all levels of education, from preschool to higher education.

Some of these initiatives include

•	 Monitoring of facilities to optimize usage and control the

environmental infrastructure

•	 Monitoring of campuses through cameras that enable image and

video capture and automated analysis to help maintain security and

enhance safety

•	 Monitoring of student presence in classrooms, libraries, and

elsewhere to identify students most at risk of failing

•	 Analysis of data gathered from sensors and devices used in

experiments and research

•	 Monitoring of campus or school inventories of supplies and the

equipment in use, storage, and in transit

�Environmental Controls Examples
Environmental controls are used to monitor and initiate changes to surroundings and

typically focus on enabling delivery of desirable air quality, humidity, temperature, and

water quality. These controls exist in homes and almost every industry. Some of the IoT-

related use cases include

•	 Smarter programmable devices that can “learn” operational

behaviors of operators (such as home and business thermostats that

can learn desired temperature adjustments for certain days of the

week and times)

•	 Smarter management of environmental controls for air and water

quality to automatically react to a wide range of changing conditions

•	 Better optimization of cooling resources in manufacturing (e.g., more

control over water or air cooling required resulting in less wasted

resources)

•	 Enabling preventive maintenance on environmental controls through

early detection of potential problems

Chapter 1 Modern IoT Architecture Patterns

9

Smart cities initiatives offer additional examples that might be familiar to you. Where

environmental sensors have been installed during street lighting and similar upgrades,

the data is sometimes used to help manage pollution challenges. For example, when

levels of pollutants are approaching environmental warning levels, city governments can

issue alerts and encourage carpooling and usage of public transportation. Traffic lights

might also be adjusted to improve traffic flow and reduce local pollution where feasible.

Another focus of some smart cities initiatives is the optimization of environmental

waste handling. Examples include the scheduling of pickup of waste materials based

on fullness of recycling and nonrecyclable waste bins (monitored using embedded IoT

devices and sensors) and optimal route planning for waste management vehicles.

�Financial Banking and Trading Firm Examples
Banks and financial trading firms might seem to have less obvious reasons to take on

IoT-related initiatives. Nevertheless, some have emerged including

•	 Tracking the presence and location of financial traders on

trading floors

•	 Identifying the presence and location of handheld financial

trading devices

•	 Tracking facility usage, especially within branch banks that are less

likely to be frequently accessed by younger banking customers

�Healthcare Payers and Providers Examples
Healthcare payers are responsible for managing and paying claims from services

provided in healthcare providers. Healthcare providers deliver these services in

hospitals, clinics, elderly care and assisted living facilities, offices of doctors, and

outbound in patients’ homes. Both payers and providers have an interest in delivery

of quality services in the most optimal way possible. Some of the typical IoT-related

initiatives include

•	 Improved patient monitoring in all treatment settings to better

understand the impact of services provided and quality of care

•	 Referrals to closest facilities offering appropriate care through

location-based solutions when contacted by patients

Chapter 1 Modern IoT Architecture Patterns

10

•	 Facilities monitoring for optimal future planning, utilization,

and safety

•	 Monitoring of prescribed drug intake by patients utilizing smart

devices and pills containing digestible sensors

•	 Monitoring of staff to assure quality of care and safety

�High Tech and Industrial Manufacturing Examples
Many high tech and industrial manufacturing companies have deployed equipment

capable of gathering data on the production floor for years and are now just figuring

out how to utilize that data. There are a host of potential IoT-related solutions that

manufacturers are pursuing including these:

•	 Gathering data on the number of goods manufactured and the

environmental factors under which manufacturing occurred

•	 Early detection of improperly manufactured or assembled goods

(through image recognition analysis)

•	 Refined robotic manufacturing capabilities requiring dexterity

and speed

•	 Predictive maintenance analysis of equipment on the manufacturing

floor and scheduling of servicing that will optimize production and

minimize possible downtime

•	 More accurate and location-based assessment of inventory and the

supply chain

•	 Better understanding of manufacturing processes associated with

warranty claims and optimization of production that will minimize

such claims in the future

•	 Manufacture of smart products that enable improved maintenance

by the manufacturer and/or might enable the manufacturer to

become a service provider as well

Chapter 1 Modern IoT Architecture Patterns

11

�Insurance Company Examples
Insurance companies focus on selling policies at competitive rates in favorable risk

profiles. So, IoT-related initiatives often focus on reducing risk and potential claims from

policy holders. These initiatives include

•	 Analysis of vehicle driving behavior through data gathered from

onboard sensors/devices

•	 Analysis of building usage and monitoring of security using data from

sensors and image analysis

•	 Analysis of vehicle and building damage captured in images by

cameras on mobile devices to determine the response needed and

potential cost of claims

•	 Predictive risk modeling using data from sensors gathering weather,

farming, traffic, and a host of other data related to possible claims

that might occur

�Law Enforcement and Emergency Services Examples
To be optimally effective and possibly save lives, law enforcement and emergency

services must be properly routed to the right place at the right time with the right

resources. Some of the IoT-related initiatives that can help solve this puzzle include

•	 Personnel, vehicle, and asset tracking enabled through the analysis of

data collected by sensors and cameras

•	 Analysis of data collected by sensors and cameras in smart cities

initiatives and linked to dispatchers of services

•	 Validation of identification through image recognition

�Media Content and Entertainment Examples
Creators of media content and managers of entertainment venues want to quickly

understand trends in popularity in order to deliver the right content at the right time to

as many consumers as possible. Some examples of IoT-related initiatives include

Chapter 1 Modern IoT Architecture Patterns

12

•	 Analysis of crowd wait times in theme parks and entertainment

venues to route individuals to lines that will improve their experience

and optimize revenue through additional offerings sold

•	 Analysis of venue utilization for purposes of scheduling

entertainment and venue redesign for better optimization

•	 Determination of media viewing habits through image capture and

analysis of participants in studies

•	 Location-based recommendations provided to potential customers

based on interests and/or presence

�Oil and Gas Examples
Oil and gas companies are referred to as being “upstream” where exploration and

extraction occur and “downstream” where production and delivery to customers occur.

Companies that provide pipelines and other transport of extracted materials are referred

to as “midstream.” Many of the following IoT initiatives are relevant for all these types of

oil and gas companies:

•	 Asset management including equipment, personnel, and safety

considerations

•	 Optimal transportation and logistics management

•	 Preventive maintenance of vehicles, drilling, pipelines, and other

equipment enabling optimal business performance and minimal

environmental impact

•	 Sensor and image analysis at drilling sites enabling optimal discovery

initiatives

�Pharmaceutical and Medical Device Examples
Pharmaceutical and medical device companies engage in the research, testing,

manufacturing, distribution, and promotion of drugs and devices. Historically, their

primary target for these products were the caregivers. Today, many of the drugs are also

directly marketed to consumers through advertising.

Chapter 1 Modern IoT Architecture Patterns

13

Some of the current IoT-related examples for this industry include

•	 Gathering of data from sensors and its analysis during research,

experimentation, and clinical trials

•	 Monitoring of key metrics gathered by medical devices and fitness

bands or smart watches that indicate the current state of patient

health and provide warnings of potential future health problems

•	 Monitoring of medical devices for anomalies and possible need for

replacement

•	 Tracking of proper intake of drugs that are monitored through

equipment or digestible sensors

�Retail Examples
Retailers frequently operate in an omnichannel world today going to market through

physical stores, an online presence, and operations that deliver goods directly to

consumers. IoT-related focus areas often include

•	 Utilization of smart displays to more quickly understand consumer

buying behavior, promotional effectiveness, and the impact of product

placement in stores. The displays also enable personal shoppers to

more quickly gather items on shopping lists of consumers

•	 Inventory optimization through better monitoring of inventory

on-hand and in transit from suppliers

•	 Better quality control and accountability through monitoring of the

state and location of goods in transit

�Transportation and Logistics Examples
Transportation and logistics management is relevant to a variety of companies and

organizations involved in the shipment of goods and people. Examples include the

airlines, trucking companies, railroads, and companies that manage ships at sea.

Delivery companies often manage their own networks and resources but also rely

on these companies. Governments also offer this service in the form of post offices

delivering packages and parcels around the world.

Chapter 1 Modern IoT Architecture Patterns

14

Other companies that produce, manufacture, or sell goods also place significant

focus here as it is an important cost of doing business and optimal management is key

to maximizing sales and profits. In the military, effective transportation and logistics of

equipment and personnel can be the difference in winning a battle.

It should come as no surprise that these are frequent IoT-related initiatives:

•	 Route optimization through the analysis of traffic patterns, crews,

weather, and equipment, the required movement of goods and

people, and the priorities under consideration (speed, cost, cost of

delay, etc.)

•	 Service optimization through analysis of data gathered from

equipment that indicates a need for preventive maintenance

•	 Warehouse optimization by understanding the location of inventory

and supplies in storage and whether to source/deliver from or to

primary or secondary warehouses or direct ship

•	 Network planning utilizing the results from previous optimization

efforts to develop more optimal transportation paths (often

evaluating multiple possible modes of transportation)

•	 Safety enforcement through the monitoring of vehicle operators for

unusual behavior (lack of attention, lack of rest, speeding, improper

lane usage) and the implementation of automated safety controls

(such as Positive Train Control)

�Utility Company Examples
Utility companies provide the electricity, natural gas, and water that we use to power,

heat, cool, and comfortably live and work in our homes and businesses. IoT-related data

initiatives in utility companies include

•	 Gathering and analysis of usage data from smart meters to understand

resource utilization, outage situations, and predict demand

•	 Analysis of data gathered in plants and treatment facilities used to

optimize and manage production and processes in a safe manner

•	 Optimal management of crews, vehicles, and other assets to maintain

levels of service and maximize safety

Chapter 1 Modern IoT Architecture Patterns

15

•	 Utilization of image capture and analysis of images gathered

by drones dispatched to remote and dangerous locations of

transmission lines, pipelines, and facilities to troubleshoot existing

problems and determine maintenance needs

�IoT Reference Architectures
A variety of IoT reference architectures are widely promoted by standards organizations,

the open-source community, and vendors that provide components and platforms.

While we’ll focus on the Microsoft Azure architecture in this book, gaining an

understanding of other reference architectures is useful, especially when we use them to

assess functional capabilities that are required in any IoT architecture.

Many of the early reference architectures emerged from efforts in the Industrial

Internet of Things community. ISA-95 is an ANSI standard from the International

Society of Automation that is useful in defining automated interfaces between enterprise

systems and control systems. Table 1-1 illustrates the levels defined in ISA-95 including

the typical systems or functions at each level.

Table 1-1.  ISA-95 enterprise and systems/function levels

Level Level Name Decision Timing Typical Systems/Functions

5 Governance and planning Months/years Quality management, knowledge

management

4 Business systems Days/weeks Financials, supply chain, CRM

3 Operations management Minutes/hours Machine learning

2, 1, 0 Control and assets Sub-second Connected IoT devices

The Industrial Internet Consortium (IIC) breaks its reference architecture into

slightly different functional and system areas called domains. The five domains are

defined as follows:

•	 Control Domain. Functions performed by devices, sensors, and

actuators at the edge, communications that occur among them, and

management required

Chapter 1 Modern IoT Architecture Patterns

16

•	 Operations Domain. Functions that operate equipment in

the control domain including provisioning and deployment,

management, monitoring and diagnostics, prognostics (predictive

analysis), and optimization

•	 Information Domain. Functions that gather data from the control

domain and elsewhere into business systems (ERP, CRM, MES, etc.),

custom applications, and analytics and data management systems

•	 Application Domain. Application logic or functions for performing

high-level business functions

•	 Business Domain. Business processes and procedures typically

found in ERP, CRM, and other systems

The way in which these domains and IoT devices operate together in an

implementation is illustrated in Figure 1-2.

Domains

Physical IoT Devices

Control

Device Communications

O
pe

ra
tio

ns

Sense Actuation

Business

Ap
pl

ic
at

io
n

In
fo

rm
at

io
n

Figure 1-2.  IIC domain interrelationships and IoT devices

Chapter 1 Modern IoT Architecture Patterns

17

There are many other reference architectures from other standards bodies and

consortiums, such as the Open Software Foundation, that you might find are worth

further investigation. Of course, these architectures continue to evolve as the capabilities

in IoT solutions grow. But next, we start to look at how you might incorporate these

concepts in your existing IT architecture.

�How IoT Fits in Your IT Architecture
If you are new to IoT but have worked with IT architecture for years, you are likely

familiar with traditional batch-oriented infrastructure patterns. Data in online

transaction processing systems service business areas such as financial operations,

supply chain and distribution, human resources, and customer relationship

management. Such systems can also include unique solutions required in the industry

that the company operates within. The data is structured and fits neatly into rows and

columns; hence, it is stored and accessed in relational databases.

For analysis of data that crosses lines of business and requires history dating back

months or years, data warehouses and/or data marts provide a place to access such data

within relational databases using business intelligence tools or directly using SQL. These

data warehouses and data marts are populated with data using batch extraction,

transformation, and loading processes (ETL) in systems between the sources and

targeted systems. They are sometimes populated using batch extraction, loading, and

then transformation processes executed within the targeted data warehouses and marts

(ELT). Figure 1-3 represents this architecture.

Chapter 1 Modern IoT Architecture Patterns

18

Most of the IoT-related use cases we described in the previous section of this chapter

share characteristics that drive a need for new capabilities and components beyond those

that our traditional technical architecture can provide. These components must handle

•	 Streaming data that is generated in semi-structured format by

sensors and devices at the edge of the footprint

•	 Incoming events that grow dramatically as the number and

capabilities of the sensors and devices deployed at the edge grow –

and these events must land in backend components reliably as either

real-time or frequent batch input

•	 Storage and management of massive amounts of this streaming data

enabling the analysis of patterns in the data and determination of the

most appropriate machine learning models that can be deployed in

the backend systems or at the edge

These requirements are very different from the requirements that drove the creation

of data warehouses that are deployed using relational databases. The new architecture

that emerged is often described as a Lambda architecture and consists of both real-time

data feeds (a speed layer) and batch data feeds. Figure 1-4 illustrates a conceptual view

of the processing and data management systems present in the architecture.

Figure 1-3.  Traditional batch-oriented data warehousing architecture

Chapter 1 Modern IoT Architecture Patterns

19

Note  Where an architecture must be defined and only streaming semi-structured
data is present, just a speed layer is needed. All data is appended to a speed data
management system (e.g., a NoSQL data store). This variation is referred to as a
Kappa architecture.

Figure 1-5 illustrates in more detail the components that are typical in an IoT

Lambda architecture. There can be many variations in the components and patterns

present. The existence of legacy components, such as the presence of historians or

limited networking options, can be a factor in the components that are included in

this architecture. Certain functionality requirements and skills of frontline workers,

developers, data scientists, and IT also influence the components selected in

deployment strategies.

Data Input

Data Input

Batch
Processing

Stream
Processing

Batch Data
Management

System

Speed Data
Management

System

Batch Layer
Speed Layer

Figure 1-4.  Simplified Lambda architecture representation

Chapter 1 Modern IoT Architecture Patterns

20

IoT-related components present in the Lambda architecture diagram shown here

include the following:

•	 IoT Edge Device. Remote devices that gather data and transmit

it over a local area network or Wi-Fi to an IoT gateway where it

is transmitted into the cloud. More sophisticated edge devices

(sometimes called thick devices) can apply analytics and machine

learning algorithms to incoming data.

•	 IoT Gateway. A connection point that gathers data from IoT devices

and transmits it to cloud-based backend resources through public or

private networks.

•	 IoT Hub/Event Hub. Both types of hubs are designed to handle

a high volume of incoming messages from IoT Edge devices and

support industry standard protocols such as AMQP and HTTPS. IoT

Hubs additionally can provision and manage IoT Edge devices and

sometimes have additional capabilities such as having support of

additional transport protocols.

Figure 1-5.  Lambda architecture with IoT components

Chapter 1 Modern IoT Architecture Patterns

21

•	 Streaming Analytics. A real-time event processing engine used in

applying machine learning algorithms and analytics to incoming

streaming data feeds.

•	 In-Memory Data Preparation and Training. Spark-based solutions

used to prepare data and/or perform experiments that train models

in a low-latency environment.

•	 Data Lake. A location where data is stored in its natural format

(usually semi-structured) in file systems or blob storage, most often

leveraging Hadoop or other NoSQL data management engines.

In Figure 1-5, we show a bidirectional exchange of data between the data lake and

the data warehouse. This is typical where data from one of the data management systems

is needed in the other for query and reporting or machine learning training. In Chapter 2,

we’ll describe Microsoft’s products that align to this architecture footprint.

All the new backend components are typically deployed as cloud-based services.

Components you are likely to find deployed in the cloud include the IoT Hub/Event

Hub, streaming analytics engine, in-memory data preparation and training solution,

and the data lake. Other traditional backend components, such as the data warehouses

and data marts, are sometimes relocated to the cloud, especially when replacements

for a previous generation of components are sought. Dashboard and reporting business

intelligence tools are also frequently cloud based.

�Why Cloud Computing and IoT
When cloud computing was first introduced, the primary justification to move infrastructure

to the cloud often cited was reduced cost in comparison to on-premises deployment.

The cost of storage of large amounts of data is very low in most cloud-based solutions,

and processing is charged for only when applications and tools utilize processing

resources. However, many organizations now mention other primary motivators in

moving away from considering an on-premises backend IoT infrastructure deployment.

For organizations deploying IoT in order to innovate and provide business solutions

like those that we previously described, shortening the time to solution implementation

can be of critical importance. On-premises deployment involves acquisition of servers

and storage, software components, and networking resources. Once acquired, these

Chapter 1 Modern IoT Architecture Patterns

22

resources must be installed, configured, and tested. IT must also be properly trained

to manage, support, and optimize these resources. After meeting these prerequisites,

development of the solutions can begin on the eventual production platforms.

In most organizations, getting the needed components in place to begin development

can take 6 months or more. Utilizing cloud-based resources eliminates much of this

preparation work as the new backend components can be easily spun up in minutes.

Table 1-2 denotes the resources that IT configures and manages in an on-premises

deployment. This table also denotes IT responsibilities for the three types of cloud-

based deployment: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS). In all these scenarios except the SaaS scenario, you are

responsible for managing IoT devices at the edge and their remote networks. In the SaaS

scenario, managing IoT devices and remote networks is often a shared responsibility

with the SaaS provider (and we denote that in the following table by an asterisk).

Table 1-2.  IT responsibilities in on-premises and cloud-based deployment

Components Configured
and Managed by IT

On-Premises
Backend

Infra. as a
Service (IaaS)

Platform as a
Service (PaaS)

Software as a
Service (SaaS)

IoT applications in data center X X X

IoT data in data center X X X

IoT data management Platforms

in data center

X X

IoT data center middleware X X

Data center operating systems X X

Data center virtualization X

Data center servers and storage X

Data center networking X

Data center environment

(power, etc.)

X

IoT devices and remote

networks

X X X ∗

Chapter 1 Modern IoT Architecture Patterns

23

In IaaS deployment scenarios, the cloud vendor is responsible for the data

center environment, networking, servers and storage, and virtualization. You remain

responsible for updating and managing software and managing data in the data center

above the virtualization layer. Multi-vendor software components are typically deployed,

and integration among software components must be carefully considered.

In PaaS deployment, the cloud provider additionally takes on updating and

management of data center operating systems, middleware, and data management

platforms. Much of the focus of Microsoft’s IoT reference architectures is on PaaS

components, as you will see in Chapter 2.

SaaS solutions are typically sold by cloud provider partners who built their offerings

upon the cloud vendor’s IoT reference architectures. Examples of such offerings today

come from producers of vehicles, controls, manufacturing equipment, manufactured

products, and healthcare monitors. Many these products are bundled with appropriate

embedded software for operating and managing the vehicle or device. Increasingly, the

companies that produce these products also offer maintenance services that rely on data

gathered from the equipment.

In addition to these cloud-based deployment models, there are emerging solutions

that combine PaaS-style deployment with some aspects of SaaS. Microsoft refers to its

offerings that cross these boundaries as solution accelerators. The accelerators spin

up needed PaaS components and can provide a starting point for deploying solutions

that monitor devices, create a connected factory, perform predictive maintenance on

equipment, or test IoT solutions on simulated devices.

Cloud-based platforms have other benefits as well. Deploying to the cloud enables

flexibility in deployment by offering a variety of reliability and availability options.

Backend platforms are secured in ways not easily replicated in an on-premises

deployment. And, you can rapidly scale the platforms when needed.

The cloud is also ideal for testing new IoT-based business solutions that might not

prove to be justifiable. Cloud resources can easily be shut down if the project doesn’t

move forward without a penalty of having made a huge investment in infrastructure

prior to the testing.

Chapter 1 Modern IoT Architecture Patterns

24

�Other IoT Concepts and Considerations
IoT devices are of varying sophistication and capabilities. Low-power sensors might

simply capture and transmit data. Powerful edge devices often contain processing

units, memory, and storage and feature the ability to host an operating system and

applications. The more sophisticated edge devices can process analytic and machine

learning workloads that can drive immediate responses when changing conditions are

detected at the source.

When specifying the remote IoT devices that you will be deploying and managing,

understanding the networking options available is an important consideration. The IoT

devices might communicate directly device to cloud (D2C) and receive feedback and

updates from the cloud to device (C2D). More commonly, several devices in a location

will transmit to an IoT gateway in a hub-and-spoke fashion as mentioned earlier in this

chapter. In some scenarios where IoT devices are widely dispersed, a mesh framework is

deployed as some of the devices also store and forward messages from outlying devices.

A mesh containing intelligent edge devices capable of performing analytics at the device

is sometimes described as a fog computing environment.

IoT devices in a hub-and-spoke or mesh deployment are most often connected

using a physical connection such as Ethernet, Bluetooth, or Wi-Fi. Low-cost LP WAN

technologies for devices with limited capabilities and battery life provide an alternative

in some situations.

As this book was being published, there was much anticipation about the impact

of 5G networking. Early Wi-Fi deployment of IoT devices utilized 3G or 4G networks.

The 5G networks promise greater speed, capacity, and reliability, enabling more

sophisticated exchanges between IoT devices, including intelligent edge devices, as well

as communications to cloud-based services.

Communications to cloud-based services historically leveraged the Internet.

However, as concern grew regarding the security of the IoT infrastructure, many

organizations have chosen to connect devices to the cloud through private networks.

Messages are transmitted over these networks using message transport protocols.

Some of the messaging protocols you are likely to find supported on the IoT devices that

you deploy include

•	 AMQP (Advanced Message Queuing Protocol)

•	 MQTT (Message Queue Telemetry Transport)

Chapter 1 Modern IoT Architecture Patterns

25

•	 AMQP or MQTT over web sockets

•	 HTTPS (Hypertext Transfer Protocol Secure)

•	 Custom protocols

The devices that you choose should support a common protocol so that they can

communicate with each other, and that protocol should also be supported in the cloud-

based infrastructure of your cloud vendor. Though this might seem to be a trivial point,

coordination between IT and the purchasers of the devices is vital to assuring success.

In scenarios where this coordination is lacking, the resulting infrastructure can become

needlessly more complex or early device investments could be abandoned.

Securing the infrastructure extends beyond just the network concerns. The National

Institute of Standards and Technology (NIST) defines a security life cycle for an entire

IoT infrastructure in its Risk Management Framework (RMF). The closed-loop process in

RMF includes the following steps:

•	 Categorize devices and systems

•	 Select security controls

•	 Implement security controls

•	 Assess security controls

•	 Authorize devices and systems

•	 Monitor security controls

ISA 99 further defines relevant security assurance levels (SALs) designed to measure

adherence to security goals. Target SALs are the security-level goals that are to be

achieved by the IoT architecture. Design SALs are planned security levels in components

and across the proposed architecture. Achieved SALs are actual measured levels of

security achieved in deployment. Capability SALs are levels that can be achieved

through configuration of security options in components.

Key criteria evaluated in each SAL include

•	 Access controls through identification and authentication

•	 Use control through specified privileges

•	 Data integrity

•	 Data confidentiality

Chapter 1 Modern IoT Architecture Patterns

26

•	 Data flow restrictions

•	 Time to respond to a threat event

•	 Resource/component availability (that could be impacted

by an attack)

As we explore the various Microsoft components that might be deployed in an IoT

architecture solution, we’ll also take a closer look at meeting these criteria through

capabilities available in Azure and at the edge.

A concept you might encounter as you devise IoT-based architectures that deliver

needed business processes and solutions is the notion of a “digital twin.” Organizations

often build prototypes of the architecture we’ve described earlier in this chapter and

virtually simulate the sort of data that will be gathered from sensors and devices to

illustrate what solutions will deliver. Such simulations can be useful in determining

which IoT devices should be deployed, or where additional sensors need to be added to

devices already in place.

�An Evolution in Needed Skills
By now, you likely realize that the skills that are required to successfully create and

deploy an IoT-based solution, especially one that you heavily customize, are quite

diverse. Possessing an understanding of the business solutions that IoT can enable and

the business requirements that align to a need for IoT-based solutions in your company

is required.

If you are new to IoT and to semi-structured data feeds, you will likely need to

also acquire new technical skills in your company. The availability of such skills could

influence the architecture that you propose. Some of the key areas and skills that will be

required include

•	 IoT Devices. Understanding human to machine interfaces, device

networking, device security, and device management; understanding

the capabilities of such devices including programming options and

deployment of analytics and machine learning at the edge

•	 Streaming Data Feeds. Understanding deployment strategies for IoT

Hubs or Event Hubs, deployment of streaming analytics solutions

used in the application of real-time machine learning applications,

and strategies for securing data in motion

Chapter 1 Modern IoT Architecture Patterns

27

•	 Semi-structured Data Management Engines. Understanding usage

and deployment of Hadoop clusters or other NoSQL databases

to appropriately sized and configured systems, when to apply in-

memory (Spark) processing, and data governance and security

•	 Machine Learning and Artificial Intelligence. Building data

scientist skills for solving problems that require machine learning

and artificial intelligence including modeling, programming, and

deployment skills

•	 Cloud-Based Solution Deployment and Management.
Understanding design, rollout, management, and securing of IoT

backend solutions in a cloud-based environment

•	 IoT Infrastructure Integration to Legacy Systems. Understanding

data integration strategies and approaches leveraging new IoT and

legacy systems

Defining, designing, and implementing IoT-based solutions often follows a “design

thinking” paradigm. We discuss design thinking as an approach in Chapter 8. The

paradigm is a rapid cycle of research, problem definition, ideation, prototype building,

and testing in an iterative fashion. Such an incremental approach is aligned with popular

methodologies used in the cloud-based deployment of solutions and consistent with a

modern DevOps approach. Possessing skills related to this approach and cloud-based

deployment and management are also needed.

In this chapter, we outlined what these solutions might look like in a generic IoT

architecture and some additional considerations. In subsequent chapters, we’ll explore

the key Microsoft components that can play a part in an IoT architecture and some of the

possible architecture variations in more detail.

Chapter 1 Modern IoT Architecture Patterns

29
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_2

CHAPTER 2

Azure IoT Solutions
Overview
Microsoft has three public cloud-based services offerings. Key components in the

backend of Microsoft-based IoT solutions reside in the Azure cloud. Azure provides a

platform for development and deployment of highly customized IoT solutions and for

deployment of IoT applications and solutions developed by Microsoft’s partners. Thus,

there are examples of IoT implementations deployed in Azure using IaaS components,

PaaS components, and SaaS components.

The other two Microsoft cloud-based services are Office 365 (also included in

Microsoft 365) and Dynamics 365. Office 365 is a cloud-based modern workplace SaaS

offering that features a variety of popular tools including Excel, PowerPoint, Word,

OneNote, OneDrive, and Power BI for personal productivity, and collaborative tools such

as SharePoint, Outlook, and Teams. Dynamics 365 is a suite of business applications

that deliver solutions for customer sales, service, field service, finance and operations,

marketing, and talent management. Microsoft’s cloud-based modern workplace

components and business applications often provide some of the functionality required

in IoT solutions.

The Azure public cloud is available in data centers in over 50 regions around the

world. For IaaS implementations, Azure provides the underlying compute, storage, and

networking required. In its PaaS offerings, Azure additionally offers artificial intelligence

(AI), analytics, data services, IoT components, integration components, media and

content delivery network (CDN), DevOps and developer environments, compute and

container services, and web and mobile development and deployment environments.

Azure features an extensive management and security framework and the tools needed

to support all these implementations.

30

In this chapter, we introduce Microsoft components relevant in an IoT deployment

that reside in Azure. We also describe Microsoft technologies deployed in devices at the

IoT edge. The chapter includes the following major sections:

•	 Microsoft Azure and IoT PaaS

•	 Non-Microsoft components in Azure IoT

•	 IoT SaaS solutions in Azure

•	 Azure deployment and management

•	 Microsoft intelligent edge

•	 Choosing the right component model

We begin this chapter by focusing on Azure PaaS components deployment scenarios

in IoT solutions.

�Microsoft Azure PaaS and IoT
In Chapter 1, we introduced the IoT reference architecture shown again here as Figure 2-1.

Within the Microsoft Azure cloud, the following speed layer components can be deployed

as PaaS components: the IoT Hub/Event Hub, streaming analytics engine, in-memory

data preparation and training, and the data lake.

Figure 2-1.  IoT reference architecture diagram

Chapter 2 Azure IoT Solutions Overview

31

Microsoft Azure offerings aligned to these components include the Azure IoT Hub,

Azure Stream Analytics, Azure Databricks, and data lake solutions that can include Azure

Data Lake Storage (ADLS), HDInsight, and/or Cosmos DB. For analysis of time series data

first landed in the Azure IoT Hub, Azure Time Series Insights is added to the architecture.

Figure 2-2 illustrates where these offerings fit in the IoT architecture diagram.

Figure 2-2.  Microsoft components in the IoT architecture

In the batch layer, the enterprise data warehouse and data marts can also be

deployed as PaaS components. Figure 2-2 also illustrates where many of these fit,

including Azure SQL Database, Azure SQL Data Warehouse, Azure Analysis Services,

Azure Data Factory (ADF), and Power BI.

The diagram in Figure 2-2 also notes the Microsoft offerings at the edge. These

include Azure IoT Edge, Azure Sphere, and Windows 10 IoT. We will discuss the edge

components later in the chapter.

Chapter 2 Azure IoT Solutions Overview

32

�Azure IoT Hub
Microsoft recommends deploying its Azure IoT Hub cloud service to enable connection

of IoT edge devices to the Microsoft Azure cloud. IoT Hubs are capable of ingesting

billions of events per day and support integration with Azure Stream Analytics, Azure

Time Series Insights, Databricks, Azure Data Lake Storage, and HDInsight. The IoT Hub

utilizes Microsoft’s Event Hub technology for telemetry flow.

The IoT Hub supports a variety of popular IoT protocols for queueing and

transmission of data including HTTPS, AMQP, AMQP over WebSockets, MQTT, and

MQTT over WebSockets. Other protocols can be handled through protocol conversion

at the edge within the Azure IoT Edge or by performing protocol conversion in the cloud

through deployment of a customized Azure IoT protocol gateway (using Azure Service

Fabric, Azure Cloud Services worker roles, or Windows Virtual Machines).

The Open Platform Communications (OPC) Foundation, of which Microsoft is a

member, collaborates with many industry associations and industry standards bodies

in defining IoT specifications. The OPC Unified Architecture (OPC UA) specifications

were created to ensure open connectivity, security, and reliability where industrial

devices and systems are linked. The specifications are documented in the International

Electrotechnical Commission (IEC) standard IEC 62541. OPC UA was also adopted by

The Open Group Open Process Automation Forum (OPAF).

OPC UA as deployed in the Microsoft IoT architecture supports publish-and-

subscribe connections and client-server connections with the IoT Hub. In a typical

configuration, OPC UA servers are deployed at the edge, and OPC Proxy and Publisher

modules are deployed in the Microsoft IoT Edge.

The IoT Hub also provides other key functionality in the architecture. It is used for

managing devices and device twins, and for identity and authentication, file upload from

devices, device provisioning, and cloud-to-device messaging. Authentication is through

SAS tokens, individual X.509 certificates, or an X.509 Certificate Authority. An IoT Hub

can support up to 100 devices running Microsoft’s IoT Edge.

Note A device twin is a JSON document maintained in the IoT Hub that contains
device-specific metadata, configurations, and conditions. It is also used when
synchronizing workflows operating between the IoT Hub and edge devices (such as
when firmware updates are performed).

Chapter 2 Azure IoT Solutions Overview

33

The support of bidirectional communications enables the sending of commands,

policies, and cloud-generated intelligence back to edge devices. You can store,

synchronize, and query device metadata and state information, set device state, and

automatically respond to device state changes using message routing integration.

�Azure Digital Twins
A digital twin provides a means to represent the location of a device in the physical world.

Azure Digital Twins are deployed using Azure IoT Hub technology as a foundation.

Spatial intelligence graphs are used to provide a virtual representation of the real

world. Relationships between people, places, and devices can be modeled through the

schema. For example, you might represent a building by defining tenants, customers,

regions, building names/addresses, floors, areas within floors, and devices. You can then

query data within these contexts (e.g., by location).

An example usage of a digital twin would be for processing sensor data that indicates

the environmental conditions at a manufacturing site. The Azure Digital Twin would

be used to validate, match, compute, and dispatch the telemetry data. Computation is

executed from within user-defined functions. Using the spatial intelligence graph, you

can then query data sent to the Azure Digital Twin by sensor location.

�Azure Stream Analytics
Azure Stream Analytics provides an event processing engine that enables the

examination and analysis of high data volumes streaming from devices. The analysis

can include the extraction of information, patterns, and relationships. Actions can be

triggered downstream as a result of this analysis.

Stream Analytics ingests data from the Azure IoT Hub. Stream Analytics jobs then

process the data using SQL transformation queries to filter, sort, aggregate, and/or join

the streaming data. The data output type is specified. Data can be sent to queues that then

trigger alerts or workflows. It can be visualized in real time through tools such as Power BI.

Data can also be sent to the data lake for the training of machine learning models.

Chapter 2 Azure IoT Solutions Overview

34

�Azure Time Series Insights
Time series data represents how conditions, assets, or processes change over time.

Gaining an understanding of such changes to trigger actions is often the point of IoT

solutions. This type of streaming data typically includes a timestamp and arrives in the

order in which it was gathered.

Azure Time Series Insights parses data in JSON messages and structures that arrive

from the Azure IoT Hub into clean rows and columns. It indexes the data in a columnar

store and stores the data in memory or SSDs for up to 400 days (hence this is sometimes

referred to as a “warm” data source given the mix of real-time and historical data). Data

can be queried and visualized using the Time Series Insights (TSI) Explorer.

�Azure Databricks
Azure Databricks is an Apache Spark-based analytics platform used for in-memory data

preparation and in the training of machine learning models. In an IoT solution footprint,

raw streaming real-time data can be ingested directly from the IoT Hub into the

Databricks cluster. The data usually eventually lands in a data lake for persistent storage.

Data can also be extracted from persistent storage such as Azure Data Lake Storage,

Cosmos DB, the Azure SQL Data Warehouse, and non-Azure data store sources.

The collaborative workspace provided by Databricks enables the exploration of

data; programming development in notebooks; data visualization through popular

programming packages and toolkits such as Matplotlib, ggplot, and D3; and creation of

dynamic reports. Programming languages supported in Databricks include Python, R,

Scala, and SQL.

Though you can designate a fixed number of workers, autoscaling of clusters assures

that a proper number of workers are always present to execute jobs. You simply specify

a minimum and maximum number of workers and turn autoscaling on; clusters are

appropriately sized automatically. When jobs are run, if certain parts of the pipeline are

more computationally demanding, Databricks will add additional workers during these

phases and remove them when no longer needed.

Chapter 2 Azure IoT Solutions Overview

35

�Azure Data Lake Storage
At the time this book was published, Microsoft had recently introduced Azure Data Lake

Storage Gen2. This represented a converging of capabilities in two previously available

storage services – Azure Blob Storage and Azure Data Lake Storage Gen1.

Azure Blob Storage provides general-purpose object storage and is noted for

providing low-cost tiered storage. It was frequently considered adequate for smaller data

lakes. Azure Data Lake Storage Gen1 added file system semantics, directory, and file

level security and was usually preferred in larger implementations.

By converging these capabilities, Azure Data Lake Storage Gen2 gains Blob Storage

foundation cost effectiveness to a namespace that organizes files into a hierarchy

of directories containing underlying objects. POSIX permissions can be set on the

directories and files. Access control lists (ACLs) and other security extensions are

also supported.

Data access is more performant than in the previous generation. The Azure Blob

File System (ABFS) driver is optimized for analytics. Data can be accessed in storage

using the ABFS driver from Azure Databricks or HDInsight. Data in Azure Data Lake

Storage Gen2 can also be accessed using versions of Apache Hadoop, Cloudera, and

Hortonworks that support ABFS.

�Azure HDInsight
Azure HDInsight is Microsoft’s cloud-based PaaS Hadoop environment in partnership

with the Hortonworks Data Platform (HDP). Today, it is most frequently deployed on

Azure Data Lake Storage Gen2. Optimized clusters can be created for Apache Hadoop,

Apache Spark (for in-memory caching/processing and stream processing), Apache Hive

Low Latency Analytical Processing (LLAP), Apache Kafka (enabling real-time streaming

messaging), Apache Storm (for distributed stream processing computation), Apache

HBase (providing a distributed non-relational database deployable in Hadoop), and

Machine Learning (ML) services.

Other open-source components are also present in HDInsight clusters. These

include

•	 Apache Ambari. An open-source Hadoop cluster administration tool

•	 Avro. A data serialization framework often used for data exchange

services in Hadoop

Chapter 2 Azure IoT Solutions Overview

36

•	 Apache Hive. A SQL-like query interface to data stored in Hadoop

•	 HCatalog. A storage management layer in Hadoop that exposes Hive

metadata to applications

•	 Apache Mahout. Open-source distribution of collaborative filtering,

clustering, and classification machine learning algorithms

•	 Apache Hadoop YARN. Automates assignment of system resources

for applications and schedules and monitors jobs

•	 Apache Phoenix. An open-source massively parallel relational

database engine that utilizes HBase as its store

•	 Apache Pig. A platform for data analysis, designed for parallelization,

that provides a programming dialect (Pig Latin)

•	 Apache Sqoop. A bulk data transfer utility used to move data

from non-Hadoop data stores (e.g., relational databases, NoSQL

databases) into a Hadoop Distributed File System

•	 Apache Tez. A component library that enables developers to create

Hadoop applications that integrate natively with YARN

•	 Apache Oozie. A workflow scheduler for Hadoop jobs

•	 Apache Zookeeper. Provides a distributed configuration service,

synchronization service, and naming registry

Default programming languages supported include Java, Python, .NET, and Go as well

as several Java Virtual Machine (JVM) languages. Pig Latin for Pig jobs and HiveQL and

SparkSQL are also supported. Typical development environments utilized include Visual

Studio, the Visual Studio Code editor, Eclipse, and Intellij. Notebooks used in developing,

debugging, and running machine learning scripts include Jupyter and Zeppelin.

Note W ith Azure Data Lake Storage Gen1, HDInsight or Azure Data Lake Analytics
(ADLA) could be deployed as environments. Azure Data Lake Analytics provided a
U-SQL query language interface. However, ADLA was not made available for Azure
Data Lake Storage Gen2.

Chapter 2 Azure IoT Solutions Overview

37

�Cosmos DB
An emerging popular alternative to deployment of Azure Data Lake Storage

environments is Cosmos DB, a globally distributed NoSQL database engine. APIs

available in Cosmos DB include SQL, MongoDB, Cassandra, Azure Table Storage, and

Gremlin. Spark is supported for in-memory processing of data stored in Cosmos DB.

Cosmos DB can be elastically and independently scaled for throughput and storage

across any number of Azure regions. Transparent multi-master replication enables

99.999 percent availability, and regional failover capabilities can also be implemented.

The datastore is schema-agnostic. Cosmos DB automatically indexes all data.

Latencies are guaranteed to be 10 ms or less for reads and for indexed writes at the 99th

percentile. All data is encrypted at rest and in motion, and row-level security is provided.

�Other Azure Data Stores
Azure also features relational data stores and options for more traditional data

warehouses and data marts that are usually fed in a batch manner. These include

•	 Azure SQL Database (SQL DB). A relational database engine that

shares a common code base with SQL Server and can be deployed

as part of a managed instance, a single database, or part of an elastic

pool

•	 Azure SQL Data Warehouse (SQL DW). A massively parallel

relational database engine for large-scale data warehousing

•	 Azure Analysis Services. Enables creation of tabular models often

deployed as data mart solutions

�Tools, Frameworks, and Services
Several tools often play important roles in the architecture. These include the following:

•	 Azure Data Factory (ADF). A data integration and extraction, load, and

transfer (ELT) service that enables creation of data-driven workflows

•	 Azure Data Catalog. A tool used to register, tag, document, and

annotate data sources through metadata

•	 Power BI. Microsoft’s business intelligence tool used in the creation

and analysis of reports and dashboards

Chapter 2 Azure IoT Solutions Overview

38

Azure features a variety of options for AI development. The primary tools utilized include

•	 Visual Studio. The AI tools extension enables you to develop models

deployed in Azure while providing a desktop programming interface

for popular programming languages such as Python.

•	 Azure ML Service. Accessible through the Azure Portal; you have

access to a modeling and deployment interface. You can also

access the service through popular open-source frameworks such

as PyTorch, TensorFlow, and scikit-learn. Jupyter notebooks are

commonly used for programming, debugging, and running scripts.

Azure Cognitive Services are APIs, SDKs, and services that help developers build

intelligent applications that can detect images and faces, detect anomalies, understand

speech and language, and more. Key APIs include the following:

•	 Vision. Computer Vision, Custom Vision Service, Face API, Form

Recognizer, Ink Recognizer, and Video Indexer

•	 Speech. Speech Services and Speaker Recognition API

•	 Language. Language Understanding (LUIS), QnA Maker (for easy Bot

creation), Text Analytics, and Translator Text

•	 Search. Bing Web Search, Bing News Search, Bing Video Search,

Bing Image Search, Bing Visual Search, Bing Custom Search, Bing

Entity Search, Bing Autosuggest, Bing Local Business Search, and

Bing Spell Check

•	 Decision. Anomaly Detector, Content Moderator, and Personalizer

An increasing number of these cognitive services can be deployed to intelligent edge

devices in containers. As this book was published, services that could be deployed to

the edge included parts of Anomaly Detector, Computer Vision, Face, Form Recognizer,

LUIS, Personalizer, Speech Service API, and Text Analytics.

�Non-Microsoft Components in Azure IoT
Non-Microsoft components are sometimes chosen for deployment in Azure IoT

footprints. The reason for taking this approach is often because of preexisting strategies

for deployment of other vendors’ components. In such situations, the organization

Chapter 2 Azure IoT Solutions Overview

39

likely made an investment in software development and skills attainment tied to the

component. For example, legacy ETL tools such as Informatica or Talend might already

be deployed feeding on-premises or cloud-based data warehouses. The scripts that were

generated might have been customized to take advantage of extended features in the

data management systems that were earlier deployed.

New development using different tools and data management solutions could

introduce additional costs and a learning curve. Thus, in the batch layer of the IoT

architecture, we might find new development in Azure that utilizes ETL tools and data

management solutions from other vendors. For example, we might find relational

databases serving as data warehouses that include IBM DB2, MariaDB, MySQL, Oracle,

PostgreSQL, or Snowflake.

In the speed layer, Hadoop engines from Cloudera/Hortonworks or MapR might be

deployed for similar reasons. NoSQL databases such as Cassandra or MongoDB could

also be present.

Note A zure Stack is Microsoft’s on-premises cloud offering that provides an
Azure IaaS environment on specific server and storage configurations built by
Microsoft partners such as Dell, HP, Lenovo, and others. You are more likely to
find non-Microsoft software components to be part of the IoT footprint here.
Deployment of on-premises cloud configurations providing the IoT backend are
most often considered when limited networking availability makes connections to
an off-site cloud nonviable.

Microsoft also has several IoT platform partners that utilize the IoT Hub to connect

their offerings to Microsoft’s Azure IoT footprint. Partners include C3 IoT, OSISoft PI, and

PTC ThingWorx. Their IoT solutions sometimes leverage Microsoft data management

offerings in Azure such as SQL DB or Azure Postgres. The deployment architectures from

these partners typically contain components that overlap in capabilities with Microsoft

Azure IoT components providing functionality in areas such as stream analytics,

machine learning, and edge services.

Chapter 2 Azure IoT Solutions Overview

40

�IoT SaaS Solutions in Azure
Repeatable IoT solution architectures built upon a common set of Microsoft PaaS

components are becoming increasingly common. To speed deployment of such

solutions, Microsoft has created IoT Central and solution accelerators. These

accelerators can also be used to provide a starting point for understanding components

needed in an IoT solution since. Each solution accelerator deployment configures and

spins up the necessary cloud-based services required in implementations of remote

monitoring, preventive maintenance, and for other IoT solution use cases.

The application code is open-sourced through GitHub.

At the time this book was written, the following solution accelerators were available

at https://www.azureiotsolutions.com/Accelerators (and were in the process of

being updated to a microservices architecture):

•	 Remote Monitoring. Collects telemetry from remote devices,

monitors device condition (presented through a dashboard), and

provides firmware and software update provisioning

•	 Connected Factory. Collects telemetry from industrial assets (such

as PLCs, industrial barcode readers and scanners, smart meters)

based on the OPC UA standard, monitors them and presents metrics

in a dashboard, and enables management of the devices

•	 Predictive Maintenance. Predicts when a remote device is about to

fail by applying machine learning algorithms to telemetry from those

devices and provides a dashboard interface to view device status

•	 Device Simulation. Provides a means to run simulated devices that

produce realistic telemetry for testing of the solution accelerators or

custom IoT solutions

Some Microsoft partners have leveraged IoT PaaS components to build out their

own solutions that are marketed as complete architectures, product suites, and services.

Examples include Honeywell’s MAXPRO Cloud providing services for connected

buildings, Rockwell Automation’s FactoryTalk for monitoring industrial equipment,

Schneider Electric’s Ecostruxure used to optimize energy and water resource utilization,

and Siemens’ MindSphere typically deployed in optimizing operations of industrial

Chapter 2 Azure IoT Solutions Overview

https://www.azureiotsolutions.com/Accelerators

41

equipment. Other example solutions where Microsoft Azure is under the covers include

connected car offerings offered by some automakers and patient monitoring and

diagnosis devices offered by healthcare device manufacturers.

As noted in the introduction to this chapter, IoT solution footprints are sometimes

linked to other SaaS-based cloud solutions to provide additional functionality. Microsoft

PowerApps can be used to create business logic and workflow needed in custom

integration between SaaS applications and IoT backend data sources.

For example, an IoT alert indicating the likely future failure of equipment might

trigger a work order in Microsoft Dynamics 365. Using Connected Field Service, the

right technician with the right skills can be scheduled and dispatched. They can view

information on the anticipated problem and indicate when the problem has been

mitigated in Dynamics.

�Azure Management and Deployment
We realize that some of you might be new to Azure. In this section, we take a step back

to provide a quick introduction to Azure management and deployment considerations.

This is a broad topic, and entire books have been written on the subject. Here, we simply

hope to highlight some areas that can help you plan your IoT deployment strategy and

governance of your Azure environment.

Microsoft describes Azure as a platform built upon trust. Foundation principles for

the platform include scalability and performance, manageability, resilience, availability,

and security. We’ll touch on these topics in the following subsections.

How you govern your environment and the technology you choose to use is

determined by your business strategy and your risk profile. Technology deployment

success is dependent on establishing and managing configurations, establishing policies

and then monitoring and enforcing compliance, managing costs and resources, and

managing security (including identities). In Microsoft documentation, outlining a

governance plan for your Azure environment is described as establishing a scaffold.

�Subscriptions and Resource Groups
When you utilize Azure, the resources that you consume are allocated to the subscription

that you are using. Subscriptions are typically assigned to individual projects, phases in

development, or by applications. Multiple subscriptions can be assigned to accounts.

Chapter 2 Azure IoT Solutions Overview

42

Multiple accounts can be assigned to departments (typically defined by organization

or geographic location) that make up your enterprise. These entities should be identified

consistent with the naming standards used within your organization. They are managed

using the Azure Portal.

Figure 2-3 provides an example and illustrates where subscriptions, accounts, and

departments fit in this basic enterprise hierarchy.

Figure 2-3.  Azure subscription hierarchy

Hierarchies can be extended beyond those defined for billing purposes through

Azure management groups. Related subscriptions can be grouped together regardless

of where they are in the billing hierarchy. Common roles, initiatives, and policies can be

defined across subscriptions. In addition, accounts and departments can be nested up to

six levels.

The Azure Resource Manager enables the placement of common resources into

groups for ease of management and billing. These resource groups typically hold

the resources required by applications or other solutions that you deploy. The Azure

Resource Manager can be used to enforce policies such as maintaining data sovereignty

and privacy or to enable more accurate and explainable billing.

Chapter 2 Azure IoT Solutions Overview

43

Note  For environment setup, you might also use the Azure Blueprints service. It
provides a means of packaging artifacts that include resource groups, Resource
Manager templates, policies, and role assignments.

Authorization in Azure Resource Manager is enabled through Role-Based Access

Control (RBAC). Though there are over 70 built-in roles that are pre-defined, 4 of them

provide important fundamental levels of access:

•	 Owners. Possess full access to all resources and can delegate access.

•	 Contributors. Create and manage Azure resources but cannot

delegate access to others.

•	 Readers. View Azure resources.

•	 User Access Administrators. Manage user access to Azure resources.

�Azure Portal
Azure applications and resource management, deployment, and monitoring are most

typically performed through the Azure Portal, a web-based interface. Many management

activities can also be executed through the command line interface (CLI) or through

Azure PowerShell.

Figure 2-4 illustrates a typical Azure Portal dashboard view. You can view favorite

available services on the left side of the dashboard (or choose to view all services). You

can also use the search at the top of the Portal view to easily find services that you might

want to deploy. Within the main Portal viewing area, you have access to all resources

already deployed, tutorials, and workspaces. You can easily access information about the

Service Health and will find the Marketplace of additional available resources.

Chapter 2 Azure IoT Solutions Overview

44

Dashboard layouts can be customized and published. After publishing, you can

share your customized dashboards with others.

Azure Monitor provides tools that collect and analyze performance and availability

data for your deployed solutions. Accessible through the Azure Portal, you can use the

Azure Monitor interface to set up alerts when specific conditions occur and trigger

actions, query and analyze logs, or simply monitor and visualize metrics associated with

your cloud resources. Metrics that can be tracked include blocked calls, client errors,

data in, data out, latency, server errors, successful calls, total calls, and total errors. Data

can be viewed in time segments ranging from the last 24 hours to the last 30 days.

Figure 2-5 illustrates the gathering of average latency and total calls data that was

gathered over a time period of 30 days.

Figure 2-4.  Azure Portal

Chapter 2 Azure IoT Solutions Overview

45

Azure Advisor provides proactive and actionable best practices recommendations

that guide you in improving the performance, availability, security, and cost-

effectiveness of your Azure resources. Accessible via the Azure Portal, Figure 2-6

illustrates a typical view in Azure Advisor. Recommendations are noted as having high,

medium, or low impact. You can then explore the recommendations provided and

decide whether to implement them in each category.

Figure 2-5.  Azure Monitor metrics

Chapter 2 Azure IoT Solutions Overview

46

The Azure Portal also plays a key role in managing the costs of your Azure

deployment. During your initial configuration of resources needed for deployment, you

will see cost choices clearly spelled out. For example, when deploying data management

components, you’ll have a choice of different CPU and memory classes of performance

and different storage levels (premium/SSD, hot, cool, and archive).

Note  In addition to costs associated with the operation of Azure resources, you
will also accrue costs when data flows out of Azure regions and between different
availability zones, peered VNets, and globally peered VNets.

Through the Azure Portal, you also have access to Azure Cost Management used

in monitoring and controlling Azure spending and for optimizing resource utilization

based on recommendations received. Figure 2-7 illustrates costs accruing during a

month up to the current date and breaks down current costs by service names, locations,

and resource groups. You can additionally provide budget information and receive alerts

when budget restrictions are reached.

Figure 2-6.  Azure Advisor calls attention to best practices recommendations

Chapter 2 Azure IoT Solutions Overview

47

�Designing for Resiliency and Availability
Resiliency is the ability of a system to recover from failures and continue to function.

Availability is the proportion of time that the system is operating normally. Designing to

achieve both resiliency and availability is key to meeting service level agreements (SLAs)

for the backend of your IoT solution.

Microsoft’s Azure architecture delivers an SLA above 99.9 percent for single virtual

machines by default. The platform can take proactive automated action when potential

hardware failure is detected, communicates via a Microsoft private network between regions,

triple mirrors data, and has other availability design characteristics under the covers.

Resilience services available in Azure include

•	 Azure Backup. A general-purpose backup solution for workflows on

virtual machines or servers

•	 Azure Site Recovery. Replication of virtual machines from on Azure

region to another

Figure 2-7.  Azure Cost Management analysis of current month costs

Chapter 2 Azure IoT Solutions Overview

48

•	 Availability Sets. Virtual machines distributed across multiple

isolated cluster nodes providing protection from hardware failures

within a data center

•	 Availability Zones. Distribution of virtual machines across

multiple physical locations within a region where each location has

independent network, cooling, and power

•	 Azure Load Balancer. Distributes traffic according to rules and

health

•	 Azure Traffic Manager. Optimal distribution of traffic to services

across global regions

•	 Geo-replication for Azure SQL Database. Fast disaster recovery of

individual databases during regional or widespread outages

•	 Locally Redundant Storage (LRS). Replication of data to a storage

scale unit.

•	 Zone Redundant Storage (ZRS). Synchronous replication of data

across three storage clusters in a single region

•	 Geo-redundant Storage (GRS). Replication of data to a secondary

region hundreds of miles away from the primary

Responsibilities for resiliency vary depending on the type of Azure deployment as

illustrated in Table 2-1. You are responsible where an “X” is indicated in the table. The

asterisk indicates a shared responsibility.

Chapter 2 Azure IoT Solutions Overview

49

Database and data resiliency can be assured through Azure Backup and services

provided by Azure PaaS databases. Workload application resiliency can be satisfied using

Azure Backup and Azure Site Recovery.

Resiliency of virtual machines and operating systems can be assured through

Availability Sets, Azure Backups, and Azure Site Recovery. There is 99.99 percent SLA

when two or more VMs are running in separate Availability Zones within a region

protecting against data center failures in comparison to a 99.9 percent SLA when just

single VMs are deployed.

Storage resiliency can be satisfied through deployment of managed disk in combination

with redundant storage. You might choose to configure storage as locally redundant, zone

redundant, or geo-redundant depending on the level of resiliency required.

Table 2-1.  Comparison of on-premises vs. Azure resiliency responsibilities

Components
Configured and
Managed by IT

On-Premises
Backend

Infra. as a
Service (IaaS)

Platform as a
Service (PaaS)

Software as a
Service (SaaS)

Database/data HA

and DR

X X X X

Workload/

application HA,

DR, backup

X X X *

Virtual machine/

OS HA, DR, backup

X X X

Storage HA, DR,

backup

X X *

Networking HA

and DR

X *

Power/facility HA

and DR

X

Data center

environment

(power, etc.)

X

Chapter 2 Azure IoT Solutions Overview

50

Networking resiliency is achieved through deployment of region pairs that leverage

Load Balancer and Availability Zones. Region pairs provide protection for data and

applications even in the event of loss of an entire region via geo-redundant storage (GRS)

and Azure Site Recovery. Region Pairs and Availability Zones are also key building blocks

in providing power and facility resiliency.

�Azure Security Considerations
Azure security considerations include identity and access management, data protection,

network security, threat protection, and security management. Key technologies present

in Azure to create and manage a secure environment aligned to these considerations

include

•	 Identity and Access Management. Azure Active Directory,

Multifactor Authentication, Role-Based Access Control, and Azure

Active Directory Identity Protection

•	 Data Protection. Encryption (disks, storage, SQL), Azure Key Vault,

and Confidential Computing

•	 Network Security. VNet, VPN, NSG; Application Gateway (WAF),

Azure Firewall; and DDoS Protection Standard, ExpressRoute

•	 Threat Protection. Microsoft Antimalware for Azure and Azure

Security Center

•	 Security Management. Azure Log Analytics and Azure Security

Center

Azure Security Center is accessible through the Azure Portal and provides a unified

security management system for your Azure resources as well as for hybrid workloads.

Events collected from agents and Azure are correlated in a security analytics engine,

assessing whether your resources are secure. Threat prevention recommendations and

threat detection alerts are raised. When those occur, you can take the recommended

actions and properly provision the identified resources.

The Azure Security Center dashboard is illustrated in Figure 2-8. You can view

scoring of the level of policy and compliance security, summaries of resource security

hygiene and recommendations, and security alerts by severity through this view and

then proceed through recommended actions.

Chapter 2 Azure IoT Solutions Overview

51

When planning security for you Azure-based solutions and designing, deploying,

configuring, and managing them, you can get guidance from the Microsoft Trust Center

(https://www.microsoft.com/trustcenter). There, you will find how Azure can help

you meet compliance standards driven by industry and geographic requirements. You

can explore the compliance manager, audit reports that are produced, and other data

protection available resources such as whitepapers and documentation.

�Microsoft Intelligent Edge
IoT devices gather data through sensors and transmit the data from remote locations

to the Azure cloud through networks. These edge devices continue to grow in

sophistication and capabilities. Today, many can run analytics and custom business

logic at the edge, sometimes even when they are disconnected from the cloud. This edge

device software is managed through Azure IoT Edge.

Today’s sophisticated IoT devices feature CPUs, storage, and memory of varying

processing power and capacities enabling deployment of operating systems. Microsoft’s

device operating system offerings include Azure Sphere (with Linux or real-time operating

systems) and Windows 10 IoT. We introduce all of these in this section of the chapter.

Figure 2-8.  Azure Security Center

Chapter 2 Azure IoT Solutions Overview

https://www.microsoft.com/trustcenter

52

�Azure IoT Edge
Microsoft’s Azure IoT Edge is comprised of three components: IoT edge runtime

environments that run on each device, edge modules that run analytics and your custom

logic, and edge cloud interfaces.

The IoT runtime environment runs on devices that support Linux or Windows. It

enables software installation and updates on the device, enables secure operations and

ensures that the device is operational, reports the health of modules to the cloud, and

manages communications to downstream devices, between modules, and to the cloud.

Edge modules are deployed in containers and can include Azure services, third-

party services, and custom code. The following Azure services can be deployed to edge

devices:

•	 Azure Machine Learning

•	 Azure Cognitive Services

•	 Azure Event Grid

•	 Azure Functions

•	 Azure Stream Analytics

•	 Azure SQL Server

In addition, Microsoft announced a small footprint edge optimized data engine for

the IoT Edge in 2019 named Azure SQL Database Edge. It is deployed in a container

running on ARM- or x64-based devices that can be connected or disconnected from the

Azure IoT backend. You can use this engine to stream, store, and analyze time series data

on the device.

The IoT Edge cloud interface enables the creation and configuration of workloads in

the cloud that will be run on specific devices. It is also used to provision workloads to the

edge devices and monitor the workloads running on the edge devices.

�Azure Sphere
Azure Sphere is a secured application environment that can be deployed in edge devices

featuring a class of crossover microcontroller units (MCUs) available from Microsoft

partners. A custom Microsoft Linux kernel provides a secured operating system for

devices and the subset of POSIX functionality needed by some applications. Applications

can be run in sandboxed containers on the device.

Chapter 2 Azure IoT Solutions Overview

53

The Azure Sphere Security Service brokers trust for device-to-device and device-

to-cloud communications. It detects emerging threats and can renew device security.

Additionally, the Sphere Security Service can automate download and installation of

operating system updates and ensure that the device boots only with approved software.

An alternative real-time operating system (RTOS) for these devices was announced

when Microsoft acquired Express Logic, the developer of ThreadX RTOS, in 2019.

ThreadX had already been deployed on over 6 billion devices including many that are

highly constrained (as it requires just 2 KB in instruction area and 1 KB in RAM). The

RTOS provides advanced scheduling, secure communications, synchronization, a timer,

memory management, and interrupt management facilities. It supports MQTT and can

connect directly to the IoT Hub.

�Windows 10 IoT
Windows 10 IoT is a family of products based on the popular Windows 10 operating

system for PCs and servers. Members of this IoT family include the following:

•	 Windows 10 IoT Core. A limited version of Windows 10 for less

powerful IoT devices running x86, x64, ARM, or i.MX processors;

enables the running of only a single application.

•	 Windows 10 IoT Enterprise. A full version of Windows 10 with

additional features enabling the lockdown of IoT devices; available

for devices running x86 or x64 processors.

•	 Azure IoT Edge for Windows. A runtime environment that enables

deployment of Windows containers on devices running Windows 10

or Windows 10 IoT Core; used to deploy Azure services and custom

logic.

•	 Azure IoT Device Agent for Windows. Enables configuration,

monitoring, and management of remote IoT devices running

Windows 10 from the Azure dashboard.

•	 Robot Operating System for Windows. A version of Windows

10 intended to make development of robotic applications easier;

includes intelligent edge capabilities and support for Cognitive

Services and hardware-accelerated Windows Machine Learning.

Chapter 2 Azure IoT Solutions Overview

54

�Choosing the Right Component Model
As IoT began to mature, footprints grew in breadth and depth. Early deployments of IoT

solution backends relied on IaaS components with custom integration required between

them. Diverse management tools were required to manage the entire environment, and

support models were highly complex with many vendors involved.

Today, as we’ve illustrated in this chapter, Microsoft has an extensive array of PaaS

components in Azure that are more tightly integrated. The PaaS components are all

managed through the Azure Portal. Microsoft also provides software that enables critical

capabilities required in devices at the edge.

This extensive footprint has enabled the introduction of Microsoft IoT solution sets

that provide a starting point for deploying complete solutions. Solution accelerators

found in the Azure IoT Central are increasingly featuring characteristics common in

SaaS solutions. You will also find that there are many third-party solutions that rely on

underlying Microsoft IoT components and are sold as packages with devices.

We’ll continue to see a growing array of more SaaS-like IoT solutions in the future.

How you will choose to deploy your IoT footprints will likely be driven by the devices

that you purchase to meet your business and technical needs and the support and

service offerings of the device or solution vendors.

Given the current diversity of devices and building block approach that is often taken

when defining IoT solutions today, you likely need to gain a deeper understanding of the

components required beyond the introduction that we provided in this chapter. So, in

the next few chapters, we take a further look at many of the Microsoft IoT components

deployed in Azure cloud-based backends and at the intelligent edge.

Chapter 2 Azure IoT Solutions Overview

55
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_3

CHAPTER 3

IoT Edge Devices
and Microsoft
The “Things” in the Internet of Things are edge devices connected to centralized

computing resources through external networks. Sometimes, the devices are also

connected to each other at the edge via local networks. Data might be gathered from

sensors in state-of-the-art complex devices such as smart meters, industrial barcode

and RFID readers, programmable logic controllers (PLCs), and robotic machinery.

Sometimes, the equipment that you need to gather data from lacks sensors in

critical locations. Simple sensor kits might be applied to legacy equipment lacking

needed sensors. Such kits might also be installed in new locations such as upon city

infrastructure, buildings, mobile vehicles, or even drones.

A variety of edge devices can be connected to the Microsoft cloud backend, most often

through Azure IoT Hub (explored in greater depth in the next chapter). Communications

protocols supported by the IoT Hub include the Advanced Message Queuing Protocol

(AMQP), the Message Queue Telemetry Transport (MQTT) protocol, and HTTPS. However,

devices using other protocols can be deployed by providing protocol translation at the edge.

We begin the chapter by describing criteria often used in the selection of sensors and

devices at the edge. We then describe Microsoft’s IoT Edge runtime software for devices,

including using the edge device as a gateway, deploying containers to the edge, and the

role of this software in securing the device. We complete the chapter with a description

of the Azure IoT device catalog, noting the registration process and the available test

suite used in certification of the devices by Microsoft’s partners. Thus, the chapter is

divided into the following major sections:

•	 Edge sensor and device selection

•	 The Azure IoT edge runtime

•	 The Azure IoT device catalog

56

�Edge Sensor and Device Selection
Deploying a successful IoT solution often begins with an assessment of the data needed

and types of actions that must be taken in response. You might begin by evaluating

whether existing edge devices gather the right data and whether sensors are in the right

locations to get the measurements needed.

If the data gathered is inadequate, you could then be faced with deciding whether to

retrofit existing equipment with additional sensors or perform wholesale replacement

of equipment with newer IoT-ready versions. When evaluating the acquisition of new

equipment, criteria considered often includes the accuracy of measurements provided

as well as cost.

Additional physical considerations can include component durability, physical size,

and mounting options. Critical components in the edge devices might need to function

in difficult environments so understanding normal operating temperature ranges,

acceptable moisture levels, the presence of acids or chemicals, and amount of electrical

noise can play a part in selection.

Devices and sensors could require minimal voltage and be battery powered. Or they

might need local power drops to be adequately powered. In an environment where high

availability is a must, an uninterrupted power supply (UPS) could be required.

Physical and software security provided by the proposed devices and deployment

in secured areas also warrants consideration. Communication protocols supported

by the devices and their connectivity (wired or wireless) should be consistent with the

planned overall architecture. Evaluations that touch on all these considerations are key

to simplifying integration and ongoing operational management.

The support model for devices should be developed and tested as part of scalability

testing prior to full deployment. Key areas that receive testing should include initial

provisioning, centralized management of connections, and troubleshooting based on

diagnostics. The plan should include details regarding ongoing engineering support

after deployment.

Edge devices are sometimes connected directly to the Azure IoT Hub in the cloud for

communications. More often, they are networked together in their remote location via

local area networks (such as over Ethernet) or via wireless connections (such as Wi-Fi,

3G, 4G LTE, 5G, and Bluetooth). Remote IoT networks at the edge are connected locally

to an IoT gateway device to transmit and receive data to/from the Azure IoT Hub in the

cloud.

Chapter 3 IoT Edge Devices and Microsoft

57

As noted previously in this book, the Azure IoT Hub supports MQTT, MQTT over

WebSockets, AMQP, AMQP over WebSockets, and HTTPS for connectivity into the Azure

cloud. Other protocols, such as OPC UA, are supported through protocol translation.

Most organizations seek to standardize on a single protocol for device connection to the

cloud to simplify their architecture.

Figure 3-1 illustrates where these protocols align to the OSI and TCP/IP

communications models.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Transport (TCP)

Internet (IP)
Network Access & Physical

(802.11, Ethernet, 802.1 TSN,
4G LTE, 5G, etc.)

Application
(AMQP, MQTT, HTTP,
OPC UA, WebSocket)

OSI Model TCP/IP Model

Figure 3-1.  IoT protocols in OSI and TCP/IP models

AMQP is a popular choice where field and cloud gateways are deployed since

connection multiplexing is supported. Multiple devices with unique credentials

communicating using MQTT and HTTPS cannot share the same TLS connection.

However, the MQTT and HTTPS protocols can run in devices with fewer resources, so

they are sometimes your only option for such devices.

WebSockets come into consideration when ports needed by AMQP (using port 5671)

or MQTT (using port 8883) are closed to non-HTTPS protocols. Hence you would deploy

AMQP over WebSockets or MQTT over WebSockets in such a scenario if you did not

want to rely on HTTPS as the protocol.

Chapter 3 IoT Edge Devices and Microsoft

58

AMQP and MQTT both support a server push of messages from the cloud to the

device. HTTPS devices must poll the server to determine if messages are present, thus

generating additional traffic over the network. For HTTPS devices, it is recommended

that such polling should be limited to frequencies of every 25 minutes or more.

AMQP and MQTT are binary protocols. Payloads are more compact when using

these protocols compared to HTTPS giving yet another reason why they are often

favored in IoT deployment.

For Industrial Internet of Things (IIoT) implementations, the OPC UA protocol has

gained a great deal of acceptance. Microsoft was an early supporter and adopter of OPC

UA. For example, OPC UA is the industrial protocol in Microsoft’s Connected Factory

solution accelerator. OPC UA is implemented through protocol translation in the Azure

IoT Edge module, as described in the next section of this chapter. Microsoft provides a

protocol translation sample in GitHub that provides useful guidance for setup.

Figure 3-2 illustrates OPC UA Servers present on multiple assembly lines. A

manufacturing execution system (MES) monitors and controls equipment on the floor

and is an OPC UA Client. It connects to the OPC UA Servers on the floor using X.509

certificates to authenticate. The OPC UA Servers communicate to the OPC Proxy and

Publisher modules in the IoT Edge. The Publisher checks for a certificate and can

generate a self-signed one for itself if none exists. Transport protocols supported by the

Publisher are AMQP over TCP or MQTT over TCP.

MES (OPC UA Client)

Data Lake

Enterprise
Data

Warehouse

Data Mart

Source Systems &
Devices

Business
Intelligence
Tools

Data Mart

Back-end Data
Components

Azure IoT
Edge (OPC

Proxy & OPC
Publisher
Modules)

Azure IoT
Hub

Business OLTP

Line Devices
(OPC UA
Server)

Line Devices
(OPC UA
Server)

Web App
Dashboard

OPC UA Client

Telemetry

Command &
Control

Figure 3-2.  OPC UA deployed in manufacturing

Chapter 3 IoT Edge Devices and Microsoft

59

The OPC UA Publisher also supports direct calls in the IoT Edge that provide general

information, diagnostic information on OPC sessions, subscriptions, monitored items,

and diagnostic information on IoT Hub messages and events. The last 100 lines of the log

that is maintained can be read.

Many manufacturers of industrial equipment have adopted this protocol. In

Microsoft Technology Centers in many major cities around the world, there are IIoT

walls displaying some of this equipment. The walls include

•	 HPE IoT System EL20. A rugged performance-optimized edge

gateway with compute capabilities designed for collecting and

transmitting data in high-volume deployments.

•	 Siemens SIMATIC S7-1500 Advanced Controller. A programmable

logic controller (PLC) with integrated motion controls.

•	 Mitsubishi Electric MELSEC iQ-R series PLC. A multidiscipline PLC

with motion CPUs to control positioning, speed, torque, advanced

synch, and other functions.

•	 Leuze Electronic IoT Ready Barcode Reader. An industrial quality

barcode scanner.

•	 Beckhoff IoT Controller. Features temperature and fan control and

speed sensors to demonstrate the ability to control cooling.

•	 HARTING Ha-VIS UHF RFID reader RF-R310. An industrial RFID

reader.

•	 Rockwell Automation Control Logic Controller. A PLC for multi-

axes motion control often used in mixing ingredients and filling

containers.

•	 Schneider Electric IoT Controller. A PLC sometimes used in

measuring liquid levels in tanks and for similar applications.

•	 Honeywell Elster Alpha Smart AS300P. A device that enables an

advanced metering infrastructure (AMI) and manages data from

electricity, gas, and water meters.

Figure 3-3 illustrates this equipment as it appears on the wall.

Chapter 3 IoT Edge Devices and Microsoft

60

There are other protocols that might be supported in your industrial equipment,

especially in equipment that predates OPC UA. For example, Modicon (now

Schneider Electric) published Modbus as a protocol in the late 1970s, and it gained

some widespread adoption. Prior to OPC UA, Microsoft promoted the usage of its

OPC Classic.

Figure 3-3.  OPC UA connected equipment in Microsoft Technology Centers

Chapter 3 IoT Edge Devices and Microsoft

61

�The Azure IoT Edge Runtime
Microsoft’s Azure IoT Edge is runtime software that can perform communications and

module management functions on edge devices. From an edge device, communications

can occur to further downstream devices, modules present in the device, and to the

Azure cloud. Management functions available include the ability to install and update

workloads on the device, maintain IoT Edge security standards on the device, ensure

that IoT Edge modules are running, and report on module health in the device enabling

monitoring.

The IoT Edge runtime consists of two modules: the IoT Edge Hub and the IoT Edge

Agent. The IoT Edge Hub serves as a local proxy for the Azure IoT Hub and supports

MQTT and AMQP as protocols to the IoT Hub. It optimizes connections to the cloud and

relies on the Azure IoT Hub for authentication when connections are first established.

The IoT Edge Agent instantiates modules, ensures that they are running, and reports

on status back to the Azure IoT Hub. The IoT Edge Agent uses its module twin to store

configuration data.

Deployment of the IoT Edge runtime begins with deployment of an Azure IoT Hub

(described in the next chapter). You then register an IoT Edge device to the Azure IoT

Hub and install and start the IoT Edge runtime on the device. It is then possible to deploy

a module remotely to the IoT Edge device.

You can use a continuous integration and continuous delivery (CI/CD) process

familiar in modern DevOps scenarios when deploying your IoT Edge. Key steps, as

documented by Microsoft in GitHub, are

•	 Create the Azure resources.

•	 Set up Azure DevOps services.

•	 Define continuous integration (using tokens).

•	 Create a release pipeline and smoke test.

•	 Add a scalable integration test to the release pipeline.

•	 Monitor the devices with Application Insights.

Chapter 3 IoT Edge Devices and Microsoft

62

�The IoT Edge Device As a Gateway Device
IoT Edge devices can serve as transparent, protocol translation, or identity translation

gateways to the Azure IoT Hub. The gateways can be used to provide downstream

device isolation, connection multiplexing, traffic smoothing, and limited offline support

(temporarily storing messages and twin updates at times when they cannot be delivered

to the IoT Hub).

A transparent gateway simply passes communications from devices to the Azure

IoT Hub for devices that support the MQTT, AMQP, or HTTP protocols. Logical device

connections are multiplexed over a single physical connection using AMQP or MQTT as

a protocol between the IoT Edge Runtime and the Azure IoT Hub. All connected device

identities are stored in the IoT Hub identity registry, each device has its own device twin,

and each device can be addressed from the cloud individually. Figure 3-4 illustrates the

major components present when an IoT Edge device serves as a transparent gateway.

Transparent
Gateway

Azure IoT
Hub

IoT Hub Identities:
Gateway & Devices

Device
Azure IoT

Edge Runtime
Device

AMQP, MQTT

AMQP,
MQTT

HTTP

Figure 3-4.  IoT Edge device as a transparent gateway

A protocol translation gateway can communicate with devices that support other

protocols such as OPC UA, Modbus, Bluetooth Low Energy (BLE), Building Automation

and Control Networks (BACnet), or other proprietary protocols. There is a single

physical connection using AMQP or MQTT as a protocol between the IoT Edge Runtime

and the Azure IoT Hub for the gateway only. Only the identity of the gateway device is

stored in the IoT Hub identity registry, and only the gateway has a device module twin.

To analyze data on a per-device basis, messages from devices must contain additional

Chapter 3 IoT Edge Devices and Microsoft

63

identifying information. The cloud can address only the gateway device directly, not the

downstream devices. Figure 3-5 illustrates the major components present when an IoT

Edge device serves as a protocol translation gateway.

Protocol
Translation

Gateway

Azure IoT
Hub

IoT Hub Identity:
Gateway only

Device

Azure IoT
Edge Runtime

Protocol
Translation

ModuleDevice

AMQP, MQTT

Modbus,
OPC UA
Other,
Proprietary

Figure 3-5.  IoT Edge device as a protocol translation gateway

Identity translation gateways provide protocol translation but also can identify

downstream devices and translate those identities to IoT Hub primitives. Logical device

connections are multiplexed over a single physical connection using AMQP or MQTT as

a protocol between the IoT Edge Runtime and the Azure IoT Hub. Thus, device identities

are stored in the IoT Hub identity registry, each device has its own device twin, and each

device can be addressed from the cloud individually. Figure 3-6 illustrates the major

components present when an IoT Edge device serves as an identity translation gateway.

Identity
Translation

Gateway

Azure IoT
Hub

IoT Hub Identities:
Gateway & Devices

Device

Azure IoT
Edge Runtime

Protocol &
Identity

Translation
Module

Device

AMQP, MQTT

Modbus,
OPC UA
Other,
Proprietary

Figure 3-6.  IoT Edge device as an identity translation gateway

Chapter 3 IoT Edge Devices and Microsoft

64

�Deployment of Containers
As noted in Chapter 2, Azure Machine Learning, certain Azure Cognitive Services, Azure

Event Grid, Azure Functions, Azure Stream Analytics, and SQL Server can be deployed in the

IoT Edge within Docker containers. Docker containers are lightweight executable software

packages that include needed system libraries and settings, system tools, runtime, and code

needed to run the Azure service. Code is typically built in Azure or Visual Studio and placed

into a Docker image. The Docker containers are registered to an Azure container registry.

Deployment of the containers onto the device relies on the two modules present

in the Azure IoT Edge runtime – the IoT Edge Hub and the IoT Edge Agent. The IoT

Edge Agent instantiates modules, ensures that they continue to run, and reports the

status of modules back to the IoT Hub. The IoT Edge Agent uses its module twin to store

configuration information.

A deployment manifest is created as a JSON document and stored on the IoT Hub. It

describes the IoT Edge Agent module twin including the container image for each module,

credentials needed to access private container registries, and instructions on how modules

should be created and managed. The deployment manifest also describes the IoT Edge

Hub module twin defining how messages flow between modules and to the IoT Hub.

Upon device startup, an IoT Edge security daemon starts the IoT Edge Agent. This

agent retrieves its module twin from the IoT Hub and the contents in the deployment

manifest. The named modules are then started on the device as module instances.

Figure 3-7 illustrates these key components in deployment of containers at the edge.

Containers are deployed here

Deployment Manifest is read
here

IoT Edge Device
$edgeHub

$edgeAgent

Azure IoT
Hub

Deployment
Manifest

Azure Container Registry

Figure 3-7.  Key modules in container deployment at the edge

Chapter 3 IoT Edge Devices and Microsoft

65

In the spring of 2019, Microsoft began to preview Azure SQL Database Edge, a

variation of the Azure SQL Database designed to run on ARM-based or x64-based edge

devices that are configured with only about 1 GB of memory. The installation procedure

for the database onto the device is through containers.

Azure SQL Database Edge has a streaming engine built on Azure Stream Analytics

that enables queries to connect through the Azure IoT Hub or Azure Event Hub on to

backend Azure cloud services. Bidirectional data movement is supported. The database

can be utilized in disconnected as well as cloud-connected scenarios.

For local machine learning applied to data in the edge device, both R and Python are

supported through external procedures. The predictive functionality provided by Azure

SQL Database Edge is the same as that in SQL Server. There is support for processing and

storing time series, graph, and JSON data. The database can be accessed using popular

business intelligence tools such as Microsoft’s Power BI.

�Azure IoT Edge and Device Security
Microsoft defines an Azure IoT Edge security framework that provides a foundation

for secure deployment of devices. Anchoring the framework is secure silicon that is a

tamper-resistant root of trust. At middle layers of the foundation, highly assured booting

of the device and secured execution environments relying on proper authentication,

authorization, and attestation become critical. Runtime integrity monitoring of

applications completes the foundation.

Table 3-1 illustrates how these principles are realized in IoT Edge devices.

Table 3-1.  Realizing security principles in IoT Edge devices

Foundation Principles How the Principles are Realized

Application runtime integrity monitoring Azure IoT Edge

Systems resource access control and privileged actions Secured operating system on device

High assurance bootstrapping and resiliency Azure IoT Edge Security Manager

Tamper resistant root of trust/secure silicon Secure silicon/device provided by

manufacturer

Chapter 3 IoT Edge Devices and Microsoft

66

At the root, a best practice is to specify devices that meet minimal physical

requirements. Physical features, such as USB ports, are to be avoided if they are

considered optional as they can expose the device to attack. Devices might also be

protected from physical tampering through secure enclosures and other means.

A Software Guard Extension (SGX) in device processors can assure normal processes

are in enclaves that can’t be overridden.

Microsoft’s Azure IoT Edge Security Manager is provided with the Azure IoT Edge

software. It provides a level of security for the device even if the operating system

running on the device is compromised. Specifically, it is responsible for

•	 Secured and measured bootstrapping of the device

•	 Device identity provisioning and transition of trust

•	 Hosting and protection of the Device Provisioning Service

•	 Securely provisioning IoT Edge modules with unique identities

•	 Serving as a gatekeeper to device hardware root of trust

•	 Monitoring the integrity of IoT Edge operations at runtime

Device manufacturers are responsible for providing Trusted Platform Module (TPM)

drivers, the TPM itself, and any custom hardware security modules (HSMs) and drivers.

The Trust Computing Group provides specification of a Device Identifier Composition

Engine (DICE) that can be used for creating cryptographic representations of device

identities.

Further protection is provided by securing the operating system on the device

through systems resource access control and establishing privileged actions. Runtime

integrity monitoring provided by the Azure IoT Edge software helps protect the general

computing environment for the device.

Authentication is used in the foundation to assure that only trusted parties, modules,

and devices have access. Certificate-based authentication is derived from standards

governing public key infrastructure (PKi) by the Internet Engineering Task Force (IETF)

and is the primary means of authentication. Where devices or components do not

support certificate-based authentication, extensibility in the security framework can be

utilized to provide needed authentication.

Chapter 3 IoT Edge Devices and Microsoft

67

Authorization refers to the permission scope that actors, modules, and devices

are granted. It is usually configured at a least privilege level that provides just enough

access to the resources and data needed to deliver the designed business solution.

Authorization can be managed through certificate signing rights or role-based access

control (RBAC) for some scenarios.

Attestation assures the integrity of software at boot-up of the device, during

runtime, and during software updates. During secure boot-up, integrity of all

software on the device is assured including the operating system, the runtimes

present, and the configuration information. Runtime attestation detects malware

injections, improper physical access, and improper configuration changes, with

countermeasures provided by the device and security framework to combat these

threats. Software attestation assures secure software patching and updates through

measured and signed packages.

A device can be considered as trusted by meeting standards such as ISO/IEC 11889

that specifies the architecture, data structures, command interface, and behavior of a

TPM. A TPM device is trustworthy for storage, measurement, and reporting. Trust in

these three elements is assured through authorization by using certificates and through

attestation, thus providing evidence of the accuracy of information. The platform

also offers protected locations for keys and data objects and can provide integrity

measurements of platform state.

You likely will also consider protecting devices from external threats that could be

initiated using cloud resources. For example, Arm TrustZones could be established to

secure boundaries between edge devices or IoT gateways and the cloud.

Note O ne way to monitor transmissions from the devices is through a Security
Information and Event Management (SIEM) tool. Microsoft began to preview its
Sentinel tool as this book was being published and promoted its utilization of AI to
provide an early warning of unusual events, including in IoT devices. In addition,
Azure Security Center can be used to help find missing security configurations in
IoT devices.

Chapter 3 IoT Edge Devices and Microsoft

68

�The Azure IoT Device Catalog
To better understand which devices can most easily be implemented in the Microsoft

IoT architecture and enable the device manufacturers to verify this, the Azure IoT

certification service (AICS) was created. Once certified, the devices are listed in the

Azure IoT device catalog (https://catalog.azureiotsolutions.com/).

Some of the equipment listed in the catalog are build-your-own-device Microsoft

Azure IoT Starter Kits. These kits typically include a breadboard, some sensors, LEDs,

resistors, jumper wires, and other parts needed.

Figure 3-8 illustrates some certified devices and starter kits on a page presented in

the Azure IoT device catalog web site.

Figure 3-8.  Azure IoT device catalog certified devices and starter kits page

Chapter 3 IoT Edge Devices and Microsoft

https://catalog.azureiotsolutions.com/

69

To become certified, device partners first create a company profile and indicate

the devices they wish to certify. For each device, the type of operating system for the

platform and programming languages supported are provided in order to receive a

certification test that can be run on the device. The vendor runs compatibility tests and

provides packaging for installing agent on device as well as an example of using device

with Azure IoT.

Note A wide variety of operating systems can be run on the devices that are
tested for certification. At the time this book was published, versions of Raspbian-
stretch, CentOS, Debian, RHEL, Ubuntu, Ubuntu Server, Wind River, Windows 10 IoT
Core, Windows 10 IoT Enterprise, Windows 10 Server, and Yocto had certification
tests available.

Since 2018, Microsoft also provides a certification test for support of the Azure

IoT Edge software on devices. During testing, IoT Hub primitives such as device-to-

cloud, cloud-to-device, direct method, and device twin properties are validated, as is

the presence of the EdgeAgent module on the device. A test is also run to ensure that a

sample Edge module is successfully deployed to the device.

Optionally, security at the following four levels can be evaluated:

•	 Level 1. Custom security

•	 Level 2. Azure Device SDK

•	 Level 3. Azure Device SDK, FIPS 140-2 Level 2, and Common

Criteria EAL 3+

•	 Level 4. Azure Device SDK, FIPS 140-2 Level 3, and Common

Criteria EAL 4+

Level 2 can be reached through validation of base security processes at the Edge

and all transactions monitored in accordance with a deployment risk assessment with

no secure hardware in place. Level 4 can be reached by providing a secure element that

includes a stand-alone security processor, secure hardware protection of storage, session

key generation, authentication, and certificate processing in place. Level 4 can also

be reached by providing a secure enclave containing an integrated security processor,

providing secure element features, featuring protection of the execution environment,

and providing metering, billing, secure I/O, and secure logging.

Chapter 3 IoT Edge Devices and Microsoft

70

In 2019, Microsoft introduced IoT Plug and Play, an open modeling language to

connect IoT devices to the cloud without having to write embedded code. IoT Plug and

Play devices are defined by a device capability model in a JSON-LD document. Device

properties including attributes (such as firmware version), device settings, telemetry

sensor readings and alerting events, and available device commands are described in

the model.

Devices listed in the Azure Certified for IoT Device Catalog are described by the

following capabilities and properties:

•	 IoT Plug and Play. Certified for this capability?

•	 Microsoft Azure IoT Starter Kit. Yes or no?

•	 Azure IoT Edge. Certified for this capability?

•	 Chip Manufacturer. Intel, Microchip, Espressif, Qualcomm,

Broadcom, Texas Instruments, NXP/Freescale, Nvidia,

STMicroelectronics, VIA Technologies, or other.

•	 Cloud Protocol. Supports AMQPS, AMQPS over WebSockets, MQTT,

MQTT over WebSockets, and/or HTTPS.

•	 Connectivity. Bluetooth, LAN, WIFI, LTE, 3G, and/or other.

•	 Device Security Services. Managed PKI (CSR, CRL, etc.), Symmetric

Key Provisioning, firmware update and integrity, secure hardware

attestation, secure hardware disablement, authentication and data

protection, identity management, device management, and/or others.

•	 Device type. Gateway, industry tablet, mobile POS, or other.

•	 Geo availability. Worldwide, Europe, APAC, America, and/or Africa.

•	 I/O hardware interfaces. GPIO, I2C/SPI, COM (RS232, RS485,

RS422), USB, and/or others.

•	 Industrial protocols. CAN bus, EtherCAT, Modbus, OPC Classic,

OPC UA, PROFINET, ZigBee, PPMP, and/or others.

•	 Industry. CityNext (Smart Cities), discrete manufacturing,

government, health, hospitality, insurance, media and cable, power

and utilities, process manufacturing, retail and consumer goods,

banking and capital markets, or others.

Chapter 3 IoT Edge Devices and Microsoft

71

•	 Industry certification. Yes or no.

•	 Operating system. Windows IoT Core, Windows IoT Enterprise,

Windows 8/10, Debian, Arduino, Windows Server, Ubuntu, iOS,

Mbed, Yocto, RTOS, Fedora, Android, Raspbian, RHEL CentOS, Wind

River, no OS, or others.

•	 Programming languages. C, C#, Java, JavaScript (node), and/or

Python.

•	 Secure hardware. TPM, DICE, SIM and eSIM, Smartcard, and/or

others.

•	 Tested built-in sensors. GPS, touch, LED, light, gas, noise, proximity,

temperature, humidity, pressure, accelerometers, weight, soil

alkalinity, vibrations, image capture, motion detection, chemical/

compound presence, no built-in sensors, and/or others.

Note T he first starter kits for Azure Sphere microcontroller units (MCUs)
providing a hardware-based root of trust were being released as this book was
being published. For example, the Avnet Azure Sphere Starter Kit contains a
MediaTek MT3620 MCU and includes a three-axis accelerometer, three-axis gyro,
temperature sensor, and ambient light sensor.

The MCU features the Microsoft Pluton security subsystem, a full memory
management unit for compartmentalization of processes, real-time operating
system, Wi-Fi radio, multiplexed I/O, hardware firewall, and integrated RAM and
flash memory. The software stack features a security monitor protecting the
hardware and custom Linux kernel. Operating system services include a device
authentication client, over-the-air (OTA) update client, application management,
and networking management. Custom applications are typically developed in C
using Visual Studio.

Chapter 3 IoT Edge Devices and Microsoft

72

When looking for devices or gateways, you can search the catalog using these

parameters. For example, you might want to gather and transmit data from computer

numerical control (CNC) machinery on your factory floor that automates control of

machining tools used in milling, turning, and grinding raw materials. You can search for

IoT gateways in the catalog that support industrial protocols such as ABB, FANUC, or

Modbus, and you will see the vendors of such equipment present in the catalog.

Throughout this chapter, we’ve focused on edge devices and Azure IoT Edge software

but have frequently mentioned the critical role of the Azure IoT Hub in communicating

and managing these devices. We next will look at the Azure IoT Hub in more detail in

Chapter 4.

Chapter 3 IoT Edge Devices and Microsoft

73
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_4

CHAPTER 4

Azure IoT Hub
IoT edge devices capture data gathered in events and transmit lightweight notifications

of conditions or discrete state changes. Condition changes are commonly reported

in a time series of interrelated events that are then analyzed to determine what has

happened. Discrete events indicating a change in state can drive the need to perform

specific actions.

When thousands or more IoT devices are deployed, thousands to millions of events

per second can land in the cloud for further data processing and analysis. Microsoft’s

first hub capable of ingesting telemetry from large numbers of IoT devices at rates of over

1 GB per second was its Azure Event Hub cloud service in the Microsoft Azure Service

Bus. The Event Hub became generally available in November 2014. It supports AMQP,

AMQP over WebSockets, and HTTPS as protocols for communications to the cloud.

However, though Event Hubs were designed for streaming data ingestion, they were not

designed to enable communications back to IoT devices.

In February 2016, Microsoft announced general availability of the Azure IoT

Hub, a cloud service designed for both IoT device-to-cloud and cloud-to-IoT device

communications. Building upon previous Event Hub capabilities for ingestion, the IoT

Hub also supports MQTT and MQTT over WebSockets protocols, per-device identity, file

upload from devices, device provisioning, device twin and device management, device

streams, and the Azure IoT Edge. Through the IoT Hub, it is possible to track device

creation, device connections, and device failures. Additional communications protocols

can be supported through deployment of custom Azure IoT protocol gateways in the

cloud, though protocol conversion is more often deployed in the IoT Edge (as described

in the previous chapter).

74

Today, Microsoft recommends deployment of the IoT Hub for all scenarios

where IoT devices are connected to the Azure cloud. We focus this chapter on the

following topics:

•	 IoT Hub capabilities

•	 Configuring the IoT Hub

•	 IoT Hub Performance Monitoring

•	 IoT Hub Device Provisioning

•	 IoT Hub Availability and Disaster Recovery

�IoT Hub Capabilities
The Azure IoT Hub provides a cloud landing spot for telemetry gathered by IoT devices.

It also has a central role in configuring and controlling devices by

•	 Storing, synchronizing, and enabling querying of device metadata

and state information using device twins

•	 Providing the ability to set the device state either by individual device

or based on common characteristics of multiple devices

•	 Providing automatic response to device-reported state changes

through message routing integration

The status of the IoT Hub is determined through monitoring of device identity

operations, device telemetry and diagnostics, cloud-to-device commands, and

connections. Each device uses its own security key to connect to the IoT Hub. You

can individually whitelist or blacklist each device providing complete control over

device access.

Device applications can read and receive notification of changes in desired

properties that reside in the device twin in the IoT Hub. The desired properties are

modifiable by the IoT solution backend. Reported properties in the device twin are

modifiable by device applications, and changes are read by the backend. Tags stored

in the device twin contain device metadata and are accessible by only the backend. In

addition to storing device metadata and reporting on current state information, device

twins can be used to synchronize the state of long-running workflows between devices

and backend applications.

Chapter 4 Azure IoT Hub

75

The IoT Hub can also be thought of as the front door to several key Microsoft

backend cloud-based services. Some of the services include

•	 Azure Stream Analytics

•	 Azure Time Series Insights

•	 Azure Databricks

•	 Apache Spark

•	 Apache Storm (spout)

•	 Azure Functions

•	 Azure Logic Apps

Azure Functions enable creation and deployment of actions that contain custom

written code in C#, F#, or Java. Azure Logic Apps provide a collection of pre-defined

actions that can be orchestrated using a GUI-based development environment. Both are

deployed as serverless workloads. We’ll describe the analytics, machine learning, and

other related backend capabilities and components in Chapter 5.

Data can be retained in the IoT Hub’s built-in Event Hubs for up to 7 days. Messages

that are at maximum message sizes are retained for 24 hours at a minimum.

�Configuring the IoT Hub
An Azure IoT Hub can be created and managed in a variety of ways including through

the Azure Portal, Azure CLI, or using PowerShell. Here, we’ll describe creating an IoT

Hub using the Azure Portal.

As shown in Figure 4-1, one begins by assigning an Azure subscription, creating

a new or using an existing Azure Resource Group, choosing an Azure Region for

deployment, and providing a name for your IoT Hub.

Chapter 4 Azure IoT Hub

76

The next step is to choose the pricing and scaling tier (basic or standard levels for

production) based on the features desired and number of messages per day you want the

IoT Hub to be capable of handling. Pricing in levels is provided on a per-month basis in

the portal interface.

Both basic and standard options support similar numbers of messages per unit per

day as well as the maximum units that can be assigned. The option levels are shown

in Table 4-1. At the standard level, cloud-to-device command enablement, IoT Edge

support, and device management are also provided (whereas these features are missing

in the basic levels). Basic levels can be upgraded to standard levels.

Figure 4-1.  Initial IoT Hub resource assignment and naming

Chapter 4 Azure IoT Hub

77

During this step, you also choose the number of IoT Hub units to be deployed in the

pricing tier that you selected. An appropriate number of units is selected that will deliver

the desired number of messages per day by using a slider bar in the interface.

The portal interface for selection of the pricing and scaling tier and number of IoT

Hub units is illustrated in Figure 4-2.

Table 4-1.  Basic and standard levels message scalability

Option Level Messages/ Unit/Day Number of Units

Basic B1 400 K 1 to 200

Basic B2 6 M 1 to 200

Basic B3 300 M 1 to 10

Standard S1 400 K 1 to 200

Standard S2 6 M 1 to 200

Standard S3 300 M 1 to 10

Figure 4-2.  IoT Hub pricing tier and scale selection

Chapter 4 Azure IoT Hub

78

Once you’ve completed this step, you can review your selections and create the IoT

Hub. Resource capabilities that you’ve defined are then provisioned.

�Managing the IoT Hub
When a hub is created, you can review parameters associated with the IoT Hub through

the overview provided in the Azure Portal. You can also view the hub’s activity log of

operations and adjust IoT Hub access control and settings.

For example, in settings, you can change the pricing and scale tier and number of

units if the projected number of messages being handled changes. You can also adjust

operations monitoring (such as turning event logging on or off) and specify valid IP

address ranges that the IoT Hub will accept. Shared IoT Hub access policies that can

be adjusted in settings include permissions for identity registry reads, identity registry

writes, the service connect to service endpoints, and the device connect sending and

receiving of messages.

Note T he identity registry contains information about the devices and modules
allowed to connect to the IoT Hub and stores credentials used in authenticating the
devices and modules. You must add device IDs and keys to the identity registry to
enable the devices to connect to the IoT Hub, normally through the Azure IoT Hub
Device Provisioning Service.

The portal also provides access to explorers for query and to IoT devices. You can

use the portal to choose automatic device management (IoT Edge and IoT device

configuration), designate file uploads and message routing, manually initiate failover

from an IoT Hub primary to secondary location, access the Azure Security Center, and

monitor the hub for alerts and metrics. Finally, you can determine resource health and/

or make a support request.

Figure 4-3 illustrates a portion of the options that you have available on the left

side of this IoT Hub view in the portal. On the right, overview charts indicate recent

ongoing activity.

Chapter 4 Azure IoT Hub

79

�Message Routing and Event Routing
Using the portal, you can leverage custom endpoints when you create, define, and

manage routing of messages from the Azure cloud to devices. The maximum message

size supported is 256 KB. Near real-time messages are received at endpoints in the order

in which they are sent. Up to 10 custom endpoints and 100 routes can be created per IoT

Hub. As illustrated in Figure 4-4, the custom endpoints can be added as Event Hubs, a

Service Bus queue, Service Bus topics, and Blob storage.

Figure 4-3.  Overview of IoT Hub activity

Chapter 4 Azure IoT Hub

80

In addition to device telemetry, message routing also enables the sending of device

twin change events and device life cycle events. Events published by the IoT Hub include

•	 Device registration to an IoT Hub.

•	 Device deletion from an IoT Hub.

•	 Device connection to an IoT Hub.

•	 Device disconnection from an IoT Hub.

•	 Device telemetry message is sent to an IoT Hub.

You can query message application and system properties, message bodies, device

twin tags, and device twin properties.

Alternatively, you might want to set up a publish-and-subscribe event routing service

by integrating the Azure IoT Hub with an Azure Event Grid. In this configuration, the IoT

Hub publishes events to endpoint subscribers. Maximum message size is also 256 KB in

this scenario. You can filter data using message properties, message body, and device

twin in the IoT Hub before publishing to the Azure Event Grid.

Figure 4-4.  IoT Hub message routing options

Chapter 4 Azure IoT Hub

81

It is important to realize that events will not necessarily arrive at endpoints in

the order in which they were published. In such scenarios where order is important,

message routing should be chosen over leveraging an Event Grid.

An Azure IoT Hub can support up to 500 endpoints when integrated with Azure

Event Grid. Endpoint types supported include Azure Automation, Azure Functions,

Azure Event Hubs, Azure Logic Apps, Storage Blobs, Custom Topics, Queue Storage,

Microsoft Flow, and third-party services through WebHooks.

�IoT Hub Performance Monitoring
Through the Azure Portal, you can monitor performance of your IoT Hub. Typical

statistics presented include the following:

•	 Active devices

•	 Total devices

•	 Total messages

•	 Messages per second

•	 Failed messages

•	 Failed device connections

•	 Failed twin updates

If you are going to deploy new or untested devices and want to understand what

monitoring output from them might look like, you can choose to simulate output from

the devices during solution development. Microsoft provides a device simulation

solution accelerator for this purpose. It is found on the Microsoft IoT solution accelerator

web site at https://azure.microsoft.com/features/iot-accelerators.

The sample simulations are easily spun up, and the framework provided can

be used to create custom and/or more advanced simulated devices. Figure 4-5

illustrates sources of data in a sample simulation of delivery trucks that will send

messages to your IoT Hub.

Chapter 4 Azure IoT Hub

https://azure.microsoft.com/features/iot-accelerators

82

Sample output from a simulation is presented in Figure 4-6. We see an indication as

to when the simulation began and the other performance metrics that are gathered.

Figure 4-5.  Message sources in the Microsoft IoT device simulation accelerator

Figure 4-6.  Sample output from multi-model simulation

Chapter 4 Azure IoT Hub

83

�IoT Hub Device Provisioning
The IoT Hub Device Provisioning Service is used to provision IoT devices without the

presence of hardcoded IoT connection information in the device. During manufacturing

of the device, the device is programmed to call the Provisioning Service when it is turned

on so that it can get connection information and its IoT solution assignment.

The Provisioning Service is used to enable the following tasks:

•	 Load balancing of devices across multiple hubs.

•	 Connect devices to IoT solutions based on transaction data

or use case.

•	 Connect devices to IoT Hubs with lowest latency using AMQP, AMQP

over WebSockets, MQTT, MQTT over WebSockets, or HTTPS.

•	 Reprovision the device when the device is changed.

•	 Roll keys used by the device to connect to the IoT Hub (if not using

X.509 certificates to connect).

Features present in the Device Provisioning Service include

•	 Secure attestation support for X.509 and TPM identities

•	 An enrollment list that includes devices or device groups that might

register and device configuration information

•	 Allocation policies that control how the Device Provisioning Service

assigns devices to IoT Hubs

•	 Monitoring and diagnostics logging

•	 Multiple IoT Hub assignments for devices

•	 Cross-region assignments of IoT Hubs for devices

•	 For service operations, uses HTTPS as a protocol

Note T he Device Provisioning Service can also be used to pre-authorize devices
paired with over-the-air software update solutions such as Mender.io. Such
solutions can help assure that software updates are performed in a secure manner
and that software on the devices is always current.

Chapter 4 Azure IoT Hub

84

After an IoT Hub is created, an IoT Hub Provisioning Service is set up using the

Azure Portal by providing a name for the Device Provisioning Service, choosing the

subscription you want to assign the Provisioning Service to, creating or assigning

a resource group to the new Provisioning Service, and selecting a location close to

your device. The device manufacturer adds device registration information to the

enrollment list.

A series of automated steps follow to establish the connection between the device

and the IoT Hub and begin provisioning. The device first contacts the Provisioning

Service endpoint that was set at the factory and passes its identification information to

prove its identity. The Provisioning Service validates the device’s registration ID and

key against the enrollment list either using a Trusted Platform Module (TPM) nonce

challenge or X.509 for verification. The Provisioning Service then registers the device

with an IoT Hub and populates the device’s desired twin state. After the IoT Hub returns

device ID information to the Provisioning Service, the Provisioning Service returns IoT

Hub connection information to the device and the device connects to the IoT Hub using

one of the supported cloud protocols. The device then gets the desired state information

from its device twin in the IoT Hub.

You can assign another device to a different IoT Hub in a similar manner and

then add an enrollment entry for the second device. The allocation policy selected

determines how devices are assigned to IoT Hubs. Available allocation policies include

•	 Lowest Latency. Devices are provisioned to the IoT Hub with the

lowest latency to the device.

•	 Even Weighted Distribution. Linked IoT Hubs are equally likely to

have devices provisioned to them (by default).

•	 Static Configuration using the Enrollment List. Specification of the

desired IoT Hub in the enrollment list takes priority.

The Device Provisioning Service would then be linked to the second IoT Hub.

�IoT Hub Availability and Disaster Recovery
Within a region, the IoT Hub service provides high availability through redundancies

in nearly all service layers. Microsoft’s Service Level Agreement (SLA) for the Azure IoT

Hub is 99.9 percent availability during which the Hub can send messages to and from

registered devices. During this time, the service can perform create, read, update, and

Chapter 4 Azure IoT Hub

85

delete operations on the IoT Hubs. Similarly, Microsoft states that 99.9 percent of the

time, provisioning service will be able to receive provisioning requests from devices and

register them to an IoT Hub.

That said, device applications should have retry policies and procedures built in to

deal with situations caused by transient problems. Examples of these situations include

•	 Fixing dropped network connections

•	 Switching between network connections

•	 Reconnecting after transient connection errors

To reach a higher level of availability, a disaster recovery plan can be put into place

to account for the extremely rare instance in which a data center becomes unavailable.

To implement a regional failover model, you must have a secondary IoT Hub and device

routing logic in place. The secondary IoT Hub must contain all device identities through

replication from the primary IoT Hub. When the primary region becomes available

again, all state and data created at the secondary site must be migrated back to the

primary site.

In this scenario, recovery point objectives (RPOs) are 0 to 5 minutes of data loss for

identity registry, device twin data, cloud-to-device messages, and parent and device

jobs. All unread messages are lost for device-to-cloud messages, operations monitoring

messages, and cloud-to-device feedback messages. The recovery time objective (RTO)

where manual failover is put into place using the Azure Portal ranges from 10 minutes to

2 hours. For Microsoft-initiated failovers, RTO ranges from 2 to 26 hours.

Once you’ve set up your IoT Hub(s) and start receiving data from your devices,

you are likely ready to analyze the data that is being gathered. That is the subject of the

next chapter.

Chapter 4 Azure IoT Hub

87
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_5

CHAPTER 5

Analyzing and Visualizing
Data in Azure
In this chapter, we explore processing, analyzing, and visualizing data that lands in the

Azure cloud at a deeper level than in the previous introduction provided in Chapter 2.

Our goal is to help you understand how each of the platforms and tools described are

best utilized as you consider their inclusion into your own architecture. You should gain

insight into where and how to deploy them.

As data coming from IoT devices is most often semi-structured, we focus the data

management discussion in this chapter on Azure HDInsight and Cosmos DB. Data

warehouses are also often part of the architecture as they enable business intelligence

and analytics solutions where the data lines up neatly into rows and columns. We’ll

address how they and associated tools can fit into this architecture in Chapter 7 when we

consider integration with legacy data solutions.

The following components in the IoT architecture will be covered here:

•	 Azure Stream Analytics

•	 Time Series Insights

•	 Azure Databricks

•	 Semi-structured Data Management (Azure HDInsight and Cosmos DB)

•	 Azure Machine Learning

•	 Cognitive Services

•	 Data Visualization and Power BI

•	 Azure Bot Service and Bot Framework

88

�Azure Stream Analytics
The Azure Stream Analytics in-memory streaming data analytics and event processing

engine is designed to run transformation queries against input coming from IoT Hubs,

Event Hubs, and Azure Blob Storage. It can be deployed in Azure or at the edge in

containers deployed to devices.

Transformation queries are based on SQL and are used for filtering, sorting,

aggregating, and joining streaming data or applying geospatial functions. You can also

define function calls to the Azure Machine Learning service and/or create user-defined

JavaScript or C# functions that you run in jobs. Stream Analytics jobs can be created

using the Azure Portal, Azure PowerShell or Visual Studio.

Stream Analytics can process millions of events every second in Azure. Through

partitioning, complex queries can be parallelized and executed on multiple nodes. The

Stream Analytics SLA guarantees 99.9 percent availability for event processing every

minute. There are built-in checkpoints and recoverability if delivery of an event fails.

Output can be sent to a monitored queue (such as to an Azure Service Bus, Azure

Functions, or Azure Event Hubs) to trigger alerts or custom workflows. Data can be

stored in downstream Azure data management solutions such as Azure Data Lake

Storage, Cosmos DB, SQL Database, or SQL Data Warehouse and is often visualized in

Power BI.

When you create a new job using the Azure Portal, you begin by defining the job

name, choose a subscription and resource group to use, choose a location, and indicate

the hosting environment and (in cloud deployment) the number of streaming units that

provide a pool of computation resources.

You can then set inputs and outputs and define a query stream using the Azure

Portal interface pictured in Figure 5-1. You also start, stop, and monitor jobs through this

interface.

Chapter 5 Analyzing and Visualizing Data in Azure

89

Streaming inputs can be defined coming from IoT Hubs, Event Hubs, or Blob Storage.

Reference inputs can be defined coming from Blob Storage or a SQL Database. Outputs can

be designated to Event Hubs, SQL Database, Blob Storage, Table storage, Service Bus topics,

Service Bus queues, Cosmos DB, Power BI, Azure Data Lake Storage, or Azure Functions.

�Time Series Insights
IoT devices commonly send telemetry messages to the cloud in a time series (i.e., the data

is timestamped). The data initially lands in Azure in the Azure IoT Hub or Azure Event Hub.

Time Series Insights connects to Azure IoT Hubs and Azure Event Hubs and parses JSON

from these incoming messages. Metadata is joined with telemetry, and the data is indexed

in a columnar store. The data is stored in memory and SSDs for up to 400 days. It can be

queried using the Time Series Insights explorer or using APIs in custom applications.

Figure 5-1.  Defining inputs, outputs, and queries in a Stream Analytics job

Chapter 5 Analyzing and Visualizing Data in Azure

90

You begin deployment by defining a Time Series Insights environment to be used.

The Azure Portal prompts you for an environment name, subscription, location, and

pricing tier (where tiers selected define ingress rates in millions of events per day and

storage capacity in millions of events). Next, you define the event source by providing a

name and source type (IoT Hub or Event Hub). You then select a hub (usually an existing

hub) and apply an IoT Hub access policy name. For IoT Hubs, you also set a consumer

group parameter and can create an event source timestamp property name. You can

then create the Time Series Insights environment.

Figure 5-2 illustrates a summary of these selections (with subscription id not visible).

Figure 5-2.  Time Series Insights creation summary

Chapter 5 Analyzing and Visualizing Data in Azure

91

Once operational, you can query data using the Time Series Insights explorer or

through APIs. Figure 5-3 shows one of the visualizations provided by the Time Series

Insights explorer. Here, the tool is being applied to sample data provided by Microsoft

that helps explain explorer functionality.

Figure 5-3.  Time Series Insights explorer

Time series data can be monitored to determine the health of the device. You can

apply perspective views and discern patterns when performing root cause analysis.

Azure Stream Analytics might also be inserted into the data flow to help you find

anomalies and send alerts.

�Azure Databricks
Azure Databricks enables a fully managed Apache Spark cluster in the cloud. You can

program in Python, R, Scala, SQL, and Java and utilize the Spark Core API. As the entire

Spark ecosystem is provided, you can use Spark SQL to work with tabular data stored in

DataFrames, process and analyze streaming data in real-time (with integration to HDFS,

Chapter 5 Analyzing and Visualizing Data in Azure

92

Flume, and Kafka), utilize GraphX, and access the MLib machine learning library that

includes classification, regression, clustering, collaborative filtering, and dimensionality

reduction algorithms.

The Databricks Runtime is built upon this Spark base and can be deployed as

serverless. It can also be utilized with datastores that support Spark such as Azure Data

Lake Storage, Blob Storage, Cosmos DB, and Azure SQL Data Warehouse.

Through the Azure Portal, you begin by creating an Azure Databricks workspace

(providing a workspace name, subscription, resource group, location, and pricing tier).

You are then ready to create a Databricks cluster.

Databricks cluster creation begins with you providing a cluster name and defining

the cluster mode (standard or high concurrency). You select the Databricks runtime

version that you wish to deploy as well as the Python version that will be used. You

next select whether you want autoscaling turned on and when you would like the cluster

terminated if there is inactivity (where the length of time is provided in minutes). Next,

you select the minimum number and maximum number of worker nodes and the type of

hardware used. You also select the type of hardware used for the driver. Advanced options

can be applied including Spark configuration options, tags, logging, and init scripts.

The Azure Portal interface for creation of a new Databricks cluster is shown in Figure 5-4.

Figure 5-4.  Databricks cluster creation in the Azure Portal

Chapter 5 Analyzing and Visualizing Data in Azure

93

Once you’ve created the cluster, Databricks will present a screen like the following

shown in Figure 5-5. You will see your resource group, the name of the managed

resource group, the subscription information, the URL for Azure Databricks at the

location you selected, and the pricing tier. From this screen, you can launch the

workspace. You can also follow links to documentation, getting started, importing

data from a file, importing data from Azure storage, access to a notebook, and the

Administrators’ Guide.

Figure 5-5.  An initial view of Databricks after cluster creation

Upon launching the workspace, you will be logged in using your Azure Active

Directory identity. Your Databricks workspace will appear like that shown in Figure 5-6.

Common tasks you will likely want to execute are shown on the left in the figure

including creating a new notebook (through a web-based application that enables

creating and sharing of documents that contain the live code, equations, visualization,

and descriptive text); uploading data (from a file, DBFS, Azure Blob Storage, Azure Data

Lake Storage, Cassandra, JDBC, Kafka, Redis, or Elasticsearch); creating a table; creating

a new cluster, new job, or new MLflow experiment; importing a library; or reading the

documentation. As you create notebooks, they will appear under “Recents” heading.

Chapter 5 Analyzing and Visualizing Data in Azure

94

A Quickstart Notebook is provided by Microsoft as an example. A portion of that

notebook is shown in Figure 5-7.

Figure 5-6.  Databricks workspace

Figure 5-7.  Typical notebook view in Databricks

Chapter 5 Analyzing and Visualizing Data in Azure

95

Within notebooks, you can provide code in R, Python, Scala, or SQL and provide

supporting commentary and documentation. You can visualize data using tools such as

Matplotlib, ggplot, or d3. Power BI provides additional data visualization capabilities as

described later in this chapter.

�Semi-structured Data Management
In addition to processing and analyzing data at the edge or within the data stream,

machine learning models are often developed through analysis of historical data over

lengthy time periods. Such data needs to land in a data management system designed

for storing and analyzing such data.

NoSQL databases are ideal for semi-structured data. At the beginning of this century,

Hadoop established itself as a popular open-source historical data store. The Hadoop

version available in a PaaS offering from Microsoft is Azure HDInsight. More recently,

NoSQL databases that are globally distributed have proven their ability to scale to

enormous sizes. Microsoft’s PaaS offering here is Cosmos DB.

In this section of the chapter, we’ll describe Azure HDInsight and Cosmos DB. Either

can be created through the Azure Portal, Azure CLI, and PowerShell. We’ll describe the

creation of these data management systems using the Azure Portal.

�Azure HDInsight
Azure HDInsight is Microsoft’s cloud-based offering that consists of Apache Hadoop

components in the Hortonworks Data Platform (HDP). HDInsight clusters enable

deployment of Hadoop, Spark for in-memory processing, Hive low-latency analytical

processing (LLAP) for queries, Kafka and Storm for processing streaming data, HBase (a

NoSQL database), and/or ML Services.

Clusters are monitored using Apache Ambari and the Azure Monitor. Cluster health

and availability, cluster resource utilization, performance across the entire cluster,

and YARN job queues are monitored with Ambari. Resource utilization at the virtual

machine level is monitored using Azure Monitor. Information about the workloads being

run is present in the YARN resource manager and in Azure Monitor logs.

Chapter 5 Analyzing and Visualizing Data in Azure

96

Languages native to Hadoop include Pig Latin, HiveQL, and

SparkSQL. Programming languages supported include Java, Python, .NET, and Go.

Other languages, such as Scala, can be deployed in Java Virtual Machines. Typical

development environments that are used include Visual Studio, Visual Studio Code,

Eclipse, and Intellij for Scala.

Microsoft released several versions of the distribution that was initially deployed

to either Azure Data Lake Storage (ADLS) Gen1 featuring a hierarchical file system or

to Blob Storage. The release of ADLS Gen2 provides a combination of hierarchical file

system and Blob Storage capabilities, and it is now commonly selected for deployment of

HDInsight clusters.

An Azure Blob System (ABFS) driver is provided with HDInsight, as well as

Databricks, providing access to storage. If you are going to use Azure Data Lake Storage

in the deployment, ADLS must be created first.

Note U sing the Azure Portal to create ADLS, you first select a subscription and
resource group for the storage account, give it a name, and set the location. You
can also specify performance, account kind, replication, and access tier. Next in
advance, you can set security and virtual network fields (if not satisfied with the
defaults provided). In the Data Lake Storage Gen2 section, you set the hierarchical
namespace to enabled.

Deploying HDInsight is a three-step process using the Azure Portal. You begin by

defining basic properties including a name for the Hadoop cluster, subscription to be

used, cluster login name and password, secure shell (SSH) username, password for SSH,

resource group for the cluster and dependent storage account, and location. You also

select the cluster type and select the version of HDInsight that you want to deploy.

Next, you select the storage type (either Azure Blob Storage or Azure Data Lake

Storage) and the storage account (from your subscriptions or from another subscription

by providing an access key). You can choose to preserve metadata outside of the cluster

by linking a SQL database for Hive and/or Oozie.

In the third step, you receive a summary of your selections and can edit those

selections. When satisfied with the choices made, you next create the cluster. Clusters

can take up to 20 minutes to be created.

Chapter 5 Analyzing and Visualizing Data in Azure

97

A common means of moving data into and out of HDInsight when connected to the

IoT Hub is to use Apache Kafka. You would begin by installing the IoT Hub Connector

on an edge node in the HDInsight cluster. You would then get the IoT Hub connection

information, configure the connector to serve as a sink and/or source for data

movement, and start the connector.

�Cosmos DB
Cosmos DB is a globally distributed multi-model database. The database can manage

key-value, columnar, document, and graph data. Indexing of all data is automatic, and

no schema or secondary indexes are required. Data can be made accessible using SQL,

the MongoDB API, Cassandra API, Azure Table Storage API, or Gremlin API.

Storage and throughput are elastically scaled across regions making it possible

to handle hundreds of millions of requests per second. Since the data is globally

distributed, SLAs are provided where 99 percent of read and write requests will occur

within 10 milliseconds in the region closest to the user. SLAs of 99.999 percent for high

availability can also be attained.

Depending on performance needed, a variety of data consistency levels can be

specified. The data consistency levels can be designated as follows:

•	 Strong Consistency. Only when an operation is complete is it is

visible to all.

•	 Bounded Staleness Consistency. Read operations will lag writes

based on consistent prefixes or time intervals; this level preserves

99.99 percent availability.

•	 Session Consistency. Consistent prefixes are applied with

predictable consistency for a session, featuring high read throughput

and low latency.

•	 Consistent Prefix Consistency. Reads will never see out-of-order

writes.

•	 Eventual Consistency. Provides the lowest cost for reads; however,

there is a potential for reads seeing out-of-order data.

Chapter 5 Analyzing and Visualizing Data in Azure

98

When creating a Cosmos DB database using the Azure Portal, you provide basic

information on the first Cosmos DB Account screen, then networking and tagging

information, and finally review and creation of the Cosmos DB account. Figure 5-8

illustrates the first screen in the creation process in which you provide subscription

information, the name of the resource group, an account name, specify the API that

will be used and the originating location, and enable support of geo-redundancy and

multiregion writes.

Figure 5-8.  Initial configuration of Cosmos DB

Chapter 5 Analyzing and Visualizing Data in Azure

99

Loading of data into Cosmos DB from IoT devices can programmatically take place

in many ways. Some examples include

•	 Loading of data from the Databricks in-memory engine (where data

initially landed in Azure in the IoT Hub and then was loaded into

Databricks)

•	 Creating stored procedures and Logic Apps in an Event Grid

deployed in the IoT Hub that write data into Cosmos DB

•	 Deploying Azure Functions in IoT Hub message routing that write

data to Cosmos DB

�Azure Machine Learning
Azure Databricks, previously described in this chapter, is only one of the means to build

machine learning solutions in Azure. In this section, we’ll look at the following:

•	 Azure Machine Learning Studio

•	 Azure Machine Learning service (including development environments)

�Azure Machine Learning Studio
Azure Machine Learning Studio is an online development environment providing a drag-

and-drop interface that is used in building, testing, and deploying predictive analytics

solutions. At the time this book was published, experiments were limited to training sets

of no more than 10 GB in size. However, a visual interface based on ML Studio integrated

with the Azure Machine Learning service was in preview enabling preparing, training, and

deployment with much larger datasets typically used by data scientists.

Drag–drop modules and functions are provided for building experiments that

include saved datasets, trained models, transforms, data format conversions, data

transformation, feature selection, machine learning, Open CV library modules, Python

language modules, R Language Modules, statistical functions, text analytics, time series

anomaly detection, and web services. The machine learning category includes functions

used in evaluation, initializing the model using anomaly detection, classification,

clustering, or regression algorithms, scoring, and training. Statistical functions include

math operations, linear correlation, probability distribution functions, t-test, and

descriptive statistics reporting.

Chapter 5 Analyzing and Visualizing Data in Azure

100

Figure 5-9 shows the interface with icons representing projects, experiments, web

services, notebooks, datasets, trained models, and settings on the far left, functions and

modules to the right, then the canvas showing the experiment, and finally the properties

and project information. Across the bottom, you have options to run history, save or save

as the current experiment, discard changes, run the experiment, set up a web service, or

publish to the ML Studio Gallery.

Figure 5-9.  Azure Machine Learning Studio experiment

In the figure, we see a typical experiment data flow that begins with data input

containing known outcomes, then preparing the data, splitting it for model training

purposes, testing various mathematical models against the data, scoring them, and

evaluating them for accuracy. Once we’re satisfied with a specific model, we convert

the training experiment into a predictive experiment and can deploy it as a web service.

Sample code is also provided in C#, Python, and R.

Chapter 5 Analyzing and Visualizing Data in Azure

101

�Azure Machine Learning Service
The Azure Machine Learning service is Microsoft’s PaaS offering used to train, deploy,

and manage machine learning models at scales that data scientists typically work with.

It is an open framework and can be used with open-source libraries that include MXNet,

PyTorch, scikit-learn, and TensorFlow.

You begin by first generating a Machine Learning service workspace, typically

through the Azure Portal. You provide a workspace name, subscription, resource group,

and Azure region location for the workspace to be run.

In Figure 5-10, we see that a couple of Azure Machine Learning Workspaces have

been created.

Figure 5-10.  Machine Learning services workspaces in the Azure Portal

You’ll have access to “Getting Started in Azure Notebooks,” a Forum, samples in

GitHub, and the documentation when you enter the workspace. You will also have

access to other features under public preview.

Chapter 5 Analyzing and Visualizing Data in Azure

102

Most data scientists prefer to write code (most often in Python) that performs

data cleansing and transformation, simulation and modeling, machine learning,

and data visualization. Jupyter Notebooks are open-source web applications that

enable creating and sharing of documents that contain the live code, equations,

visualization, and descriptive text. Azure Notebooks provide this capability, as

Figure 5-11 illustrates.

Figure 5-11.  Azure Notebook

Azure Notebooks are a preinstalled free cloud service that support up to 4 GB of

memory and 1 GB of data. To remove these limits, you can attach a Notebooks project to

a VM running the Jupyter server or to the Azure Data Science Virtual Machine.

The Azure Data Science VM includes popular data science and related tools

preinstalled and pre-configured and comes in Linux Ubuntu and Windows editions.

Some of the tools that you will find here include Microsoft R/Open, Microsoft ML Server

(with support for R and Python), Anaconda Python, various data management servers,

Spark-based big data platforms used for development and testing, a Jupyter Notebook

Server, IDE support for R Studio and Visual Studio, data movement and management

tools, machine learning tools, and deep learning tools.

Microsoft developers will be happy to find that Visual Studio can also be used for

building, testing, and deploying Azure Machine Learning service solutions. The code

editor highlights syntax, provides intelligent code completion (known as Intellisense),

Chapter 5 Analyzing and Visualizing Data in Azure

103

and provides auto text formatting. You can debug your code locally by installing

appropriate Python versions and libraries and the deep learning frameworks that you are

using in your project.

Figure 5-12 illustrates Visual Studio being used in testing Python Code for Azure

Machine Learning service, with Cloud Explorer shown on the left.

Figure 5-12.  Visual Studio and Python development for Azure ML service

When you run your experiment, you can view the results through the Azure Portal

interface into your workspace. You can apply active filters and view the maximum

number of iterations to be run and the results of each iteration as shown in Figure 5-13.

Above the experiment results in the figure, you also see tabs for pipelines, compute

applied, models used, images (containers) created, deployments, and a summary of

all activities. Thus, you can use this interface to track your models from inception to

deployment.

Chapter 5 Analyzing and Visualizing Data in Azure

104

�Cognitive Services
Azure Cognitive Services provides APIs, SDKs, and services enabling software developers

to add cognitive features into applications. As noted in Chapter 2, these services focus

in the areas of vision, speech, language, search, and decision. In the building of IoT

applications, vision and decision are most often considered for deployment.

The Computer Vision Service provides advanced algorithms for processing

information and returning information. The Custom Vision Service enables building

of custom image classifiers. Both services are typically used with smart cameras that

capture images at the edge and perform local analysis or transmit images to the cloud

where the algorithms process the data.

The Computer Vision Service has several visual features relevant in IoT applications.

It can be used to detect brands, assign images to categories based on taxonomies that

you define, determine accent and dominant colors, provide descriptions, detect objects,

and apply tagging.

Figure 5-13.  Azure ML service experiment results tracked in the Azure Portal

Chapter 5 Analyzing and Visualizing Data in Azure

105

The Custom Vision Service provides an image training environment. You begin by

tagging a set of training images using tags that are consistent with what you are trying

to detect. For example, if you are trying to train the service to detect the types of crops

in a farm field, you’d first assemble a training set of images that are tagged with the crop

types you wish to detect.

The image dataset in our example comes from public domain images posted by the

USDA Agricultural Research Service (ARS). We tagged the images as showing alfalfa,

corn, soybeans, or wheat. Figure 5-14 displays some of the images we uploaded into

Custom Vision and denotes the number of each tagged image type used in the training.

Figure 5-14.  Training images uploaded into Custom Vision

Next you train the model and set a probability threshold for accuracy. The default is

a goal of reaching 50 percent accuracy or above. You begin the training by simply hitting

the train button shown in the previous figure.

Figure 5-15 illustrates the outcome of our second iteration of training. The precision

indicates likeliness that a tag predicted by the model will be correct (60 percent in this

example). Recall is a measurement of model sensitivity indicating the percentage of

relevant tags detected (in comparison to the total relevant tags) and is also 60 percent in

this iteration. The AP is average precision and is a measure of the model’s performance

summarizing the precision and the recall at different thresholds.

Chapter 5 Analyzing and Visualizing Data in Azure

106

Finally, you begin to test the model for accuracy using images that were not part of

the training set. In the example shown in Figure 5-16, we have an image that has a couple

of crops present. Corn is predicted with a high probability. Our model has less certainty

regarding the second crop, predicting with low probability that it could be alfalfa or

soybeans. If dissatisfied with this analysis, properly tag and add this and other images to

the mix of training images and retrain the model producing a new iteration.

Figure 5-15.  Custom Vision image training performance

Chapter 5 Analyzing and Visualizing Data in Azure

107

Custom Vision can have many other use cases. For example, models might be

produced for use in visual inspection of the condition utility lines to determine the need

for their replacement, analyzing medical images for possible anomalies where further

diagnoses might be needed, and determining whether there is proper alignment of

components being placed into parts on a manufacturing assembly line.

Among the decision APIs, the Anomaly Detector is particularly relevant to IoT

applications. You can use these RESTful APIs to detect anomalies in streaming data,

leveraging previously seen data points. The APIs can also generate models that detect

anomalies in JSON formatted time series datasets created in batch processes.

The APIs can provide details about the data including expected values, anomaly

boundaries, and positions. Anomaly boundaries are automatically set. However, you

can manually adjust the boundaries if you prefer more (or less) sensitivity in identifying

anomalies.

Figure 5-16.  Custom Vision tested with an image not used in training

Chapter 5 Analyzing and Visualizing Data in Azure

108

�Data Visualization and Power BI
Power BI is a business intelligence platform from Microsoft used in visualizing,

aggregating, analyzing, and sharing data and data analysis. The Power BI service is

deployed in the Microsoft cloud. The Power BI Desktop is free, downloadable software

for your personal computer providing an environment to connect to data sources,

develop data models, create visuals, and combine visuals into reports. Once created, you

can publish these reports to the Power BI service.

When starting in Power BI Desktop, you likely will first download a sample of data

to begin development. As development progresses and/or you deploy to the Power BI

service, you can use Direct Query to analyze and report on the full live dataset.

In IoT scenarios, typical data sources include Blob Storage, Azure Data Lake Storage,

HDInsight (HDFS, Interactive Query, and Spark), and Cosmos DB. Relational database

sources that can be accessed include Azure SQL Database, Azure SQL Data Warehouse,

Azure Analysis Service, Microsoft SQL Server and SQL Server Analysis Services, IBM

DB2, Informix, and Netezza, MySQL, Oracle, PostgresSQL, SAP HANA and Business

Warehouse, Snowflake, and any database supporting ODBC. Online services such as

Dynamics and Salesforce can be accessed. Additionally, file types such as Excel, XML,

JSON, PDF, and text or CSV can be leveraged.

Once loaded into Power BI Desktop, you might choose to transform data in the data

model. For example, you can rename tables, update data types, append tables together

and cleanse data so that similar sets can be combined, and rename groups of data.

You can model data relationships within the Power BI Desktop or rely on the

Desktop to automatically infer relationships. Figure 5-17 illustrates the relationships that

might exist in data coming from a smart retail shelf application that gathers information

on products being put into shopping carts and identifies out of stock situations.

Chapter 5 Analyzing and Visualizing Data in Azure

109

As you create the report, you can select from many different data visualizations

provided. Examples of available visualizations include stacked bar charts, stacked

column charts, clustered bar charts, clustered column charts, 100 percent stacked

bar charts, 100 percent stacked column charts, line charts, area charts, stacked area

charts, line and stacked column charts, line and clustered column charts, ribbon charts,

waterfall charts, scatter charts pie charts, donut charts, treemaps, filled maps, funnels,

gauges, cards, multi-row cards, KPIs, slicers, tables, matrices, R script visuals, Python

visuals, ArcGIS Maps, globe maps, tornado charts, and custom visuals that you import.

A typical report created in the Power BI Desktop appears in Figure 5-18. We see

a couple of visualizations from reported data on the left (table and line chart views),

additional visualizations available and filters applied in the right center, and data items

selected from the tables used in the report on the right.

Figure 5-17.  Layout of tables in Power BI Desktop

Chapter 5 Analyzing and Visualizing Data in Azure

110

Reports are published to the Power BI service to enable access by a community of

users. In Figure 5-19, we show what the same desktop report would initially look like in

the Power BI service.

Figure 5-18.  A typical report in Power BI Desktop

Chapter 5 Analyzing and Visualizing Data in Azure

111

Within the Power BI service, you can create a layout of the same report as it would

appear on a mobile device as illustrated in Figure 5-20.

Figure 5-19.  A report rendered in Power BI in a web browser view

Chapter 5 Analyzing and Visualizing Data in Azure

112

From within the Power BI service, you can also create different reports applying

other filters and visualizations. In Figure 5-21, we see creating a report focused on out-of-

stock items and their impact on revenue.

Figure 5-20.  A report rendered in Power BI as a mobile view

Chapter 5 Analyzing and Visualizing Data in Azure

113

Figure 5-21.  A new report created in Power BI

Whereas reports show data from a single dataset, dashboards can display data

present from a variety of datasets and reports. As such, they can provide a more holistic

view as to how a business is functioning and leverage data from IoT devices and lines of

business systems.

Dashboards are created only in the Power BI service (not through the Desktop). The

dashboards can be created from scratch directly from datasets, by pinning reports, or by

modifying existing dashboards.

A supplier quality analysis Power BI dashboard appears in Figure 5-22 as an

example. The dashboard presents data in tiles with a variety of visualizations present in

this example.

Chapter 5 Analyzing and Visualizing Data in Azure

114

Power BI has a natural language interface called Q&A that can guide users through

data exploration. Figure 5-23 illustrates a visualization being created through this

interface that can then be deployed as a tile to the Power BI dashboard.

Figure 5-22.  A Power BI dashboard

Figure 5-23.  Power BI dashboard Q&A

Chapter 5 Analyzing and Visualizing Data in Azure

115

Quick Insights can guide you toward interesting information in your data. You can

run Quick Insights against datasets or individual dashboard tiles. The algorithms that are

applied discover

•	 Category outliers (top and/or bottom)

•	 Change points in a time series

•	 Correlation

•	 Low variance

•	 Major factors (e.g., most of a total value comes from a single factor)

•	 Overall trends in time series

•	 Seasonality in time series

•	 Steady share

•	 Time series outliers

Sample output from Quick Insights against the data in our earlier smart shelf

example produced various charts. Figure 5-24 shows average of outage minutes vs.

hourly sales (with an outlier indicated) and count of manufacturers vs. hourly sales.

Chapter 5 Analyzing and Visualizing Data in Azure

116

Figure 5-24.  Quick Insights output

Chapter 5 Analyzing and Visualizing Data in Azure

117

Note P ower BI users can be granted access to Azure Machine Learning models
developed by data scientists. Power Query will discover the models which the user
has access to and exposes them as dynamic Power Query functions. At the time
this book was published, this capability was supported in Power BI dataflows and
in Power Query online in the Power BI service.

You can collaborate with others in the creation of reports and dashboards by sharing

workspaces. Once created, access to reports and dashboard tiles can be made available

through Microsoft Teams by adding Power BI Tabs to channels and pointing to the report

or tile link. Reports can also be printed (including as PDFs) or embedded into portals.

Reports and dashboards in the Power BI service can also be shared directly to e-mail

addresses where the individuals will have the same access as the publisher (unless row-

level security applied to the dataset restricts them). When granting access, the publisher

can choose to allow the recipient to also share the report or dashboard or build new

content using the underlying dataset.

�Azure Bot Service and Bot Framework
Bots provide a question and answer or natural language interface akin to talking to a

human or intelligent robot. The Azure Bot Service and Bot Framework provide tools

used in building, testing, deploying, and managing intelligent bots. Microsoft provides

an extensible framework that includes the SDK, tools, templates, and AI services.

You can extend your bot’s functionality by using Microsoft’s QnA Maker to set up a

knowledge base to answer questions. Natural language understanding is accomplished

by leveraging LUIS in Cognitive Services. Multiple models can be managed and

leveraged during a bot conversation. Graphics, menus, cards, and buttons can be added

to text to complete the experience.

For example, you might use QnA maker as a front-end to users that then pushes SQL

to backend data management systems. You might also use a bot to push a command to

an IoT edge device.

Figure 5-25 illustrates a quick start for setting QnA Maker up available through the

Azure Portal.

Chapter 5 Analyzing and Visualizing Data in Azure

118

Microsoft provides a Bot Framework Emulator useful in debugging and

interrogations. Once you have configured your bot in the Azure Portal, the bot can also

be reached through a web chat interface for testing. When testing is complete, you can

publish your bot to Azure or a web service.

Once deployed, you can gather data in the Azure Portal related to traffic, latency,

users, messages, and channels. You can use this data to determine how best to improve

the capabilities and performance of your bot.

Figure 5-25.  QnA Maker quick start accessed through Azure Portal

Chapter 5 Analyzing and Visualizing Data in Azure

119
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_6

CHAPTER 6

IoT Central and Solution
Accelerators
Now that we’ve explored many of the key components in an IoT architecture, we are

going to look at Microsoft’s IoT solutions that package several of these components

together. Each is designed to simplify and speed deployment of commonly implemented

IoT solutions.

All the solutions described in this chapter feature the Azure IoT Hub. As discussed

in Chapter 4, the IoT Hub enables connectivity and management that can be scaled to

interface with large numbers of devices and enables high-volume telemetry ingestion,

command and control of the devices, and enforcement of device security.

We’ll begin by describing Microsoft’s SaaS IoT offering called IoT Central. It is a

Microsoft-managed offering in which underlying services are not exposed. Setup and

management of IoT Central are via a browser-based interface.

The Microsoft IoT solution accelerators access a variety of underlying PaaS services

and are designed to enable a greater degree of customization. When this book was

published, the following solution accelerators were available:

•	 Remote monitoring

•	 Connected factory

•	 Predictive maintenance

•	 Device simulation

IoT Central and the solution accelerators are accessible via Microsoft web sites

where you will also find links to documentation, developer’s guides, an IoT School, the

IoT Show (pre-recorded interviews/overviews describing component capabilities),

access to the IoT Technical Community, and access to the IoT Device Catalog.

120

As you might expect, the major sections of this chapter are the following:

•	 Azure IoT Central

•	 IoT Solution Accelerators

�Azure IoT Central
Azure IoT Central provides a SaaS solution for gathering time series data from devices

linked to the Azure IoT Hub and providing an interface for monitoring and managing the

devices through Time Series Insights. It is designed to align with the roles and activities

of the following individuals involved in your project:

•	 Builders. Define the types of devices connecting to the IoT Central

application and customize the application. Builders create device

templates to define telemetry that is being sent, define business and

device properties, set thresholds that the application responds to, set

device behavioral settings, and test the templates (often by initially

using simulated data).

•	 Operators. Manage devices connected to the application including

device monitoring, troubleshooting and remediation of problems,

and provisioning of new devices.

•	 Administrators. Manage access to the IoT Central application

through user roles and permissions.

•	 Device Developers. Create code to run on the devices using SDKs.

The code is used in creating secure connections, sending telemetry,

reporting on status, and receiving configuration updates.

IoT Central is accessible through a Microsoft web site at https://azure.microsoft.

com/services/iot-central. The web site heading is pictured in Figure 6-1. This site

provides the links and information you need to get started.

Chapter 6 IoT Central and Solution Accelerators

https://azure.microsoft.com/services/iot-central
https://azure.microsoft.com/services/iot-central

121

When you are ready to build your first application and initially enter IoT Central,

you’ll be presented with the screen shown in Figure 6-2.

Figure 6-1.  IoT Central web site

Chapter 6 IoT Central and Solution Accelerators

122

You can try IoT Central for free for the first 7 days or choose to pay as you go. Then

you select an application template from samples that are provided or define your own

custom application. If new to IoT Central, you might choose to deploy the Contoso

sample template that Microsoft provides so that you can gain familiarity with the

subsequent interfaces.

We’ve selected creating a custom application in the previous figure. We also gave

the application a name, noted the URL assigned, and provided appropriate billing

information. The following dashboard and options are then presented as shown in

Figure 6-3.

Figure 6-2.  Creating an IoT Central application

Chapter 6 IoT Central and Solution Accelerators

123

Choosing to create device templates, we next define our device measurements

(telemetry, state, event, and location), settings for devices (numbers, text, date,

toggle, section labels), properties (such as device, customer, and service information),

commands that remotely manage devices, rules that trigger actions when certain

monitored conditions arise, and the dashboards for our devices. The interface to do this

in IoT Central, including the measurements that can be created, is shown in Figure 6-4.

Figure 6-3.  Creating a custom IoT Central application

Figure 6-4.  Interface to create a device template for an IoT Central application

Chapter 6 IoT Central and Solution Accelerators

124

Once a new device type is defined in a template, we can add the device using the

device explorer in the interface. We enter the device ID and device name and then adjust

settings and provide property information as needed. Next, we generate a connection

string for the device, prepare a Node.js project associated with the device, and then

configure the client code.

Note A zure IoT Central relies on the Azure IoT Hub Device Provisioning Service
(DPS) to manage device registrations and connections to your devices. You can
generate device credentials and configure the devices offline without registering
them through the IoT Central interface and use your own device identifiers
to register devices. You can set up shared access signatures (SAS) or X.509
certificate authority to enable devices to connect. All data exchanged between the
devices and Azure IoT Central is encrypted.

For purposes of illustrating what a deployed solution looks like, we’ve created the

Contoso sample application that gathers data from simulated refrigerated vending

machines. If you choose to create that sample application, your dashboard should

appear like the image shown in Figure 6-5. There are options to view just devices with

active maintenance contracts, just the devices located in Seattle, add a device set to

group the devices in another way, or view all devices.

Chapter 6 IoT Central and Solution Accelerators

125

On the menu along the left side, in addition to viewing the dashboard, we can access

device explorer, device sets, analytics, and jobs. We also see access to device templates,

continuous data export, and administration.

In the sample application, if we access device explorer and look at the measurements

for one of the devices, we’ll see telemetry measurements being tracked on the left

(including accelerometers, gyroscopes, humidity, magnetometer, pressure, and

temperature). We also see the time series display of recent measurements tracked in the

chart on the right as shown in Figure 6-6.

Figure 6-5.  IoT Central application dashboard for Contoso sample application

Chapter 6 IoT Central and Solution Accelerators

126

The dashboard in device explorer consists of customizable views of a device.

For the same refrigerated vending machine in our example, the dashboard is set up

to show machine information; anti-tampering information based on data from the

accelerometers; maximum temperature, average pressure, and minimum humidity

readings; and a chart of environmental trending over time of humidity, temperature, and

pressure. That dashboard is shown in Figure 6-7.

Figure 6-6.  Sample measurements shown in IoT Central Device Explorer

Chapter 6 IoT Central and Solution Accelerators

127

In device sets, we find the device set names, their descriptions, and the device

template used. We can set conditions for device sets by selecting properties (such as

location, temperature alerts, fan speed, etc.), an operator (value for the property equals,

does not equal, is greater than, is greater than or equal to, is less than, is less than, is

equal to, contains, etc.), and a value. We can also view individual devices within each

device set. Here, we can view measurements, settings, properties, commands, rules, and

the dashboard for each device. For example, we might set a rule that an alert is sent if the

device is moved more than a certain distance.

In analytics, we choose the device set we want to apply analytics to; set a filter

on a measurement including a condition, operator, and value (similar to device sets

approach); define a time period we want to look at (from 10 minutes to last month to

custom); and then show results. Figure 6-8 shows a view of analytics performed based on

filtering applied to temperature readings.

Figure 6-7.  Sample refrigerator dashboard in IoT Central Device Explorer

Chapter 6 IoT Central and Solution Accelerators

128

Jobs can be created to set device properties or settings. We begin by defining a job

name and providing a description and device set to use. We define whether the job

type is aligned to device properties or settings and then select a property or setting and

provide a value. Figure 6-9 shows setting up a job to set fan speed in a couple of the

refrigerated vending machines in a defined group (i.e., those that are in Seattle).

Figure 6-8.  IoT Central analytics applied to refrigerator temperature data

Figure 6-9.  Interface to create a job in an IoT Central application

Chapter 6 IoT Central and Solution Accelerators

129

Functions below the line on the left side of the application interface in the previous

figures are focused on setup and management. These include access to setting up device

templates (previously introduced), continuous data export, and administration.

When creating a new device template, you can create a custom template or utilize

one of those that Microsoft provides as shown in Figure 6-10. A new device template is

created as version 1.0.0.

Figure 6-10.  Creating a new device template in IoT Central

If you later make changes to settings or required properties in the device template,

you will be prompted to create a new version. This can be extremely useful as you might

initially find that rules are broken in the new version, such as when properties that

conditions rely upon have been removed. Some of the tiles in your dashboard might also

be broken if properties or settings are removed. While you fix these problems, operators

will still have access to the old fully working version. When you are ready, you can

migrate devices to the new version through device explorer.

Continuous data export enables you to export data from IoT Central to your storage.

(i.e., Azure Blob Storage, Azure Event Hubs, Azure Service Bus). The administration

interface enables management of application settings, users, roles, billing, device

connection, access tokens, application customization, help customization, and

application template export.

�IoT Solution Accelerators
The IoT solution accelerators are designed to speed implementation of popular IoT

scenarios, such as those for remote monitoring, connected factories, and predictive

maintenance, by automatically provisioning key PaaS Azure cloud services needed

Chapter 6 IoT Central and Solution Accelerators

130

in each scenario. Microsoft positions the solution accelerators as starting points for

your own IoT solutions. They are designed to be scalable, modular, understandable,

extensible, and secure.

At the time this book was published, Microsoft was in the process of moving the

solution accelerators from a model-view-controller (MVC) architecture written in .NET

to a microservices architecture. A microservices architecture can improve the flexibility,

reliability, and scalability of a solution. The Remote Monitoring and Device Simulation

solution accelerators were already deployable in a microservices architecture when this

book was written.

The underlying code in the solution accelerators is open source and available on

GitHub. For customization of backends, you will need Java or .NET skills. Visualizations

can be customized using JavaScript.

You likely will begin exploring the Azure IoT solution accelerators through the

Microsoft web site at https://azure.microsoft.com/features/iot-accelerators.

Figure 6-11 shows the web site heading.

Figure 6-11.  IoT solution accelerators home page

Chapter 6 IoT Central and Solution Accelerators

https://azure.microsoft.com/features/iot-accelerators

131

Figure 6-12 shows the four solution accelerators on the home page. By choosing

links in this interface, you can provision each of the services. If you prefer, you can also

deploy the solution accelerators from the command line. For solution accelerators other

than Device Simulation, there is also a link to try a demo of the solution. The demos

can be particularly useful when you want to explore the capabilities that these solution

accelerators provide.

Figure 6-12.  IoT solution accelerators

Chapter 6 IoT Central and Solution Accelerators

132

Next, we’ll explore each of the IoT solution accelerators regarding their capabilities

and key resources that are provisioned.

�Remote Monitoring
The Remote Monitoring solution accelerator enables collection of telemetry from

multiple devices in remote locations. A dashboard shows the telemetry from the devices

and provides an interface used to provision new devices or upgrade device firmware.

When you deploy the Remote Monitoring solution accelerator, you have a choice

of standard, basic, or local configurations. The standard configuration is intended for

production and deploys microservices on several Azure virtual machines. The basic

configuration is intended for testing and demos and deploys the microservices on a

single Azure virtual machine. The local virtual machine deployment is intended for

testing and development and connects to the Azure IoT Hub to reach cloud resources.

Automated provisioning provided by the Remote Monitoring Solution Accelerator

generates, creates, and configures the activities used in setting up the needed cloud services.

These activities appear in Figure 6-13. In our example, we built the basic configuration.

Figure 6-13.  Remote Monitoring solution accelerator automated
provisioning

Chapter 6 IoT Central and Solution Accelerators

133

The Azure cloud services started in the resource group that are created are shown

in Figure 6-14. Among the key resources made available is the single virtual machine

for the microservices, the Azure IoT Hub, Cosmos DB, storage accounts, Time Series

Insights, Azure Maps, Stream Analytics job, Event Hub, Logic App, and Apps Services.

Microservices in this solution include an IoT Hub Manager microservice, device

telemetry microservice, storage adapter microservice, Azure Stream Analytics manager

microservice, and device simulation microservice.

Figure 6-14.  Azure Resource Group for Remote Monitoring services

When using the Remote Monitoring solution accelerator for demos (along with the

supplied simulated device data), you can explore readings from a variety of chillers,

elevators, engines, trucks, and prototypes. The main dashboard is shown in Figure 6-15.

Chapter 6 IoT Central and Solution Accelerators

134

You can see that the dashboard leverages Azure Maps to display where the devices

are located. Integration with Time Series Insights (e.g., the menu shown on the left in

 the figure) is evident.

�Predictive Maintenance
The Predictive Maintenance solution accelerator uses machine learning algorithms

applied to device telemetry data to predict when the devices will fail. This solution can

be used to put into practice optimal device maintenance plans and activities.

Automated provisioning provided by the Predictive Maintenance solution

accelerator generates, creates, and configures the activities used in setting up the needed

cloud services. These activities appear in Figure 6-16.

Figure 6-15.  Remote Monitoring dashboard

Chapter 6 IoT Central and Solution Accelerators

135

The Azure cloud services started in the resource group that are created are shown in

Figure 6-17. Key resources made available include the Azure IoT Hub, storage accounts,

a Machine Learning Studio workspace, Stream Analytics job, Event Hub, and Apps

services. The Stream Analytics job first selects all device telemetry and sends data to blob

storage for visualization and then computes average sensor values over 2-minute sliding

windows (sending this data through an Event Hub to an event processor).

Figure 6-16.  Predictive Maintenance Solution Accelerator automated provisioning

Chapter 6 IoT Central and Solution Accelerators

136

Once provisioned, a link is provided to the Machine Learning Studio and the

workspace.

Figure 6-18 shows a view of a model provided for demonstration purposes that

includes a regression algorithm developed by Microsoft using a public sample data set

that contains telemetry coming from sensors in jet engines.

Figure 6-17.  Azure Resource Group for Predictive Maintenance services

Chapter 6 IoT Central and Solution Accelerators

137

The Predictive Maintenance solution accelerator also includes a demo dashboard

for the same sample data set. The regression algorithm that is deployed predicts the

Remaining Useful Life (RUL) of the two jet engines as data from four sensors in each

engine is cycled through. Each cycle denoted in the dashboard represents a flight of 2 to

10 hours. Data is captured by sensors every 30 minutes during a flight.

Figure 6-19 shows the RUL dashboard displaying these KPIs including charts of

recent readings and predictions.

Figure 6-18.  Predictive Maintenance ML Studio Workspace

Chapter 6 IoT Central and Solution Accelerators

138

�Connected Factory
The Connected Factory solution accelerator enables you to spin up in an automated

fashion the resources needed in deploying an Industrial Internet of Things footprint. The

industrial devices connect through the OPC UA interface. A cloud dashboard is part of

the implementation and provides the following functionality:

•	 Enables browsing of the OPC UA information model in OPC UA servers

•	 Enables configuration of OPC UA devices (call methods, read and

write data)

•	 Enables publishing/unpublishing OPC UA device telemetry data

•	 Enables viewing of telemetry previews

•	 Enables viewing of telemetry data trends and creation of correlations

using Time Series Insights

•	 Enables viewing of calculated overall equipment efficiency (OEE)

and key performance indicators

Figure 6-19.  Predictive Maintenance jet engine simulation

Chapter 6 IoT Central and Solution Accelerators

139

•	 Enables viewing of industry asset hierarchies in tree topologies and

interactive maps

•	 Enables viewing, acknowledgment, and closing of alerts based on

threshold rules that you set

Security permissions for users are configured based on role-based access control

(RBAC). End-to-end encryption is implemented using OPC UA authentication (X.509

certificates) and security tokens.

Automated provisioning provided by the Connect Factory solution accelerator

generates, creates, and configures the activities used in setting up the needed cloud

services. These activities appear in Figure 6-20.

Figure 6-20.  Connected Factory Solution Accelerator automated provisioning

Chapter 6 IoT Central and Solution Accelerators

140

The Azure cloud services started in the resource group that are created are shown

in Figure 6-21. Key resources made available include the Azure IoT Hub, Cosmos DB,

storage accounts, Time Series Insights, Azure Maps, Event Hub, and Apps Services.

Figure 6-21.  Azure Resource Group for Connected Factory services

Chapter 6 IoT Central and Solution Accelerators

141

A demonstration dashboard is provided with simulated device data that can help you

better understand the functionality provided. A map provides a view of where factories

are located. The status of each factory is shown as is a list of current alarms. Overall

equipment efficiency, availability, performance, quality, units per hour, and kWh are

represented by indicators. You can then drill to further detail through the dashboard.

Figure 6-22 shows a couple of the radial gauge charts presented in the dashboard.

Figure 6-22.  Connected Factory dashboard radial gauge charts

�Device Simulation
The Device Simulation solution accelerator is designed to define simulated devices

that create realistic telemetry. The telemetry can then be used in testing IoT solutions

that you are developing. The modeling includes message formats, twin properties, and

methods. More complex device behaviors can be simulated using JavaScript.

You can simulate a single device during testing or scale the testing to thousands of

devices connected to your IoT Hub(s). So, you can simulate normal, peak, and extreme

workloads for scale testing.

Automated provisioning provided by the Device Simulation solution accelerator

generates, creates, and configures the activities used in setting up the needed cloud

services. These activities appear in Figure 6-23.

Chapter 6 IoT Central and Solution Accelerators

142

The Azure cloud services started in the resource group that are created are shown in

Figure 6-24. Key resources made available include the Azure IoT Hub, the Cosmos DB,

the storage accounts, and the application services.

Figure 6-23.  Device Simulation Solution Accelerator automated provisioning

Chapter 6 IoT Central and Solution Accelerators

143

Once provisioned, you can run the sample simulations provided (including good

and faulty chillers, elevators, engines, trucks, and prototypes). You can also choose to

define custom device simulations including data points and value ranges. As noted

earlier, your third choice is to create advanced device simulations in JSON definition files

using JavaScript that you can upload.

A sample dashboard is provided to view the simulations and provides information

on the number of devices, the total messages and message rate, the number of failed

messages, the number of device connections, and the number of failed twin updates.

Figure 6-24.  Azure Resource Group for Device Simulation services

Chapter 6 IoT Central and Solution Accelerators

145
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_7

CHAPTER 7

Infrastructure Integration
Thus far, our more detailed exploration of Microsoft’s IoT footprint has focused on

analysis of streaming data from devices, managing and monitoring the devices, and

pushing intelligence to the edge. Chances are, you will want to integrate some of your

existing data sources into your new IoT solution. Much of this chapter focuses on

methods for finding and integrating the data that you will need.

We’ll first look at typical preexisting potential sources of data. Then we’ll explore

the roles of Azure Data Factory, Azure Data Explorer, and PolyBase in moving and/or

accessing data. We’ll also look at configuring VPN connections and/or ExpressRoute for

network connectivity between on-premises devices and systems and the cloud, using

the Azure Data Box to physically move data to Azure data centers, and using Azure Data

Catalog to find where data is located.

Finally, there are multiple Microsoft partners who provided data historians (that are

time series databases) for years that are often part of IoT solutions. We’ll look at how

two of them, OSIsoft and PTC, are integrating Azure into their modern cloud-based

deployment architectures.

The chapter includes the following major sections:

•	 Preexisting sources of data

•	 Integrating and finding data sources

•	 Data historians and integration with Azure

�Preexisting Sources of Data
Organizations that deploy IoT solutions almost always find a need to integrate data from

legacy transactional and data warehousing systems in order to deliver the key metrics

needed in answering business questions. As transactional data fits neatly into rows

and columns, relational databases are typically deployed to provide data management

solutions for such data.

146

Preexisting footprints are almost always unique. Legacy data sources might reside

on premises, in clouds, or from a combination of locations. On-premises relational

databases typically found include Microsoft SQL Server, Oracle, IBM DB2, MySQL,

PostgreSQL, and others. When deployed in Azure, these databases can be deployed

within virtual machines. There are also databases available for PaaS deployment such as

Microsoft SQL Database, Microsoft SQL Data Warehouse, and Snowflake.

Microsoft’s Azure SQL Database is a fully managed service and is based on the latest

version of Microsoft SQL Server general-purpose database engine. It is where you will

find the newest capabilities for the SQL Server family released first. Azure SQL Database

also supports non-relational structures including graphs, JSON, spatial, and XML. It

has a hyperscale service tier that enables database scalability up to 100 terabytes. By

configuring elastic pools, you can assign resources that are shared.

The Microsoft SQL Data Warehouse uses a massively parallel processing (MPP)

engine to perform queries across extremely large databases often found in data

warehouses, including those up to Petabytes in size. The database consists of a control

node that optimizes and coordinates parallel queries and multiple compute nodes

(up to 60).

In Figure 7-1, we illustrate a typical footprint that varies slightly from diagrams

presented earlier in this book as we have identified some of the key transactional

systems. In this figure, the ERP system might be SAP, Oracle E-Business Suite, Oracle

Fusion Applications, Infor, or some other vendor solution that is deployed either

on-premises or in a cloud. The ERP DW pictured would likely be SAP BW in an SAP

implementation. The HR system could be Workday, another cloud-based HR solution, or

a legacy HR system on premises. The CRM solution could be Microsoft Dynamics 365 or

SalesForce in the cloud or other legacy on-premises or cloud application.

Chapter 7 Infrastructure Integration

147

In this figure, we’ve pictured Azure SQL Database or Azure SQL Data Warehouse

serving as data warehouses in the cloud. However, the data warehouse engine could

also be one of the other cloud-based or on-premises databases that we previously

mentioned.

�Integrating and Finding Data Sources
We might choose to analyze our various sources of data by gathering the data to a single

location. We could also keep the data in place and analyze it through a distributed query.

In this section of the chapter, we explore ways of doing this and describe how you can

track where the data resides. We begin by discussing how Azure Data Factory can be

used to gather data.

CRM

Azure Data Lake
Storage or Cosmos DB

Azure SQL DB or
SQL DW

Azure
Analysis
Services

Sources Systems & Devices Business
Intelligence
Tools

IoT Edge
Devices

Back-end Data
Components

IoT
Gateway

Azure IoT
Hub

Azure Stream
Analytics

Azure
Databricks

Batch Layer
Speed Layer

Azure Time
Series Insights

TSI
Explorer

Power BI

Azure IoT Edge
Azure Sphere
Windows 10 IoT

ADF

ADF

ADF
HR
ERP ERP DW

Figure 7-1.  Example of transactional systems in full footprint

Chapter 7 Infrastructure Integration

148

�Azure Data Factory
Azure Data Factory (ADF) is a cloud-based integration service that is used in performing

automated data extraction, loading, and transform (ELT) from within pipelines. The

pipelines are workflows that are created and scheduled within ADF. Pipelines can

contain three types of activities:

•	 Data Movement Activities. Copy data from a data source to a

specified target (also known as a data sink).

•	 Data Transformation Activities. Custom coding using Hive, Pig,

MapReduce, Hadoop Streaming or Spark in HDInsight, Machine

Learning in an Azure VM, stored procedures in a SQL engine,

Databricks, or Azure batch process.

•	 Control Activities. Used to invoke another pipeline from within a

pipeline, define repeating loops to perform iterations and do-until

loops, call REST endpoints, lookup records, table names or values

from external sources, retrieve metadata, establish branches based

on conditions, and specify wait times for pipelines.

Data connectors are available for a variety of sources and targets in Azure including

databases, NoSQL databases, files and file systems, and services and applications. You

can also use generic protocols and interfaces to access data, such as ODBC, OData, and

REST.

Figure 7-2 shows an Azure Portal interface view of linked Azure data management

services that can serve as sources or targets. Azure data connectors shown include Azure

Blob Storage, Cosmos DB, Azure Data Lake Storage, Azure Database for MariaDB, Azure

Database for MySQL, Azure Database for PostgreSQL, Azure SQL Data Warehouse, and

Azure SQL Database.

Chapter 7 Infrastructure Integration

149

Figure 7-2.  Azure linked services within Azure Data Factory

Chapter 7 Infrastructure Integration

150

Connectors are also available for database data sources such as Greenplum, HBase,

IBM DB2, IBM Informix, IBM Netezza, Microsoft SQL Server, MySQL, Oracle, PostgreSQL,

SAP Business Warehouse, SAP HANA, Spark, Sybase, Teradata, and Vertica. Connectors

for NoSQL databases include Cassandra, Couchbase, and MongoDB. Examples of

connectors for applications include Microsoft Dynamics, Concur, Oracle Eloqua,

Marketo, PayPal, Salesforce, SAP, and Square. Various connectors for the Amazon

and Google cloud data management systems are also provided including for Amazon

Redshift and Google BigQuery.

A simple Copy Activity function can be initiated in a data pipeline to move data from

on-premises or cloud-based data sources into Azure for further processing. Figure 7-3

shows the ADF interface that we used to create and then validate our data copy pipeline.

More often, pipelines consist of a series of steps where control flows are used to

orchestrate pipeline activities.

Figure 7-3.  Azure Data Factory pipeline containing copy data function

Note  In organizations that prefer developing ELT scripts using SQL Server
Integration Services (SSIS), you can configure and provision a SSIS Integration
Runtime from within ADF to enable a lift and shift of your SSIS packages.

Chapter 7 Infrastructure Integration

151

We can schedule the workflow for execution when we are satisfied with our design.

Pipeline runs can be instantiated by passing arguments to parameters (e.g., datasets or

linked services) using manual methods or within triggers.

Once deployed, you can monitor the success of your activities and pipelines. ADF

supports pipeline monitoring via the Azure Monitor and APIs, PowerShell, Azure

Monitor logs, and Azure Portal health indicators.

�Query Services Across Diverse Data
Microsoft offers a couple of services enabling queries across semi-structured and

structured data sources. Azure Data Explorer requires moving data to a common database,

while PolyBase simply accesses data through external tables as if the data was local.

Microsoft describes Azure Data Explorer as a fast and scalable data exploration

service. The cluster and database service can load streaming incoming data and/or copy

data from other data sources through Event Hubs, Event Grids, Kafka, Python, Node

SDKs, the .NET Standard SDK, Logstash, and ADF.

You begin by creating a cluster (including name and compute specifications) in a

resource group using the Azure Portal. You then create a Data Explorer database and

define a retention period (in days) and a cache period (in days). You start the cluster

(and can later stop it to minimize cost). You next create a target table in the Azure Data

Explorer cluster using a create table command through the query interface and provide

a mapping of incoming JSON data to column names and data types in the table. Lastly,

you add a data connection.

You can query data using Azure Data Explorer in a web-based interface. You can

also write queries using the Kusto Query Language (KQL). Queries generally begin

by referencing a table or function. Some of the advanced capabilities of KQL include

scalar and tabular operators, time series analysis and anomaly detection, aggregations,

forecasting, and machine learning.

PolyBase is built into SQL Server instances and the Azure Data Warehouse. You

access data that resides in Azure Storage, Hadoop, and other file systems and databases

using external table definitions. Connections to the data repositories are via ODBC. The

definitions and user permissions are stored in the database. Query performance can be

improved by configuring PolyBase scale-out groups.

Chapter 7 Infrastructure Integration

152

Figure 7-4 illustrates a typical scale-out group consisting of a head node and multiple

compute nodes. The illustration of the head node shows a SQL instance, PolyBase

engine, and PolyBase Data Movement Service (DMS). The head node is the location

to which queries are submitted. The PolyBase engine parses queries on external data,

generates the query plan, and distributes work to the compute nodes’ DMS. Compute

nodes simply contain a SQL instance and PolyBase DMS and are replicated in numbers

to adequately scale processing that will meet query performance needs.

Compute node Compute node
PolyBase scale-out group

Azure Blob Storage, ADLS, Hadoop / HDFS, Cosmos DB, MongoDB, Relational
(Microsoft SQL Server, Azue SQL DB, Azure SQL DW, Oracle, Teradata)

Query

Head node

PolyBase
Engine

PolyBase
DMS

SQL
instance

Compute node

SQL
instance

PolyBase
DMS

SQL
instance

PolyBase
DMS

SQL
instance

PolyBase
DMS

Figure 7-4.  PolyBase scale-out group

PolyBase is sometimes used in combination with ADF, especially when the goal

is to speed data transformations and updates. Behind the scenes, it provides the copy

capabilities that we described earlier in the ADF section of this chapter.

Note  Key PolyBase features, including support for certain sources, vary based on
the version of the SQL engine that PolyBase is bundled with. Always first check the
Microsoft documentation regarding feature availability for the version that you plan
to deploy.

Chapter 7 Infrastructure Integration

153

�Connecting On-Premises Networks to Azure
There are multiple ways by which you can connect on-premises networks to an Azure

Virtual Network (VNet). They include

•	 Virtual Private Network (VPN) connection

•	 Azure ExpressRoute connection

•	 ExpressRoute connection with VPN failover

A VPN connection includes an Azure VPN gateway that is used to send encrypted

traffic between the Azure VNet and an on-premises network. VPN connections use the

public Internet and were limited to speeds of 1.25 Gb per second at the time this book

was published. Network traffic received by the VPN gateway is routed to an internal load

balancer when traffic is being sent to applications in Azure.

Figure 7-5 shows the Azure Portal interface used in configuring a VPN Gateway.

Note that there is also an option to choose ExpressRoute as the gateway type which then

presents a different set of prompts.

Chapter 7 Infrastructure Integration

154

Figure 7-5.  Configuring a VPN Gateway through the Azure Portal

Chapter 7 Infrastructure Integration

155

A VPN appliance must also be present on-premises providing external connectivity

for that network. The VPN appliance might be a dedicated hardware device or a software

service (such as the Routing and Remote Access Service in Windows Server).

Traffic over the public Internet is encrypted and flows through an IPSec tunnel.

Given possible latency challenges when deploying VPN connections, they are generally

used in situations where traffic is considered as being light. Figure 7-6 illustrates a

VPN connection in a site-to-site configuration. Multiple VPN connections are typically

present to help scale bandwidth.

VNet VPN
Gateway

IPsec VPN Tunnel
On-premises

Network

VPN
Appliance

Azure
Network

Figure 7-6.  VPN site-to-site configuration

Azure ExpressRoute connections use private and dedicated two-layer or three-

layer circuits provided by third-party network providers. Bandwidths of up to 10 Gb

per second are possible. Some providers offer dynamic scaling of bandwidth to meet

changing requirements and to enable charge-back for the bandwidth that is being used.

High-bandwidth routers are required for connection to on-premises networks. Microsoft

edge routers are used to provide connections to the Azure VNet in the cloud. Figure 7-7

illustrates private ExpressRoute connection in a site-to-site configuration.

VNet ExpressRoute
Gateway

ExpressRoute
Private Connectivity On-premises

Network

Router

Azure
Network

Figure 7-7.  ExpressRoute site-to-site configuration

Chapter 7 Infrastructure Integration

156

ExpressRoute with VPN failover can be thought of as combining the two previous

options that we just described. Both types of connections are configured. ExpressRoute

circuits are configured to provide connectivity under normal conditions. Failover to VPN

connections are configured so that they can provide connectivity in situations where

there is a loss of ExpressRoute connectivity.

Within the backend cloud, a hub–spoke topology can be deployed in Azure to isolate

workloads when services are to be shared. For example, network virtual appliances and

DNS servers can be shared for different workloads, different departments, or different

stages of development and deployment.

The hub–spoke topology is deployed using CLI scripts found in GitHub. An Azure VNet

serves as a hub in the topology providing a central connection to the on-premises network

and provides shared services for other VNets serving as spokes. Each spoke VNet is

connected to the hub VNet by peering, enabling traffic exchange between each spoke and

the hub. The spoke VNets enable isolation and separate management of the workloads.

�Bulk Data Transfer
Legacy data warehouses and remote IoT databases sometimes measure in the terabytes

or more in size. Network connections into Azure might be too slow to provide timely

and reliable data transfers. In such scenarios, offline data transfer can make sense, and

Microsoft offers Azure Data Box Disk solutions for this purpose.

You can order the Data Box through the Azure Portal. Microsoft ships the Data Box to

your site where you upload data through a local web user interface. You then ship it back

to a Microsoft Azure Data Center, and the data is uploaded there into your Azure Storage

account. You can track this process through the Azure Portal.

The Data Box can be used for one-time migration of very large data quantities. If data

is subsequently gathered and needs to be uploaded to Azure, the incremental volumes

for updates are usually a fraction of the size and can likely be handled by network

connections to Azure. If remote locations periodically become disconnected and very

large data volumes are again gathered, a Data Box can be requested again and used to

move these larger data volumes to Azure.

The standard Azure Data Box comes in three variations: Data Box Disk (40 TB of disk,

35 TB of usable space), Data Box standard (100 TB of disk, 80 TB of usable space), and

Data Box Heavy (1000 TB of disk, 800 TB of usable space). You can also send up to ten of

your own disks to an Azure data center for loading. Figure 7-8 illustrates the choices of

Azure Data Box selections viewed through the Azure Portal.

Chapter 7 Infrastructure Integration

157

Alternatively, you might choose online data transfer. Data Box Gateway is a virtual

device residing on-premises supporting NFS and SMB as protocols. The virtual device

transfers data to Azure block blobs, Azure page blobs, or Azure Files.

Azure Data Box Edge is a physical device with the gateway capabilities of the Data

Box Gateway. It additionally can be used to preprocess data including performing data

aggregation, modifying data (e.g., removing sensitive data), selecting and sending only

subsets of data, or analyzing and reacting to IoT events locally. You can apply ML models

at the edge before data is transferred.

For example, the Data Box Edge can be used to capture video and, configured with

the Azure IoT Edge Runtime, can push video frames through a FPGA-based AI model.

The source code for such an application is posted on GitHub.

Figure 7-9 illustrates the Azure Portal interface used in creating the Data Box

Gateway and Azure Data Box Edge.

Figure 7-8.  Azure Data Box creation

Chapter 7 Infrastructure Integration

158

�Azure Data Catalog
Finding the location of data that you could need from within your IoT architecture can

be challenging. As you’ve seen in previous architecture diagrams, the data could be

stored in a variety of locations and in a variety of types of data management systems.

Azure Data Catalog is a cloud-based service where data management locations

in your implementation can be registered and metadata describing the data in each

location is stored. The metadata is searchable and can be enhanced by users of the Data

Catalog, enabling crowdsourcing of descriptions, tags, and other descriptive metadata.

The search capability makes finding where data is located much simpler.

Typical metadata includes

•	 Name of asset

•	 Type of asset

•	 Description of asset

•	 Names of attributes or columns

•	 Data types of attributes or columns

•	 Descriptions of attributes or columns

Figure 7-10 illustrates an interface in the first-generation version of Azure Data

Catalog. We searched for data tagged as “sensor.” On the first page of search results, we

found that sensor data is stored in SQL Data Warehouses, HIVE databases and tables,

and an Azure container. When we select one of the SQL Data Warehouse locations, we

Figure 7-9.  Azure Data Box Gateway/Edge creation

Chapter 7 Infrastructure Integration

159

see information on filters available, experts assigned, glossary terms, and user tags that

have been assigned to the sensor facts table on the left side of the interface. On the right

side, we can provide a friendly name, better description, add experts by providing their

email addresses, add tags, change connection information, and can take ownership of

management.

Figure 7-10.  Azure Data Catalog view of sensor data management locations

Through the interface, we can also open the tables through a variety of interfaces.

For the sensor facts table, we can browse the data contained in the table in Excel (all

or just the first 1000 entries) or use SQL Server Data Tools, Power BI Desktop, or Power

Query. If we choose to explore a database, we see all the tables present in the database

and can explore each one.

Chapter 7 Infrastructure Integration

160

�Data Historians and Integration to Azure
Vendors of earlier-generation IoT solutions designed for entirely on-premises

deployment of those solutions. They provided landing spots for device data in on-

premises time series data stores called data historians. Today, many of them are moving

key components to the cloud. The components they choose to move vary from vendor to

vendor. Here, we’ll look at how OSIsoft and PTC ThingWorx are leveraging Azure. As you

might expect, both leverage the Azure IoT Hub to land streaming data in the cloud.

OSIsoft chose to leverage Microsoft Azure data and analytics solutions on the

backend and fully deliver their platform at the edge. The OSIsoft solution is built upon

the PI System that is deployed on-premises where devices are located. The PI Server

serves as a data historian as it is used to capture, store, and manage data that is being

produced by the edge devices. Key components in the PI Server include

•	 PI Data Archive. A time series database in which the data is tagged

so that metadata can also be used to query other data besides the

date and time.

•	 PI Asset Framework. Maps sensor readings in tags into models

(e.g., parent–child relationships) enabling determination of the

operational condition of devices.

•	 Asset Analytics. Enables real-time device metrics to be viewed and

real-time analytics to be applied at the edge.

•	 PI Event Frames. Conditions can be defined producing events of

interest tied to analytics, anomaly detection, and notifications.

•	 PI Notifications. Enables alerting of operators when defined

thresholds are met or exceeded, or failures or other anomalies occur.

Integration from the PI System to Azure for streaming data is provided by the PI

Integrator Advanced Edition that serves as a gateway to the Azure IoT Hub. Integration

from the PI System to Azure is provided by the PI Integrator Standard Edition (for batch

feeds) directly into Azure SQL Database or Azure SQL Data Warehouse. These are

pictured in Figure 7-11.

Chapter 7 Infrastructure Integration

161

Note the similarity on the backend to previously described Azure architectures.

PI Vision provides an additional mobile/desktop interface in the OSIsoft solution.

In comparison, PTC chose to develop ThingWorx with components deployed across

the entire ecosystem. Within the IoT Edge, PTC provides Software Content Management

(ThingWorx SCM), Remote Access and Control (ThingWorx RAC), and Industrial

Connectivity (Kepware). Microsoft’s complementary offerings include Azure Stream

Analytics, Azure ML, and Azure Functions in containers.

In the backend, the ThingWorx historian is hosted on Azure PostgreSQL. PTC also

provides an Asset Advisor and machine learning (ML) solution. Microsoft provides the

Azure IoT Hub, Blob Storage, Time Series Insights, Azure Active Directory, and Azure

Machine Learning as important complementary components.

Figure 7-12 illustrates how all these components fit together in a reference

architecture.

On-Line Transaction
Processing Sources

Azure Data Lake
Storage or Cosmos DB

Azure SQL DB or
SQL DW

Azure
Analysis
Services

Sources Systems &
Devices

IoT Edge
Devices

Back-end Data
Components

PI
Integrator
Advanced

Edition

Azure IoT
Hub

Azure Stream
Analytics

Azure
Databricks

Azure Time
Series Insights

TSI
Explorer

Power BIADF

ADF

ADF

PI
Integrator
Standard
Edition

OSIsoft
PI

System

Batch

Streaming

Figure 7-11.  OSIsoft PI System integration with Azure components

Chapter 7 Infrastructure Integration

162

On-Line Transaction
Processing Sources

Azure
Blob

Storage

Azure SQL DB or
SQL DW

Azure
Analysis
Services

Sources Systems &
Devices

IoT Edge
Devices

Back-end Data
Components

IoT
Gateway

Azure IoT
Hub

Azure Time
Series Insights

TSI
Explorer

Power BI

Azure IoT Edge
• Azure Stream

Analytics
• Azure ML
• Azure Functions
• PTC Industrial

Connectivity
• PTC ThingWorx SCM
• PTC ThingWorx RAC

ADF

ADF

ADF

PTC Asset
Advisor

IoT Hub
Connector
SCM/RAC

Query API

PTC
ThingWorx

Azure
PostgreSQL

PTC
ThingWorx ML

Figure 7-12.  PTC ThingWorx integration with Azure components

Not all the components pictured in the two previous architectures are always

implemented. The historians for each of these companies are widely present in their

installed bases, so the components directly tied to the historians tend to have the

greatest adoption.

Chapter 7 Infrastructure Integration

163
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_8

CHAPTER 8

Developing a Plan
for Success
Throughout the previous chapters in this book, we’ve focused primarily on the technical

aspects of designing and deploying a Microsoft Azure-based IoT architecture solution.

But we also touched on business aspects as we described some of the potential use

cases. By now, you might still be wondering how to determine where IoT will be most

beneficial in your organization and how to build support for such projects.

Defining and gaining sponsorship for these projects often incorporate “design

thinking,” a methodology that evolved since the early 1990s to become widely adopted in

innovative technology projects like IoT initiatives. In 1992, Richard Buchanan connected

design thinking to innovation in a work titled “Wicked Problems in Design Thinking.”

David M. Kelly founded the design consultancy named IDEO at about the same time and

based its processes on design thinking concepts. Today, many major universities teach

design thinking in curriculum focused on techniques used to drive innovation.

In this chapter, we’ll cover identifying the right initiatives and dig deeper into

techniques used to prioritize projects and maintain an agile approach to problem-

solving, prototype creation, and testing. We also cover building support for the project as

you move from prototype creation and testing to full-scale implementation.

The major sections of this chapter are

•	 Identifying the right initiatives

•	 Moving from prototypes to implementation

•	 Some final thoughts

As we cover identifying the right initiatives, we’ll describe how the design thinking

approach can help you during this stage in your project.

164

Tip  If design thinking is a new approach to you, we hope that you’ll gain a basic
understanding of the approach by reading this chapter. Design thinking is widely
used today in a variety of technology projects, especially in innovative software
development and deployment. In addition to IoT projects, you’ll likely find it
practiced in the development of artificial intelligence applications and blockchain-
based solutions. You might consider taking online or in-person courses to augment
your own understanding given the popularity of design thinking as an approach in
many technology areas.

�Identifying the Right Initiatives
Innovators and lean startups commonly develop solutions in a sequence of events

that consist of hypothesizing, designing, testing, and learning. These are fundamental

activities present in the design thinking approach. Design thinking can be defined as a

series of steps that include

•	 Observation and research

•	 Problem definition

•	 Ideation

•	 Prototype creation

•	 Testing

•	 Implementation

Identifying the right initiatives and solutions to build usually consists of the first five

of these steps, beginning with observation and research. This first step seeks to gain

an empathetic understanding as to how work is performed and the challenges that are

present. It is a prelude to identifying problems and potential opportunities to do this work

better in new and different ways. Workers are interviewed or observed, and sometimes

developers who will be assigned to the project are also immersed into the experience.

Other research can be initiated that gathers information on internal corporate

goals and initiatives, similar initiatives that are in progress at competing companies,

and emerging trends in the industry at large. Some sources of places to gather this

Chapter 8 Developing a Plan for Success

165

intelligence include financial earnings statements, presentations provided by companies

to investors, trends and case studies described in industry trade journals, and

presentations made by experts and insiders at industry trade conferences.

The problems that exist are then defined and framed. We consider the points of view

of various potential stakeholders regarding the nature and scope of these problems. Our

previous findings can help us create a list of compelling needs and problems that will

fuel our brainstorming attempts to identify potentially innovative solutions.

During the ideate phase, we might use a variety of techniques to identify potential

solutions and evaluate them. We seek a wide diversity of ideas in problem-solving. We

also begin to prioritize which ideas are worthy of prototype development.

The creation of prototypes makes solutions tangible for stakeholders. The

development of storyboards, other visuals, or physical builds using technology

components are pursued. Multiple solutions to the same problem might be tested,

explored, compared, and refined. An important goal is to succeed or fail inexpensively

and quickly during the prototype and testing phases.

When testing occurs, stakeholders (including users of the solution) evaluate

prototypes and provide their feedback. Problems become better framed, and the most

likely viable solutions become better understood. If testing proves successful, we might

then move forward with a full-scale implementation.

Figure 8-1 illustrates this cycle following the outer ring of arrows pictured. The

arrows in the center remind us that we might need to return to previous steps. For

example, when we observe how our prototype functions in testing, we might decide that

doing further research and redefining the problem might be necessary.

Chapter 8 Developing a Plan for Success

166

Implementation of a production-ready solution occurs once we’ve determined that

we are ready to put the proposed solution into full-scale operation. The implementation

phase requires additional planning and designs for reliability, availability, serviceability,

and security. Often, a pilot or operational prototype is developed at smaller scale with

these requirements in mind to get a better picture as to the true cost of the final solution.

A pilot can also help validate technical feasibility. A roadmap to full implementation

might be required with identification of proposed costs and estimated value of the

solution at various steps along the way in order to gain budget approval.

Observe
&

Research

Problem
Definition

Ideation

Prototype
Creation

Testing

Implement

Figure 8-1.  Phases in design thinking

Chapter 8 Developing a Plan for Success

167

Next, we’ll take a deeper dive into each of these phases with practical guidance on

how to execute each phase.

�Observe and Research
We begin to determine the problems that need to be solved by observing top-of-mind

challenges within the lines of business and opportunities for success. We also explore

emerging threats external to our company or organization. At this first stage, we are

looking for potential stakeholders for projects who possess visions of what the future

might look like.

To get our arms around the state of business processes, we document the current

environment and interactions that take place. As we do this, we seek to identify

opportunities to improve efficiencies, quality of goods, quality of services, quality of

production, and/or safety. We also analyze any tools and technologies used in these

processes and document how workers use information and respond. We begin to

understand the importance of such tools and technologies in successfully executing

necessary business processes and uncover any vested interest or reluctance to change

that the users might have.

Some of the typical information we might gather and document through interviews

with users where we suspect an IoT initiative could emerge includes

•	 A description of normal activities and situations that users encounter

•	 A description of abnormal activities and situations that the users

encounter including the frequency of abnormalities and the impact

on the business

•	 A description of feedback from systems in response to normal situations

•	 A description of feedback from systems in response to abnormal

situations

•	 A description of how users know what appropriate actions to take

during abnormal situations

•	 Critiques about the amount and level of detail in information that is

provided

•	 Critiques about the complexity of response required in abnormal situations

•	 Suggestions for process and system improvement

Chapter 8 Developing a Plan for Success

168

In addition to interviewing individuals, we might simply watch their actions in

normal and abnormal situations, including their interactions with co-workers and

systems. We might also capture these interactions through video recordings that then

can be used for further study and to augment the written record of our observations.

When we document the problem solution process, including current activities and

outcomes, we can present the process in the form of a journey model. A typical model

that might lead to an IoT project begins with a description of how workers are informed

of the status of a specific process and the problems and abnormal situations that might

impact that process. Workers then decide what appropriate action is necessary if a

problem is confirmed, perform some sort of action to fix the problem, and see a response

confirming that the remediation action has occurred.

As an example, let’s look at a worker monitoring the soldering of components to a

circuit board on a production line. They visually determine if the components are in or

out of alignment. Their action could include stopping the production line, determining

where the misalignment is occurring, correcting the cause of misalignment, and

restarting the production line. The response would then be a validation of the return to

normal production. Figure 8-2 shows how we might illustrate this model.

Inform Decide Actions Response

• Component
alignment /

mis- alignment

• Continue /
stop
production

• During
production
stop, correct
alignment
then restart

• After restart,
validate
normal
production

Figure 8-2.  Example journey model

If the focus is only on improving existing internal processes and/or meeting current

needs, we might lose sight of innovations that are happening elsewhere. Interviews with

line of business leadership are often a great place to gain a better understanding as to

what competitors are up to since having a current understanding of innovative initiatives

in their industry is usually part of their day job.

Chapter 8 Developing a Plan for Success

169

To gain a more complete understanding of external influencing factors, a PESTEL

analysis might be performed. Such an analysis weighs political, economic, social,

technological, environmental, and legal factors. These factors can drive increased

momentum toward more automated IoT solutions.

Relevant political factors helping to provide momentum might include tax incentives

for modernization. Economic factors in play could include consideration of increased

labor costs and the need to maintain or grow margins. Social factors might be driving

the workforce to gain technical skills that rely on IoT-based solutions. Technological

advancements could be driving a need for faster innovation to stay competitive.

Environmental factors could include demands for sustainability and the need to reduce

waste in processes. Legal factors might include the introduction of new regulations and

laws related to safety and products.

You might determine that some independent research is in order, especially as

competitors begin to enter new business areas and PESTEL-related factors influence the

need for IoT solutions. Where can you find such information?

Start with quarterly financial statements and presentations to investors. Pay

attention to IoT-related vision statements by leading executives and how they respond to

business analysts’ questions on earnings calls that could lead to such projects. Be on the

lookout for statements regarding the impact of competition and PESTEL-related drivers

that are discussed during these calls.

You should also research industry and government sources of information that can

provide insight into additional drivers. Pay special attention to conferences where other

similar companies and organizations are speaking about their IoT initiatives and attend

those conferences. Though technology vendors sometimes present compelling use

cases, presentations of initiatives by business stakeholders within similar companies and

organizations to your own can provide you with a great deal more insight into challenges

in implementation and the true nature of the business drivers and benefits obtained.

Attending such industry and technical conferences can help you determine where you

should focus your own initiatives.

�Problem Definition
In the previous phase, we began to uncover problems that could be worth solving and

that could drive IoT initiatives. In this phase, we better define these problems and look

at them through various points of view. We’ll also begin to understand what each group

sees as benefits in solving these problems. And we begin to prioritize the importance of

solving the defined problems.

Chapter 8 Developing a Plan for Success

170

Problems solved by IoT initiatives can impact many different stakeholders beyond

the frontline workers. Business sponsors likely have their own unique set of challenges

and objectives. Senior leadership in the company or organization and their partners

might each have unique views regarding challenges and the problems that need to be

solved. Figure 8-3 represents various points of view that could be present.

Business
Problem

Challenges &
Objectives

Senior
Leadership

Challenges &
Objectives

Business
Sponsor

Challenges &
Objectives

Front-line
Worker

Challenges &
Objectives

Business
Partners

Challenges &
Objectives

Figure 8-3.  Points of view impacting problem definition

For each targeted group, we should fully understand their business goals and any

tasks and solutions in place to achieve those goals today. As we gain that understanding,

we should document limitations and inefficiencies that are present. We will also want to

gain an understanding of each group’s desire for change and any alternative solutions

currently under consideration.

In some situations, we might uncover problems that are exacerbated by inadequate

skills or extraordinary physical effort required to overcome current solution shortcomings.

Though training might overcome some of these problems, we should also be on the

lookout for unusual worker turnover where additional training has not solved problems.

Chapter 8 Developing a Plan for Success

171

For each group, the perceived value and range of benefits in solving a problem could

differ. For example, some might see a problem as one of efficiency, while others might

see the same problem as a quality improvement problem. This could lead to a divergence

on the vision of what ideal solutions might look like. So, the input from each targeted

group might include not only broad benefits from improvement in business processes

that solve a specific problem but also benefits that will be personal to each target.

As we gather a list of problems, it is unlikely that we will have unlimited resources

to solve all of them. So, we should keep in mind that some prioritization of the order in

which we solve them will be needed. We should start to gather notes that will help us

understand:

•	 Potential return on investment (ROI)

•	 Time to return on investment/solution

•	 Importance to C-level business leaders

•	 Regulatory requirements

•	 Cost

•	 Risk of deployment in deploying a new solution

•	 Risk of not deploying a new solution

•	 Skills needed/lacking

•	 Culture alignment of potential solution

•	 Device sophistication and availability of needed quality data

You might think that in most organizations only consideration of potential return on

investment drives the selection of the most important problems to focus on. However,

this is frequently not the case. The time that it takes to get to a viable solution and

a positive return on investment can be the determining factor when the window of

opportunity for solving the business problem is short, there is a very limited budget,

management is exerting pressure to solve the problem, and/or the problem is seen as an

extremely dangerous competitive threat.

Sometimes, problems must be solved regardless of the ROI. For example, C-level

executives might have issued forward-looking statements to investors that promise

delivery of a business solution built upon IoT. Regulatory requirements might also drive

the need for creation of an IoT solution to address mandates present in some industries.

Chapter 8 Developing a Plan for Success

172

Several of these factors might cause us to deprioritize certain initiatives. A project

might be viewed as too costly or risky, regardless of the ROI that might be obtained.

Skills could be lacking to implement or use the proposed solution, and the culture in the

organization might not be ready for adoption of the technology or the solution. There

could be issues regarding availability of quality data due to a lack of devices, sensors, or

other infrastructure.

In many companies and organizations, multiple considerations in combination

impact the determination of priorities in project funding decisions. Identifying that

mix of prioritization considerations during this phase will be critical in helping you to

determine which problems to focus on solving.

Table 8-1 illustrates the capturing and prioritization of three potential IoT initiatives

in a manufacturer that we will use as an example. We’ve identified key stakeholders for

each initiative, the important metrics required in each proposed effort, noteworthy data

considerations, and the potential business impact. We have also assigned a priority to

each initiative.

Table 8-1.  Capturing and prioritization of initiatives

Initiative Stakeholder(s) Metrics Required Data Status Business Impact Priority

Minimize

downtime

VP

Manufacturing

Uptime, line

rate, operating

conditions

Need additional

sensors on

lines

On-time delivery,

increased revenue

1

Minimize

rework

VP

manufacturing,

VP quality

Accepted/rejected

products

Need additional

sensors, data

quality issues

Decrease cost

of goods sold

by optimizing

manufacturing

process

2

Minimize

warranty

claims

VP quality Production line, rate

of return

Gather

production

lines and

worker data

Decrease set-asides

covering warranty

expense

3

Chapter 8 Developing a Plan for Success

173

In this example, the company is prioritizing efforts that will increase revenue. Cost

containment might also be important but is of secondary concern. So, minimizing

downtime on the production lines is listed as the top priority, though we’ll likely need to

add sensors to the lines or purchase new equipment to gather the metrics that we’ll require.

�Ideation
Ideation is the start of solving the identified problem or problems in the initiatives. In

IoT initiatives, a goal of this phase is to gather many solution ideas and determine a

solution worthy of developing a prototype that will then be tested for validity in front of

stakeholders and interested parties.

A variety of techniques are commonly used during the ideation phase. Often, the

ideas are generated through facilitated discussions. Brainstorming techniques can be

used to bring about a free expression of ideas. The focus is on gathering a large quantity

of diverse ideas. No criticism of an idea or idea ownership is allowed. Group members in

the exercise are ideally a heterogeneous mix of individuals (not just experts). Everything

is written down and captured.

The facilitator has the important role of guiding the discussion. They might

occasionally solicit different points of view intended to drive consideration of new and

diverse ideas. A best facilitation practice is to ask open-ended questions. The session

might begin with the question, “How might we solve the defined problem?” A question

sometimes asked to spur insightful discussions is, “How might our toughest competitor

solve the same problem?”

Using our earlier prioritized initiatives from our manufacturer example, we would

begin by soliciting input on how we might minimize downtime on our production

line. During brainstorming, ideas on how to solve this problem can be written by

team members on Post-it Notes of different colors, or they might use software-based

applications featuring the equivalent of Post-it Notes to share their ideas. Each team

member has a uniquely colored notepad so that we can determine where the ideas are

coming from (to encourage broad participation) and so that team members can track

their ideas as solutions areas are defined.

A sample of some of the ideas that might be gathered in our example scenario includes

video training of workers, rotation to different lines during shifts to prevent boredom,

automated gathering of assembly line speed statistics, measurement of increased

vibrations or abnormal variations in speed caused by equipment problems, and better

understanding of bill of materials including quantities on-hand for goods production.

Chapter 8 Developing a Plan for Success

174

The facilitator will see that these and other ideas gathered fit into broad solution

themes. Solution themes in our example include training of personnel, staffing model

changes, better capture of metrics measuring output, earlier indication of potential

production line problems, and earlier indication of supply chain shortages. Figure 8-4

illustrates how the Post-it Notes are aligned into these solution themes.

Figure 8-4.  Brainstorming solutions using Post-it Notes

Chapter 8 Developing a Plan for Success

175

The content on the boards containing the sticky Post-it Notes is usually captured by

taking pictures of the results with a mobile phone camera (if an electronic whiteboard

application that can capture these results wasn’t used instead).

Note  The application software used for ideation that features the equivalent
of Post-it Notes has several advantages. Participants can be in remote locations.
Visibility into the notes being written occurs much faster, and deduplication of
identical ideas is easier. Such applications can also enable faster classification of
ideas and voting among participants.

The output of this exercise is later documented in a tabular format such as that

illustrated in Table 8-2.

Table 8-2.  Brainstorming solutions to minimizing production downtime

Solution Themes Post-it Note Ideas Solution Votes

Personnel training Video training, certification, mentoring by

supervisor sessions

Staffing model changes Line rotation during shifts, more breaks, more

overlap during shift change

Automated output metrics

measurement

Line rate, uptime, line stoppage reason, total

products produced

Production line warnings Vibration levels, speed variation, temperature

variation

Supply chain

shortage warnings

Bill of materials/production planning, supplies

on-hand, supplies backordered

Some of these ideas and solution themes shown here will not lead us toward

pursuing an IoT project. That’s ok as the primary goal is to solve the problem at hand, not

force fit a technology solution. A vote is taken among the participants regarding the most

important solution themes, and that will guide us regarding the next steps to pursue. If

IoT projects don’t make the cut, we’ve just determined that funding for developing and

putting an IoT solution into production later could be unlikely to occur anyways.

Chapter 8 Developing a Plan for Success

176

This brainstorming technique used during ideation is also used during other phases

when design thinking techniques are used in an agile sprint. We discuss the agile sprint

later in the chapter.

Tip  Should all votes count the same? Should everyone vote? At this stage in
ideation, usually every vote does count the same and everyone votes. If these
alternatives are reconsidered later, you might then give more weight to key
stakeholders who can fund the project and the potential users. Prior to this later
vote or discussion, you might decide it beneficial to create an influence map
that shows which individuals are supporters, neutral parties, and against solving
the problem. You’ll also want to note whether they are responsible, accountable,
consulted, or simply informed when it comes to solving the problem. Those who
are responsible or accountable have the most skin in the game, and their views are
particularly important when you determine where to narrow the focus.

Further evaluation of these solution themes generally occurs before the type and

scope of a prototype are determined. Proposed solutions are typically broken down into

their process steps. Variants in how those processes will be executed are explored. We also

document the necessary resources that are available and the resources that we must add

for the project to be viable (or indicate work-arounds that might also prove to be adequate).

Let’s assume that “Automated Output Metrics Measurement” received the most

votes among the team. Upon further exploration, we see that the way in which needed

information is gathered today is through manual input of data into spreadsheets by

production line managers. The total products produced is gathered from a counter at

the end of each shift. Data regarding uptime and line stoppage reasons is manually input

and subject to error based on the skills and attentiveness of the production line manager.

We’ve theorized that a more automated approach to gathering this data will help us

increase production since we will be able to fix problems that are occurring much faster.

We’ll also eliminate some of the waste that currently occurs because we throw away

many of the products produced during production line problems.

As we evaluate the technical capabilities needed, we might decide that additional

sensors can help us better measure what is really happening. Alternatively, or

additionally, we might also determine that there is an opportunity to introduce cameras

and use image recognition on the production line to monitor the line and trigger more

immediate actions when needed.

Chapter 8 Developing a Plan for Success

177

At this point, we probably would revisit this solution idea with the team. We might

present pros and cons of deploying and utilizing the various solution resources being

considered as shown in Table 8-3.

Table 8-3.  Automated Output Metrics Measurement alternatives

Solution Resources Pros Cons

Automatic counter, manual

entry (current)

No additional infrastructure, training Inaccurate stoppage times

and reasons

Add only sensors to

production line

Gathers actual stoppage time and

reasons more accurately

Cost of equipment retrofit,

software development

Add only image recognition

to production line

More accurate than manual

observations over time, potentially

more immediate reaction to

production problems

Cost of cameras and

software. Need negotiation

with union?

Add combination of sensors

and image recognition

Potentially the most accurate, also key

to enabling production line warnings

Cost of equipment retrofit,

cameras, and software. Need

negotiation with union?

As documented here, the pros and cons of a solution idea for solving a problem is

being evaluated for technical feasibility, user desirability, and business viability. Other

factors such as adaptability, sustainability, and scalability might also be evaluated.

We might also decide to evaluate each alternative by using more perspectives than

simply pros and cons. One way to do this is by evaluating the strengths, weaknesses,

opportunities, and threats associated with each alternative in what is often referred to

as a SWOT analysis.

We’ll now compare a SWOT for simply adding sensors providing Automated Output

Metrics Measurement to a SWOT for adding both sensors and image recognition as

means to solve our problem. We’ll begin with the SWOT for the adding sensors alone

alternative in Table 8-4.

Chapter 8 Developing a Plan for Success

178

You can see that we’ve called out reasons why we might want to go forward with this

alternative in the “Strengths” quadrant describing positive immediate outcomes from

successful deployment and the “Opportunities” quadrant describing positive longer-

term impacts to the company. But we’ve also called out reasons we might not want

to go forward with this alternative in the “Weaknesses” quadrant by documenting the

perceived shortcomings of the approach and in the “Threats” quadrant documenting the

challenges that could impede the project and limit its success.

The alternative that includes both sensors and image recognition in the solution

introduces some different strengths, weaknesses, opportunities, and threats. Table 8-5

illustrates a SWOT for this alternative.

Table 8-4.  SWOT for adding sensors alone in Automated Output Metrics

Measurement alternative

Strengths
 • Gather actual stoppage time

 • �Automated gathering of reasons for stoppage

through sensors (more accurate)

 • A good first step toward improving production

Weaknesses
• Cost of equipment retrofit over status quo

• �Cost of software development over

status quo

• �Still heavily dependent on

manual inspection

Threats
 • Skills needed to build and maintain

 • Lots of old equipment present

 • �Competitors are updating their plants with

modern equipment

Opportunities
• Develop new skills

• �Replace old equipment with

modern equipment

• �Begin to set the stage of proactive

management of line

Chapter 8 Developing a Plan for Success

179

We now can compare the relative strengths, weaknesses, opportunities, and threats

in the two alternatives. But how do we determine which alternative is the best one for

our situation?

Alternative approaches to solving the same problem are often evaluated using

agreed upon criteria for comparative scoring. Examples of such criteria can include

•	 Strategic importance

•	 Competitive importance

•	 Feasibility

•	 Return on investment

•	 Time to working prototype and testing

•	 Time to production and return on investment

As an example, we decided to score the two Automated Output Metrics Measurement

alternatives compared in the previous two SWOT tables. Table 8-6 illustrates these

alternatives scored using these criteria on a scale of least value or likelihood of optimally

occurring (1) to most value or likelihood of optimally occurring (5).

Table 8-5.  SWOT for adding sensors and image recognition in Automated Output

Metrics Measurement alternative

Strengths
 • Gather actual stoppage time

 • �Automated gathering of reasons through

combination of sensors and images (most

accurate alternative)

Weaknesses
• Cost of equipment retrofit over status quo

• Cost of hardened cameras over status quo

• �Cost and complexity of software

development over status quo

Threats
 • Skills needed to build and maintain

 • Lots of old equipment

 • �Possible union challenge regarding

cameras on line

Opportunities
• Develop new skills

• Replace old equipment with modern

• �Strongest alternative that sets the stage of

proactive management of production line

Chapter 8 Developing a Plan for Success

180

The better understanding that one has of the trade-offs, the more likely one is to pick the

right prototype creation strategy. Based on the scoring recorded in this table in which we see

that one of the alternatives received a higher score, we would likely choose to proceed with

the option that both adds sensors and image recognition to the production line.

�Prototype Creation
The purpose of prototype creation is to enable testing of the validity of ideas gathered

in the previous phase. At this point, we have hypotheses about our potential solution(s)

to the problem that we identified. Prototypes can come in a variety of types and

sophistication, with the cost and sophistication of prototype creation generally aligned

to the degree of commitment to solving the identified problem.

Innovators use prototypes to experiment as they formulate solutions. They expect

failures but continually learn through prototyping in the most cost-effective manner

possible. They see solution development as an evolutionary process but are not afraid

to throw away efforts that early-on prove to be extremely difficult to implement or are

impractical in other ways.

Prototype creation sometimes goes through a series of stages. An initial stage might

be the creation of a storyboard describing how and what the solution to the identified

problem will deliver. How the solution will change business processes might be defined.

Needed functional components in the solution are identified.

Mock-ups of the functional components can be created once there is agreement

regarding the definitions in the storyboards. These might include versions of the visual

interfaces that will be provided. Some of the available technical components might also

be used for functional illustration.

Table 8-6.  Scoring of Automated Output Metrics Measurement alternatives

Alternative Strategic
Value

Compete
Value

Feasible ROI Time to
Test

Time to
ROI

Total

Adding

sensors alone

3 4 4 4 4 4 23

Adding sensors and

image recognition

5 5 4 4 3 4 25

Chapter 8 Developing a Plan for Success

181

A next step could be a technical proof of concept. In this step, we further identify

data and integration challenges as well as skills gaps. Up to this prototype development

phase, throwing away portions of previous efforts might have had little consequence

in the overall cost of creating the solution. At this point, we begin to make a more

significant technical investment with the notion that we’ll continue to evolve this

prototype over time.

Our technical prototype can be used to demonstrate what the final solution could

look like from a functional standpoint. Some also use this effort to determine the

operational impact and other potential gaps in the proposed solution.

Figure 8-5 illustrates a typical series of steps in prototype creation.

Storyboard

Mockup

Technical Proof of Concept

Technical Prototype

Operational Prototype

Figure 8-5.  Typical prototype creation steps

�Testing
During each stage in prototype development, testing is used to solicit feedback from

stakeholders and other key parties, especially the frontline users of the proposed

solution. We use testing to validate our hypotheses about the value that our solution will

deliver. Going into testing, we should have criteria established that define the outcomes

that we are expecting to see if our hypotheses are correct.

In early stages of prototype development, stakeholders and key parties view

storyboards and mock-ups. They are then interviewed and/or share their observations

in discussions or surveys. To get broader feedback, focus groups are sometimes created.

When there is a lack of consensus, votes might be taken on components and the overall

solutions to assure that choices are made that will have the broadest support.

Chapter 8 Developing a Plan for Success

182

Testing can help identify the must-have components of the solution since the lack of

any such components would be pointed out in the feedback received. Satisfaction that

the solution requirements are being met will influence the participants’ views on quality

of the effort made by the team and of the solution itself. Features added that go beyond

the basic requirements might improve perception of the solution or might have little

impact (other than adding cost). It is important to document all of this in the feedback

and capture suggestions for improvements.

Questions are often formulated such that answers can be provided on a sliding

scale. For example, when testing the Automated Output Metrics Measurement solution

prototype for monitoring the production line, participants might be asked to rate the

following on a scale of 1 to 10, where 1 is poor and 10 is excellent:

•	 Ease of use of the prototype

•	 Clarity of messages and indicators provided

•	 Clarity of directions on how operators should respond

•	 Timeliness of messages that appear and quality of automated actions

•	 The response provided by the prototype if the operator makes errors

in fixing problems

•	 The prototype’s potential to teach new operators how to more

effectively do their jobs

•	 Technical feasibility of the prototype including apparent reliability,

availability, and serviceability

•	 Overall satisfaction of operators/workers with the prototype

During the prototype development phase, organizations will sometimes have multiple

teams creating prototypes in competition with each other. This can provide a means to

get to a more comprehensive solution faster. In our earlier example, one team might be

adding sensors alone to a production line and building out that prototype. A second team

could be adding sensors and image recognition to a second production line.

Testing and evaluation of competing prototypes provide us with comparisons of the

solutions but also enable us to judge the quality of work by each team. One prototype

might be chosen over another if it meets all key requirements and is perceived to be the

best solution or is more cost-effective. Sometimes, the best features or components from

each prototype are determined and then merged into a single solution.

Chapter 8 Developing a Plan for Success

183

�The Agile Sprint Approach
Agile sprints have become a popular technique used in early prototyping and testing of

potential software and applications improvements. The sprints generally take place over

short periods of time (2 to 4 weeks) with requirements driven and prototypes reviewed

by a small group of stakeholders and interested parties. Each iteration of the entire

process previously described in this chapter is compressed into this short time frame.

In preparation for the sprint, the facilitator does research into potential problems

that might be addressed, observes current solution practices, and determines who the

likely stakeholders and interested parties will be. The sprint begins with the facilitator

leading this group of participants through the initial problem definition and ideation

phases. A diverse group of six to ten people takes part.

Just as in longer engagements, the facilitator briefs the group on the openness of

the process and reminds them not to feel limited by constraints and to set aside any

critiques. Both the problem definition and ideation phases often utilize the same

brainstorming techniques. These phases commonly take place on back-to-back days.

The same group of participants is usually present for both.

At this point, a prototype is started and developed, usually over no more than a

2-week or 3-week period. The prototype is then “tested” in front of the participants to

validate whether it might provide the solution that the participants were looking for.

This discussion can drive further iterations of this process or lead to a decision to move

forward with an implementation.

In 2005, this process that we describe here was summarized in a “Double-Diamond”

figure by the Design Council UK. The Double-Diamond visually represents where

the scope of what is being considered widens and where it narrows. Figure 8-6 is our

representation of the Double-Diamond using the nomenclature we’ve used in this book.

Chapter 8 Developing a Plan for Success

184

During observation and research, the scope of our effort widens. As we define

potential problems to solve, we eventually narrow the scope, often to a single problem.

As we gather ideas about solving that problem, our scope widens again. In the prototype

creation and then testing, our scope is narrowed, eventually to a single solution as we

move toward a production implementation.

Regardless of whether the agile sprint drives prototype creation and testing,

or design thinking drives it at a slower rate, funding for a full implementation and

operationalizing the solution will require additional considerations. We discuss these in

the next section of this chapter.

�Moving from Prototypes to Implementation
At this point, our prototypes have been tested, and we have been listening to our

constituents. We have aligned our prototype functionality with desired business goals

and made modifications where needed.

We now we likely have more questions that must be answered before we can move

toward deployment of a production environment. These questions can include

Observe Problem
Definition

Ideation Prototype
Creation

Testing

Broadening
Scope

Narrowing
Scope

Broadening
Scope

Narrowing
Scope

Figure 8-6.  The Double-Diamond design process in an agile sprint

Chapter 8 Developing a Plan for Success

185

•	 Is there measurable return on investment or significant business

value from the solution when we operationalize it, and when will we

see it?

•	 Can we operationalize the solution in a reliable, manageable,

serviceable, and secure manner?

•	 Who should implement the production version, and how should it be

implemented?

•	 What sort of roadmap will assure sponsors and stakeholders such

that the project receives adequate funding needed to deliver the

production version?

Let’s explore how we might answer these questions.

�Measurable Return on Investment
We noted earlier in this chapter that return on investment is just one of the

considerations used in determining which projects move forward. That said, once

projects move beyond the testing and prototype phase, ROI analysis frequently becomes

necessary to justify making the investment in an operational version of the solution. This

is particularly true where the CFO has a role in approving these projects.

ROI is computed over a time period that includes developing the operational

solution and then the subsequent period when the solution is in operation. ROI is

positive when the business value provided exceeds the total cost of ownership (TCO)

over a given time period. A goal in these projects is usually to reach positive ROI as soon

as possible. The formula for ROI can be expressed as

ROI = (Business Value – TCO) / TCO

The TCO components in a typical IoT project can include

•	 Azure subscription costs of relevant backend components

•	 Development and deployment of IoT Edge, IoT Hub, data

management, and analytics/machine learning software solutions

•	 Integration of IoT components

•	 Integration to legacy components (where required)

Chapter 8 Developing a Plan for Success

186

•	 Internal staffing supporting the Azure deployment

•	 IoT device and networking purchase costs (including upgrading of

legacy equipment where required) and installation costs

•	 Ongoing IoT device and networking support and maintenance costs

•	 Training of internal technical staff

•	 Training of IoT solution operators of equipment

Typical measured business value comes from

•	 Increased revenue from existing and new products and business

services

•	 Optimization of limited resources, facilities, and/or supply chain

•	 Improved quality of products and services

•	 Savings from reduced unwanted and unplanned equipment

downtime

•	 Elimination of risk, regulatory penalties, and need to set aside

monies for other related expenses

•	 Improved safety resulting in savings from minimized lost worker

time, reduced workman’s compensation, and reduced healthcare

expenses

The potential business value from an IoT solution might initially be viewed by some

in an organization as speculative prior to the deployment of the operational system.

Such estimates of business value are most believable when coming from responsible

business leadership. Often, a range of estimates is provided that can be described as

conservative, pragmatic, and aggressive with pragmatic being considered the most likely

scenario based on business judgement.

A typical illustration of when ROI occurs over time in an IoT project is shown in

Figure 8-7. Initially, the cost of development and TCO far exceeds business value. Later,

TCO becomes primarily support-related and bringing additional IoT devices online,

while business value continues to grow. The crossover point where ROI is positive

(business value exceeds TCO) is sooner when using aggressive business value estimates

and later when conservative estimates are used.

Chapter 8 Developing a Plan for Success

187

In Figure 8-7, positive ROI occurs just after the start of Year 2 in the project. TCO is

growing at a diminished rate, while business value growth continues to increase.

Note  The value of money changes over time. Hence, costs and business value
are sometimes computed using “net present value” (NPV) formulae to provide
more realistic views of ROI during a project lifetime.

�Operational Considerations
In Azure-based backend cloud deployment servicing IoT solutions, operational aspects

are greatly simplified compared to earlier on-premises deployment of these resources.

Given that most companies were adopting a Platform as a Solutions (PaaS) strategy for

IoT solutions when this book was written, let’s look further at key tasks and roles of key

players aligned to such a strategy.

$
10

00
s

Timeline

0

200

400

600

800

1000

1200

1400

Year 1 Year 2 Year 3 Year 4 Year 5

Cumulative TCO vs. Business Value over Time

TCO Business Value

Figure 8-7.  ROI crossover illustrated by business value and TCO over time

Chapter 8 Developing a Plan for Success

188

Identifying the key tasks and roles needed prior to deploying a production version

of your IoT solution is important for a variety of reasons. As we estimate costs associated

with full deployment, personnel costs need to be identified. In addition, understanding

the skills that need to be developed will impact cost, time to solution, and hiring that

must take place.

Key tasks that must be executed when full deployment occurs include managing

day-to-day operations – monitoring the infrastructure, performing change management,

application release management, and performance tuning – and assuring the protection

of data. Operationalizing the architecture is frequently represented by a RACI diagram.

Table 8-7 illustrates an example RACI diagram for an IoT backend in an Azure PaaS

deployment. The RACI diagram is prepared and validated by gathering input from each

of the key individuals as to their roles and responsibilities. The table illustrates who is

responsible (R), accountable (A), consulted (C), and informed (I) for a variety of roles.

Table 8-7.  Example RACI diagram for an IoT cloud backend deployment

Activity/Task Stakeholder/
LOB

Analyst/
Data Scientist

Azure
Admin.

Data
Admin.

Developer IT Manager

Day to day

Operations

I R A

Monitoring I R A

Change

management

I I R R R A

Application release

management

C R I I R I

Performance tuning C C R R R/I I

Data protection I R/I R A

Similar activities and tasks are assigned to those responsible for deployment and

monitoring of IoT edge resources. Table 8-8 illustrates some of the roles that might

appear in an IoT edge RACI diagram where IoT devices are deployed in facilities such as

manufacturing plants, healthcare facilities, campus facilities, utility plants, or others.

Chapter 8 Developing a Plan for Success

189

�Implementation Strategy
The earlier stages of the design thinking approach we described previously in this

chapter should have convinced key stakeholders that there is business value in the

proposed IoT solution. We should now have a good idea as to what our IoT solution will

deliver. The financial and operational considerations we described in this section of the

chapter will also help us in developing our implementation strategy. Even so, many risks

could remain when we approach operationalizing our project, especially if this is our

first IoT solution. Our implementation strategy will help us mitigate those risks.

For example, the design complexity and cost of our IoT solution could raise concerns

about the potential outcome. Developing a phased approach that clearly lays out the

scope of deployment within the project phases, deliverables at the end of each phase,

and likely cost and business value of each phase can help to alleviate those concerns.

Within the project phases, developer and deployment skills might be required that

are not widely present within the organization. Such concerns can be addressed by

providing an education and hiring plan or identifying technology partners that will assist

in the development and deployment during these phases.

Table 8-8.  Example RACI diagram for an IoT edge deployment

Activity/Task Stakeholder/
LOB

Analyst/
Data Scientist

Developer Device
Admin.

Network
Admin.

Facility
Manager

Day to day

Operations

I R R A

Monitoring I R R A

Change

management

I I R R R A

Application release

management

C R R I I

Performance

tuning

C C R/I R R I

Data protection I R/I R/I R/I A

Chapter 8 Developing a Plan for Success

190

In a highly competitive environment, competitors could be developing similar IoT

solutions that match or exceed the capabilities that you have planned. Monitoring these

developments and having flexibility in making some adjustments in response within the

project phases could be well received by key stakeholders of the project.

Deployment of our proposed solution could also have significant impact on existing

business processes. Having well-thought-out change management plans is critical

to mitigating concerns about this impact. Such plans often include activities that are

designed to gain support for the new processes among workers and alleviate the concern

of sponsors. Training can provide education on how day jobs will be impacted and

generate enthusiasm for the changes.

�Preparing an Implementation Roadmap
To gain needed funding for the IoT project, you might need to sell the value and viability

of the project to senior management by providing an implementation roadmap. The

roadmap should contain an easily understandable message about the problem to

be solved, its potential business value, and the expected time to solution that will

demonstrate its value.

Within a roadmap to implementation, you will likely need to also include the

following:

•	 An explanation as to the process used in determining which business

problem(s) merited solution consideration and why this problem was

given higher priority and selected for an IoT implementation

•	 An overview of how this IoT solution will solve the identified business

problem(s)

•	 A timeline showing project phases, costs, and business benefits

•	 An overview of the current state technical architecture and how the

architecture will change in its future state

•	 An overview of project risks and risk mitigation steps

•	 A description of immediate next steps upon project approval including

funding needed, staffing required, planned acquisition of IoT devices

and their installation, planned acquisition of additional cloud

resources, and immediate training and change management activities

Chapter 8 Developing a Plan for Success

191

Multiple roadmaps are often developed to address the concerns of different

audiences in different levels of detail. Business and technical roadmaps each focus

on answering the questions relevant to those audiences. An executive roadmap

presentation presents the information we just noted at a very high level, conveying just

enough information such that the executive(s) can make an informed decision.

�Some Final Thoughts
We hope that you now have gained enough knowledge to define IoT solution

architectures that rely upon Microsoft Azure for providing key components. You

probably realized that there is a lot to consider even before you read this book. You have

many options in how you might justify such projects and in the details of the architecture

that you define.

Our intention was to lay out this book in a fashion such that you could build upon

the knowledge that you gained in each of the chapters. You explored

•	 Modern IoT architecture patterns

•	 Azure IoT solutions overview

•	 IoT devices and Azure

•	 Landing data in Azure

•	 Applying analytics, machine learning, and cognitive services in Azure

•	 Deploying solution accelerators and managed solutions

•	 Integration with legacy infrastructure

•	 Developing a plan for success

IoT continues to evolve. Microsoft and its partners are at the forefront in driving

this evolution and are enabling new and innovative business solutions. New IoT-related

standards also continue to appear while previous standards evolve, addressing areas

that formerly were less well-defined or understood. That said, IoT has matured a great

deal in the past few years. And waiting for the next generation solutions and standards to

emerge is not an option for most organizations.

Chapter 8 Developing a Plan for Success

192

You likely read this book because you have heard so much about IoT and wanted

to learn more. But you might have also read the book because you are feeling pressure

from your business leadership to solve problems that would benefit by deployment of

an IoT-based solution. Getting started today will help you build and develop the skills

you need and start you down the road of designing and deploying solutions that can

make immediate impact on the business. This book is just the beginning of gaining an

understanding on how to do that.

We wish you success regardless of where you are on this journey. Microsoft IoT and

the Azure platform enable the intelligent edge and the intelligent cloud required in the

delivery of these valued business solutions. Successful deployment of these solutions

is assuring that talented individuals skilled in designing and deploying the architecture

covered in this book will be in demand for years to come.

Chapter 8 Developing a Plan for Success

193
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7_9

APPENDIX

Published Sources
Industrial Internet of Things Volume G1: Reference Architecture. Industrial Internet

Consortium, IIC:PUB:G1:V1.80:20170131, January 2017.

Industrial Internet of Things Volume G4: Security Framework. Industrial Internet

Consortium, IIC:PUB:G4:V1.0:PB:20160926, September 2016.

Knapp, Jake, J. Zeratsky, B. Kowitz. Sprint, How to Solve Big Problems and Test New

Ideas in Just Five Days. New York, NY: Simon & Schuster, 2016.

Laney, Douglas (Gartner, Inc.). Infonomics. New York, NY: Bibliomotion, Inc., 2018.

Lewrick, Michael, P. Link, L. Leifer. The Design Thinking Playbook. Hoboken, NJ:

John Wiley & Sons, 2018.

Mueller-Roterberg, Christian. Handbook of Design Thinking. Independently

published, 2018.

Nath, Shyam, R. Stackowiak, C. Romano. Architecting the Industrial Internet.

Birmingham, UK, Packt Publishing Ltd., 2017.

NIST Special Publication 800-82. Guide to Industrial Control Systems (ICS) Security,

May 2015.

Schenker, Jason (The Futurist Institute). The Robot and Automation Almanac 2019.

Prestige Professional Publishing LLC, 2019.

Schwab, Klaus. The Fourth Industrial Revolution. Geneva Switzerland: World

Economic Forum, 2016.

Stackowiak, Robert, A Licht, V Mantha, and L Nagode. Big Data and The Internet of

Things: Enterprise Architecture for a New Age. New York, NY: Apress (Springer Media),

2015.

World Economic Forum. Industrial Internet of Things: Unleashing the Potential of

Connected Products and Services, January 2015.

194

�Microsoft Online Documentation Sources
Microsoft documentation provided important source material for many of the backend

and IoT components described in this book. The documentation can be found at

https://docs.microsoft.com.

Much of the source material listed here leads to more detailed documents. Where

should your start? The “What is/What are” documents in the list point to further detail

for many of the components that we described. Some of the key documents we accessed

included the following (listed alphabetically by title along with most recent update date

at the time we wrote the book):

About Azure Bot Service, 05/04/2019.

Azure enterprise scaffold: Prescriptive subscription governance, 09/21/2018.

Azure Event Hubs – A big data streaming platform and event ingestion service, 12/05/2018.

Azure IoT Central Architecture, 05/30/2019.

Azure IoT Edge security manager, 07/29/2018.

Azure IoT reference architecture, 01/08/2019.

Azure Machine Learning integration in Power BI, 05/30/2019.

Azure Time Series Insights explorer, 05/06/2019.

Choose a real-time analytics and streaming processing technology on Azure, 05/14/2019.

Choose a solution for connecting an on-premises network to Azure, 07/01/2018.

Compare storage options for use with Azure HDInsight clusters, 06/16/2019.

Container support in Azure Cognitive Services, 06/10/2019.

Continuous integration and delivery (CI/CD) in Azure Data Factory, 01/16/2019.

Create a bot with Azure Bot Service, 05/30/2019.

Create a new device template version, 03/25/2019.

Device connectivity in Azure IoT Central, 04/08/2019.

Device Simulation solution accelerator overview, 12/02/2018.

Feature comparison: Azure SQL Database versus SQL Server, 05/09/2019.

HDInsight 4.0 overview (Preview), 10/03/2018.

Information Bot Scenario, 12/12/2017.

Ingest data from Event Hub into Azure Data Explorer, 07/16/2019.

Internet of Things (IoT) Bot Scenario, 12/12/2017.

Introduction to Azure Data Lake Storage Gen2, 12/05/2018.

Introduction to the Azure IoT reference architecture, 12/03/2018.

Introduction to the Geo Artificial Intelligence Data Science Virtual Machine, 03/04/2018.

Machine Learning Anomaly Detection API, 06/04/2017.

Appendix Published Sources

https://docs.microsoft.com

195

Manage devices in your Azure IoT Central Application, 06/08/2019.

Monitor cluster performance (HDInsight), 05/28/2019.

OPC Twin architecture, 11/25/2018.

Order device connection events from Azure IoT Hub using Cosmos DB, 04/10/2019.

Overview of Azure Digital Twins, 05/30/2019.

PolyBase scale-out groups, 04/22/2019.

Predictive Maintenance solution accelerator overview, 03/07/2019.

Provision a Geo Artificial Intelligence Virtual Machine on Azure, 03/04/2018.

Quickstart: Create an Azure Cosmos account, container, and items with the Azure portal,

07/11/2019.

Quickstart: Create an Azure Data Explorer cluster and database, 03/14/2019.

Quickstart: Create an Azure Data Lake Storage Gen2 storage account, 12/05/2018.

Quickstart: Create Apache Hadoop cluster in Azure HDInsight using Azure portal,

06/11/2019.

Quickstart: Find available rooms by using Azure Digital Twins, 06/25/2019.

Quickstart: Query data in Azure Data Explorer Web UI, 07/03/2019.

Quickstart: Try a cloud-based solution to manage my industrial IoT devices, 07/03/2019.

Quickstart: Try a cloud-based solution to run a predictive maintenance analysis on

my connected devices, 03/07/2019.

React to IoT Hub events by using Event Grid to trigger actions, 02/19/2019.

Reference – IoT Hub endpoints, 06/09/2019.

Remote Monitoring solution accelerator overview, 03/07/2019.

Security considerations for data movement in Azure Data Factory, 06/14/2018.

Set up a device template, 06/18/2019.

The Azure Blob Filesystem driver (ABFS): A dedicated Azure Storage driver for Hadoop,

12/05/2018.

Time series analysis in Azure Data Explorer, 04/06/2019.

Tutorial: Add a real device to your Azure IoT Central application, 04/22/2019.

Tutorial: Create a custom simulated device, 10/24/2018.

Tutorial: Stream data into Azure Databricks using Event Hubs, 06/20/2018.

Types of insights supported by Power BI, 12/05/2018.

Use Apache Kafka on HDInsight with Azure IoT Hub, 11/05/2018.

Use features in the Connected Factory solution accelerator dashboard, 07/09/2018.

Ways to share your work in Power BI, 06/06/2019.

Welcome to CosmosDB, 07/22/2019.

Appendix Published Sources

196

What are Azure Cognitive Services?, 04/18/2019.

What are IoT solution accelerators?, 03/08/2019.

What are the Apache Hadoop components and versions available with HDInsight?,

06/06/2019.

What is Azure Data Explorer?, 09/23/2018.

What is Azure Databricks?, 06/07/2019.

What is Azure Event Grid?, 05/24/2019.

What is Azure HDInsight and the Apache Hadoop technology stack, 01/27/2019.

What is Azure IoT Central?, 04/23/2019.

What is Azure IoT Edge, 04/16/2019.

What is Azure IoT Hub?, 07/03/2018.

What is Azure Machine Learning service?, 05/01/2019.

What is Azure Sphere?, 05/01/2019.

What is Azure SQL Database Service?, 04/07/2019.

What is Azure SQL Data Warehouse?, 05/29/2019.

What is Azure Stream Analytics?, 05/15/2019.

What is Azure Time Series Insights?, 04/25/2019.

What is Connected Factory IoT solution accelerator?, 06/09/2019.

What is industrial IoT (IIoT)?, 11/25/2018.

What is Power BI?, 05/29/2019.

What is Power Query?, 10/15/2018.

What is the Anomaly Detector API?, 03/25/2019.

�Other Web Site Sources
IEC (International Electrotechnical Commission). https://www.iec.ch.

IEEE (Institute of Electrical and Electronics Engineers). https://www.ieee.org.

IETF (Internet Engineering Task Force). https://www.ietf.org.

ISA (International Society of Automation). https://www.isa.org.

ISO (International Organization for Standardization). https://www.iso.org.

Microsoft Azure IoT Device Catalog. https://catalog.azureiotsolutions.com.

OASIS (Advancing Open Standards for the Information Society). https://oasis-open.org.

OMG (Object Management Group). https://www.omg.org.

Appendix Published Sources

https://www.iec.ch
https://www.ieee.org
https://www.ietf.org
https://www.isa.org
https://www.iso.org
https://catalog.azureiotsolutions.com
https://oasis-open.org
https://www.omg.org

197

OPC Foundation (OPC UA industrial interoperability standard).

https://opcfoundation.org.

OSIsoft (PI system). https://www.osisoft.com.

PTC (ThingWorx platform). https://www.ptc.com.

USDA Agricultural Research Service (photos courtesy of, used in Cognitive Services

Custom Vision example). https://www.ars.usda.gov/oc/images/image-gallery.

W3C (Worldwide Web Consortium). https://www.w3c.org.

Appendix Published Sources

https://opcfoundation.org
https://www.osisoft.com
https://www.ptc.com
https://www.ars.usda.gov/oc/images/image-gallery
https://www.w3c.org

199
© Robert Stackowiak 2019
R. Stackowiak, Azure Internet of Things Revealed, https://doi.org/10.1007/978-1-4842-5470-7

Index

A
Advanced Message Queuing

Protocol (AMQP), 24, 55, 57
Agricultural Research Service (ARS), 105
ARPANET, 2
Azure Blob File System (ABFS), 35, 96
Azure Data Box, 145, 156
Azure Data Box Edge, 157
Azure Databricks, 91

cluster creation, 92
initial view, 93
notebook view, 94
workplace, 94

Azure Data Explorer, 151
Azure Data Factory (ADF), 37

Azure Monitor, 151
connectors, 150
copy activity function, 150
data connectors, 148
ELT, 148
linked services, 148, 149
pipelines, 148

Azure Data Lake Storage (ADLS), 31, 96, 152
Azure HDInsight, 35, 36, 95
Azure IoT, non-Microsoft

components, 38, 39
Azure IoT certification service (AICS), 68
Azure IoT device catalog

AICS, 68
capabilities and properties, 70, 71

certification test, 69
industrial protocols, 72
security levels, 69
web site, 68

Azure IoT Edge, 32, 52
Azure IoT Hub, 32, 33, 61
Azure Machine Learning service

experiment results, 104
generating workspace, 101
Notebook, 102
Visual Studio, 102, 103

Azure Machine Learning Studio
drag-and-drop interface, 99
experiment, 100

Azure management and deployment
governance plan, 41
portal (see Azure Portal)
resilience

network, 50
vs. on-premises, 49
services, 47, 48
storage, 49

Security Center, 50, 51
subscriptions and resource groups

enterprise hierarchy, 42
RBAC, 43
resource manager, 42

Azure ML Service, 38, 103, 104
Azure portal, 54

Azure Advisor, 45, 46
Azure Cost Management, 46, 47

https://doi.org/10.1007/978-1-4842-5470-7

200

dashboard layouts, 44
dashboard view, 43
monitor interface, 44, 45

Azure public cloud, 29
Azure resource manager, 42, 43
Azure Security Center, 50, 51, 78
Azure Sphere, 52, 53
Azure Sphere microcontroller units

(MCUs), 52, 71
Azure Stream Analytics, 33, 88–89
Azure Virtual Network (VNet), 153

B
Bot Framework, 117, 118

C
Cloud computing

backend platforms, 23
IaaS, 22, 23
on-premises deployment, 22
PaaS, 22, 23
SaaS, 22, 23

Cloud to device (C2D), 24
Cognitive services, 38, 104–107
Computer Vision Service

image testing, 107
image training, 105, 106
visual features, 104

Connected Factory solution accelerator
automated provisioning, 139
Azure resource group, 140
cloud dashboard, 138, 139
demonstration dashboard, 141
OPC UA interface, 138
RBAC, 139

Consumer packaged goods (CPG), 7
Cosmos DB, 37, 97–99

D
Databricks, 34, 91–95
Data catalog

defined, 158
metadata, 158
sensor data, 159

Design thinking
agile sprint approach, 183, 184
full-scale operation, 166
ideation (see Ideation)
observe and research

business processes, 167
external influencing

factors, 169
financial statements and

presentations, 169
industry and government

sources, 169
interviews, 168
journey model, 168
opportunities, 167
PESTEL analysis, 169
problem solution process, 168
typical information, 167

phases, 165, 166
problem definition

capturing and prioritization, 172
deprioritize, 172
IoT initiatives, 170
notes, 171
points of view, 170
ROI, 171

production-ready solution, 166
prototype creation, 180, 181

Azure portal (cont.)

INDEX

201

prototypes (see Prototypes,
implementation)

testing, 165, 181, 182
Device Simulation solution accelerator

automated provisioning, 141, 142
Azure resource group, 142, 143
custom device simulations, 143

Digital twin, 33
Directly device to cloud (D2C), 24

E, F, G
Edge devices, 51, 52, 55
Edge sensor and device

AMQP, 57
Azure IoT Hub, 56
data, 56
IIoT, 58
OPC UA, IIoT walls, 59, 60
OPC UA servers, 58
OSI and TCP/IP model, 57
physical considerations, 56
UPS, 56

Extraction, loading, and
transform (ELT), 148

H
Hortonworks Data Platform (HDP), 35, 95
Hub–spoke topology, 156

I
Ideation

alternative approaches, 179
Automated Output Metrics

Measurement, 176, 177
brainstorming, 173, 175

definition, 173
facilitator, 173
ideas, 173
Post-it Notes, 173
primary goal, 175
pros and cons, 177
score, 179, 180
solution themes, 174
SWOT, 177–179
technical capabilities, 176

Industrial Internet Consortium (IIC), 15, 16
Industrial Internet of Things (IIoT), 58, 59
Infrastructure as a Service (IaaS), 22
Integration and data source

ADF (see Azure Data Factory (ADF))
Azure Data Catalog (see Data Catalog)
data transfer, 156–158
on-premises networks

ExpressRoute, 155, 156
hub–spoke topology, 156
VNet, 153
VPN gateway, 153, 154
VPN site-to-site, 155

query services
Azure Data Explorer, 151
KQL, 151
PolyBase, 151
PolyBase scale-out group, 152

Intelligent devices, 2
Internet of things (IoT)

devices, 24
evolution

NoSQL databases, 3
relational databases, 3
sensors, 3
thermostat, 2
timeline, 3, 4

ISA 99, 25

Index

202

messaging protocols, 24
RMF, 25
SAL, 25, 26

IoT architecture, components, 87
IoT-based business

agribusiness, 5
automotive, 5
aviation, 6
banks and financial trading, 9
communications and media

transmission, 6
construction, 7
CPG, 7
education and research, 8
environmental controls, 8, 9
healthcare payers, 9, 10
high tech and industrial

manufacturing, 10
insurance companies, 11
law enforcement and emergency

services, 11
media content and entertainment, 11, 12
oil and gas companies, 12
pharmaceutical and medical device, 12
retailers, 13
transportation and logistics

management, 13, 14
utility companies, 14, 15

IoT Central
administrators, 120
application, creation, 121–123
builders, 120
Contoso sample application, 124, 125
create device templates, 123
device explorer, 124–126
device template, 129

export data, 129
jobs, creation, 128
Microsoft web site, 120, 121
operators, 120
refrigerator dashboard, 127, 128

IoT Edge runtime
containers deployment

Docker, 64
IoT Edge Agent, 64
key components, 64
machine learning, 65
SQL Database Edge, 65

IoT Edge Agent, 61
IoT Edge device

identity translation gateway, 63
protocol translation gateway, 62, 63
transparent gateway, 62

IoT Edge Hub, 61
security framework

attestation, 67
authentication, 66
authorization, 67
device manufacturers, 66
ISO/IEC 11889, 67
principles, 65
Security Manager, 66
SGX, 66

IoT Hub Device Provisioning Service
allocation policy, 84
automated steps, 84
availability, 84, 85
features, 83
tasks, 83

IoT Hub service
activity, 79
cloud-based services, 75
configuring and controlling, 74

Internet of things (IoT) (cont.)

INDEX

203

event routing options, 80, 81
managing, 78
message routing options, 80
monitor performance, 81
multi-model simulation, 82
option levels, 77
resource assignment and naming, 76
simulation accelerator, 82
tier and scale selection, 77

IoT reference architectures, 30
domains, 15, 16
IIC, 15
ISA-95, 15
in IT architecture (see IT architecture)
Open Software Foundation, 17

IoT SaaS solution
accelerators, 40
Microsoft Dynamics 365, 41
Microsoft PowerApps, 41

IoT solution accelerators
home page, 130, 131
MVC architecture, 130
web site, 130

IT architecture
Lambda architecture, 18

bidirectional exchange, 21
conceptual view, 19
IoT components, 19, 20

traditional batch-oriented
infrastructure, 17, 18

J
Jupyter Notebooks, 38, 102

K
Kusto Query Language (KQL), 151

L
Low-latency analytical

processing (LLAP), 35, 95

M
Manufacturing execution

system (MES), 58
Message Queue Telemetry

Transport (MQTT) protocol, 32,
55, 57

Microsoft Azure PaaS
APIs, 38
Azure Data Lake Storage, 35
Azure IoT Hub, 32, 33
components, 31
Cosmos DB, 37
Databricks, 34
data stores, 37
digital twin, 33
HDInsight

HDP, 35
open-source components, 35, 36
programming languages, 36

IoT architecture, 31
Stream Analytics, 33
time series, 34
tools, 37

Microsoft documentation, 194–196
Microsoft SQL Data

Warehouse, 146

N
National Institute of Standards and

Technology (NIST), 25

Index

204

O
Office 365, 29
Open Platform Communications (OPC), 32
OSIsoft

PI Server components, 160
PI System, 160
PI system integration, 160, 161

P, Q
Platform as a Service (PaaS), 22, 29, 129
Power BI, 33, 37

dashboard, 114
dashboard Q&A, 114
datasets/dashboard tiles, 115
layout of tables, 109
mobile view, 112
new report, 113
output, 116
reports and dashboards, 117
starting, 108
typical report, 110
web browser view, 111

Predictive maintenance
automated provisioning, 134, 135
Azure resource group, 135, 136
demonstration model, 136
ML Studio Workspace, 137
RUL dashboard, 137, 138

Preexisting footprints
legacy data, 146
SQL Database, 146
transactional systems, 146, 147

Prototypes, implementation
implementation strategy, 189, 190
operational considerations, 187–189
roadmap, 190, 191

ROI
business value, 186
formula, 185
illustration, 186, 187
TCO components, 185

PTC, ThingWorx, 161, 162

R
Recovery point objectives (RPOs), 85
Recovery time objective (RTO), 85
Remaining useful life (RUL), 137
Remote Monitoring solution accelerator

automated provisioning, 132
Azure resource group, 133
configuration, 132
dashboard, 133, 134

Return on investment (ROI), 171
Role-based access

control (RBAC), 43, 139

S
Security assurance levels (SALs), 25
Security Information and Event

Management (SIEM) tool, 67
Semi-structured data

Cosmos DB, 97
data consistency levels, 97, 98
initial configuration, 98
loading data, 99

HDInsight, 95
three-step process, 96, 97

Service Level Agreement (SLA), 84
Skills, IoT-based solution

design thinking, 27
key areas, 26, 27

Software as a Service (SaaS), 22

INDEX

205

Software Guard Extension (SGX), 66
Solution accelerators, 54, 119
Spatial intelligence graphs, 33

T
Time Series Insights (TSI), 34

creation summary, 90
explorer, 91
metadata, 89

Total cost of ownership (TCO), 185

U
Uninterrupted power supply (UPS), 56

V
Visual Studio, 38, 102

W, X, Y, Z
Web Site sources, 196, 197
Windows 10 IoT, 31, 53

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Modern IoT Architecture Patterns
	The Evolution of the Internet of Things
	Typical IoT-Based Business Solutions
	Agribusiness Examples
	Automotive Examples
	Aviation Examples
	Communications and Media Transmission Examples
	Construction Examples
	Consumer Packaged Goods Examples
	Education and Research Examples
	Environmental Controls Examples
	Financial Banking and Trading Firm Examples
	Healthcare Payers and Providers Examples
	High Tech and Industrial Manufacturing Examples
	Insurance Company Examples
	Law Enforcement and Emergency Services Examples
	Media Content and Entertainment Examples
	Oil and Gas Examples
	Pharmaceutical and Medical Device Examples
	Retail Examples
	Transportation and Logistics Examples
	Utility Company Examples

	IoT Reference Architectures
	How IoT Fits in Your IT Architecture
	Why Cloud Computing and IoT
	Other IoT Concepts and Considerations
	An Evolution in Needed Skills

	Chapter 2: Azure IoT Solutions Overview
	Microsoft Azure PaaS and IoT
	Azure IoT Hub
	Azure Digital Twins
	Azure Stream Analytics
	Azure Time Series Insights
	Azure Databricks
	Azure Data Lake Storage
	Azure HDInsight
	Cosmos DB
	Other Azure Data Stores
	Tools, Frameworks, and Services

	Non-Microsoft Components in Azure IoT
	IoT SaaS Solutions in Azure
	Azure Management and Deployment
	Subscriptions and Resource Groups
	Azure Portal
	Designing for Resiliency and Availability
	Azure Security Considerations

	Microsoft Intelligent Edge
	Azure IoT Edge
	Azure Sphere
	Windows 10 IoT

	Choosing the Right Component Model

	Chapter 3: IoT Edge Devices and Microsoft
	Edge Sensor and Device Selection
	The Azure IoT Edge Runtime
	The IoT Edge Device As a Gateway Device
	Deployment of Containers
	Azure IoT Edge and Device Security

	The Azure IoT Device Catalog

	Chapter 4: Azure IoT Hub
	IoT Hub Capabilities
	Configuring the IoT Hub
	Managing the IoT Hub
	Message Routing and Event Routing

	IoT Hub Performance Monitoring
	IoT Hub Device Provisioning
	IoT Hub Availability and Disaster Recovery

	Chapter 5: Analyzing and Visualizing Data in Azure
	Azure Stream Analytics
	Time Series Insights
	Azure Databricks
	Semi-structured Data Management
	Azure HDInsight
	Cosmos DB

	Azure Machine Learning
	Azure Machine Learning Studio
	Azure Machine Learning Service

	Cognitive Services
	Data Visualization and Power BI
	Azure Bot Service and Bot Framework

	Chapter 6: IoT Central and Solution Accelerators
	Azure IoT Central
	IoT Solution Accelerators
	Remote Monitoring
	Predictive Maintenance
	Connected Factory
	Device Simulation

	Chapter 7: Infrastructure Integration
	Preexisting Sources of Data
	Integrating and Finding Data Sources
	Azure Data Factory
	Query Services Across Diverse Data
	Connecting On-Premises Networks to Azure
	Bulk Data Transfer
	Azure Data Catalog

	Data Historians and Integration to Azure

	Chapter 8: Developing a Plan for Success
	Identifying the Right Initiatives
	Observe and Research
	Problem Definition
	Ideation
	Prototype Creation
	Testing
	The Agile Sprint Approach

	Moving from Prototypes to Implementation
	Measurable Return on Investment
	Operational Considerations
	Implementation Strategy
	Preparing an Implementation Roadmap

	Some Final Thoughts

	Appendix: Published Sources
	Microsoft Online Documentation Sources
	Other Web Site Sources

	Index

