Introducing Azure
Kubernetes Service

A Practical Guide to
Container Orchestration

Steve Buchanan
Janaka Rangama
Ned Bellavance

Foreword by Brendan Burns,
Distinguished Engineer, Microsoft

ApPress

ww.allitebooks.con


http://www.allitebooks.org

Introducing Azure
Kubernetes Service

Steve Buchanan
Janaka Rangama
Ned Bellavance

Foreword by Brendan Burns,
Distinguished Engineer, Microsoft

vww allitebooks.conl

Apress’


http://www.allitebooks.org

Introducing Azure Kubernetes Service: A Practical Guide to Container Orchestration

Steve Buchanan Janaka Rangama
Plymouth, MN, USA Victoria, VIC, Australia

Ned Bellavance
New Britain, PA, USA

ISBN-13 (pbk): 978-1-4842-5518-6 ISBN-13 (electronic): 978-1-4842-5519-3
https://doi.org/10.1007/978-1-4842-5519-3

Copyright © 2020 by Steve Buchanan, Janaka Rangama, Ned Bellavance

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484255186. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl



https://doi.org/10.1007/978-1-4842-5519-3
http://www.allitebooks.org

Steve would like to dedicate this book to his wife Aya and kids
Malcolm, Sean, Isaac, and Jalen for the support on projects like this.

Janaka would like to dedicate this book to his mother Herath Menike,
his wife Aloka, and his daughter Omandi for being the three
musketeers in his life.

Ned would like to dedicate this book to his wife Andrea and
his kids James, Tess, and Genevieve for their support,
encouragement, and patience.

vww allitebooks.conl



http://www.allitebooks.org

Table of Contents

About the AUtNOrS......cciiiieemmiiisennninsssnrrsssss s an s ann s e e s nnnnn s xi
AcknowIedgments .....ccccuuieemnimssssnnnmssssssnnmssssssnnesssssnnnnsssssnnnssssssnnnsssssnnnnsssssnnnnssssnnns Xiii
1T o XV
L0 T0 T Xvii
Chapter 1: Inside Docker CONtaINersS.......ccccummssssssmssnmmmmsssssssssssssnssesssssssssssssnsssesssssnns 1
The Value 0f CONTAINETS ......cccveriiiniirercrir et s se s s s e nne s 1
L= A S 00T (] S 2
Containers vs. Virtual MacChiNgS.........ccoverrirerinenriessss e s se s s ss s sessessssenens 3
IMAges AN CONTAINEIS .....ccverrererieriererre s s s s ae e s s e sa s e sae s s e e s e saesae s e e s aesaesa e e e e nnees 6
Docker Components (Networking and STOrage)........cceeveverrerrernnensersessessesessessesessssessessesssssssessenes 6
NEEWOIKING ...veererieriesissere s e s b e bbb e e R b e e s e e ae e aenr e e naennens 6

£ (0] 1o - TR 7
INSEAIING DOCKET ......eeeeeerreererese e r s s r e ne s e nnnnnns 8
Docker Command Cheat ShEEL ... e 10
Understanding the DOCKEITIIE .......cccceeverrrierieresirsere s s s s e sesse s sss e sesaeseesesessesnes 12
Understanding DOCKEr BUII .........cocvveriniiiinnie e se s s s s s sas s s sesssssnessesneas 13
Understanding DOCKEr COMPOSE........cccvrirerinerinienisesessse s e se s s sss e sassesessssessssesenns 13
RUNNING @ CONTAINET ... e s p e s 15
Orchestration Platforms ... e s 15
BT 111 T oSSR SRR 16
v

vww allitebooks.conl



http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 2: Container RegiStries......cccsurmsssmmnmmssssnnnsmssssnnsssssssnssssssssnnsssssssnsnssssssnnnsanss 17
Overview of Container REGISLHES. .....ccvvverrerirerere st 17
Registries, Repositories, and IMages ..o s 18
Private and Public Registries and RepoSItOries .........ccoverrrererenerenesnesesene s sesesesseseseenes 18
BasiC Registry OPerations .........c.ccccvuerrriessnnsesnsessssssssssessssessssss s ssssessssssessssessssssssssssssanes 20
1PV T = Vo o T o RS RRSN 25
COMMON REOISIIIES .. veererrerieserserere e e se s sae s s saesse e s e s saesae s s e s s saesa e e s e s aesae e e e naesae s e e e e e naees 26
Docker Hub and DOCKEr REJISIIY.......cccveereririerree s rersee e s sessee e sesessae s saesesssesnesnennens 26
Azure Container REJISIIY ..o s e 27
Azure Container Registry EXPanded..........c.coocorererrnennnesenenerssesese s sessesessesesennes 28
R =TT OSSPSR 28
PEIMISSIONS ....veuevieeerree s e b e e R e p e ne e e R e nr s 29
Tasks and AUTOMALION ........ccovriniinn s 30
Azure Kubernetes Service INtegration...........ccccvveviernrniniernsssensesessssessessessssessessessessssessesees 33
10T 1117 SRS 33
Chapter 3: Inside Kubernetes ...........covemmmmsmmsssmmsssmssmmsssmmsssmssssssss s ssssssnssssnsssnsansas 35
Kubernetes INTErfaces.........ccovreresrnesrssse s 37
DOCKET RUNTIME ...t s 38
Master NOUES OVEIVIBW .........cucucerererrsrnssese e e e s 38
WOrKEr NOUES OVEIVIBW.......courvieiueeeseresssssese e se s e s s se s se s 40
1 F T LT 0 T O 40
Labels and ANNOLAtIONS..........cocoerueecrrcreree e 41
00 S 43
REPIICASELS. .c.veieereres et e e p e an 43
DABMONSELS......ccicecirrce e e 44
JODS 44
B3 T=] =P 44
DEPIOYMENTS ... e e e e r e p e nnn 45



TABLE OF CONTENTS

{0 11T T 45

B3 = 111 P 47
NEIWOTKING...cviteiriecere s e bbb e e R b e e e e nennan 47
E3] (0] (o TSRS 48
SUMIMAIY ...ttt e s e R e e e e e e Re e e R e e nRe e e Re e R e e nrn e nnrn e 50
Chapter 4: Kubectl OVErVIi€W .........cccsrrssssssnsessssnsnsmssssssnssssssnnnsssssssnsssssssnnnsssssnnnnssnss 51
Introduction t0 KUDECLL..........cvieiiriccse s 51
L0 T= T 5 53
Common Operations With KUDECT .........cccvevrerrcrrre e 58
SUIMIMAIY.....eeeeeeeceeree e se s e e s e e e s ae e e e e e e e e e Re e s ee e se e e e e se e e re e nennnnnnenens 62
Chapter 5: Deploying Azure Kubernetes ServiCe ........ccovuumssmmmmmssssnsnssssssnsssssssssnnsssss 63
Azure Kubernetes Service Deployment OVEIVIEW........cvccoeeeemrrnseresesesssessnsesessssessssesessssessssessnnes 63
Deployment Through the AZure POaL.........c.ccoeeeereereneserses e s 63
Deployment TArOUQGh AZUFE CLI.......ccoevirierereresersere s sse e sesse s sss e s e saeseesesenaesaes 70
Deployment Through Azure Resource Manager Templates.........c.ccevvvverinvnsnnnsensenseesensennens 72
Create an SSH KEY Pl ...t sttt 72
Create a Service PrinCipal ........ccooviirininisnsins s s s sss e snens 72
Using an Azure Resource Manager QuickStart Template .........c.coccovverrerernssnnesesesesensenens 73
Deployment Through TErraform .........ccoveeeresnnsesrsesessse s sens 76
Connecting 10 YOUr AKS CIUSTET .....c.coiivinirniinsirie st s e s e s sa s s saesessese s s 76

ES 11114 R 77
Chapter 6: Deploying and Using Rancher with Azure Kubernetes Service............. 79
WRHaL IS RANCNEI? ..o e 79
Why Use Rancher with KUDEINEteS?..........cco i 80
How to Deploy RANCher 0N AZUKE.........ccovveererernesrneses s se s sessssessssessssssenns 81
Authenticate Rancher with Azure Active DIreCIOry .......ccvverinrsnsesnrsse s 90
Deploy AKS With RANCRET.........ccvcrererirsirere s se s s ss s s sr e 92

£ 1104 R 99

vii



TABLE OF CONTENTS

Chapter 7: Operating Azure Kubernetes Service .........ccouusmmmnrmssssnnssssssssnsssssssnnnss 101
Cluster Operations in Azure Kubernetes ServiCe .........cccvmvrecerncvniesineses s seses s ses e 101
Manually Scaling AKS CluSter NOGES..........voceermerererrererererese s se e sennes 102
Scaling Azure KUDErnetes SErVICE ........cuourerrrrreresere s 110
Manually Scaling Pods 0F NOGES ........ccoveerrrermrenerssesssessssse s sesss s ssssessssssssssssssnses 110
Automatically Scaling Pods Or NOUES .........ccucererrrnrieniennninserse s sessese e ssssessessesees 111
Storage Options for Azure KUDEINETES SEIVICE ......cevvverrrierereeserserersesessesessessssesse e ssesessessesses 115
L0 T4 R 116
PersiSteNt VOIUMES .......ccoveceecereer e 116
STOrAgE ClASSES......crereeerreerrrererese e s s e re e e pa e e e s 117
Persistent VOIUME ClaimsS........cccueorinmrnenrnesenese s s sesss e s sesssssssssessnses 117
Networking in Azure KUDernetes SErviCe .........cuvvvvrneninesensse s sesse e 119
Kubenet vs. Azure Container Networking Interface (CNI) .......ccccvvevrrrvriennnensenseresensenennes 119
Network Security Groups and NetWOrk POIICIES........ccuvvrerererrerserersssersesessssessessessesessessesses 122
Access and Identity in Azure Kubernetes ServiCe.........cccuvvvrerrescrnvennnesese s ses e sesss e 122
Kubernetes Service ACCOUNTS.........cccecrrecrerererere s e 122
Azure Active Directory INtegration ...........ooccvveenenrescrrserr e 123
Azure Role-Based Access CONtrolS (RBACS)......c.cueeerrereressersssessssssesssssssssesssssssssssessssessssenens 123
Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings ..........ccccveerverererseriernsensenennes 123
Control Deployments with Azure POIICY (PrEVIEW) ......ccccvvverrerierersnsensessessesessessessessssessessees 124
Security Concepts in Azure KUDEIrNEteS SEIVICE .......cvvvvvereverrersereresesseresessssesessessesessessesaes 128
MaASTEN SECUNTY ....veviirerese i e s p e e 128
0T Lo S 128
ClUSTEr UPGrates .......cccvveerirererreneriesesesesesss s ses e ssssesse e ses s ssssssesss e sessssnssssnssssessssssssssssnsanes 130
KUDEINETES SECIBIS ....vceiricriicrir et 130
Monitoring Azure KUDErneteS SEIVICE......cvrrirrrririernnerseresesessesesessssessessessesessessessesssssssesaens 131
Azure Monitor for CONTAINETS..........ccverrrnmsereressssse s sn e 131

viil



TABLE OF CONTENTS

Business Continuity and Disaster Recovery in Azure Kubernetes Service.........ccuvverrererserserens 145
Thinking About SLAs and What YOu NEed..........cccucevrirrnieninicnnnnsscssse s sessesessenens 146
Data Persistence and Replications.........cccocucvirirninininnnn s sessesnes 146
Protecting Against FAUILS.........ccocooreeerncsreree e 147

BT 111 7 o SRS 149

Chapter 8: Helm Charts for Azure Kubernetes Service..........ccousmmssmmsassssnsssansssass 151

HEIM OVEIVIBW.....cvieiiiicci i e 151
USE CASES ...cuererireucsreressssssseesesssssss e e s se e se et e ne e R e e R 152
Advantages over KUDECH ..o 152
LG 0111010 4T 153
Cloud Native Application Bundle...........cccovvrvninninnnininn e 155

Installing HElm 0N AKS.........coiicccse e s 155
L0 [FTT =T 1 T=T L O 156
RBAC and Service ACCOUNT.........cccorururmnmseseressssssssse s se s e sssesssssssssssens 156
TLS CONSIUEIALIONS.......ccuceecereresseeesesesrs s se s 157
3 T 159

L 0 T2 T g 163
Chart CONENTS.......cceeerecrrcrer e nr s 163
Chart REPOSITOMIES ....veerveerrrseserreserrssesrsesesss s e e s e ss s s sr s sn s ses s sns e nsanis 170
DeplOYMENTE PrOCESS......ceiveririrsie st r e s 171
Creating @ Helm CRart ... s e se s e sa s sae s sessesnesassesnesne s 173
Deploying @ Helm Chart...........coceiiiirnesnc ettt s seeas 178
Updating @ REIBASE.........cccrureereeriecr s e 181
ReMOVING @ REIBASE ......c.vccereeeercer e 184

CI/CD INtEGratioNS .....cecerveerrrreserene s e sr e sr s r s s se s nr s 185
Automating DePIOYMENTS ......covviririerierrrirre e s p e e 185
Testing Helm Chars .......ccvcveverrierere s sessere s s s s sss e s e s ssesss e s e ssesaesssessesaessenssnesaesns 186
Unattended Helm Chart INStallS..........coviienennenincescncsrs e sssssenes 187
Integrating Helm with AZure DEVOPS.......cccc v e 187

£ T 189



TABLE OF CONTENTS

Chapter 9: CI/CD with Azure Kubernetes ServiCe.......cccrummmmnnrmssssnnsssssssnssssssssnnnss 191
CI/CD OVEIVIBW ....c.veececeresssseeesesessssesssesesessssssssssesesssssssssssessssssssssssssssassnsassssssssssnsssssssssasensans 192
Continuous INtEGration...........cccvcieiinninr - 193

Shared REPOSITOrY .......ccocereerrrcrererere s s e 194
3T o I o o1 SRS 195
Continuous Delivery/DepIOYMENT.........cccvvriernninieriene s sss e s e saessesessesaesnes 201
REIEASE PIPEIINE ....cveerereerteerere et a e sre st e s ae s p e ne e e ae e e e aennen 202
153 1 o 212
UNITETESHING ...eeeireciccre s e e e s e s p e e ne s 213
INtegration TESTING ......ccvvecrrrerererere s 213
SYSTEM TESTING «.vvveerreerreerenese s sr s ne e e ne e 213
ACCEPLANCE TESTING. .. .civeererrererreserrnese e r e r e ae e e s e ne s 214
DL 0 T R 214
CI/CD Best Practices With AKS ... sssesssssssas 216
L T T 0] 0T L0 ] - OO 216
Application DEVEIOPEIS.......ccceviierirererie st e p e s 218

£ 10T 1117 o T 219
INA@X iiiiiissnnnnnnnnnnnnssssssssnnnnnnnnmessssssssnnnnnnnnnsssssssssnnnnnnneessssssssnnnnnnnnnssssssssnnnnnnnnnnssssssns 221



About the Authors

Steve Buchanan is an enterprise cloud architect and Midwest Containers Services

Lead on the Cloud Transformation/DevOps team with Avanade, the Microsoft arm of
Accenture. He is an eight-time Microsoft MVP and the author of six technical books. He
has presented at tech events, including Midwest Management Summit (MMS), Microsoft
Ignite, BITCon, Experts Live Europe, OSCON, and user groups. He is active in the
technical community and enjoys blogging about his adventures in the world of IT on his
blog at buchatech.com.

Janaka Rangama is a Microsoft Azure MVP and a Microsoft Certified Trainer. He is
originally from Sri Lanka, “the Pearl of the Indian Ocean,” and now lives in Australia,
“the Land Down Under.” Currently a Senior Principal Product Technologist at Dell EMC
Azure Stack Product Engineering Team, he is one of the leading hybrid cloud experts in
the APAC region. He is a well-known speaker in many international conferences and an
expert in both Microsoft and OSS technologies. He co-leads the Melbourne Azure Nights
user group and is one of the founding members of the Sri Lanka IT PRO Forum.

Ned Bellavance is a Microsoft Azure MVP and Founder of Ned in the Cloud LLC. As a
one-man tech juggernaut, he develops video courses, runs the Day Two Cloud Podcast
for Packet Pushers, and creates original content for technology vendors. He is passionate
about learning new technologies and sharing that knowledge with others, whether that
is through courses, speaking, blogging, or authoring books. He has presented at tech
events, including Microsoft Ignite, Cloud Expo NYC, and the Midwest Management
Summit (MMS). You can find his musings on the IT industry at his web site at
nedinthecloud.com.

xi



Acknowledgments

Steve would like to thank the co-authors Ned and Janaka for taking on this project, the
tech reviewers Mike Pfeiffer and Keiko Harada, Brendan Burns for writing the foreword,
and the Microsoft teams who do all the cool container things in Azure!

Janaka would like to thank the co-authors Ned and Steve for encouraging him to
become part of this book, Keiko Harada (Senior Program Manager, Microsoft Azure)
and Nirmal Thewarathanthri (Cloud Solutions Architect, Microsoft Australia) for their
continuous guidance and support through his Kubernetes journey, and the Microsoft
Azure Product group for their amazing work to augment humanity with the intelligent
(cloud + edge).

Ned would like to thank Nigel Poulton for getting him tangled up in the Kubernetes
mess, Steve Buchanan for encouraging him to be part of the book, and Justin Luk for
sharing his team’s knowledge and insight.

xiii



Foreword

Kubernetes has revolutionized the way that people approach building and operating
distributed systems. Over the last five years, Kubernetes has gone from a small open
source project to a ubiquitous part of a broad cloud-native landscape. Kubernetes
enables application developers to de-compose their monolithic applications into
smaller “two-pizza” teams which radically accelerates autonomy and agility in software
development. Additionally Kubernetes includes capabilities for online, self-healing
management of applications that also makes distributed systems on Kubernetes more
reliable too.

Kubernetes is a critical component of modern application development and digital
transformation for many organizations. But it is also a distributed system unto itself. This
means that the care and feeding of a Kubernetes cluster is a complicated endeavor. This
is made even more complex by the rapid pace of change in the Kubernetes ecosystem,
with new versions of Kubernetes released every three to four months and patch releases
with fixes and security updates pushed even more quickly.

Because of the complexity of managing your own Kubernetes cluster, consuming it
as a managed cloud service becomes a very attractive option. In Microsoft Azure, the
Azure Kubernetes Service (AKS) is a managed service for “Kubernetes as a Service.” With
AKS, users can harness the power of the Kubernetes API while having the confidence
that Azure is ensuring that their clusters are healthy and stable. When updates come,
AKS performs extensive testing and vetting of the release to ensure that a user of AKS can
upgrade to the latest fixes ensuring that it will work properly for their application. AKS
also deeply integrates into the Azure ecosystem and core technologies like Azure Active
Directory (AAD). For most people, Kubernetes is only a part of their overall Azure usage,
and this integration means that the rest of their digital estate can seamlessly integrate
with the Azure ecosystem.



FOREWORD

Whether you are just getting started or a Kubernetes expert, Introducing Azure
Kubernetes Service is a great resource for ensuring that you get the best out of managed
Kubernetes on Azure. I'm grateful to Steve, Janaka, and Ned for providing our users with
such great reference material. In Azure, we work tirelessly to ensure that we meet our
customers where they are and set them up for greater success.

This book shares those goals and will help you achieve your goals with Kubernetes
and Azure. Enjoy!

Brendan Burns
Distinguished Engineer, Microsoft



Introduction

This book is a practical guide to Microsoft’s Azure Kubernetes Service (AKS), a container
orchestration platform. The goal of this book is to take the reader from 0 to 100 deploying
and running a Kubernetes cluster on Microsoft Azure cloud. For anyone embarking

on this book, it is ideal to have experience in the IT industry in system administration,
DevOps, Azure cloud, or development. Some Docker experience would also be helpful
but not required.

This practical guide on AKS scales back on theory content, giving just enough to
grasp important concepts while focusing on practical straight to the point knowledge
that can be used to go spin up and start running your own AKS.

The book will take the reader on a journey inside Docker containers, container
registries, Kubernetes architecture and components, and critical Kubectl commands,
along with the deployment and operation of Azure Kubernetes Service including topics
such as using Rancher for management, security, networking, storage, monitoring,
backup, scaling, identity, package management with HELM, and finally Kubernetes in
Continuous Integration and Continuous Delivery/Deployment (CI/CD).

xvii



CHAPTER 1

Inside Docker Containers

Welcome to Introducing Azure Kubernetes Service: A Practical Guide to Container
Orchestration. Before diving into Azure Kubernetes Service, it is important to understand
the building blocks and road leading up to Kubernetes and finally Azure Kubernetes
Service.

This chapter is not a deep dive into Docker and building applications with Docker.
Docker is a large topic and can fill an entire book. The goal of this chapter is to give both
those who are not familiar with Docker enough knowledge to get started and those
that are familiar with Docker a refresher as must have knowledge as a prerequisite to
Kubernetes.

In this first chapter, we are going to dive inside Docker containers. By the end of
this chapter, you will have a greater understanding of Docker; images; containers and
their value; the underlying Docker components; how to install Docker, run Docker
commands, and build Docker images; and Docker Compose and finally an introduction
into orchestration platforms.

The Value of Containers

Containerization is not new. In fact, container technology has been around in the
Linux world since the 1980s. Containers however only become widely popular with
tremendous growth in part due to the launch of the Docker container format in 2013.
Containers are an abstraction of the application layer in an isolated user-space
instance. Containers share the operating system (OS) kernel storage and networking
from the host they run on. Containers can be thought of like the core components
needed for an application running as a process. Containers allow the packaging of an
application and its dependencies running in an instance. Containers allow software
engineers to develop their applications and replicate across environments such as dev,

stage, and prod in a consistent manner. Containers can move through Continuous

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_1



CHAPTER 1  INSIDE DOCKER CONTAINERS

Integration and Continuous Deployment pipelines in a manner that keeps the OS,
dependencies, and application unchanged, providing ultimate flexibility and agility.
The value of containers from a technical standpoint can be summed under
the following: greater density of applications on the same hardware than any other
technologies, optimization for developers resulting in improved developer productivity
and pipelines, operational simplicity, and cloud and infrastructure agnostic for true
platform independence and ultimate portability.
The value of containers to the business are lower TCO, increased speed and time to
market, higher customer satisfaction, predictability and dependability, increased agility,
and improved operational velocity.

What Is Docker

There are many container formats available; however, Docker has become the de facto
standard for both Windows and Linux containers. Docker is an open source container
format. Docker can be used to build, run, and store container images and containers.
Per Docker, 3.5 million + applications have been containerized. And according to the
RightScale 2018 State of the Cloud report, Docker adoption in 2018 rose from 35% to
49%. Let’s dive into the Docker components:

o Docker Engine is the core of the Docker solution. It is a Client-server
application with the following components:

o Docker Client is the way users interact with Docker. Docker
Client comes with a command line interface (CLI) in which users
execute Docker commands. Docker Client can run on the same
computer as a Docker daemon or a client computer and connect
remotely to a Docker daemon.

e Docker host runs the Docker daemon. The Docker daemon is a
background process that manages Docker images, containers,
networks, and storage volumes. The Daemon listens for
commands on a REST API or receives commands via the CLI. It
also can communicate with other Docker daemons to manage
Docker services.



CHAPTER 1  INSIDE DOCKER CONTAINERS

e Docker registry is a repository service where you can host and
download container images. A Docker registry can be local,
public, or private. Docker has a public registry service named
Docker Hub. Most cloud providers offer private Docker registries.

e Docker Objects

e Docker images are read-only templates used to build Docker
containers. These contain the instructions for creating a Docker
container. Images include the application code, runtime, system
libraries, system tools, and settings.

o Docker containers are simply the images running at runtime.
Docker containers run on the Docker Engine.

o Docker services allow container scaling across multiple Docker
daemons. These multiple daemons act together as a swarm with
multiple managers and workers.

Docker is available in two editions:
e Community Edition (CE)

e CEisagood option for developers, small teams, and anyone
starting out with containers.

e Enterprise Edition (EE)
o EEis good for enterprise teams and production needs.

It is important to know that Kubernetes supports multiple container runtimes;
however, overall Docker is the most common image and container format in the tech
space today. It is worth investing some time into diving deeper into learning Docker.

Containers vs. Virtual Machines

In IT for a while now, virtual machines (VMs) have pretty much been the standard when
there is a need to stand up a server to run an application. Virtual machines require a
hypervisor to run on. There are many hypervisors but the popular ones are VMWare
and Hyper-V. The hypervisor is installed on top of a physical machine, and then virtual
machines are deployed on top of the hypervisors. This allowed the IT industry to pack
many virtual machines on physical servers increasing the density and getting more ROI

3



CHAPTER 1  INSIDE DOCKER CONTAINERS

out of physical hardware. Virtual machines emulate physical servers including storage,
networking, and an operating system. They are more portable and faster than physical
servers but are still full servers requiring boot up time and the same level of management
as physical servers.

Containers take the density and optimizing to the next level. Containers are still a
form of virtualization but only virtualize what is core to running an application. With
containers, there is no need for a hypervisor as they run directly on the kernel. You can
pack many more containers on a physical server. Containers are more lightweight and
boot up faster, and the management is streamlined.

With containers some of the underlying components are shared across all the
containers running on a host such as storage and networking. Figure 1-1 gives a visual
representation of the differences in the architecture between containers and virtual

machines.
Y Y
A A A
- ~ ~ ~ pp pp pp
_ L AN J
App App App 2 -~ e N
an
\ L \ J| £ . . .
p S - - ; Libs Libs Libs
S \_ AN J
Libs Libs Libs § VS p \ < #
\_ VAN Y, Guest Guest Guest
0sS 0S 0S
oS \ AN J\ )
Hypervisor
Physical Server
(O

Containers

Physical Server

Virtual Machines

Figure 1-1. Containers vs. virtual machines




CHAPTER 1  INSIDE DOCKER CONTAINERS

As you can see from the image, containers are isolated at an OS-level process,
whereas virtual machines are isolated at the hardware abstraction layer. The growth of
containers does not mean that virtual machines will go away anytime soon. There are
reasons you would use containers over virtual machines due to the benefits. Let’s look at
some of the reasons you would use containers:

Speed: Docker containers are extremely fast compared to

virtual machines. It can take a container anywhere from a few
milliseconds to a few seconds to boot up, while it will take a virtual
machine at least a few minutes to boot up.

Portability: Containers can be moved and shared across multiple
teams, development pipelines, cloud, and infrastructure with the
application behaving the same wherever the container runs. This
reduces human errors and potential environmental dependency

€Irors.

Microservices: Containers are a good way to decouple and run
an applications component to support a microservices-based
architecture.

Now let’s look at some reasons you may still want to use virtual
machines over containers.

Stateful: If you have applications that need state, virtual machines
might be a better fit because containers were designed to run
stateless applications.

Co-located: If an applications component must all be installed
together on the same server, a virtual machine will be a
better option as a focus of containers is often to break out an

application’s services across multiple containers.

With the increase in containers, the footprint of virtual machines will decrease.
However, virtual machines are not going to disappear as there are still use cases for them
and many workloads today are running just fine on virtual machines.



CHAPTER 1  INSIDE DOCKER CONTAINERS

Images and Containers

Earlier in this chapter, the differences between container images and containers were
briefly covered. Let’s dive in a little deeper as to what images and containers are. In a
nutshell, a container is simply a running instance of an image.

Images are read only. Containers can be modified with changes, but those changes
are lost when the container stops. Changes to a container can be retained if they are
committed to a new image. Images are a representation of the code, runtime, filesystem,
libraries, and settings. An image is a set of commands in a file named Dockerfile that
defines the environment inside a container. Listing 1-1 is an example of a simple image
Dockerfile that runs on an Ubuntu Linux OS and executes a command that will output
Hello World!.

Listing 1-1. Dockerfile content

FROM ubuntu:latest
CMD echo Hello World!

After a Dockerfile is built, the docker build command is used to build the actual
image. Built docker images are stored locally by default and can be run as a container
from there or pushed to a Docker registry. Docker images get a unique ID by default
but can be named and tagged. That wraps up this summary of Docker images and
containers. Later in this chapter, we will explore the Dockerfile in more detail, using
docker build and running a container.

Docker Components (Networking and Storage)
Networking

In your container journey, you will get to a point where you need to expose it to the
outside world or you may need to connect several containers together either on the same
host or across other hosts. Docker containers have networking options available to fit all
scenarios. There is a layer of networking in container technology for the containers to
communicate with other containers, the host machine, and the outside world. Docker



CHAPTER 1  INSIDE DOCKER CONTAINERS

supports a few different types of networks. Let’s look at each type of network to get a

better understanding of how networking works in containers:

Bridge is the default network for containers. When Docker starts, a
bridge network is created, and the containers will be connected to
this network unless otherwise specified. With this network type, port
mapping is needed for the outside world to access the container. This
network type is for containers running on the same Docker daemon
host. If containers need to communicate with containers running on
other daemon hosts, routing needs to be done at the OS level, or the
overlay network type should be used.

Host uses the host’s networking directly. Containers will be accessed
using an IP address of the host. This networking type only works

on Linux hosts. This is not supported on Docker Desktop. This
networking type is also used with swarm.

Overlay also known as ingress connects Docker daemons together for
multi-host network communication. The overlay type runs several
layers of network abstraction on top of a physical network. An overlay
network is a single layer 2 broadcast domain among containers that
are hosted on multiple Docker hosts.

Macvlan lets you assign MAC addresses directly to containers. When
Macvlan is used, containers appear as if they are physically on the
network. When this is used, containers can be assigned a public

IP address that is accessible from the outside. This type of network
connects the container to the host network interfaces. This type

uses layer 2 segmentation, and there is no need for network address
translation (NAT) or port mapping.

Storage

Containers can store changes made to them. Any container changes will be saved to

a writeable layer. This writeable layer requires a storage driver to store these changes.

Now by default, containers have nonpersistent storage. What nonpersistent means

is that when a container is restarted, the storage is destroyed. In order to retain data

indefinitely when a container is restarted or turned off, persistent storage is needed.



CHAPTER 1  INSIDE DOCKER CONTAINERS

With Docker containers, we have four options for persistent storage. The persistent
storage options are

e Data volumes sit on the host filesystem outside of the container.
These allow you to create persistent storage and manage the volumes
such as list them, list the container they are associated with, and
rename them.

o Data volume container is when a container is dedicated for hosting
a volume for other containers. You can mount the volume from
this container in other containers. For example, you may have an
application container to host the application and a volume container
that hosts the volume for the application container.

o Directory mounts are when you mount the host’s local directory into
a container.

o Storage plug-ins work with underlying storage devices and can
connect to external storage solutions. This can map to external
storage solutions including cloud providers Azure, AWS, and GCP;
storage arrays like EMC, HPE 3PAR, and NetApp; and storage
appliances.

Installing Docker

When you start to work with Docker, you will need to install Docker Desktop on your
local machine. Docker Desktop is typically used for local development purposes. Docker
Desktop includes Docker Engine, Docker Client, Docker Compose, Docker Machine,
and Kitematic. Kitematic is something we have not discussed yet. Kitematic is a GUI
for working with Docker images and containers. Kitematic also automates the Docker
installation and setup process.

Docker is cross-platform, so it can be installed on Linux, Mac, or Windows. In this
section, we are going to cover the steps for installing Docker on Windows. Let’s dive right
into the steps for installing Docker on Windows.



CHAPTER 1  INSIDE DOCKER CONTAINERS

Requirements:
e Cluster and node management

e Windows 10, 64 bit: Pro, Enterprise, or Education (build 15063
or later)

e Virtualization enabled in the BIOS
e CPU SLAT-capable feature
e Microsoft Hyper-V
e Atleast4 GB of RAM
Install steps:

1. Download Docker Desktop Installer.exe from https://
download.docker.com/win/stable/Docker%20for%20Windows%20
Installer.exe.

2. Double-click Docker Desktop Installer.exe to run the installer.

3. A wizard will pop up. Follow the steps in the wizard including
accept the license, authorize the installer, and proceed with the
install.

4. Click Finish to complete the Docker Desktop install.

5. Docker will not start automatically. Docker will need to be started.
To do this, use Windows search to search for Docker. Click Docker
Desktop for Windows.

Note If Hyper-V is not enabled, the Docker Desktop installer will automatically
enable it and will reboot the computer if needed.



https://download.docker.com/win/stable/Docker for Windows Installer.exe
https://download.docker.com/win/stable/Docker for Windows Installer.exe
https://download.docker.com/win/stable/Docker for Windows Installer.exe

CHAPTER 1  INSIDE DOCKER CONTAINERS

You can set Docker Desktop to automatically start upon login into Windows as
shown in Figure 1-2.

&

General

General =

Adjust how Docker Desktop behaves according
to your preferences.

Shared Drives

Advanced
N " I Start Docker Desktop when you log in
etworl
] Automatically check for updates

Proxies Send usage statistics

Help us improve Docker Desktop by sending anonymous app lifecycle information (e.g., starts, stops,
Daemon resets), Windows version and language setting.

Note: When running, Docker Desktop will always send its version.
Kubernetes [[] Expose daemon on tcp://localhost:2375 without TLS

Exposing daemon on TCP without TLS helps legacy clients connect to the daemon. It also makes yourself
Reset vulnerable to remote code execution attacks. Use with caution,
@ Docker is running You are running a stable versicon, You can switch to another version.

Figure 1-2. Start Docker Desktop on login setting

After Docker is installed, you should see the Docker icon in your task bar tray to
reflect that Docker is installed and running. Let’s dive more into utilizing Docker in the
next sections.

Docker Command Cheat Sheet

Interacting with Docker is done via command line. Docker was written in Go. Docker
stores its configuration files in a directory called .docker. Let’s break down the docker
command structure. All docker commands start with docker, and then there is a space
and then the command, another space, and then the management category or option.
The docker management command syntax can be seen in Figure 1-3.

10



CHAPTER 1  INSIDE DOCKER CONTAINERS

| Command |
Y
Sdocker login localhost
A \
{ Docker \ { Options \

Figure 1-3. Docker management command structure

Docker commands that refer directly to a container are slightly different. Commands
start with docker, and then there is a space and then the command, another space, and
then the container name. The docker command syntax referring to a specific container
can be seen in Figure 1-4.

| command ]
!
$docker run hello world

|
| A

|

Docker container

Figure 1-4. Docker command structure

Here is a list of critical Docker CLI commands you should know as you get started
with docker:

o docker info: This will show system-wide information for Docker.
e docker version: This will list your current Docker version.

o docker [COMMAND] help: This will list the help info about
a command.

e docker images: This will list the images on your local system.

e docker run: This will create and run a container based on an image.
o docker start: This will start an existing container.

o docker stop: This will stop a running container.

o docker build: Used to build an image from a Dockerfile.

11



CHAPTER 1  INSIDE DOCKER CONTAINERS

o docker login: This will log you into a Docker registry.

e dockerlogout: This will log you out of a Docker registry.

e docker pull: This will pull an image from a container registry.
o docker ps: This will list running containers.

e docker inspect: This will show all info on a container including
IP addresses.

e docker rm: This will delete an image.

e docker logs: This will print the docker logs.

Understanding the Dockerfile

A Dockerfile consists of a set of instructions for building an image. A Dockerfile should
be named “Dockerfile” with no extension. When an image is built from a Dockerfile,
all files that need to be included in the image should be within the same folder as the
Dockerfile. Here is an example of a Dockerfile:

FROM python:alpine3.7

COPY . /app

WORKDIR /app

RUN pip install -r requirements.txt
EXPOSE 5000

CMD python ./index.py

Let’s break down the commands from our example Dockerfile to gain a better
understanding of the Dockerfile structure:

o FROM: This defines base image used for the container.
e COPY: This will copy files from a source to the container.

¢«  WORKDIR: This sets the path where the command, which is defined
with CMD, will be executed.

¢« RUN: This defines a set of commands to run within the container
when it is first created.

12



CHAPTER 1  INSIDE DOCKER CONTAINERS

o EXPOSE: This will expose a port to the outside world to enable
networking access to the container.

e CMD: This will execute a specific command within the container

when it runs.

The docker build command is used as a way to automate the build of an image from
the Dockerfile. In the next section, we will take a closer look at docker build.

Understanding Docker Build

As stated in the previous section, docker build is the command that runs the process to
create an image from a Dockerfile. This should be run from within the same directory
that contains the Dockerfile. Here is an example of the docker build syntax:

docker build --tag pythonapp:dev

The --tag and: dev will tag the image with a name and dev. This makes it easier to
identify the image. Tags are a way to document information about a container image’s
variant and/or version. Think of tags as adding an alias to container images. After the
image build process runs, you can run docker images to list the images and verify your
name image was created.

Understanding Docker Compose

Dockerfile is a single image. You can create a single image to run a single container using
Dockerfile. If you need to create a multi-container application where the containers are
connected, then you can use a tool named Docker Compose. We will not dive deep into
Docker Compose as this is an advanced topic and out of the scope this chapter. We will
however give an overview of Docker Compose.

Docker Compose files are in YAML. Within the Docker Compose file, you reference
images; therefore, you still need to build the container images in Dockerfiles. With
Docker Compose, you can run a single command to launch all of the containers that
make up your application in one shot. Here is an example of a multi-container-based

13



CHAPTER 1  INSIDE DOCKER CONTAINERS

WordPress application in a docker-compose.yml file made up of a WordPress site and a
backend MySQL database server:

version: '1.0'

services:
db:

image: mysql:latest

volumes:
- db_data:/var/lib/mysql

restart: always

environment:
MYSQL_ROOT_PASSWORD: secret3241
MYSQL_DATABASE: wp
MYSQL_USER: wpadmin
MYSOL PASSWORD: secret3241

wordpress:
depends_on:
- db
image: wordpress:latest
ports:
- "8000:80"
restart: always
environment:
WORDPRESS DB _HOST: db:3306
WORDPRESS_DB_USER: wpadmin
WORDPRESS DB_PASSWORD: secret3241
WORDPRESS_DB_NAME: wp
volumes:
db _data: {}

14



CHAPTER 1  INSIDE DOCKER CONTAINERS

Docker Compose basically works in the following three steps:
1. Define the needed container images with Dockerfiles.

2. Define the services that make up your multi-container application
within a docker-compose.yml file.

3. Run the docker-compose up command within the directory
that has the docker-compose.yml file to start and run the multi-

container application.

Running a Container

You have learned how to create a container image. You learned about a Dockerfile and
then how to create an image using docker build and how to list the image. The next step
is to create and run the container from the image. You can run the following syntax to
create and build the container:

docker run pythonapp:dev

After the container has been created for the first time, you cannot stop and start the
container using docker stop pythonapp:dev and docker start pythonapp:dev.

Orchestration Platforms

Throughout this chapter, so far you have learned all about containers, Docker, and the
many facets of containerization. It is fairly straightforward to build container images

and run containers while developing software. Running hundreds or even thousands of
containerized applications in production, enterprise ready, and at scale requires a different
set of tools and skills not discussed yet. When you need to run containers in production

is where container orchestration platforms enter the picture. Container orchestration is

all about managing the life cycle of containers. Production container environments are
dynamic and require heavy automation. Container orchestration handles

e Cluster and node management
o Container provisioning and deployment

o Container configuration and scheduling

15



CHAPTER 1  INSIDE DOCKER CONTAINERS

o Container availability and redundancy
o Autoscaling of cluster nodes and containers

o Container load balancing, traffic routing, external access, and
service discovery

e Resource management and movement of containers
e Container and host health and performance monitoring
o Container security and access management

Orchestration systems need to cover a lot of ground to handle the life cycle
management of containers. There are many container orchestration platforms out
there in the market. The top container orchestration platforms are Docker Swarm,
Docker Enterprise, Mesosphere, OpenShift, and Kubernetes. Kubernetes is an open
source orchestration platform that was developed at Google. Kubernetes has quickly
become the de facto standard for container orchestration. The top three cloud providers
Microsoft, Amazon, and Google all offer a managed Kubernetes service on their cloud
platform. In the rest of this book, we are going to dive deep into Kubernetes and
specifically Azure Kubernetes Service.

Note Docker Compose is often referred to as an orchestration tool; however,
it is also important to note that Docker Compose is for a dedicated single node
compared to orchestration platforms that run many nodes.

Summary

That brings us to a close of this first chapter. In this chapter, we took a journey into the
world of Docker containers as this information is foundational to have along the journey
into Kubernetes and eventual Azure Kubernetes Service. Within this first chapter, we
specifically covered the value of containers, containers compared to virtual machines,
all about Docker itself including how to install it, core commands needed for Docker,
and all about creating and running container images. Finally, in this chapter, we touched
lightly on container orchestration platforms.

16



CHAPTER 2

Container Registries

Kubernetes is used to deploy applications and services that are based on containers.
In many ways, container-based applications are what drove the need for container
orchestration technologies like Kubernetes. As mentioned in the previous chapter,
containers are instantiated from a read-only copy called an image. Images are often
stored in a construct called a container registry.

In this chapter, we will discuss the various options for the storage, management,
and distribution of images. We will investigate the different types of container registries
and further expand on the Azure Container Registry (ACR) in particular. By the end of
this chapter, you will be able to perform basic operations on a container registry and
understand concepts like image tagging, security, and permissions.

Note For the sake of simplicity, we are going to be focusing on images that use
the Open Container Initiative (OCI) image spec and containerd runtime. There are
other container image formats (ACI) and container runtimes (rkt), but the essential
concepts remain the same.

Overview of Container Registries

When you are deploying an application to a Kubernetes cluster, that application is going
to be made up of one or more containers. Kubernetes needs to be able to access the
images to instantiate those containers on each node in the Kubernetes cluster. You could
create an image on your workstation and manually copy it to each node and then repeat
the process each time you update the image. But that would be incredibly inefficient,
error prone, and unscalable. A more elegant solution would be a shared location that all
nodes can access and download images from that location into their local image cache.
That is the basic principle behind a container registry.

17

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_2



CHAPTER 2  CONTAINER REGISTRIES

Registries, Repositories, and Images

Before we dive into an examination of container registries, it is useful to understand
the differences between a registry, a repository, and an image. As we mentioned in
Chapter 1, “Inside Docker Containers,” container images are the read-only construct
from which a container is instantiated. Each image has a name and optional tags
associated with it. Let’s examine the example of an image pulled from Docker Hub
shown in Listing 2-1.

Listing 2-1. Image listing of nginx container image

REPOSITORY TAG IMAGE ID
Nginx latest 53f3fd8007f7

The image comes from the nginx repository. It has been tagged as latest. And it has
a unique image ID. There are other images stored in the nginx repository, including an
image tagged as alpine and another tagged as perl. After pulling both of those images,
the updated output of docker image 1ls is shown in Listing 2-2.

Listing 2-2. Image listing of nginx container images

REPOSITORY TAG IMAGE ID

nginx alpine ddo25cdfe837
nginx perl 4d95835f5c94
nginx latest 53f3fd8007f7

Each of the images comes from the same repository, but they all have different tags
and image IDs. They are unique images. We will dive into tagging and how it is related to
images further on in the chapter.

In summary, a container repository contains one or more images. A container
registry contains one or more repositories. The images in a particular repository may or
may not be related to each other.

Private and Public Registries and Repositories

When it comes to choosing a container registry to host your images, the first question
is often whether to create a private or public registry. A public registry is hosted on the
Internet and is accessible to anyone. It may contain a mix of both public and private

18



CHAPTER 2  CONTAINER REGISTRIES

repositories within the registry. A private registry is hosted on an internal network

and only accessible to systems and users on that internal network. The repositories in

a private registry can also hold a mix of public and private repositories, but in this case
the scope of a public repository is necessarily more restricted since it is only available

to resources on the internal network. While most public registries are run as a managed
service, private registries are usually managed by the internal IT team of the organization
hosting the registry.

The images in a public repository are accessible to anyone who can access the
registry’s network location. It does not mean that anyone can add, update, or remove
images from the repository, but they can download images without any type of
authentication. The images in a private repository require that anyone wishing to
access the repository is authenticated and granted the relevant permissions to
download images.

Public registries and repositories are most often used to distribute open source
projects and software that are meant to be shared with the world. For instance, the
Microsoft repository on Docker Hub is public and is used to publish base images for
applications like Microsoft/dotnet and Microsoft/powershell. Obviously, Microsoft is
hoping that you will download these images and use them to build something amazing.

Some common public registries are

e Docker Hub

e Google Container Registry

e Azure Container Registry

e Amazon Elastic Container Registry

Private registries and private repositories are used when images are meant to be kept
within a company or organization, and access to those images should be controlled. In
addition, private registries are often hosted on an internal network that is not accessible
by the wider Internet. You may have images that have proprietary software installed that
is considered important intellectual property. For instance, let’s say your company is
developing software for genomics and deploying it using containers. The images would
contain extremely valuable algorithms that should not be available to competitors.
Therefore, you would choose to host your images on a private repository and possibly on
a private registry as well.

19



CHAPTER 2  CONTAINER REGISTRIES

Some common private registries are
o Docker Trusted Registry
o JFrog Artifactory
e Harbor

e GitLab

Basic Registry Operations

All container registries support the same basic operations. These operations include
o Logging into the registry to interact with image repositories
o Searching image repositories for a specific image
e Pulling an image down to the local filesystem
e Pushing an image up to an image repository hosted on the registry

For the following examples, we are going to show operations being performed
against Docker Hub. You can create a Docker Hub account for free and follow along with
the examples.

Login

Logging into a container registry can be accomplished by using the Docker CLI. The
following command will start the login process.

docker login [SERVER]

The SERVER value can refer to whichever registry you intend to log into. The
command also accepts supplying a username and password. If no SERVER value is
specified, the Docker CLI will assume that you are logging into Docker Hub. Listing 2-3
shows an example of logging into Docker Hub using the account iaks.

20



CHAPTER 2  CONTAINER REGISTRIES
Listing 2-3. Logging into Docker Hub

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username: iaks

Password: sskskskskskskoskskksks

Login Succeeded

Search

The Docker Hub registry has over 100,000 container images available to the public.
Private registries will obviously have far fewer images, but there is a need to be able
to search through available images to find the one that meets your needs. The docker
search command provides this functionality. The syntax of the command is

docker search [OPTIONS] TERM

Let’s say we are looking for an nginx image to run and host a web server. The search
command to do so is shown in Listing 2-4.

Listing 2-4. Searching Docker Hub for nginx images

$ docker search nginx
NAME DESCRIPTION STARS OFFICIAL
nginx Official build of Nginx. 11498 [0K]

[output truncated]

By default, the Docker CLI will search the Docker Hub registry for images. Other
registries can be searched by including their address in the search TERM. You will need
to be authenticated with the registry you are attempting to search prior to executing the
search command.

21



CHAPTER 2  CONTAINER REGISTRIES

Pull

Pulling an image from a container registry is the act of downloading the hosted image

to a local file repository. The location where the files are stored is determined by which
storage drive is being used by the Docker daemon. When an image is pulled, Docker first
checks the layers included in the image to determine if any of the layers have already
been downloaded. Any layers that are not already cached locally will be downloaded
from the source repository. Listing 2-5 shows an example of pulling the alpine/terragrunt
image with one layer already existing on the local filesystem.

Listing 2-5. Pulling the alpine/terragrunt image from Docker Hub

$ docker pull alpine/terragrunt

Using default tag: latest

latest: Pulling from alpine/terragrunt

e7c96db7181b: Already exists

622c94c90cb1: Pull complete

[output truncated]

68ced3bc2ce4: Pull complete

Digest: sha256:4363c7ea68ae6b648d803753884afed380f106eb23€902641a€919b7b02f
€95a

Status: Downloaded newer image for alpine/terragrunt:latest
docker.io/alpine/terragrunt:latest

In the case of a public registry, anyone can pull an image whether they are
authenticated or not. With private registries, the user must first be authenticated and
have permissions to pull a given image.

An image can be pulled by issuing the docker pull command. The syntax is as follows:

docker pull [OPTIONS] NAME[:TAG | @DIGEST]

The name refers to the name of the image. Docker will assume that the source
repository is on Docker Hub, unless it has been configured otherwise, or the name
includes a different registry. For instance, an image can be pulled from Microsoft’s public

container registry by running

docker pull mcr.microsoft.com/azuredocs/aci-helloworld

22



CHAPTER 2  CONTAINER REGISTRIES

If no TAG is specified, then docker will grab the image in the repository tagged latest.
There is nothing special about the lafest tag, and it does not mean that the image pulled
will in fact be the latest or most up-to-date image. Generally, it is always best to specify a
tag along with the name of the image to be pulled.

Push

Pushing is the act of taking a local image and copying it to a target repository. The
repository can be on a public or private registry. In either case, both types of registries
will require authentication and proper authorization before allowing the image to be
copied.

A new image can be created from a Dockerfile using the docker build command
and then pushed to the target registry. It is also possible to use an existing image that was
pulled from a separate repository and push it to a different repository. Listing 2-6 shows
an example Dockerfile that could be used to build a new image.

Listing 2-6. Dockerfile content

FROM nginx:stable-alpine
COPY IAKS /usr/share/nginx/html

The FROM command will pull the nginx image tagged as stable-alpine from the nginx
repository. The COPY command will copy the contents of the TAKS directory to the path /
usr/share/nginx/html. We can create this new image by running the following command
from the directory containing the Dockerfile:

docker build --tag iaks/nginx:vi.

By naming it iaks/nginx:v1, we are indicating that the target repository for this
image will be the iaks Docker Hub account and the name of the image is nginx. We have
tagged it as v1, which for the moment is an arbitrary tag. By running docker image ls,
we can see, in Listing 2-7, that we now have a new image on the local filesystem.

Listing 2-7. Listing the image created by docker build

$ docker image 1s
REPOSITORY TAG IMAGE ID
iaks/nginx vl bbbdb4e15efd

23



CHAPTER 2  CONTAINER REGISTRIES

Finally, we can push the image from our local filesystem to our Docker Hub
repository by running the docker push command. The syntax for the command is

docker push [OPTIONS] NAME[:TAG]

In this case, we would run the command shown in Listing 2-8 to push the image.

Listing 2-8. Pushing the image to Docker Hub

$ docker push iaks/nginx:vi

The push refers to repository [docker.io/iaks/nginx]
7dd2de43c03e: Pushed

2bdf88b2699d: Mounted from library/nginx
f1b5933fe4b5: Mounted from library/nginx

vl: digest: sha256:00caf...f4997ceal size: 94

Viewing our Docker Hub account through a browser, we can see in Figure 2-1 that
the image has been successfully pushed to our repository.

® iaks/nginx

This repository does not have a description ~ #

(® Last pushed: a minute ago

Tags

This repository contains 1 tag(s).

See all

Figure 2-1. Successful push of an image to Docker Hub

It would now be possible to pull this image and run it on any container host with
Internet access. That includes worker nodes in an Azure Kubernetes Service cluster.

24



CHAPTER 2  CONTAINER REGISTRIES

Image Tagging

Image tags are additional metadata associated with a specific image. As we saw in the
section on registries, repositories, and images, an image has a repository, tag, and ID. In
Listing 2-9, three nginx images have been pulled, all with different tags and image IDs.

Listing 2-9. Listing of different nginx images

REPOSITORY TAG IMAGE ID

nginx alpine ddo25cdfe837
nginx perl 4d95835f5c94
nginx latest 53f3fd800717

Multiple tags can be associated with a single image through the use of the docker
image tagcommand. Adding another tag to an image does not create a new image and
does not take up more space on your local filesystem. Docker simply assigns this new
metadata information to the existing image ID. The docker image tagcommand has
the following syntax:

docker image tag SOURCE_IMAGE[:TAG] TARGET IMAGE[:TAG]
For instance, we can take the existing nginx:alpine image and tag it with v1.
docker image tag nginx:alpine nginx:vi

Upon viewing the local image listing in Listing 2-10, both images are present, and
both have the same image ID.

Listing 2-10. Logging into Docker Hub

$ docker image 1s

REPOSITORY TAG IMAGE ID

nginx alpine ddo25cdfe837
nginx vl ddo25cdfe837
nginx perl 4d95835f5c94
nginx latest 53f3fd80077

We can also tag the image for a totally different repository and then push the image
to that repository.

docker image tag nginx:alpine iaks/custom

25



CHAPTER 2  CONTAINER REGISTRIES

The three entries shown in Listing 2-11 will all have the same image ID.

Listing 2-11. Logging into Docker Hub

$ docker image 1s

REPOSITORY TAG IMAGE ID

nginx alpine ddo25cdfe837
nginx vl ddo25cdfe837
iaks/custom latest ddo25cdfe837

Tags are simply metadata associated with an image. That includes the mysterious latest
tag. If no tag is provided for an image - as we did in the preceding command - Docker will
automatically give it the latest tag. When an image is being pulled or used to instantiate a
container, Docker will likewise assume the latest tag if no other tag is provided. The latest
tag does not mean that the image being pulled is the most up-to-date or even the proper
image to pull. It is simply the image that was tagged with the latest label, whether that
was done on purpose or through omission. For that reason, it is always recommended to
specify the tag of an image when pulling an image or running a container.

Common Registries
Docker Hub and Docker Registry

The most common registry that users get started with is Docker Hub, shown in

Figure 2-2. Hosted at docker.io, Docker Hub provides a free home for new users to

get started with their first repository. Unless otherwise configured, the Docker CLI
assumes that Docker Hub is the registry being used. Many software companies choose
to host their publicly available containers on Docker Hub, as do several open source
projects. Docker Hub supports both public and private repositories, although the private

repositories are not free.

w'dockerhub Q Ssearch for great content (e.g.. mysql)

Figure 2-2. Docker Hub web site

26



CHAPTER 2  CONTAINER REGISTRIES

Docker Hub is based on the open source project Docker Registry. Docker Registry
can also be used to deploy a private registry in your datacenter. Microsoft uses the
Docker Registry project as a basis for their deployment of the Azure Container Registry,
as do several other public and private registry implementations.

Azure Container Registry

The Azure Container Registry (ACR) is a Software-as-a-Service offering from Microsoft
hosted on Azure. ACR is based on the Docker Registry open source project, but it has
additional functionality which we will explore later in the chapter. Repositories created
on ACR are private in nature and always require some type of authentication for access.
ACR has a few different SKUSs available - Basic, Standard, and Premium - with the higher
tiers offering more robust storage, performance, and replication options.

Images that are stored on ACR can be in the following formats:

e Docker Image Manifest V2, Schema 1
e Docker Image Manifest V2, Schema 2
e Open Container Image Format Specification

The ACR service can also host Helm charts, which we will explore more in Chapter 8,
“Helm Charts for Azure Kubernetes Service.”

In order to create a registry on ACR, you need to have an Azure subscription.
A new ACR registry can be created through the Azure Portal, Azure PowerShell, or the
Azure CLI. The examples in the remainder of this section and the next section will use
the Azure CLI.

The commands in Listing 2-12 will create a new ACR registry using the Azure CLIL

Listing 2-12. Creating a new ACR registry

### Create an Azure Container Registry #it#

# Login to Azure and select subscription

az login

az account set --subscription "AZURE_SUBSCRIPTION NAME"

# Create a resource group and Container Registry
az group create --name RESOURCE_GROUP_NAME --location "LOCATION_ NAME"
az acr create --resource-group RESOURCE_GROUP_NAME --name ACR_NAME --sku Basic

27



CHAPTER 2  CONTAINER REGISTRIES

The ACR_NAME must be globally unique. It will be appended to azurecr.io to create
the publicly addressed fqdn for your registry.

In the next section, we will explore some components of the Azure Container
Registry in more depth, including how it integrates with the Azure Kubernetes Service.

Azure Container Registry Expanded

While the Azure Container Registry (ACR) service is based on the Docker Registry open
source project, it has a number of additional enhancements that are worth making note
of. ACR makes use of Azure Active Directory (Azure AD)-powered role-based access
control (RBAC) to control access to repositories hosted on the service. ACR has been
extended beyond a basic registry to support the capability of running simple or
multi-step tasks as part of the service. Since ACR is running in Azure, it has some custom
integrations with other Azure services including the Azure Kubernetes Service.

Security

There are three different ways to authenticate with the ACR:

Azure AD individual login: An individual logging into ACR uses
their Azure Active Directory account to authenticate against

ACR. They are issued a token that is good for one hour before they
are required to authenticate again.

Azure AD service principal: Similar to an individual login, however,
the service principal can be used for headless authentication and is
most commonly used with automation platforms.

Admin account: The admin account is an account not linked to
Azure Active Directory. The admin account has full permissions
to perform any action on the ACR registry. By default, the admin
account is disabled, and it should only be used for testing and

emergency scenarios.

In order to log into the ACR we created in the previous section, we can use the
following command:

az acr login --name ACR_NAME

28



CHAPTER 2  CONTAINER REGISTRIES

Since we are already logged into Azure, ACR takes our existing credentials and
generates a token for use with ACR that is good for one hour. After that time period, the
token expires, and the az acr login command must be run again. Service principal
logins use a username and password when logging in and therefore do not have a token
issued based on cached credentials. Service principal logins are the preferred login type
when using ACR with an automated process.

Whether using the individual login or service principal option, permissions are
assigned through well-defined roles.

Permissions

As with many of the services within Microsoft Azure, permissions within Azure
Container Registry are assigned using role-based access control (RBAC). At the time of
writing, there are seven roles defined by the service. Table 2-1 outlines the roles and their
permissions.

Table 2-1. RBAC for Azure Container Registry

Permission/Role Owner Contributor Reader AcrPush AcrPull ArcDelete AcrimageSigner

Access Resource v/ v v

Manager

Create/delete 4 v

registry

Push image v v v

Pull image v v v v v

Delete image data v v v

Change policies v v

Sign images v

The assignment of these roles should follow the principle of least privilege, where
the person or service is assigned the least number of permissions required to perform
a particular task. The AcrPush, AcrPull, AcrDelete, and AcrlmageSigner roles are
especially designed for services and automation processes that perform specific tasks

over their lifetime. For instance, let’s say we are using an Azure Kubernetes Service to

29



CHAPTER 2  CONTAINER REGISTRIES

deploy containers that are stored in ACR. Assinging the service principal used by the
AKS cluster the AcrPull role will grant it sufficient privileges to access the container
images needed, without also granting access to Resource Manager, a permission which
the Reader role includes. Likewise, any CI/CD pipelines that build new container images
could be granted the AcrPush permission to push the new images up to ACR.

Tasks and Automation

In addition to the storage of container images, the Azure Container Registry service also
includes the ability to run simple and multi-step tasks and emit webhooks when certain
actions are completed. The tasks and webhooks provide the ability to leverage ACR for
common tasks related to image management and assist with integration into a CI/CD
pipeline.

Tasks within ACR can be broken into simple tasks, which can be initiated using the
az acr buildoraz acr task command, and multi-step tasks that are defined by a
YAML file and submitted via the az acr run command.

Simple Tasks

Simple tasks are used to build a newer version of a container image. The building of
the image can be triggered manually by using the az acr build command. Doing so
off-loads the burden of a container build from your local workstation to ACR, as well as
placing the resulting image in ACR without having to push it from your local filesystem.
Creating a new image from a local Dockerfile would be performed using the following
command:

az acr build --registry iaks --image web:v2.

The command will build an image tagged v2 in the image repository web on the
container registry iaks. In addition to off-loading the build process from your local
workstation, the same command could be used by a service principal in a CI/CD
pipeline to automate new container image builds without using the resources on one of
the pipeline agent machines.

Instead of running a task manually, it can be triggered by a git commit or the update
of a base image. While the idea of updating based on a git commit makes intuitive sense,
the concept of updating an image when a base image is updated bears some explaining.

30



CHAPTER 2  CONTAINER REGISTRIES

ACR understands the image dependencies of images stored in its repositories. For
instance, your shiny new web container image might be based on the alpine:stable image
from Docker Hub. When that base image is updated, you may want your web image to be
updated as well to include whatever was changed in the base image. ACR supports the
creation of a build task that will be triggered if it detects that the base image for an image
in the repository has been updated. The command in that case would look something
what is in Listing 2-13.

Listing 2-13. Creating an ACR task to update an image based on base
image updates

az acr task create \
--registry iaks \
--name task-web-service \
--image web:v2 \
--arg REGISTRY_NAME=iaks.azurecr.io \
--context https://dev.azure.com/iaks/ git/iaks.git \
--file Dockerfile-web \
--branch master \
--git-access-token $TOKEN

Within the definition of the Dockerfile-web file is a referral to the base image of
alpine:stable. ACR in turn creates a hook to listen for changes to that base image and will
start a build task if a change is detected.

Multi-step Tasks

Mutli-step tasks in ACR build on the existing simple tasks while adding more
capabilities. The actions in a multi-step task include

e Build: Builds one or more container images
e Push: Pushes images to a private or public container registry
e (md: Runs a container using similar arguments as docker run

The actions performed as part of a multi-step task are defined in a YAML-formatted
file that is submitted to ACR using the command in Listing 2-14.

31



CHAPTER 2  CONTAINER REGISTRIES

Listing 2-14. Creating a multi-step task in ACR

az acr run \
--registry iaks \
-f multi-step-task.yml \
https://dev.azure.com/iaks/iaks.git

The command instructs ACR to run a task on the registry iaks using the file multi-
step-task.yml found on the referenced git repository.

Multi-step tasks can be used in a workflow to build and test a set of images that make
up a container-based application and then update a Helm chart if the tests defined in
the task pass. While this is not a replacement for a fully feature CI/CD pipeline, it does
provide a way to define workflows in code and have them execute when a new commit is
made to a git repository.

Webhooks

When an action is completed in Azure Container Registry, it can notify other services via
awebhook. This can assist with sending simple notifications or firing off an automation
workflow. The supported actions for triggering a webhook are

e image push

o image delete

e image quarantine
e Helm chart push
o Helm chart delete

Triggering a webhook sends a POST request to the Service URI defined in the
webhook configuration. The POST request includes JavaScript Object Notation
(JSON)-formatted information that is dependent on the action that triggered the
webhook. Custom headers can also be defined in the webhook configuration to be
sent with each POST request. These can be leveraged if the target Service URI requires
authentication or some other custom data not included in the POST payload.

Creating a webhook that contacts the Postman echo service for an image push would
look like Listing 2-15.

32



CHAPTER 2  CONTAINER REGISTRIES

Listing 2-15. Logging into Docker Hub

az acr webhook create \
--registry iaks \
--name postmanhook \
--actions push \
--uri https://postman-echo.com/post

The Postman echo service will simply reply back with the contents of the initial
POST request, which makes it useful for understanding the information being sent by
the webhook.

Azure Kubernetes Service Integration

The Azure Kubernetes Service (AKS) uses both container images and Helm charts to
deploy applications to the nodes in an AKS cluster. Conveniently, Azure Container
Registry is capable of storing both of those resources and making them available to AKS
for consumption. In order to access the resources stored on an ACR registry, AKS can use
Azure Active Directory authentication.

When a new AKS cluster is created, it is assigned a service principal in Azure Active
Directory. The service principal can be assigned roles to registries hosted in the Azure
Container Registry, including the AcrPull role. With this role, the AKS cluster will be able
to pull container images and Helm charts that are hosted in that container registry.

Using ACR in tandem with AKS allows you to keep your images hosted in a private
registry and use the native authentication service Azure AD to provision a proper level
of access for the AKS cluster. You can also make use of ACR Tasks to automate the build,
test, and release of container-based applications to your AKS cluster.

Summary

Container registries are a critical component of deploying applications on Kubernetes.
Without an image repository, the images would have to be manually copied to every
node in the cluster. That’s not exactly an ideal situation. Before building and operating
applications in Azure Kubernetes Service, it is important to have a proper grounding in
container registries and how they are operated.

33



CHAPTER 2  CONTAINER REGISTRIES

In this chapter, you learned about the different types of container registries - private
and public. We discussed the commands and tools used to interact with an image
repository hosted on a container registry, including actions like push, pull, and tagging.
Then, we examined the features of the Azure Container Registry service and how it
integrates with the Azure Kubernetes Service.

34



CHAPTER 3

Inside Kubernetes

The first part to a container journey is selecting a container runtime, learning the ins and
outs of it, and containerizing applications. The next level is being prepared to run the
containers in production at an enterprise level. For running containers in production,
you will want an orchestration platform.

The containerization of applications often includes the decoupling of them from
monolithic into microservices-based architecture with the components split across many
containers. This results in hundreds or even thousands of containers that need to be
managed with many of them sharing the same life cycle needing to be managed together.

An orchestration platform is a solution for managing the life cycles of containers.
Orchestration platforms control and automate containers in dynamic enterprise

environments consisting of the following functionality:
e Provisioning nodes
o Instantiating and scheduling containers
o Container availability and redundancy
o Distribution of containers evenly across nodes
o Allocation of resources across containers
e Scaling of cluster nodes as needed
o Hostand container health and performance monitoring
e Scaling up or removing containers as needed

e Moving containers from host to host as needed if there is a shortage
of resources on a host, or if a host goes down

o Load balancing of service discovery across containers

35

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_3



CHAPTER 3  INSIDE KUBERNETES

o External access to services running in containers

o Application configuration management in relation to the containers
that run the application

There are many orchestration platforms on the market. Enter Kubernetes, the most
popular container orchestration platform. Kubernetes was created by Google and was
designed to work in the environment of your choice such as on-premises on bare metal
servers, virtual servers, and public clouds.

Kubernetes has become the gold standard of container orchestration platforms; in
fact, the top three cloud providers AWS, GCP, and Azure all offer a managed Kubernetes
service as well. Kubernetes is a tightly integrated platform that includes hosting of the
Kubernetes components, Docker runtime or Moby runtime, as well as provisioning the
host nodes and orchestration of the containers.

Key features of Kubernetes include

o Deployment and replication of containers

e Scalein and out of containers

e Load balancing of containers

o Rolling upgrades of nodes in the cluster

o Resiliency and automated rescheduling of failed containers

o External exposure of container network ports to the outside world

The Kubernetes architecture can be seen as complex. The architecture does have
many moving parts, and it is important to understand them. Figure 3-1 is a visual
representation of the Kubernetes architecture.

36



CHAPTER 3  INSIDE KUBERNETES

Master node 'E Worker node
/ \ \ / \
nlhj..ld | Kube-proxy
A API Server ’4 N T

b4 »

kube-controller-manager kube-scheduler v . \x ¥ Avﬁ Docker
Pod Pod Pod

— | 1
Ingress i T
it kube-services |—
4

Controller \
etctﬂ-/ /

Container| IContainer| |Container|

ConlainEVI

Figure 3-1. Kubernetes architecture

As a precursor to working with Azure Kubernetes Service (AKS), it is ideal to have a
solid understanding of Kubernetes. In the following sections within this chapter, we will
dive deeper into the various components of Kubernetes.

Kubernetes Interfaces

There are multiple ways to interface with Kubernetes. Kubernetes has a REST API, and
you can interact with the API directly using REST calls. There are some third-party tools
out there that utilize this method such as Rancher bringing Kubernetes management
into the Rancher interface.

The second most common way to interface with Kubernetes is through the kubectl
command line interface. You can use Kubectl to pretty much do anything in Kubernetes.
Some of the tasks you can perform with Kubectl are deployment of pods, inspect and
management of cluster resources, work with nodes, view logs, and upgrade the cluster.
In Chapter 4, “kubectl Overview,” you will take a deeper dive into Kubectl.

In addition to the Kubectl command line interface, there is a web-based user
interface for Kubernetes known as the Kubernetes dashboard. This dashboard can be
used for basic management operations of Kubernetes. You can manage resources such
as pods, deployments, jobs, nodes, volumes, replica sets, and more. It also can be used to

37



CHAPTER 3  INSIDE KUBERNETES

get state and health information on your Kubernetes resources. Figure 3-2 is a screenshot
of the Kubernetes dashboard.

C (0§ hitps//gatenay02 eastus.consobe.azure.com/n/s ey /800 /91 fovernew ramespace s dellt * oR @
@ kubernetes Q,  Ssearch + CREATE
= Overview
Cluster
CPU usage Memory usage (O

Namespaces

Nede ocen 110y

Persistent Volumes 3 |

0.0008 186
Roles § 50695 E TS5 M
Storage Classes B onom 3 Mem
lg:ﬂ 20% »n0 n1 23218 w1 05 N 0w 2313 218 Faatl
Tme Time
default =
Workloads

Querview
Warkloads Workloads Statuses

Cron Jebs

Daemon Sets

Daployments

Jobs

Pods

Deployments Fods Replica Sets

Rephica Sets e

Replication Controllers

Stateful Sets Deployments =

Discovery and Load Balancing

Figure 3-2. Kubernetes dashboard

Docker Runtime

A runtime is needed to run containers. Kubernetes supports both Docker and RKT
runtimes. As covered in Chapter 1, “Inside Docker Containers,” of this book, the most
widely adopted runtime in the container space is Docker. In Kubernetes, the most
common runtime you will find running is Docker. With Docker, you can run Linux- or
Windows-based containers. When running Docker in Kubernetes, you can also run
Linux or Windows containers.

Master Nodes Overview

In Kubernetes there is a master node that controls and coordinates the cluster. The
master node is essentially responsible for managing the cluster. This master node
coordinates any activity that happens in the cluster such as provisioning nodes,
node-to-node communication, serving as interface for working with Kubernetes,

38



CHAPTER 3  INSIDE KUBERNETES

scheduling containers on the nodes, maintaining the desired state of the containers and

applications working through rolling updates, and more. Here are the components that

make up the master node:

Etcd is a simple, distributed, consistent key-value store. Etcd stores
data about the Kubernetes cluster. It stores data such as nodes, pods,
scheduled jobs, services, API objects, namespaces, and another
configuration about the cluster. In order to stay secure, it can only be
accessed via the API server component.

Apiserver is the central entry point for all REST requests to the
Kubernetes cluster. The REST requests can be used to control

the cluster and perform actions on components such as pods,
deployments, replica sets, services, and more. The Apiserver is also
used to communicate with etcd.

Kube-controller-manager watches the shared state of the
Kubernetes cluster and makes changes as needed to ensure the
cluster meets desired state. An example is ensuring that the correct
number of pods are currently running, and the service that points
to the pods is running and tracking the pods if they move. The
controller manager gets the shared state from the Apiserver. The
controller manager also performs controller processes routine tasks
in the background.

Cloud-controller-manager is exactly like the Kube-controller-
manager except the cloud-controller-manager handles controller
processes that depend on an underlying cloud provider. For example,
if Kubernetes is running on Azure and is utilizing Azure load
balancers, the cloud-controller-manager can ensure the needed load
balancers are running.

Kube-scheduler is the component that handles all the scheduling
(placement) of pods (containers) on various nodes in the Kubernetes
cluster. The scheduler has information about resources available in
each node in the cluster so it can place pods properly on nodes that
have available capacity.

39



CHAPTER 3  INSIDE KUBERNETES

Worker Nodes Overview

Worker nodes are where the pods and applications run. Worker nodes are virtual
machines. In Kubernetes you can have either Linux or Windows worker nodes. The Linux
nodes would run containers and applications such as Java, Apache Tomcat, and other
Linux-based workloads. A Windows node would run containers and applications such

as IIS, .Net, ASP.net, and more. Worker nodes contain all the necessary services such as
runtime, networking, scheduling, maintaining container state, and communications to
the master node. Here are the components that make up the worker node:

o Docker is the runtime engine that runs the containers. The Docker
runtime is on each node in a Kubernetes cluster.

o Kubelet is a service that handles communication with the master
node and etcd. It gets information about new and existing services.

Kubelet ensures that the desired containers are healthy and running.

o kube-proxy acts as a network proxy and load balancer to expose
services to the external world on the worker node. It handles the
network routing for TCP and UDP connections.

o kubectl is the Kubernetes command line interface that interacts with
the Apiserver pushing to the master node.

Namespaces

Namespaces are used as a way to logically segment and organize resources in a
Kubernetes cluster between multiple teams. Resources are deployed into a namespace
in a Kubernetes cluster. These resources are grouped together for the ability to filter and
control them as a single unit.

Namespaces are used to avoid collisions. For example, when teams scale to having
thousands of pods, it is possible that deployments could have the same name. In this
scenario, you could have multiple namespaces with the deployments with overlapping
names existing in different namespaces to avoid collision and for ease of management,
organization, and security such as access policies (RBAC). Sometimes namespaces are
used for life cycle environments such as development, staging, and production. With
namespaces for each of these environments, the same resources could exist in each at the
same time because they will be logically separated and will not conflict with each other.

40



CHAPTER 3  INSIDE KUBERNETES

In every Kubernetes cluster, there is a “default” namespace. When deploying
resources, if you do not specify a namespace, it will deploy into the default namespace.
With Kubernetes, two other namespaces are also deployed by default. These namespaces
are kube-system (used for storing Kubernetes components) and kube-public (used for
storing public resources globally readable to all users with or without authentication). It
is easy to create a custom namespace in a YAML file or by using the Kubectl command.
Here is the syntax to do this:

kubectl create namespace namespacel
Here is an example YAML file:

kind: Namespace
apiVersion: vi
metadata:
name: namespacel labels:
name: namespacel

Syntax to apply the YAML file to create the namespace:

kubectl apply -f namespacel.yaml

You can a Kubectl command to list current namespaces:
kubectl get namespace

To deplete a namespace run:

kubectl delete namespace namespacel

Labels and Annotations

In Kubernetes when you need to organize, identify, and simply store data about objects,
labels and annotations are the go-to features to help with this. If you have spent any
time working with a public cloud such as Microsoft Azure, you will be familiar with this
need as you may have used tags to help organize your cloud infrastructure. Like public
clouds, Kubernetes has a similar set of features in labels and annotations. Labels and
annotations take the whole tagging concept to another level. Let’s explore labels and
annotations.

41



CHAPTER 3  INSIDE KUBERNETES

Labels are key-value pairs. The keys must be unique. The keys also must have 63 or
fewer characters, and the values must be 253 or fewer characters. Labels are designed to
be used to organize, query, and identify a set of objects. Labels can be attached to objects

when created or at any time:

"metadata": {
"labels": {
"appname" : "webappX",
"environment" : "dev"
}
}

Annotations are also key-value pairs. Annotations can have more characters
compared to labels. Data in annotations is arbitrary, can be structured or unstructured,
and is able to include characters not supported in labels. It's important to note that
annotations can’t be queried. Annotations can be a good way to place metadata to
objects in Kubernetes. External systems and tools can consume annotation data. Here
are some examples of annotation data: environment such as dev, stage, prod, git branch,
pull request number, image information like timestamp or date, version info, app owner,
department, and so on. Here is an example of what an annotation looks like:

"metadata": {
"annotations": {
"gitbranch": "brancha",
"department": "marketing"

To sum this up, use labels when you will need to query objects in a Kubernetes
cluster and use annotations when you need to store general information about objects
in Kubernetes but don’t need to query it but may also need this information in external
systems. Also, labels should be used for identifying objects, and annotations should be
used when non-identifying data is needed on objects.

42



CHAPTER 3  INSIDE KUBERNETES

Pods

A pod is one or more containers within Kubernetes that share resources and are coupled
together. It represents a unit of deployment. A pod encapsulates an application including
the container/s, storage, network IP, and configuration of how to run the containers.
Think of pods as a wrapper around containers. Pods are typically deployed into one of two
patterns: the first pattern being a pod that runs a single container and the second pattern
being a pod that runs multiple containers that need to be tightly coupled together.

The single-container pod is the more common use case in Kubernetes. A multi-container
pod is an advanced scenario used when multiple containers make up a single
application, share the same life cycle, and need to share resources such as storage
and networking. When multiple containers belong to the same pod, they are a single
managed entity. When the pod is scheduled, the containers will be placed on the same
node, and if the pod needs to be moved to another node, all encompassed containers are
moved. Here is an example of what a pod looks like in code:

apiVersion: vi
kind: Pod
metadata:
name: appl-pod
labels:
app: appl
spec:
containers:
- name: appi-container
image: nginx

Replicasets

A replicaset defines a set of replica pods. A replica set can be used to specify how many
identical pods are needed. For example, if you want four copies of a pod to run, you can
specify this as in a replicaset. Kubernetes will ensure the four pod replicas are running at
all times. If a pod fails, a new one will automatically be deployed to ensure the replicaset

maintains running the desired four.

43



CHAPTER 3  INSIDE KUBERNETES

Note Deployments which are covered later in this chapter are able to manage
replicasets. Replicasets are typically defined in deployments. It is recommended to
utilize deployment sets vs. defining replicasets directly.

DaemonSets

DaemonSets manage groups of replicated pods. They can be used to ensure that all
nodes in a Kubernetes cluster run a copy of a specific pod. DaemonSets are typically
used when you have some administrative function that is needed on all or specific
nodes. An example of when to use a DaemonSet is if you need to perform log collection
on all nodes using fluentd. Another example is when you need a monitoring agent such
as new relic, AppDynamics, Log Analytics, or Datadog on all nodes.

Jobs

Jobs in Kubernetes supervises pods that run batch processes that run for a finite time to
completion. Typical use cases or jobs would be backup, sending emails, transcoding, or
calculation operations. Jobs do support parallel and nonparallel.

Services

A service in a Kubernetes cluster is the abstraction that defines a logical set of pods.
Service is also a mechanism used to expose external access to pods or an application
running on pods. A service is the abstraction on the top of the pod which provides a
single IP address and DNS name by which pods can be accessed. It is easy to think of a
service as a pointer to a pod or set of pods. When pods are moved from node to node in
a Kubernetes cluster service, automatically keep track of where the pods live. There are
three types of services as follows:

o ClusterIP is the default type used when deploying a service. ClusterIP
exposes an IP internal to the cluster only accessible within the cluster.

e NodePort exposes a service on a static port on the node.

o LoadBalancer is used with cloud providers. LoadBalancer exposes
the service externally using the cloud providers load balancer.

44



CHAPTER 3  INSIDE KUBERNETES
Here is an example of what a service looks like in code:

apiVersion: vi
kind: Service
metadata:
name: appil-service
spec:
selector:
app: Appl
ports:
- protocol: TCP
port: 80
targetPort: 9523

Deployments

Deployments describe the desired state of a replica set and pod. Deployments are
manifest yaml files. A deployment controller reconciles the Kubernetes cluster to match
the desired state by creating, updating, or deleting replica sets or pods accordingly.

ConfigMaps

With containerized applications, environment configurations should be abstracted from
the applications and handled outside of the container and application. This essentially
is how configuration management is handled with containers. Keeping configuration
separate from containers and applications is one of the techniques to make containers
portable. ConfigMaps are a functionality in Kubernetes that helps with configuration
management. ConfigMaps hold key-value pairs of configuration data used in pods.
ConfigMaps tie configuration artifacts to pods, containers, and system components at
runtime. Configuration artifacts consist of command line arguments, configuration files,
environment variables, and port numbers.

45



CHAPTER 3  INSIDE KUBERNETES

Note ConfigMaps should be used for nonsensitive configurations that don’t need to be
secured. For sensitive configurations or data, Secrets within Kubernetes should be used.

ConfigMap key-value data can be literal or from files. ConfigMaps are created using
Kubectl. Here is syntax for creating a ConfigMap:

EXAMPLE: kubectl create configmap [NAME] [DATA]

EXAMPLE: kubectl create configmap appl-data -from-file app1-
configs/

kubectl create configmap is used to create a ConfigMap holding the key-value pairs.
And --from-file points to a directory. The files in the directory are used to populate a key
in the ConfigMap. The name of the key is the filename. The value of the key is from the
content of the file:

EXAMPLE: kubectl create configmap app1l-config --from-
literal=app1-config.applname=myappl

After the ConfigMap is created, it can be consumed by a pod via a yaml file. Here is
an example yamle file:

apiVersion: vi
kind: Pod
metadata:
name: appl-pod
labels:
app: appl
spec:
containers:
- name: appil-container
image: nginx
env:
- name: applname
valueFrom:
configMapKeyRef:
name: appl-config
key: applname

46



CHAPTER 3  INSIDE KUBERNETES

Secrets

In Kubernetes when you need to secure information, you can use Secret objects. Secrets
are a way to store and manage sensitive information in a Kubernetes cluster such as
passwords, tokens, SSH keys, and so on. You are able to then reference the secret in pods
or container images vs. putting the secret such as a password indirectly. Secrets can be
created from a file or literally. Here is an example of creating a secret using literal:

kubectl create secret generic appi-pass -from-
literal=password=PASSWORDHERE

You would then reference the secret in your pod yaml file. Here is an example of this:

env:
- name: APP1_PASSWORD
valueFrom:
secretKeyRef:

name: appil-pass

key: password

Networking

Networking with containers is complicated. At the core, Kubernetes sets out to make the
networking with containers easier and more flexible. Kubernetes treats networking with
pods are similar to the way it works with virtual machines when it comes to naming, load
balancing, port allocation, and even application configuration. Kubernetes by default
utilizes an overlay network. Kubernetes gives each pod its own routable unique IP
address and single DNS name. This IP is shared by all the containers within the pod.

The address space inside the Kubernetes cluster is flat allowing pods to
communicate with each other directly without a proxy. Pods can also communicate with
each other across nodes. Kubernetes uses iptables for the network connections between
pods. The routable IPs and IP tables make it so you don’t have to map host ports to
container ports like in Docker.

You may be asking yourself as you read this, “Pod-to-pod communication is good,
but how can one get Internet traffic from the Internet to pods?” Services in Kubernetes
group pods together logically to provide network connectivity to the applications

47



CHAPTER 3  INSIDE KUBERNETES

running on the pods. There are multiple service types, and these can be used to route
traffic to pods. The following service types exist in Kubernetes:

e NodePort is a port mapping on the node running the pod, allowing
direct access to the application via the node IP and port.

e ClusterIP is an internal IP address used within the Kubernetes
cluster for internal-only communication.

o LoadBalancer is the underlying cloud providers cloud-based load
balancer with an external IP address. The load balancer backend
pool is connected to the requested pods.

o ExternalName is a DNS entry for access to an application running on
pods.

In addition to the aforementioned four service types, you also have the Ingress
Controller. An Ingress Controller works at layer 7 of the networking OSI model. An
Ingress Controller provides configurable traffic routing, TLS termination, and reverse
proxy. An Ingress Controller has ingress rules and routes to Kubernetes services.

A common use of an Ingress Controller is the ability to route from a single public
IP address to multiple services in a Kubernetes cluster. The most common Ingress
Controller in Kubernetes is the NGINX ingress controller.

Storage

Files in containers are ephemeral. When containers are restarted, files are lost. If there
is a need to preserve data even when a container restarts, Kubernetes volumes can be
used. Kubernetes supports many types of volumes; however, the most common options
are volumes or persistent volumes. With volumes, when a container is destroyed,

the volume will cease to exist as well. With persistent volumes, when a container is
destroyed, the data will continue to exist. There are two types of persistent volumes in
Kubernetes: the first being persistent volume and the second being persistent volume
claim. Persistent volume is a resource in the cluster independent of any pod. Persistent
volume claim is requested for a specific pod in the namespace where the pod is. At the

48



CHAPTER 3  INSIDE KUBERNETES

core, a volume is just a directory with data in it that containers in a pod can access. Here
is the full list of volumes Kubernetes supports:

awsElasticBlockStore
azureDisk

azureFile

cephfs

cinder

configMap

csi

downwardAPI

emptyDir

fc (fibre channel)
flexVolume

flocker
gcePersistentDisk
gitRepo (deprecated)
glusterfs

hostPath

iscsi

local

nfs
persistentVolumeClaim
projected
portworxVolume
quobyte

rbd

scaleIO

secret

storageos
vsphereVolume

In Kubernetes we also have something known as storage classes. Storage classes
work with dynamic provisioning of persistent storage volumes in Kubernetes. Dynamic
storage provisioning is when storage is ordered with a predefined type and configuration
without having to know the details about how to provision the physical or cloud storage

49



CHAPTER 3  INSIDE KUBERNETES

device. Storage classes abstract all the details of a specific storage type that is then used
by developers or cloud providers. Storage classes give administrators a way to describe
the “classes” of storage they offer. Classes map to service levels and/or backup policies.

Summary

In this chapter, we introduced you to Kubernetes. As you embark on this journey into
Azure Kubernetes Service, you will now be equipped with core knowledge of Kubernetes
and its components. Throughout this chapter, we explored Kubernetes architecture

and learned about master and worker nodes and key features such as namespaces,
labels, jobs, services, and replicasets. We also learned about configuration management
using ConfigMaps and Secrets when information needs to be secured. We learned that
Kubernetes has a web-based user interface that can be used for some management
tasks. Last but not least, we explored how networking and storage work in Kubernetes.

50



CHAPTER 4

kubectl Overview

kubectl is a command line interface for executing commands against Kubernetes
clusters. You can use kubectl to deploy applications, check and manage Kubernetes
cluster resources, and examine logs.

In this chapter, we will discuss the various kubectl commands that you will use for
your cluster operations. We will cover the basic commands and provide examples of how
to use kubectl for common operations such as application management, debugging,
and cluster management. By the end of this chapter, you will be able to perform basic
operations on a Kubernetes cluster using kubectl.

Introduction to kubectl

When you execute an operation in kubectl, it looks for a file named config in the
$HOME/ . kube directory. If you want to use kubeconfig files stored in a different directory,
you can do so by either setting the KUBECONFIG environment variable or by setting the
--kubeconfig flag.

kubeconfig files are used to organize information about clusters, users, namespaces,
and authentication mechanisms. kubectl uses kubeconfig files to choose a cluster and
communicate with the API server of a cluster. Also, you can also define contexts to switch
between clusters and namespaces quickly.

In a kubeconfig file, A context element is used to group access parameters under a
convenient name. There are three parameters for each context: cluster, namespace, and
user. kubectl uses parameters from the current context to communicate with the cluster
by default.

51

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_4



CHAPTER 4  KUBECTL OVERVIEW

Note kubectl isinstalled by default in Azure Cloud Shell. For a complete guide
on organizing cluster access using kubeconfig files, refer to the official Kubernetes
documentation found on the following URL: https://kubernetes.io/docs/
concepts/configuration/organize-cluster-access-kubeconfig/.

Almost all kubectl commands will typically belong to one of the categories listed in

Table 4-1.

Table 4-1. kubectl Command Categories

Command Type Usage

Description

Declarative Resource Development and

Management operations
Imperative Resource Development only
Management

Printing Workload State  Debugging

Interacting with Debugging
Containers

Cluster Management Debugging

Used to manage Kubernetes workloads using
Resource Config declaratively.

Use these commands to manage Kubernetes
workloads using command line arguments and flags.

Includes commands for operations such as printing
summarized state and information about resources,
printing complete state and information about
resources, printing specific fields from resources,
and query resources matching labels.

Used for debugging operations such as Exec, Attach,
Cp, and Logs and includes commands for operations
such as printing container logs, printing cluster
events, executing or attaching to a container, and
copying files from containers in the cluster to a
user’s filesystem.

Users need to perform operations on cluster
nodes, and kubectl supports commands for cluster
operations such as drain and cordon nodes.

Note kubectl is installed by default in Azure Cloud Shell. To install kubectl
locally, execute az aks install-cli command in Azure CLI.

52


https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

CHAPTER 4  KUBECTL OVERVIEW

kubectl Basics

This section provides a high-level overview for the basic kubectl commands. Throughout
the book, you will notice various kubectl commands in use. We will only cover the most
commonly used commands in this section. The examples shown in this section relates to
deploying a simple ngnix cluster in Kubernetes.

kubectl Syntax

The following is the syntax to run kubectl commands from a terminal:

kubectl [command] [TYPE] [NAME] [flags]

o command: This specifies the operation a user wants to perform on
resources, such as create, get, and delete.

e TYPE: This denotes the resource. Remember that resource types are
case-insensitive, and you can use singular, plural, or abbreviated
forms to reference a resource type.

e NAME: This denotes the resource name. A resource name is case-
sensitive. If you do not provide a name, details of all the resources
will be displayed.

o flags: flags are optional. For instance, you can leverage the -s or
--server flag to specify the address and port of the Kubernetes API
Server.

Note For a complete reference of operations you can perform with kubectl,
visit kubectl reference at https://kubernetes.io/docs/reference/
kubectl/kubectl/.

You can list all the supported resource types and their alias by running
kubectl api-resources in aterminal.

53


https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/kubectl/

CHAPTER 4  KUBECTL OVERVIEW

Formatting Output in kubectl

The default output for any kubectl command is plain text. In order to generate an output
in a specific format, you can use the -o or --output flag. The following is the syntax you
need to use:

kubectl [command] [TYPE] [NAME] -o <output format>

Table 4-2 lists the output formats supported depending on the kubectl operation
that you have executed.

Table 4-2. kubectl Output Formats

Output Format Description

-0 custom-columns=<spec>  Displays a table using a comma-separated list of custom columns.

-0 custom-columns- Displays a table using the custom columns template in the
file=<filename> <filename> file.

-0 json Prints a JSON-formatted API object.

-0 jsonpath=<template> Displays the fields defined in a jsonpath expression.

-0 jsonpath-file=<filename>  Displays the fields defined by the jsonpath expression in the
<filename> file.

-0 hame Displays only the resource name and nothing else.

-0 wide Displays in the plain text format with any additional information. For
pods, the node name is included.

-0 yaml Displays a YAML-formatted API object.

Listing Kubernetes Resources

When you work with Kubernetes clusters, you may need to list the Kubernetes
deployment resources in a namespace. Here the deployments are the resources that
manage pod replicas. The following example lists the deployments in the kube-system
namespace as shown in Listing 4-1.

kubectl get deployments --namespace kube-system

54



CHAPTER 4  KUBECTL OVERVIEW

Listing 4-1. Deployment information for kube-system namespace

NAME DESIRED  CURRENT  UP-TO-DATE AVAILABLE  AGE
event-exporter-vo0.2.3 1 1 1 1 14d
fluentd-gcp-scaler 1 1 1 1 14d
heapster-vi1.6.0-beta.1 1 1 1 1 14d
kube-dns 2 2 2 2 14d
kube-dns-autoscaler 1 1 1 1 14d
17-default-backend 1 1 1 1 14d
metrics-server-v0.3.1 1 1 1 1 14d

If you want to print detailed information about a specific deployment in a
namespace, you can use the following syntax. In this example, we are printing the
information about the kube-dns deployment which you can see in Listing 4-2.

kubectl describe deployment kube-dns --namespace kube-system

Listing 4-2. Getting deployment information for kube-dns

Name: kube-dns

Namespace: kube-system

CreationTimestamp: Wed, 29 May 2019 00:28:50 +1030

Labels: addonmanager . kubernetes.io/mode=Reconcile

k8s-app=kube-dns
kubernetes.io/cluster-service=true
Annotations: deployment.kubernetes.io/revision: 2

Creating a Resource from Config

You can create or update Kubernetes resources from either a remote config hosted in a
remote repository such as GitHub or a local config stored in your computer.

Remote Config

kubectl apply -f https://k8s.io/examples/application/deployment.yaml

55



CHAPTER 4  KUBECTL OVERVIEW

Local Config
kubectl apply -f ./examples/nginx/nginx.yaml

Listing 4-3 shows the common output in both these scenarios.

Listing 4-3. Output of kubctl apply

service/nginx created
deployment.apps/nginx-deployment created

Generating a Config from a Command

You can generate config for a deployment resource, and the config can then be applied
to a Kubernetes cluster by writing the output to a file and then executing kubectl apply
-f <yaml-file-name>. In the following example, we are creating a deployment called
ngnix from the ngnix image and redirecting the output to a yaml file:

kubectl create deployment nginx --dry-run -o yaml --image nginx

Listing 4-4 shows the output of the yaml file.

Listing 4-4. ngnix deployment yaml file

apiVersion: apps/v1
kind: Deployment
metadata:
creationTimestamp: null # delete this
labels:
app: nginx
name: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
strategy: {} # delete this
template:
metadata:

56



CHAPTER 4  KUBECTL OVERVIEW

creationTimestamp: null # delete this
labels:
app: nginx
spec:
containers:
- image: nginx
name: nginx
resources: {} # delete this
status: {} # delete this

Viewing Pods Associated with Resources

One of the most common scenarios users will encounter while working with Kubernetes
clusters is listing pod information. In the following example, we are listing all the pods
created by the ngnix deployment using pod labels. Listing 4-5 shows the output of this
operation.

kubectl get pods -1 app=nginx

Listing 4-5. Listing all the pods of ngnix deployment

NAME READY  STATUS RESTARTS  AGE
nginx-deployment-5c678s55ff-b2xtk  1/1 Running 0 10m
nginx-deployment-5c678s55ff-rx569  1/1 Running 0 10m
nginx-deployment-5c678s55ff-s7xcv  1/1 Running 0 10m

Debugging Containers

When users want to debug the containers running on their Kubernetes clusters, first
thing to examine are the logs. In the following example, we list the logs from all the pods
of the ngnix deployment:

kubectl logs -1 app=nginx

If you want to obtain a shell into a specific pod’s container, you can leverage exec
operation with kubectl as follows:

kubectl exec -i -t nginx-deployment-5c678s55ff-b2xfk bash

57



CHAPTER 4  KUBECTL OVERVIEW

Events are a resource type in Kubernetes that are automatically created when other
resources have state changes, errors, or other messages that need to be broadcasted to
the system. For an example, kubectl describe pod <podname> will list the events at the
end of the output for a given pod.

Using kubectl get events will allow you to extract the events from the resource’s
API directly.

Listing 4-6 illustrates filtering events with kubectl get events command.

Listing 4-6. kubectl get events

#Filter warning only
kubectl get events --field-selector type=Warning

#Filter no pod events only
kubectl get events --field-selector involvedObject.kind!=Pod

#Filter events for a single node named "minikube"
kubectl get events --field-selector involvedObject.
kind=Node,involvedObject.name=mi

Common Operations with kubectl

To familiarize yourself with how you can use kubectl for common operations, we have
provided some following examples. Though the following code excerpts don’t cover the
entire breadth of using kubectl for application management, debugging, and cluster
management, they provide adequate information to the reader on the most common
scenarios they might encounter.

Note As we don’t expect to cover every kubectl command in this chapter,

we would recommend readers to refer the kubectl cheat sheet available at
https://kubernetes.io/docs/reference/kubectl/cheatsheet/ for
further reading.

58


https://kubernetes.io/docs/reference/kubectl/cheatsheet/

CHAPTER 4  KUBECTL OVERVIEW

kubectl apply

The apply operation will apply or update a Kubernetes resource from a file or stdin. The
resource name must be specified, and it will be automatically created if it doesn’t exist.
Listing 4-7 shows some common examples of using the apply operation.

Listing 4-7. kubectl apply

# Creating a service using the definition in my-service.yaml.
kubectl apply -f my-service.yaml

# Creating a replication controller using the definition in my-controller.yaml.
kubectl apply -f my-controller.yaml

# Creating the objects that are defined in any .yaml, .yml, or .json file
within the <mydirectory> directory.
kubectl apply -f <mydirectory>

kubectl get

The get operation lists one or more resources. You can use kubectl api-resources
command for a complete list of supported resources with get.
Listing 4-8 shows some common examples of using the get operation.

Listing 4-8. kubectl get

# List all pods in plain text output format.
kubectl get pods

# List all pods in plain text output format and include additional
information such as node name.
kubectl get pods -o wide

# List the replication controller with the specified name in plain text
output format.
kubectl get replicationcontroller <rc-name>

# List all replication controllers and services together in plain text
output format.
kubectl get rc,services

59



CHAPTER 4  KUBECTL OVERVIEW

# List all daemon sets, including uninitialized ones, in plain text output
format.
kubectl get ds --include-uninitialized

# List all pods running on node srvol
kubectl get pods --field-selector=spec.nodeName=srv01

Note You can shorten and replace the “replicationcontroller” resource type with
its alias “rc” as seen in the preceding listing.

kubectl describe

The describe operations shows the detailed information of a specific resource(s),
including the uninitialized ones by default. You can use kubectl api-resources
command for a complete list of supported resources with describe.

Listing 4-9 shows some common examples of using the describe operation.

Listing 4-9. kubectl describe

# Displaying the details of the node with name <my-node>.
kubectl describe nodes <my-node>

# Displaying the details of the pod with name <my-pod>.
kubectl describe pods/<my-pod>

# Displaying the details of all the pods that are managed by the
replication controller named <rc-myrepctl>.
kubectl describe pods <rc-myrepctl >

# Describe all pods, not including uninitialized ones
kubectl describe pods --include-uninitialized=false

Note Any pods that are created by a replication controller get prefixed with the
name of that replication controller.

60



CHAPTER 4  KUBECTL OVERVIEW

kubectl delete

You can use delete operation to delete resources by their filenames, stdin, or specifying
label selectors, names, resource selectors, or resources. Keep in mind that only one type
of the arguments can be provided: they can be either filenames or resources and names
or resources and label selector.

Listing 4-10 shows some common examples of using the delete operation.

Listing 4-10. kubectl delete

# Deleting a pod using the type and name specified in the pod.yaml file.
kubectl delete -f pod.yaml

# Deleting all the pods and services that have the label name=<my-label>.
kubectl delete pods,services -1 name=<my-label>

# Deleting all the pods and services that have the label name=<my-label>,
including uninitialized ones.
kubectl delete pods,services -1 name=<my-label> --include-uninitialized

# Deleting all pods, including uninitialized ones.

kubectl delete pods --all

kubectl exec

The exec operation executes a command against a container in a pod.
Listing 4-11 shows some common examples of using the exec operation.

Listing 4-11. kubectl exec

# Get output from running 'date' from pod <my-pod>. By default, output is
from the first container.
kubectl exec <my-pod> date

# Get output from running 'date’ in container <my-container> of pod <my-pod>
kubectl exec <my-pod> -c <my-container> date

# Get an interactive TTY and run /bin/bash from pod <my-pod>. The default
output is always from the first container in the pod.
kubectl exec -ti <my-pod> /bin/bash

61



CHAPTER 4  KUBECTL OVERVIEW

kubectl logs

The logs operation can print the logs for a specific container in a pod or for a specified
resource in a Kubernetes cluster. If there is only one container in a pod, providing the
container name is optional.

Listing 4-12 shows some common examples of using the logs operation.

Listing 4-12. kubectl logs

# Returns a snapshot of the logs from pod <my-pod>.
kubectl logs <my-pod>

# Start streaming the logs from pod <my-pod>. This is similar to the 'tail
-f' Linux command.
kubectl logs -f <my-pod>

Summary

kubectl is the primary tooling that you will use to manage your Kubernetes
environment. You can use kubectl to declaratively manage applications in Kubernetes,
perform debugging, and administer your Kubernetes clusters.

In this chapter, you learned about the basics of kubectl commands. We discussed
the basic operations in kubectl by examining code samples on deploying a ngnix image
in a Kubernetes cluster. Finally, we explored the most common kubectl operations and
their usage.

62



CHAPTER 5

Deploying Azure
Kubernetes Service

Azure Kubernetes Service (AKS) simplifies the deployment of a Kubernetes cluster by
providing a managed Kubernetes-as-a-Service platform. The operational complexity of
managing Kubernetes is reduced by off-loading routine tasks such as health monitoring
and maintenance as well as master node management to the Azure platform.

In this chapter, we are going to explore how to deploy an AKS cluster using the Azure
Portal, Azure CLI, Azure Resource Manager (ARM) templates, and Terraform. We will
review the process for each deployment option followed by explanations on additional
feature configurations such as advanced networking, Azure Active Directory integration,
and monitoring. By the end of this chapter, you will have a good knowledge about the
AKS deployment process, options, and procedure.

Azure Kubernetes Service Deployment Overview

You can deploy an AKS cluster using several methods. Each method has its own merits,
and choosing how you want to deploy an AKS cluster is dependent on your preference
and scenario. However, you will have to provide a few mandatory parameters that are
required to deploy an AKS cluster in all these methods. We will discuss what these
parameters are in the upcoming sections.

Deployment Through the Azure Portal

Creating an AKS cluster using the Azure Portal is a straightforward process. The following
explains the procedure to do so.

63

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_5



CHAPTER 5

DEPLOYING AZURE KUBERNETES SERVICE

In the Azure Marketplace, select + Create a resource » Containers » Kubernetes

Service. In the Create Kubernetes Cluster page, configure the following options:

64

1.

On the Basics section, the following options need to be
configured:

a. Project details: Under this section, select the Azure subscription where you
need the AKS cluster to be created.

b. Cluster details: Select or create an Azure resource group for the AKS
cluster, provide a value for Kubernetes cluster name, provide an Azure
region to deploy the AKS cluster, select the desired Kubernetes version,
and finally provide a DNS name prefix for the AKS cluster.

c. Primary node pool: In this section, you need to select a VM size for the
AKS nodes from the Azure VM SKUs. Remember that once an AKS cluster is
created, the VM size cannot be changed. Select the VM size and the node
count. You can start by setting the Node Count to 1.

d. Click Next: Scale >».



CHAPTER5  DEPLOYING AZURE KUBERNETES SERVICE

Home > New > Create Kubernetes cluster

Create Kubernetes cluster

Basics Scale  Authentication Metworking Monitoring Tags  Review + create

Azure Kubernetes Service (AKS) manages your hosted Kubernetes environment, making it quick and easy to deploy and
manage containerized applications without container orchestration expertise. It also eliminates the burden of ongoing
operations and maintenance by provisioning, upgrading, and scaling resources on demand, without taking your applications
offline. Learn more about Azure Kubernetes Service

Project details

Salect a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
YOUr resources.

* Subscription @ | MVP Azure g |
L * Resource group @ | (New) jcoaksrg01 s |
Create new

Cluster details

* Kubernetes cluster name @ | jcbaksclu01 o |
* Region @ | (Asia Pacific) Australia Southeast v |
* Kubernetes version @ | 1.13.10-idefault} W |
* DNS name prefix @ | jebaksclu01-dns ‘;|

Primary node pool

The number and size of nodes in the primary node pool in your cluster. For production workloads, at least 3 nodes are
recommended for resiliency. For development or test workloads, only one node is required. You will not be able to change the
node size after cluster creation, but you will be able to change the number of nodes in your cluster after creation. If you would
like additional nede pools, you will need to enable the "X feature on the "Scale” tab which will allow you to add more node
pools after creating the cluster. Learn more about node pools in Azure Kubemetes Service

* Mode size g Standard DS2 v2

2 vepus, 7 GiB memory
Change size

* Node count @ OIIIIII]HIIIIIIIIlIIIIIIIIIII]IIIII|III[III!!IIIIIIIIlIIIIIII[II]]!IIIIIIIIlIIIIIilIIIJ]IIIIIIIl

Review + create < Previous | Next: Scale > |

Figure 5-1. Create a Kubernetes cluster Basics section

2. Keep the default options at the Scale section; after that, click Next:
Authentication >».

65



CHAPTER 5

DEPLOYING AZURE KUBERNETES SERVICE

Note We will be discussing the scaling options for AKS in detail in Chapter 7,
“Operating Azure Kubernetes Service.”

66

3. Inthe Authentication section:

a.

You can either create a new service principal by leaving the Service
Principal field as it is or choose Configure service principal to use an
existing one. Remember if you chose to use an existing one, you will have to
provide the service principal name (SPN) client ID and secret in the next
pop-up blade.

Enable RBAC: Set this option to Yes to allow Kubernetes role-based access
controls (RBAC) which provides more fine-grained control over access AKS
cluster resources

Click Next: Networking ».



CHAPTER5  DEPLOYING AZURE KUBERNETES SERVICE

Home » New > Create Kubemnetes cluster

Create Kubernetes cluster

Basics  Scale ;Authentication Networking Monitoring Tags  Review + create

The cluster infrastructure service principal is used by the Kubemetes cluster to manage cloud resources attached to the
cluster. Learn more about service principals in AKS

Kubernetes authentication and autherization is used by the Kubemetes cluster to control user access to the cluster as well
as what the user may do once authenticated. Learn more about Kubernetes authentication

Cluster infrastructure

* Service principal @ (new) default service principal
Configure service principal

Kubernetes authentication and authorization

Enable REAC @ C n D

| < Previous | | Next : Networking > |

Figure 5-2. Create a Kubernetes cluster Authentication section

4. Leave the Network configuration radio button to Basic settings
under the Networking section to use kubenet with a default VNet
configuration. Selecting Advanced will redirect you to configure
the following which allows you to use an Azure CNI with further
options to customize your VNet. Click Next: Monitoring » .

67



CHAPTER5 DEPLOYING AZURE KUBERNETES SERVICE

Basics Scale Authentication Networking Monitoring Tags Review + create

You can change networking settings for your cluster, including enabling HTTP application routing and configuring your
network using either the 'Basic’ or "Advanced’ options:

» ‘'Basic' networking creates a new VNet for your cluster using default values.
* 'Advanced' networking allows clusters to use 3 new or existing VMNet with customizable addresses. Application pods are
connected directly to the VNet, which allows for native integration with ViNet features.

Learn more about networking in Azure Kubernetes Service

HTTP zpplication routing @ Yas

Network configuration @ O Basic

Configure virtual networks

* virtual network @ | {new) jebaksrg01-vnet v ‘
Create new

* Cluster subnet @ [ (new) defauit (10.240.00/16) v |

* Kubernetes service address range @ | 10.0.0.0/16 "I

* Kubernetes DNS service IP address @ [ 100.0.10 l

* Docker Bridge address @ | 17217.0.1/16 v|

Figure 5-3. Create a Kubernetes cluster Networking section

68

5. Under Monitoring section, leave the Enable container
monitoring option to Yes. Here you can either create a new Log
Analytics workspace for your new AKS cluster or create a new one.
Once done, click the Review + Create button at the bottom of the
screen. Once the validation is completed, click Create.



Create Kubernetes cluster

V Validation passed

Basics Scale Authentication

Basics

Subscription

Resource group

Region

Kubemetes cluster name
Kubemetes version

DNS name prefix

Node count

Node size

Scale

Virtual nodes

VM scale sets
Authentication
Enable RBAC
Networking

HTTP application routing
Network configuration
Virtual network

Cluster subnet
Kubemetes service address range
Kubemetes DNS service IP address

Docker Bridge address

Monitoring

Log Analytics workspace

Tags

(none)

Networking

CHAPTER 5

Monitoring Tags Review + create

MVP Azure

(new) jcbaksrg01

(Asia Pacific) Australia Southeast
Jjebaksciul

1.13.10

jcbaksciu01-dns

1

Standard_DS2_v2

Disabled
Disabled

Yes

No

Advanced

(new) jcbaksrg01-vmet
(new) default
10.0.0.0/16

10.00.10
172.17.0.1/16

Yes
(new) DefaultWorkspace-db2a3cfc-8ce3-4bf1-§959-040fc0e8282d-ASE

Download a template for automation

DEPLOYING AZURE KUBERNETES SERVICE

Figure 5-4. Create a Kubernetes cluster Validation section

The process to create an AKS cluster will take few minutes to complete the
deployment. Once the deployment is completed, you can see the status of your AKS
cluster by visiting its dashboard by clicking Go to resource under Next steps or by
searching the resource group name or AKS cluster name in the search bar on top of the
screen.

69



CHAPTER5 DEPLOYING AZURE KUBERNETES SERVICE

Heme + mcrorofiais- 2019003010135 - Overvew » cbakscul
41 jebakschull

4 Overview

B ity log

sl Accert contesl 1AM

# T Subscripion i dn 33001539 OlekeSebI8ie

@ Moniter containers ) View logs
R oo,

T Gt healsh and parformance imights rch e amaiyze ko uving ac-hos queries

£ Netweridng Ga e A Moo gt 5ot Azure Morilor g
4 Deployment center (prnien)
& Polies (prevew)

1 Sregaries

& e

KB oot semplite

wsntenng

T aigh

il Merics (previes)

0 Logs
Suppon « meubhosng

& New oppert rgeeil

Figure 5-5. AKS cluster dashboard

Deployment Through Azure CLI

Azure CLI is a command line tool for managing your Azure resources. It is designed as

a cross-platform tool that can be deployed on Windows, Linux, or MacOS systems. To
provide a greater Azure CLI experience, the Azure portal provides Azure Cloud Shell,
which is an interactive shell environment that you can use using your browser. The
advantage of using Azure Cloud Shell is that you can use it with either preinstalled bash
or PowerShell Azure CLI commands without installing anything on your local computer.

Note For the purpose of trying the instructions in this section, you may choose to
either use Azure CLI installed in your local computer or leverage Azure Cloud Shell.

1. Launch an Azure Cloud Shell session by clicking the Cloud Shell
button on the top-right menu bar in the Azure Portal.

Figure 5-6. Launch an Azure Cloud Shell

70



CHAPTER5  DEPLOYING AZURE KUBERNETES SERVICE

2. Create a resource group to deploy your AKS cluster by entering the
following Azure CLI command.

Listing 5-1. Create a resource group for the AKS cluster
az group create --name jcbaksrgol --location eastus

You should see the following output if the resource group creation was successful.

Listing 5-2. Create a resource group output

{
"id": "/subscriptions/<guid>/jcbaskrgo1"”,
"location": "eastus",
"managedBy": null,
"name": "jcbaskrgo2",
"properties": {
"provisioningState": "Succeeded"
})
"tags": null,
"type": "Microsoft.Resources/resourceGroups”

3. Usetheaz aks create command to create the AKS cluster. The
following example creates a cluster named jcbaksclu02 with one
node, and the --enable-addons monitoring parameter will
enable Azure Monitor for containers for this cluster. After few
minutes, once the cluster creation is completed, Azure CLI will
return a JSON-formatted cluster information in the Azure Cloud
Shell window.

Listing 5-3. Create an AKS cluster

az aks create --resource-group jcbaksrg0l --name jcbakscluOl --node-count 1
--enable-addons monitoring --generate-ssh-keys

71



CHAPTER5 DEPLOYING AZURE KUBERNETES SERVICE

Deployment Through Azure Resource Manager
Templates

Azure Resource Manager (ARM) templates introduce infrastructure as code capabilities
for your Azure deployments. ARM templates are JavaScript Object Notation (JSON)
files that define the infrastructure and configuration of an Azure deployment. An ARM
template uses a declarative syntax, and you can specify the resources you intend to
deploy and their respective configuration by using an ARM template.

Before creating an AKS cluster using an ARM template, you need to provide an SSH
public key and Azure Active Directory service principal first.

Create an SSH Key Pair

An SSH key pair is required to connect and access your AKS nodes. By executing the
ssh-keygen command in an Azure Cloud Shell session according to the following
example, you will be generating an SSH public and private key pair with RSA encryption
of a 2048-bit length in the ~/.ssh directory inside your Azure Cloud Shell file storage.

Listing 5-4. Create an SSH key pair in Azure Cloud Shell

ssh-keygen -t rsa -b 2048

Create a Service Principal

An Azure Active Directory service principal name (SPN) is required to allow an AKS
cluster to interact with other Azure resources in your Azure environment. By executing
theaz ad sp create-for-rbac CLI command, you can create the necessary service
principal for this exercise. The --skip-assignment parameter prevents any additional
permissions being assigned. By default, this service principal is valid only for a year.

Listing 5-5. Create a service principal in Azure Cloud Shell
az ad sp create-for-rbac --skip-assignment

Make a note of the appld and password values from the output generated. These are
required to populate parameters in the ARM template.

72



CHAPTER5 DEPLOYING AZURE KUBERNETES SERVICE

Listing 5-6. JSON output of the create service principal operation

{
"appId": "141b2bef-9350-4e80-a0fa-a6aa456750a9",
"displayName": "azure-cli-2019-09-30-01-39-37",
"name": "http://azure-cli-2019-09-30-01-39-37",
"password": "182bb4e7-b53f-4cc4-811d-c72ba828a75d",
"tenant": "<tenant id>"

Using an Azure Resource Manager QuickStart Template

If you are not an expert on ARM templates, you can always leverage an Azure Resource
Manager QuickStart template to start with.

Note In this example, we are going to use the 101-aks QuickStart template to
explain the process of deploying an AKS cluster using an Azure Resource Manager
template. For more examples, visit the following URL:

https://azure.microsoft.com/en-au/resources/templates/?term=
Azure%20Kubernetes%20Service

1. Navigate to the following URL to open the 101-aks QuickStart
template and click Deploying to Azure:

https://azure.microsoft.com/en-au/resources/templates/101-aks/

73


https://azure.microsoft.com/en-au/resources/templates/?term=Azure Kubernetes Service
https://azure.microsoft.com/en-au/resources/templates/?term=Azure Kubernetes Service
https://azure.microsoft.com/en-au/resources/templates/101-aks/

CHAPTER5 DEPLOYING AZURE KUBERNETES SERVICE

& azure.microsoft.com/en-au/resources/templates/101-aks/

B Microsoft Azure

Overview  Solutions Products ~ Documentation Pricing Training

Templates / Azure Container Service (AKS)

Azure Container Service (AKS)

. by wyta
Last updated: 2/07/2019
Deploying to Azure > ¢) Browse on GitHub >

Figure 5-7. Azure QuickStart template 101-aks

2. Enter and/or configure the following values in the template:

a. Subscription: Select the Azure subscription where you want to
deploy the AKS cluster.

b. Resource group: You can either select an existing resource
group or select Create new to provide a unique name to create a
new resource group and click OK.

c. Location: Select the Azure region for your AKS cluster.
d. Cluster name: Provide a unique name for the AKS cluster.
e. DNS prefix: Provide a unique DNS prefix for your cluster.

f. Linux admin username: Provide a username to connect

using SSH.

g. SSH RSA public key: Enter the public part of your SSH key pair
(by default, the contents of ~/.ssh/id_rsa.pub).

h. Service principal client ID: Provide the appld value generated
in the previous section.

i. Service principal client Secret: Provide the password generated
in the previous section.

j- Click the I agree to the terms and conditions stated above:
checkbox to agree to the terms and conditions.

74



CHAPTER5  DEPLOYING AZURE KUBERNETES SERVICE

Home > Azure Container Service (AKS)

Azure Container Service (AKS)
Azure quickstan template

mm 101-3ks K4 K4 Li]

1 resource Edit template Edit paramet... Learn more
BASICS
* Subscription | MVP Azure v |
* Resource group L::::f::’ X l
* Location | {Asia Pacific) Australia Southeast e ]
SETTINGS
Cluster Name @ [ icoakscivor ]
Location @ | [resourceGroup()ocation] ]
* Dns Prefix @ | Jebakseiud v’]
Os Disk Size GE @ [0 |
Agent Count @ | 1 "'1
Agent VM Size @ | Standard_DS2 v2 |
* Linux Admin Username @ | coaksadm «]
* Ssh RSA Public Key @ [ ssh-rsa AAAABINzZaC1yc2EAAAADAQABAAABAQL ry2 TKrSFNIBOANVMUHGTGES... «]
* Service Principal Client Id @ B e E TP e L ® J]
* Service Principal Client Secret @ | e e ® ‘,1
Qs Type @ | Linux ~ |
Kubernetes Version @ 1;45 R ]

TERMS AND CONDITIONS

1

Template information | Azure Marketplace Terms | Azure Marketplace

By clicking “Purchase,” | (3) agree to the applicable legal terms associated with the offering; (b) authorize Microsoft to
charge or bill my current payment method for the fees associated the offering(s), including applicable taxes, with the

same billing frequency as my Azure subscription, until | di inue use of the offering(s); and (c) agree that, if the
deploy involves 3rd party offerings, Microsoft may share my contact information and other details of such
deployment with the publisher of that offering. -

D | agree to the terms and conditions stated above

Figure 5-8. Deployment screen for 101-aks QuickStart template

3. Click Purchase. Your AKS cluster deployment will take few
minutes to complete.

75



CHAPTER 5 DEPLOYING AZURE KUBERNETES SERVICE

Note You can use the Edit Template or Edit parameters buttons to either
customize the ARM template or edit the parameters provided in this QuickStart
template.

Deployment Through Terraform

Terraform is an Infrastructure-as-Code (IaC) tool designed for building, changing, and
versioning infrastructure safely and efficiently. Configuration files in Terraform define
the components required to run an application. An execution plan is generated in
Terraform to describe the instructions to reach the desired configuration state, and then
itis executed to build the described infrastructure. In case of a configuration change,
Terraform is able determine the changes and to create incremental execution plans
which can then be applied.

The steps to create an AKS cluster with Terraform is well documented at
(https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-
cluster-with-tf-and-aks).

Note Terraform is preinstalled by default in the Azure Cloud Shell. If you need to
set up Terraform locally to follow the instructions in the preceding article, please
refer to the following URL:

https://docs.microsoft.com/en-us/azure/virtual-machines/
linux/terraform-install-configure#tinstall-terraform

Connecting to Your AKS Cluster

You can use kubectl, the Kubernetes command line client, in order to manage your AKS
cluster. If you are using Azure Cloud Shell, kubect] is preinstalled. If you want to install
kubectl locally on your local computer (where Azure CLI is already installed), you can
use the following command.

Listing 5-7. Installing kubectl on a local installation of Azure CLI
az aks install-cli

76


https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-cluster-with-tf-and-aks
https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-cluster-with-tf-and-aks
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/terraform-install-configure#install-terraform
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/terraform-install-configure#install-terraform

CHAPTER5  DEPLOYING AZURE KUBERNETES SERVICE

By using the az aks get-credentials command, you can configure kubectl to
connect to your Kubernetes cluster. This downloads the required credentials and
configures the Kubernetes CLI to use them.

Listing 5-8. az aks get-credentials command
az aks get-credentials --resource-group jcbaksrg0l --name jcbakscluol

Then, you can execute the kubectl get command to verify the connection to you
cluster and see if it returns a list of cluster nodes.

Listing 5-9. kubectl get command
kubectl get nodes

The following is the sample output that shows the nodes in the Kubernetes cluster
jcbaksclu01 created through the previous methods. The status should be Ready for all
the nodes before you deploy any application to your AKS cluster.

Listing 5-10. kubectl get command output for jcbaksclu01

NAME STATUS  ROLES  AGE VERSION
aks-agentpool-26412741-0 Ready agent 120m  v1.13.10

Summary

You can deploy Azure Kubernetes Service using several methods. As explained earlier in
this chapter, it is up to you to decide which method suits your deployment requirements.
This chapter serves as an introduction to deploying AKS and configuring the basic
parameters required to get your AKS cluster up and running.

In this chapter, you learned about what creates an AKS cluster using four different
methods, through Azure Portal, Azure CLI (either via a locally installed instance or via
Azure Cloud Shell), Azure Resource Manager templates, and finally a very popular third-
party Infrastructure-as-a-Code tool called “Terraform.” We reviewed the process of initial
configuration for your AKS using each of these methods. Lastly, we briefly discussed
about how you can connect to your AKS cluster using kubectl, the command line tool
for Kubernetes.

77



CHAPTER 6

Deploying and Using
Rancher with Azure
Kubernetes Service

As you continue along your journey into the container world, you will get to the point
of critical mass. There will be a need to run an orchestration platform to handle the life
cycle of containers. Within Chapter 3, “Inside Kubernetes,” we dove into Kubernetes,
the most common orchestration platform. In Chapter 5, “Deploying Azure Kubernetes
Service,” we covered how to deploy Azure Kubernetes Service (AKS). Kubernetes can be
complex for anyone starting out with container orchestration platforms.

Microsoft’s managed Kubernetes service AKS removes some of the complexity from
running a Kubernetes cluster; however, it can still be a challenge to run a Kubernetes
cluster, including all the things that come along with it such as operating multiple
Kubernetes clusters, scaling in the cluster, networking, RBAC, monitoring, deploying
bundled solutions via HELM charts (to be covered in a later chapter), and more. There
are third-party solutions on the market that can reduce the complexity of running
Kubernetes. Rancher is one of this solution if not arguably the best.

In this chapter, we are going to give an overview of Rancher and also will explore how
Rancher can be used together with AKS.

What Is Rancher?

In anutshell, Rancher is an open source solution that can be used to deploy and operate
a single or many Kubernetes clusters. Rancher can deploy and manage Kubernetes
clusters across on-premises or cloud providers such as AWS, GCP, Digital Ocean, and

79

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_6



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

Azure. It can be used to deploy and manage your own Kubernetes cluster on your own
infrastructure or even managed cluster services from cloud providers, for example,
Azure Kubernetes Service.

Unlike many other open source solutions out there on the market, Rancher is
completely free. It does not have a community edition and an enterprise edition
you have to pay for. With Rancher, you get all of the features when you deploy it. The
way Rancher supports itself financially is through paid support options designed for
organizations that run Rancher in production.

Because Rancher can operate Kubernetes clusters virtually anywhere, it can also be
utilized to migrate resources between providers.

Rancher overall helps simplify the administration of Kubernetes. Some of the
ways it simplifies the administration are by centralizing the authentication and access
control, bringing in monitoring out of the box with Prometheus and Grafana, having an
application library of its own, and HELM charts and streamlined Kubernetes version
upgrades.

While Rancher abstracts much of the complexity of managing a Kubernetes cluster,
it also allows for advanced administration if desired. For example, a Kubernetes
administrator can access kubectl right through the Rancher portal.

Why Use Rancher with Kubernetes?

One of the most common questions that come up when someone learns about Rancher
is: “Why should I use Rancher with Kubernetes vs. just using Kubernetes on its own?”
The answer to this is there are many reasons to use Rancher with Kubernetes; however,
there may be scenarios where it does not make sense to use Rancher. Here we will look at
the reasons to use Rancher. Let’s go through them:

e Deployment and upgrade of Kubernetes clusters: Deploying
and upgrading Kubernetes clusters via Rancher is streamlined and
seamless.

o User interface and API: Rancher provides a streamlined user
interface for those that use Kubernetes. Rancher also provides an API
to interface with.

o Centralize the management of multiple Kubernetes clusters:
Many organizations are taking a multi-cloud approach, and therefore

80



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

it is likely they will run a Kubernetes cluster across multiple cloud
providers. When Kubernetes clusters are deployed across cloud
providers and even on premises, Rancher can be used to centralize
the management of all the clusters from one place. Rancher
centralizes management of RBAC, security policy management,
capacity management, delegated administration, cluster backup and
recovery, logging and monitoring, and more.

Centralize and streamline the RBAC of Kubernetes: Kubernetes
authorization and access can be managed easily from Rancher.

Rancher comes out of the box with Prometheus and Grafana:
Monitoring Kubernetes is critical. Prometheus and Grafana are
common monitoring and visualization tools. Being that these are
packaged with Rancher and ready to Monitor Kubernetes reduces the
effort of deploying these solutions and getting them ready to monitor
Kubernetes.

Rancher streamlines Helm charts: Rancher allows you to load a
Helm chart library and/or a Rancher library. These libraries make it
easy to deploy applications as pods with ease.

Kubernetes adoption: Drive Kubernetes adoption by lowering
the Kubernetes learning curve and allowing coders to focus on
developing applications vs. running the applications.

As you can see from the previous list, there is a lot of value in using Rancher in

combination with Kubernetes. Next, let’s look at deploying Rancher and using it with AKS.

How to Deploy Rancher on Azure

Rancher runs as a container on top of Docker. You can deploy Rancher on-premises or

on a cloud provider. In this section, we are going to deploy Rancher on an Ubuntu server

running Docker on an Azure IaaS VM.
We will deploy this VM and Rancher using an Azure ARM Template. The ARM
Template that we will use deploys an Ubuntu VM with Docker and the latest version of

Rancher as a container. The Rancher container is deployed from (https://hub.docker.

com/r/rancher/rancher) on Docker Hub. This ensures that the latest Rancher version

will always be deployed.

81


https://hub.docker.com/r/rancher/rancher
https://hub.docker.com/r/rancher/rancher

CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

The ARM Template we will use is named RancherNode.JSON. Here is the ARM
Template code:

{

"$schema”: "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"adminUsername": {
"type": "string",
"metadata": {
"description”: "Username for the Rancher Node Virtual
Machine."

b

"adminPassword": {
"type": "securestring",
"metadata": {
"description": "Password for the Rancher Node Virtual
Machine."

b
"dnsNameForPublicIP": {

"type": "string",

"metadata": {
"description”: "Unique DNS Name for the Public IP used to
access the Rancher Portal.”

}
}’
"vmSize": {
"type": "string",
"defaultValue": "Standard F1",
"metadata": {
"description”: "VM size for the Rancher Node."
}
}J

82



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

"ubuntuOSVersion": {
"type": "string",
"defaultValue": "14.04.4-LTS",
"metadata": {
"description”: "The Ubuntu version for deploying the Docker
containers. This will pick a fully patched image of this
given Ubuntu version. Allowed values: 14.04.4-LTS, 15.10,

16.04.0-LTS"
}J
"allowedValues": [
"14.04.4-LTS",
"15.10",
"16.04.0-LTS"

b

"location": {
"type": "string",
"defaultValue": "[resourceGroup().location]",
"metadata": {
"description”: "Location for all resources."

1

"variables": {
"imagePublisher": "Canonical",
"imageOffer": "UbuntuServer",
"nicName": "RancherNodeNic",
"extensionName": "DockerExtension",
"addressPrefix": "10.0.0.0/16",
"subnetName": "RancherSubnet",
"subnetPrefix": "10.0.0.0/24",
"diskStorageType": "Standard LRS",
"publicIPAddressName": "RancherNodePublicIP",
"publicIPAddressType": "Dynamic",
"vmName": "RancherNode",
"virtualNetworkName": "RancherVNet",

83



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

"subnetRef": "[resourceld('Microsoft.Network/
virtualNetworks/subnets', variables('virtualNetworkName'),
variables('subnetName'))]"

})
"resources": [
{
"apiVersion": "2017-04-01",
"type": "Microsoft.Network/publicIPAddresses”,
"name": "[variables('publicIPAddressName')]",
"location": "[parameters('location')]",
"properties": {
"publicIPAllocationMethod": "[variables('publicIPAddress
Type')1",
"dnsSettings": {
"domainNameLabel": "[parameters('dnsNameForPublicIP')]"
}
}
})
{

"apiVersion": "2017-04-01",
"type": "Microsoft.Network/virtualNetworks",
"name": "[variables('virtualNetworkName')]",
"location": "[parameters('location')]",
"properties": {
"addressSpace": {
"addressPrefixes": [

[variables('addressPrefix"')]"

]
})
"subnets": [
{
"name": "[variables('subnetName')]",
"properties": {
"addressPrefix": "[variables('subnetPrefix')]"
}
}

84



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

"apiVersion": "2017-04-01",

"type": "Microsoft.Network/networkInterfaces”,

"name": "[variables('nicName')]",

"location": "[parameters('location')]",

"dependsOn": [
"[concat('Microsoft.Network/publicIPAddresses/', variables
('publicIPAddressName'))]",
"[concat('Microsoft.Network/virtualNetworks/', variables
('virtualNetworkName'))]"

])

"properties": {

"ipConfigurations": [
{
"name": "ipconfig1l",
"properties": {
"privateIPAllocationMethod": "Dynamic",
"publicIPAddress": {
"id": "[resourceld('Microsoft.Network/
publicIPAddresses',variables('publicIP
AddressName'))]"
}J
"subnet": {
"id": "[variables('subnetRef')]"

"apiVersion": "2017-03-30",
"type": "Microsoft.Compute/virtualMachines",

85



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

"name": "[variables('vmName')]",

"location": "[parameters('location')]",

"dependsOn": [
"[concat('Microsoft.Network/networkInterfaces/",
variables('nicName'))]"

]J

"properties": {

"hardwareProfile": {
"vmSize": "[parameters('vmSize')]"

})

"osProfile": {
"computerName": "[variables('vmName')]",
"adminUsername": "[parameters('adminUsername')]",
"adminPassword": "[parameters('adminPassword')]"

b

"storageProfile": {
"imageReference": {
"publisher": "[variables('imagePublisher')]",
"offer": "[variables('imageOffer')]",
"sku": "[parameters('ubuntuOSVersion')]",

"version": "latest"
}J
"osDisk": {
"name": "[concat(variables('vmName'),' 0SDisk')]",
"caching": "ReadWrite",
"createOption": "FromImage",
"managedDisk": {
"storageAccountType": "[variables('diskStorage
Type')]"

}s

"networkProfile": {
"networkInterfaces": [

{

86



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

"id": "[resourceld('Microsoft.Network/network
Interfaces',variables('nicName'))]"

"type": "Microsoft.Compute/virtualMachines/extensions",
"name": "[concat(variables('vmName'),'/",
variables('extensionName'))]",
"apiVersion": "2017-03-30",
"location": "[parameters('location')]",
"dependsOn": [
"[concat('Microsoft.Compute/virtualMachines/",
variables('vmName'))]"
]J
"properties": {
"publisher": "Microsoft.Azure.Extensions",
"type": "DockerExtension",
"typeHandlerVersion": "1.0",
"autoUpgradeMinorVersion": true,
"settings": {
"compose": {
"rancher": {
"image": "rancher/rancher:stable",
"ports": [
"80:80",
"443:443"
])
"volumes": [
"/opt/rancher:/var/lib/rancher"

87



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

This ARM Template can also be downloaded here: https://github.com/Buchatech/
DeployRanchertoAzure.

Deploy the ARM Template using your deployment option of choice. You will need to
provide data for the following parameters:

e Subscription

¢ Resource group

e Location

e Admin username

e Admin password

e Dns name for public IP
e Vmsize

e Ubuntu OS version

After the Ubuntu VM is deployed, you should see the resources in the new resource
group as shown in Table 6-1.

Table 6-1. Rancher on Azure
Resources in Resource Group

Name Type
RancherVNet Virtual network
RancherNode Virtual machine
RancherNodePubliclP  Public IP address
RancherNodeNic Network interface

RancherNode 0SDisk  Disk

88


https://github.com/Buchatech/DeployRanchertoAzure
https://github.com/Buchatech/DeployRanchertoAzure

CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

In order to complete the Rancher deployment, you need to complete the setup via
the Rancher portal. The URL is the DNS name of the Rancher Node VM we deployed.
You can find the DNS name by clicking the Rancher Node VM in the Azure portal on the
overview page. Here is an example of the URL:

https://NAMEOFTHEVM.centralus.cloudapp.azure.com

The Rancher portal will prompt you to set a password. This is shown in Figure 6-1.

Welcome to Rancher

The first order of business is to set a strong
password for the default [ user.

@ Allow collection of anonymous statistics Learn More

® Set a specific password to use:
New Password

Confirm Password

O Use a new randomly generated
password:

Continue

Figure 6-1. Rancher set password

After setting the password, the Rancher portal will prompt you for the correct
Rancher Server URL. This will automatically be the Rancher Node VM DNS name as
shown in Figure 6-2. Click Save URL.

89


https://nameofthevm.centralus.cloudapp.azure.com

CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

Rancher Server URL

What URL should be used for this installation? All
the nodes in your clusters will need to be able
to reach this.

URL

https://  rancherOOnode.centr:

Save URL

Figure 6-2. Rancher Save URL

You will then be logged into the Rancher portal directly on the You will see the
clusters page. That wraps up the deployment of deploying Rancher on Azure. Next, we
will explore deploying a new AKS cluster and connecting to an existing AKS cluster from
within Rancher.

Authenticate Rancher with Azure Active Directory

You will need the authentication from Rancher to Azure working before you can deploy
or manage existing AKS clusters. In order to authenticate with Azure from Rancher, you
will need a service principal name (SPN) object in Azure Active Directory. This will be
used for the authentication to Azure.

To create this SPN, you only need to run one line of syntax. It is recommended that
you run this from Bash in Azure Cloud Shell.

90



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

Note Use the following steps to open Bash in Azure Cloud Shell:
Log into the Azure Portal.
Launch Cloud Shell from the top navigation by clicking >

If this is your first time running Cloud Shell, select a subscription to create a
storage account and Microsoft Azure Files share.

When Cloud Shell launches at the bottom of the Azure portal, be sure the
environment drop-down on the left-hand side of the Shell window shows Bash and
not PowerShell.

Placeholder text. Remove later when able to clean up the note formatting.

Note You will need the subscription ID for the subscription that you want to
create your AKS cluster in. You can run the following syntax in Cloud Shell to get a
list of subscriptions for the account you are logged in with. This will list subscription
property information including IDs. Copy the subscription ID for later use.

az account list

Use the following syntax to create an SPN with a specific name and assign the
contributor role to a specified subscription:

az ad sp create-for-rbac --name NAMEOFTHESPNHERE --role contributor
--scopes /subscriptions/SUBSCRIPTIONIDHERE

For example:

az ad sp create-for-rbac --name rancherSPN --role contributor --scopes /
subscriptions/148727f76-9q1b-4941-coa6-92c5d153fe73

91



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

The output will be similar to:
Changing “rancherSPN” to a valid URI of “http://rancherSPN’ which is the
required format used for service principal names

Retrying role assignment creation: 1/36

{
"appId": "012d8611-c9a3-4e90-80d9-ad6504c823g8",
"displayName": " rancherSPN ",
"name": "http:// rancherSPN",
"password": "6a4b83fc-31qa-40f0-c4c6-rba8c5av460b”,
"tenant": "OpwOcc24-q010-4f7b-h08e-9057a72t531d"

Remember to copy this information somewhere as you will need it to connect to
Azure from Rancher when creating your AKS cluster.

Note appld is what you will use for the clientld field in Rancher.

That’s it! That was all you had to do to create the SPN and get the information you

need to authenticate to Azure from Rancher. In the next section, we are going to create a

new AKS cluster from Rancher.

Deploy AKS with Rancher

At this point, we have Rancher deployed on Azure. Now let’s look at the process for

deploying a new AKS cluster using Rancher. Use the following steps to deploy a new AKS

from Rancher in Azure.

Note In the following steps, we will call out the required settings such as DNS
prefix but not the optional settings such as Azure tags or advanced networking. You
can configure optional settings as needed when you deploy your AKS cluster.

Within the Rancher portal, click Clusters in the top navigation menu.
Click Add Cluster and select Azure AKS as shown in Figure 6-3.

92


http://www.rancherSPN

CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

Add Cluster

oo

Figure 6-3. Azure AKS hosted Kubernetes provider
You will see the Account Access settings as shown in Figure 6-4.

Account Access

East US R

() ‘foucan find instructions en how to create an Azure AD Service Frincipal here

Figure 6-4. Account Access settings

Input a cluster name as shown in Figure 6-5.

Input the information you copied from the last section after creating the SPN into the
Account Access settings.

Click Next: Authentication & configure nodes.

93



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

(D Mote: Currently Azure AKS will not create an ingress controfler when launching a new chuster. Iif you need this functicnality you will have to create an ingress contreller manually after cluster

creation

Cluster Neme * Add s Description

/

RancherAKS

5, Member Roles

Account Access
Subscription 1D * Tenant IC *
Cllent ID * Clent Secret *
Location ®

East US “

() ou can find Instructions on how to create Jg Azure AD Service Principal here

Next: Authenticate & configure nodes Cance!

Figure 6-5. Rancher cluster name

Next, under Cluster Options, give your cluster a DNS prefix as shown in Figure 6-6.

Cluster Options
v pt

Kuberneles Versicn DNS Prafix /

11387 o Rancherfls

HTTP Application Routing Maoniaring

* Enablec Disabled * Enabled Disabled
s

Figure 6-6. Cluster DNS prefix

Under Nodes, input a name for your resource group in the Cluster Resource Group
field as shown in Figure 6-7.

94



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

Nodes
Admin Usamame Cluster Rescurce Group * D
azureuser RancherAKSRG
Nede Count OS5 Disk Size
3 o0 GB
VM Size
Stancard_D2_v2 ~
Networking

® Defaull Advanced /

S5+ Public Key *

I Read from a file

sshrsa

AfABINZC lyc ZEAAALB A AGE AR Oy Tw HENW T2 MEhPPLAV AR SIvies Sv oK a Ty gy B phaxOoSapx K- sthnTLES Xy BC laau Eeboojlol 2K KORKK S BLLE Y HNS KD 3V X mb ey Uz GZ 4da 0/ IvWiFPUocol
a-APvE205e-LZPds1Zall4ThFTFASRITYZ Teh ViywB2 it Tys 450005 2UWH M-y RUDZLOM - TroicGoyP 3e CF bePgbjayyL XaBpFF DMK Epcaz G2 05q7IBE TLVOVLY Oyedn B0 EnT g QiapHESA T
OuAabPEWWEIG WP 29X G2pTUC6/ TEIBMNE9pMBw== ria-key-20190726

Create Cance

Figure 6-7. Cluster resource group and SSH key

Also, under Nodes, input an SSH public key and click Create.

Note PuTTY Key Generator is a free utility that can be used to generate a new
SSH key. You can download it here: www. puttygen. com.

The AKS cluster will begin to provision as shown in Figure 6-8.

™

Clusters
Delete & Se
\ [ state Cluster Name $ Pravider Nodes cPu RAM
z Loure AKS 29/58 Cores  3/134 GB
() | Active 3
Aaure AKS 0958 Cores 11134 GB
L Active A 3
0| Frevisisning] rancheraks Azure AKS Q

Figure 6-8. AKS cluster provisioning

95


http://www.puttygen.com

CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

After the AKS cluster is deployed, it will show as Active in the Rancher portal. The

AKS cluster is now deployed, and you could go the Azure portal, navigate to the resource

group it created, and see the resources Rancher deployed including the AKS cluster, Log

Analytics workspace, and a Containers Insights solution as shown in Figure 6-9.

Cashboard > Resource groups * RancherAKSRG

) RancherAKSRG

Resource group
O Search (Cielf) « & add  EEEditeolumns @ Delete resource group () Refresh =% Move 3 Export to C5V | ® assigntags T Delete
T @t a Subscription {change) : Deployments : Mo deployments
Subscription 1D ;- - =
B Activity leg
. Tags (change) : Click here to edd tags
i Access control (JAM) .
&+ Tags
Events | Filter by name... Alltypes i All lecations g Mo grouping™
Settings 3items |—| Show hidden types @
|1 mamE TYPE LOCATION
i Quickstart
' Resource costs T c-59s5r Kubernetes service East US
& Deployments =? Containerinsights(rancheraksrg-eus) Solution East US
H ancher, - og Analytics workspace asf
0 RancherAKSRG-EUS Log Anal ! East US

* Folicies

Figure 6-9. AKS cluster resources on Azure

Back in the Rancher portal, you can now click the AKS cluster to access dashboards,

monitoring, and the cluster settings, install apps from the Rancher or Helm catalogs,

launch Kubectl, and more. Figure 6-10 is an example of the dashboard for an AKS cluster

in Rancher.

96



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

Dashboard: rancheraks

Provider: Azure AKS | Verson V1137 | Nosles: 3

TR 58 Cores | Mermory 134 GIB | Createc: Yesterday at 1150 PM

29% 19% 9%

17 of & Used 3.8 of 204 GiB Used 29 of 330 Used
2.9 of 58 Reserved 3 of 134 GiB Reserved \
CPU Memory Pods
ol ecd M Controter Mannger A Scheduler  Modes B
Expand All

= Cluster Metrics

~ Kubernetes Components Metrics

Figure 6-10. AKS cluster dashboard in Rancher

The following two screenshots demonstrate some of the Grafana monitoring that is
available in Rancher for an AKS cluster. Figure 6-11 shows live cluster metrics.

97



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

Cluster Metrics
v

Detail

1hour w
CPU Utilization Load Average

Memory Ultilization
100% 04 T00%
BO% 03| A
0% M £
02 ‘
0% 0%
X - 43 ot "
20% Ao 20% L
4 .
0% [ %
00:11 015 00:20 00:10 0010 0015 00:20
07-25 o7-25 07-25 07-25 07-25 o7F-25 07-25
Disk Utilization Disk IO Network Packets
100% 7 Mbps 1000 Pps
Ahoe f
B0% b 300 Pps {
5 Mbps /
0% 4Mbps 500 Pps {
4% 3 Mbps 400 Pps //
2 Mbps
arh 1 Mbps 200 Pps st -
0% 0 Kbps L
00:10 00:15 20 00:11 0015 00:20 0 ae:is o0
07-25 07-25 a7r-25 07-25 o7-25 7-25 or-25 07-25 07-25
Network /O
2.5 Mbgs
2 Mbps =
1.5 Mbgs |,-"
1 Mbse L
1 Mbps /
500 Kbps //'

Figure 6-11. Grafana cluster metrics in Rancher

Figure 6-12 shows live metrics for the clusters and Kubernetes components.
Hubernstes Components Metrics

1 hour RV
APl Server Request Latency APl Server Request Rate

Scheduling Failed Pods
500 ms 21 1
400 mes i 08
15 4
300 ms 12 08
200 ms 91/ 0.4
[
100 e 0.2
s 3
0 ms 0 IR
010 015 0¢:20 00:22 0010 0015 0020 0022 0015 00:20 0022
07-25 07-25 0735 0735 07-25 07-25 0725 0725 0725 0725 0725
Rancher Legging Metrics
= gging B

Figure 6-12. Grafana Kubernetes components metrics in Rancher

98



CHAPTER 6  DEPLOYING AND USING RANCHER WITH AZURE KUBERNETES SERVICE

You also could access the full Grafana UI and system to get deeper insights into your

AKS cluster and its resources such as nodes and pods as shown in Figure 6-13.

“ C Y A Notsecure | hips/rancherlinode.contralus cloudapp.azure.com/

LG} B8 Cluster -

« Total usage

CPU usage (Sm avg)

Used
1.49 GiB

EPU usage (S avg)

» Deployments

Figure 6-13. Grafana Ul

Summary

Used

10.39 GiB 195.18 GiB

That brings us to the end of this chapter. Rancher is not as well-known as Docker and

Kubernetes are. However, as you learned in this chapter, Rancher is a useful solution

when it comes to streamlining aspects of your Kubernetes life cycle. Specifically, in this

chapter we covered what Rancher is, why you would use it with Kubernetes, deploying

Rancher on Azure, and finally connecting Rancher to Azure so you can deploy a new

AKS cluster.

99



CHAPTER 7

Operating Azure
Kubernetes Service

Once you have deployed your first AKS cluster, it is important to understand how you
can configure, monitor, and manage the AKS environment. The role of an AKS operator
is critical when deploying applications to AKS clusters as cluster optimization is a key
operational process in AKS.

In this chapter, we will explore how to operate an AKS cluster from a cluster
operator perspective. We will review the processes for handling cluster operations, how
to configure data storage for AKS, and how networking, security, and authentication
work in AKS. Then, we will dive into the AKS monitoring realm with Azure Monitor for
containers. Finally, we will go through the processes and best practices for business
continuity and disaster recovery (DR) planning for Azure Kubernetes Service. By the end
of this chapter, you will have a thorough understanding of operating an AKS cluster from
a configuration, monitoring, and management perspective of an AKS operator.

Cluster Operations in Azure Kubernetes Service

When operating an Azure Kubernetes Services cluster, it is important to get familiarized
with cluster common operations. The following sections provide an overview of some of
the common cluster operations that you will encounter while working with AKS.

Note The explanations in the following sections are executed within an Azure
Cloud Shell. Make sure that you are running Azure CLI version 2.0.65 or later by
executing az -version if you are using a local installation.

101

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_7



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Manually Scaling AKS Cluster Nodes

Resource needs of applications do change time to time. In such scenarios, you can either
manually or automatically scale your AKS cluster to increase or decrease the node count.
In a scale-down operation, your AKS nodes are carefully cordoned and drained in order
to minimize application disruption. In a scale-up operation, until the worker nodes are
marked as Ready, AKS waits before pods are scheduled on them.

The following example first obtains the node pool name for the jcbaksclu01 cluster
in the jcbaksrg01 resource group.

Listing 7-1. az aks show command

az aks show --resource-group jcbaksrg0l --name jcbakscluO1l --query
agentPoolProfiles

You can see the name is nodepooll in the following output.

Listing 7-2. az aks show command output

{
"count": 1,
"maxPods": 110,
"name": "nodepool1",
"osDiskSizeGb": 30,
"osType": "Linux",
"storageProfile": "ManagedDisks",
"vmSize": "Standard DS2 v2"

Then, you can use the az aks scale command to scale the cluster nodes. The
following example scales the node count of jcbaksclu01 from 1 to 3.

Listing 7-3. az aks scale command

az aks scale --resource-group jcbaksrg0l --name jcbakscluOl --node-count 3
--nodepool-name nodepooll

102



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

You should see the following similar output which shows that the cluster has
successfully scaled up to three nodes, as shown in the agentPoolProfiles section:

{

"aadProfile": null,
"addonProfiles": null,
"agentPoolProfiles": [

{
"count": 3,
"maxPods": 110,
"name": "nodepool1",

"osDiskSizeGb": 30,

"osType": "Linux",
"storageProfile": "ManagedDisks",
"vmSize": "Standard DS2 v2",
"vnetSubnetId": null

Upgrading an AKS Cluster

During the life cycle of an AKS cluster, you will need to upgrade it to the latest or a
specific Kubernetes version. The following example explains how you can upgrade the
master components of a single, default node pool in an AKS cluster.

First, check whether there are any new Kubernetes releases available for your cluster
by executing the az aks get-upgrades command against your cluster as the following.

Listing 7-4. az aks get-upgrades command

az aks get-upgrades --resource-group jcbaksrg0l --name jcbakscluOl --output
table

If there are any upgrades available, you should see an output similar to the following.
In this example, your cluster can be upgraded to Kubernetes versions 1.14.5 and 1.14.6.

103



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Listing 7-5. az aks get-upgrades command output

Name ResourceGroup MasterVersion NodePoolVersion Upgrades

default jcbaksrgo1 1.13.10 1.13.10 1.14.5, 1.14.6

If there are no upgrades available, you should see the following error message as
the output.

Listing 7-6. No upgrades available error

ERROR: Table output unavailable. Use the --query option to specify an
appropriate query. Use --debug for more info.

Note You cannot skip Kubernetes minor versions when upgrading an AKS cluster.
For instance, upgrades from 1.12.x to 1.13.x or 1.13.x to 1.14.x are allowed,

but upgrade from 1.12.x to 1.14.x is not. To upgrade, from 1.12.x to 1.14.x, first
upgrade from 1.12.x to 1.13.x and then upgrade from 1.13.x to 1.14.x.

Now we can upgrade our AKS cluster to Kubernetes version 1.14.5 using az aks
upgrade command.

Listing 7-7. az aks upgrade command

az aks upgrade --resource-group jcbaksrg01 --name jcbakscluOl --kubernetes-
version 1.14.5

Note Depending on the number of nodes you have, it can take some time

to upgrade your AKS cluster. The time taken for an upgrade operation can be
calculated by 10 minutes x total number of nodes in the cluster. In this
example, the upgrade operation must succeed within 30 minutes, or AKS will fail
the operation in order to avoid an unrecoverable cluster state. If you encounter any
upgrade failure, retry the cluster upgrade operation after this time-out has been
reached.

104



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

You can confirm the cluster upgrade was successful by running the following
command.

Listing 7-8. Verify AKS upgrade operation
az aks show --resource-group jcbaksrg01l --name jcbakscluOl --output table

You should see an output that confirms the cluster version as 1.14.5

Listing 7-9. Verify AKS upgrade operation output

Name Location
ResourceGroup KubernetesVersion ProvisioningState Fqdn

jcbakscluol australiasoutheast jcbaksrgol 1.14.5
Succeeded jcbaksclu01-dns-6bede950.hcp.australiasoutheast.
azmk8s.io

Deleting an AKS Cluster

Even though you can delete an AKS cluster using a single line of code as shown in
Listing 7-10, make sure that you have made backups for your configuration and data
before proceeding with this operation.

Listing 7-10. az aks delete command to delete an AKS cluster

az aks delete --name jcbaksclu0l --resource-group jcbaksrgoi

Creating Virtual Nodes

You can use virtual nodes to rapidly scale application workloads in AKS. The advantage
of using virtual nodes is that you can quickly provision pods and only pay per second
of their execution time. If you are using the cluster autoscaler (preview feature), you
need to wait until the node deployment is completed before running additional pods.
Currently, virtual nodes are only supported with Linux nodes and pods.

105



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Virtual nodes are supported in the following Azure regions as of now:
e Australia East (australiaeast)
o Central US (centralus)
e East US (eastus)
e East US 2 (eastus2)
o Japan East (japaneast)
e North Europe (northeurope)
e Southeast Asia (southeastasia)
o West Central US (westcentralus)
e West Europe (westeurope)
e West US (westus)
e West US 2 (westus2)

Bear in mind that the virtual nodes are dependent on the features available in Azure
Container Instances (ACI), and therefore the following scenarios are not yet supported
with them:

e Using service principal to pull ACR images. You can use Kubernetes
secrets as a work-around.

e Virtual network limitations include VNet peering, Kubernetes
network policies, and outbound traffic to the Internet with network
security groups.

o Init containers.

o Hostaliases.

o Arguments for exec in ACL

o Daemonsets will not deploy pods to the virtual node.

o Windows Server nodes (currently in preview in AKS) are not
supported alongside virtual nodes. However, you can use virtual
nodes to schedule Windows Server containers without the need for
Windows Server nodes in an AKS cluster.

106



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Note Complete step-by-step instructions to create and configure an AKS cluster
to use virtual nodes can be found from the following URLS:

Using Azure CLI (https://docs.microsoft.com/en-au/azure/aks/
virtual-nodes-cli?view=azure-cli-latest)

Using Azure Portal (https://docs.microsoft.com/en-au/azure/aks/
virtual-nodes-portal?view=azure-cli-latest)

Using Virtual Kubelet with Azure Kubernetes Service

When using Azure Container Instances (ACI) you don’t have to manage the underlying
compute infrastructure as Azure does this for you. Containers running in ACIs are
charged by the second for each running container. You can use the Virtual Kubelet
provider for ACI, with both Linux and Windows containers, and it can be scheduled on a
container instance as if it were deployed in a regular Kubernetes node.

The following diagram illustrates how Virtual Kubelet works. Essentially, the Virtual
Kubelet registers itself as a node in a Kubernetes cluster. This allows developers to allow
own APIs to interact with pods and containers by masquerading as a regular kubelet by
connecting Kubernetes to other APIs.

Note AKS now provides native support for scheduling containers on ACI
using virtual nodes which only supports Linux containers as of now. Hence, it is
recommended to use Virtual Kubelet only when you need to schedule Windows
container instances.

For step-by-step instructions on using Virtual Kubelet with AKS, refer to the
following URL: https://docs.microsoft.com/en-au/azure/aks/virtual-
kubelet?view=azure-cli-latest.

107


https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-cli?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-cli?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-portal?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-portal?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-kubelet?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-kubelet?view=azure-cli-latest

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE
Kubernetes API

e .
kubelet kubelet ! virtual 1

! kubelet -

node node node node ] i

T REEEERET -

Typical kubelets implement the pod and container
operations for each node as usual.

PR

Virtual kubelet registers itself as a “node” and allows developers to
deploy pods and containers with their own APIs.

I .
Capacity i : NodeConditions

: I virtual

OperatingSystem Wi I GatFods
i 1
CreatePod ! ;

g v GetPodStatus
UpdatePod GetPod

Figure 7-1. Virtual Kubelet architecture

Using Kubernetes Dashbhoard

The default dashboard experience for Kubernetes includes a web dashboard that you
can use for basic management tasks. This dashboard allows you to view and monitor
basic health status and metrices for you applications, create and deploy container
service, as well as modify existing applications. The dashboard is running under
kube-system namespace.

The following command starts the Kubernetes dashboard for jcbaksclus01 cluster in
the jcbaskrg01 resource group.

108



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Note For an RBAC-enabled AKS cluster, make sure that a ClusterRoleBinding is
created before you start the Kubernetes dashboard. The Kubernetes dashboard
is deployed with minimal reader access by default and can display RBAC access
errors. The following code snippets illustrate using the kubectl create
clusterrolebinding command to create the binding for our example:

kubectl create clusterrolebinding kubernetes-dashboard
--clusterrole=cluster-admin --serviceaccount=kube-
system:kubernetes-dashboard.

Listing 7-11. Starting the Kubernetes dashboard with az aks browse command
az aks browse --resource-group jcbaksrg01l --name jcbakscluo1

You should be automatically redirected to a new tab in your web browser after
executing the preceding command in your Azure Cloud Shell unless pop-up windows
are blocked in your browser. If not, copy and paste the URL address displayed in the
Azure CLI in your web browser as the following.

Bash v S DM D

janaka@hzure:~$ az aks browse --resource-group jcbaksrg@l --name jcbakscluél

Merged "jcbaksclu@l™ as current context in /tmp/tmpz2638fu2

To view the console, please open https://gatewayl4.eastus.console.azure.com/n/cc-6cc7976/cc-6cc79f76/proxy/8901/ in a new tab
Press CTRL+C to close the tunnel...

Figure 7-2. Open Kubernetes dashboard in Azure CLI

109



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

@ kubernetes Q  seorch + CREATE

e

Duerman Ze1s

Deglymenty

Figure 7-3. Kubernetes dashboard

Scaling Azure Kubernetes Service

When you deploy 7 of applications in Azure Kubernetes Service, it will be required
to increase or decrease allocated compute resources based on the demand. This will
require the underlying Kubernetes nodes to change accordingly. There will be instances
where it is required to quickly provision many additional application instances.

This section explores the core scaling concepts in AKS that will help you to achieve
the preceding goals.

Manually Scaling Pods or Nodes

In order to test how your application responds to the resource availability changes in
your AKS cluster, you can manually scale pods (replicas) and nodes. By manually scaling
these resources, you can define a set number of resources in your AKS cluster. In order to
manually scale, first you define the pod or node count, and then the Kubernetes

API schedules the creation of additional pods or node draining depending on the pod or
node count.

110



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

A complete tutorial on scaling pods in an AKS cluster can be found from the following
URL: https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-
scale#tmanually-scale-pods. In section “Manually Scaling AKS Cluster Nodes,” we have
discussed the steps involved in manually scaling your AKS cluster nodes.

Automatically Scaling Pods or Nodes

AKS cluster need a way to automatically scale pods or nodes in order to adjust to the
varying application demands, depending on the traffic received by an application. AKS
clusters can scale in one of two ways:

e The horizontal pod autoscaler (HPA): This leverages the Metrics
Server in a Kubernetes cluster to monitor the resource demand
of pods. In case if an application requests for more resources, the
number of replicas is automatically increased to meet that demand.

o The cluster autoscaler: Monitors for pods that cannot be scheduled
on nodes due to resource limitations. Then, the cluster can
automatically increase the number of nodes.

Horizontal Pod Autoscaler

ui':'ﬂ?- AKS Cluster
il Jil

LNode Node Node

i Horizontal Pod Autoscaler

Scale Out

Figure 7-4. Horizontal pod autoscaler architecture

In Kubernetes, the horizontal pod autoscaler (HPA) is used to monitor the resource
demand and automatically scale the number of pods. The HPA checks the Metrics API
every 30 seconds for any required changes in pod count by default. When and if changes

111


https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#manually-scale-pods
https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#manually-scale-pods

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

are required at any point, the number of pods is increased or decreased, respectively.
In AKS, HPA is supported with AKS clusters with Metrics Server for Kubernetes
1.8+ deployed.

If you are configuring the horizontal pod autoscaler for an AKS cluster, you will
have to define the minimum and maximum number of pods that the cluster can run.
In addition to that, you can also declare a metric to monitor and on which to base any
scaling decisions, that is, CPU usage.

A complete tutorial on setting up a horizontal autoscaler in an AKS cluster can
be found from the following URL: https://docs.microsoft.com/en-au/azure/aks/
tutorial-kubernetes-scale#tautoscale-pods.

Note Previous scale events in an AKS cluster may not have been successfully
completed between Metrics API checks that happen every 30 seconds. This
phenomenon could potentially cause the HPA to change the number of pods before
the previous scale event can grasp the application workload and adjust to the
resource demands accordingly. To minimize such race events, cooldown or delay
values are set in an AKS cluster. These values depict how long the HPA must wait
after a scale event before another scale event can be triggered. By doing so, it will
allow the new pod count to take effect and the Metrics API to reflect the newly
distributed workload. The default delay value on scale-up events is 3 minutes,
whereas it is 5 minutes on scale-down events. These cooldown values cannot be
set by the user as of now.

112


https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#autoscale-pods
https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#autoscale-pods

CHAPTER 7

Cluster Autoscaler (Preview)

AKS Cluster

Cluster Autoscaler

OPERATING AZURE KUBERNETES SERVICE

l Scale Out I

Node

Node

NodeJ

Horizontal Pod Autoscaler

Scale Out

___________________________________________________________________________________

LNode Node

Figure 7-5. Cluster autoscaler architecture

Cluster autoscaler (in preview) can adjust the number of nodes depending on the
requested compute resources in the node pool to rapidly respond to varying pod
demands. The cluster autoscaler can increase or decrease the number of nodes in
your AKS cluster accordingly, if it decides a resource variation is required. The cluster

autoscaler feature is supported in RBAC-enabled AKS clusters that run Kubernetes 1.10.x

or higher.

Usually the cluster autoscaler is used together with the horizontal pod autoscaler.

The HPA increases or decreases the number of pods based on application demand, while

the cluster autoscaler adjusts the number of nodes require to run those additional pods.

Note Cluster autoscaler is a preview feature in AKS.

A complete tutorial on getting started with cluster autoscaler can be found from the

following URL: https://docs.microsoft.com/en-au/azure/aks/cluster-autoscaler.

113


https://docs.microsoft.com/en-au/azure/aks/cluster-autoscaler

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Burst On Demand with Azure Container Instances

@1 AKS Cluster } Azure Container
on m Instances

Cluster Autoscaler

Scale Out Rap|d burst

\_‘Node || Node || Node || Node || Node’J scallng m m

Horizontal Pod Autoscaler

Scale Out

Figure 7-6. Bursting with Azure Container Instances

Integrating with Azure Container Instances (ACI) allows you to rapidly scale your AKS
clusters. The built-in components in Kubernetes can scale the pod and node count.
But if your application demands rapid scaling, the HPA may schedule more pods than
what can be provided using the existing compute resources in the node pool. This
phenomenon can trigger the cluster autoscaler to deploy additional nodes in the node
pool; however, it can take some time for those additional nodes to be provisioned and
allow the Kubernetes scheduler to run pods on them.

ACI connected to AKS becomes a secured and logical extension of your AKS cluster.
Currently there are two ways to enable ACI on AKS:

o The Virtual Kubelet: When installed in your AKS cluster, this
component can present ACI as a virtual Kubernetes node. It supports
both Linux and Windows nodes.

o Virtual nodes: Currently in preview, these are deployed to an
additional subnet in the same VNet as your AKS cluster. This VNet
allows the traffic between ACI and AKS to be secured. Supports Linux
nodes only as of now.

114



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Storage Options for Azure Kubernetes Service

Applications deployed to an AKS cluster require storage to store and retrieve their data.
For some workloads, these storages can be local, fast storage on the node and can be
released when pods are deleted, while some other workloads may need persistent data
storage hosted in Azure. Multiple pods may require sharing the same data volumes
and/or reattaching the data volumes if the pods are rescheduled on a different node. It is
also may be required to present sensitive data or application configuration into the pods.
Figure 7-7 depicts the storage architecture for AKS clusters.

Cluster Master Node

API Server Pod

Persistent Volume |
e . <—» Storage Class
< Claim
A

Persistent Volume

I

Azure Managed Disk Azure File 1
i i Y :
(Premium Storage) (Standard Storage) :!.:5.1. AKS Cluster |

\ 4

Figure 7-7. Storage architecture in AKS

In this section, let’s explore the core concepts in AKS that explains how storage is
provided to your application workloads.

115



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Volumes

A volume represents a method to store, retrieve, and persist data across pods and
through the application life cycle. Usually the volumes required to store and retrieve data
on AKS is based on Azure storage. These data volumes can either be manually created
and then assigned to pods directly or AKS can automatically create and allocate them
when needed. These data volumes can either use

o Azure Disks: These can be used to create a Kubernetes DataDisk
resource. Azure Disks can use Azure Premium storage or Azure
Standard storage. For production and development workloads, it
is recommended to use Premium storage. These are mounted as
ReadWriteOnce and hence only available to a single node.

o Azure Files which are used to mount an SMB 3.0 share backed by
an Azure storage account to pods. With Azure Files, you share data
across multiple nodes and pods. Both Azure Premium storage and
Azure Standard storage are supported with Azure Files.

Kubernetes volumes can also be leveraged to inject data into a pod for use by the
containers. Additional volume types in Kubernetes include

o emptyDir: Used as temporary space for a pod
o secret: Used to inject sensitive data into pods, such as passwords

o configMap: Used to inject key-value pair properties into pods, such
as application configuration information

Persistent Volumes

A persistent volume (PV) is created and managed by the Kubernetes API. It can exist
beyond the lifetime of an individual pod, whereas traditional volumes created as part of
a pod life cycle only exist until the pod is deleted. You can use either Azure Disks or Files
to provide a PV.

A persistent volume can be either manually created by a cluster admin or
dynamically generated by the Kubernetes API server. In case a scheduled requests
storage that is not currently available, Kubernetes will create the underlying Azure Disk
or Files storage and attach it to the pod. This scenario is called Dynamic provisioning
and it uses a StorageClass to determine what type of Azure storage is required.

116



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Storage Classes

In order to classify different storage tiers, you can create a StorageClass. The
StorageClass also defines the reclaimPolicy. The reclaimPolicy controls the behavior of
the Azure storage resource when the pod is deleted, and the persistent volume may no
longer be required. When a pod is deleted, the storage resource can either be deleted or
retained for use with a future pod.

There are two initial StorageClasses that can be created in AKS:

o default: Which utilizes Azure Standard storage to create a Managed
Disk. The reclaim policy states that when the corresponding pod is
deleted, the Azure Disk will also be deleted.

¢ managed-premium: Which utilizes Azure Premium storage to
create a Managed Disk. The reclaim policy states that when the
corresponding pod is deleted, the Azure Disk will also be deleted.

When no StorageClass is specified while creating a PV, the default StorageClass is used.
In the following YAML manifest, it is stated that Premium Managed Disks are to be
used and the Azure Disk must be retained when the pod is deleted:

Listing 7-12. Defining a storage class in YAML

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: managed-premium-retain
provisioner: kubernetes.io/azure-disk
reclaimPolicy: Retain
parameters:
storageaccounttype: Premium LRS
kind: Managed

Persistent Volume Claims

If you want to create either disk or file storage of a defined StorageClass, access mode,
and size, define a PersistentVolumeClaim. If there are no existing resources to service the
claim based on its StorageClass, the Kubernetes API server can dynamically provision

117



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

the underlying storage resource. Once the volume has been connected to the pod, the
pod definition will include the volume mount as well.
A PVis bound to a PersistentVolumeClaim after an available storage resource has been
assigned to the pod that requests it. The mapping of persistent volumes to claims is 1:1
The following is a sample YAML manifest which denotes a PV claim with
managed-premium StorageClass and a disk 5 Gi in size.

Listing 7-13. Defining a PersistentVolumeClaim in YAML

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: azure-managed-disk
spec:
accessModes:
- ReadWriteOnce
storageClassName: managed-premium
resources:
requests:
storage: 5Ci

A PV claim is specified to request the desired storage when a pod definition is
created. Here you can also specify the volumeMount for your applications to read and
write data. The following YAML manifest illustrates how the previous PV claim can be

used to mount a volume at /mnt/azure.

Listing 7-14. Defining a volumeMount in a PersistentVolumeClaim in YAML

kind: Pod
apiVersion: vi
metadata:
name: nginx
spec:
containers:
- name: myfrontend
image: nginx
volumeMounts:

118



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

- mountPath: "/mnt/azure"
name: volume
volumes:
- name: volume
persistentVolumeClaim:
claimName: azure-managed-disk

We have briefly discussed the storage options available for AKS workloads. Next
step is to create dynamic and static volumes for AKS. The following articles from the
Microsoft documentation provide a holistic overview on how to do so:

o Create a static volume using Azure Disks (https://docs.microsoft.
com/en-au/azure/aks/azure-disk-volume).

o Create a static volume using Azure Files (https://docs.microsoft.
com/en-au/azure/aks/azure-files-volume).

o Create a dynamic volume using Azure Disks (https://docs.
microsoft.com/en-au/azure/aks/azure-disks-dynamic-pv).

o Create a dynamic volume using Azure Files (https://docs.
microsoft.com/en-au/azure/aks/azure-files-dynamic-pv).

Networking in Azure Kubernetes Service

Application components in a microservices approach must work together to process
their desired tasks. This application communication can be achieved using a few
components provided by Kubernetes. For an example, the applications can be either
exposed internally or externally, can be load balanced for high availability, and have
SSL.TLS termination for ingress traffic as well as for routing of multiple components.
Furthermore, developers may need you to restrict the flow of network traffic into or
between pods and nodes due to security concerns.

In this section, we will dive into core networking concepts of AKS and some of the
examples of providing secure network connectivity to your pods and nodes.

Kubenet vs. Azure Container Networking Interface (CNI)

An AKS cluster uses one of the following two networking models:

119


https://docs.microsoft.com/en-au/azure/aks/azure-disk-volume
https://docs.microsoft.com/en-au/azure/aks/azure-disk-volume
https://docs.microsoft.com/en-au/azure/aks/azure-files-volume
https://docs.microsoft.com/en-au/azure/aks/azure-files-volume
https://docs.microsoft.com/en-au/azure/aks/azure-disks-dynamic-pv
https://docs.microsoft.com/en-au/azure/aks/azure-disks-dynamic-pv
https://docs.microsoft.com/en-au/azure/aks/azure-files-dynamic-pv
https://docs.microsoft.com/en-au/azure/aks/azure-files-dynamic-pv

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Kubenet (Basic) Networking

This is the default configuration option for an AKS cluster. In kubenet, the AKS nodes
obtain an IP address from the Azure VNet subnet. Pods receive an IP address from a
logically different address space to the Azure VNet subnet of the nodes. For the pods
to reach resources on the Azure VNet, network address translation (NAT) is then
configured. The source IP address of the traffic is NAT'd to the node’s primary IP address.
Nodes use the kubenet Kubernetes plugin. You can either allow Azure Fabric to
create and configure the VNets for you or deploy your AKS cluster into an existing
subnet of a predefined VNet. Even though you are deploying to a predefined VNet, only
the nodes will receive a routable IP address; pods use NAT to communicate with other
resources external to the AKS cluster.

Azure Container Networking Interface (CNI) - Adavanced
Networking

Each pod gets an IP address from the subnet and can be accessed directly if you are
using the Azure CNI model. But remember that these IP addresses must be unique
across the VNet network space and must be planned in well advance. There is a
configuration parameter for the maximum number of pods that each node supports. An
equivalent number of IP addresses per node are then reserved for that node.

The following table lists the behavioral differences between kubenet and Azure CNI.

Table 7-1. Behavioral Differences Between Kubenet and Azure CNI

Capability Kubenet Azure CNI

Deploy cluster in existing or new virtual Supported — UDRs manually applied Supported
network

Pod-pod connectivity Supported Supported

Pod-VM connectivity; VM in the same ~ Works when initiated by pod Works both ways
virtual network

Pod-VM connectivity; VM in peered Works when initiated by pod Works both ways
virtual network

On-premises access using VPN or Works when initiated by pod Works both ways
Express Route

(continued)
120



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Table 7-1. (continued)

Capability Kubenet Azure CNI
Access to resources secured by service Supported Supported
endpoints

Expose Kubernetes services using a Supported Supported

load balancer service, App Gateway, or
ingress controller

Default Azure DNS and Private Zones ~ Supported Supported

Table 7-2 lists the advantages and disadvantages of kubenet and Azure CNI at a
high level.

Table 7-2. Advantages and Disadvantages of Kubenet vs. Azure CNI

Model Advantages Disadvantages
Kubenet e (Conserves IP address space. ¢ You must manually manage and
e Uses Kubernetes internal or external load maintain user-defined routes
balancer to reach pods from outside of the (UDRs).
cluster. e Maximum of 400 nodes per cluster.

Azure CNI  Pods get full virtual network connectivity and can Requires more IP address space.
be directly reached from outside of the cluster.

Regardless of the network model you have selected, support policies for AKS depict
the network tuning capabilities such as service endpoints and UDRs that you can make
in your AKS clusters:

o Ifyou manually create the virtual network resources for an AKS
cluster, you are supported when configuring your own UDRs or
service endpoints.

o Ifthe Azure platform automatically creates the virtual network
resources for your AKS cluster, it is not supported to manually change
those AKS-managed resources to configure your own UDRs or
service endpoints.

121



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Note For a complete record of support policies for AKS, visit the following URL:
https://docs.microsoft.com/en-au/azure/aks/support-policies.

Network Security Groups and Network Policies

It is not recommended to manually configure network security group rules to filter pod
traffic in an AKS cluster. The Azure platform will create and update the appropriate rules
as part of the AKS managed service. In order to automatically apply traffic filter rules to
pods, you can utilize Network Policies. On the one hand, it is a feature available in AKS
that allows you to control the traffic between pods. You can decide whether to allow

or deny traffic based on settings such as assigned labels, namespace, or traffic port.
Network security groups on the other hand are for the AKS nodes, not pods.

Note For step-by-step instructions on securing pod traffic using Azure Network
Policies in AKS, visit the following URL: https://docs.microsoft.com/en-
au/azure/aks/use-network-policies.

Access and ldentity in Azure Kubernetes Service

In Azure, there are multiple methods to authenticate and secure AKS clusters. Role-based
access controls (RBACs) allow granting users or groups access to only the resources they
need. By integrating AKS with Azure Active Directory, you are able to further enhance

the security and permissions structure. This section provides a high-level overview of the
access and identity options available to you when operating an AKS cluster.

Kubernetes Service Accounts

A service account is a primary user type in Kubernetes, and it exists in and is managed
by the Kubernetes API. The service account credentials are stored as Kubernetes
secrets, which allows them to be used by authorized pods to communicate with the API
server. API requests provide an authentication token for a service account or a regular
user account. Regular user accounts are leveraged to provide traditional access to

122


https://docs.microsoft.com/en-au/azure/aks/support-policies
https://docs.microsoft.com/en-au/azure/aks/use-network-policies
https://docs.microsoft.com/en-au/azure/aks/use-network-policies

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

administrators or developer who are using an AKS cluster, although Kubernetes API itself
doesn’t provide an identity management solution for such scenarios. By integrating AKS
with Azure Active Directory, you can achieve this goal.

Azure Active Directory Integration

Azure Active Directory (AAD is a multi-tenant, cloud-based directory, and identity
management solution that provides core directory services, application access
management, and identity protection. You can integrate on-premises identities into AKS
clusters to provide unified account management and security processes by integrating
AKS with AAD.

For an example, in AAD-integrated AKS clusters, you can grant users or groups
access to Kubernetes resources within a namespace or across the cluster. To retrieve
a kubectl configuration context, a user can execute the az aks get-credentials
command. Afterwards, when a user interacts with the AKS cluster with kubectl, they will
be prompted to sign in with their respective Azure AD credentials. This way, the users
can only access the resources defined by the AKS cluster administrator.

Azure Role-Based Access Controls (RBACs)

Apart from RBACs provided by Kubernetes API, AKS cluster access can be managed by
Azure role-based access controls (RBACs). The difference is that Kubernetes RBAC is
designed to work on resources within your AKS cluster, and Azure RBAC is designed to
work on resources within your Azure subscription. Azure RBAC enables you to create
role definitions that outline the permissions to be applied for your AKS clusters. You
can then assign a user or group for a role definition that includes a defined scope, which
could be an individual resource, a resource group, or across the Azure subscription.

Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings

In Kubernetes RBAC, you first define permissions as a Role. Kubernetes roles grant
permissions, and there is no concept of a deny permission. Roles are used to grant
permissions within a namespace.

The purpose of a ClusterRole is like that of a role, but a ClusterRole can be applied to
resources across the entire cluster, not a specific namespace.

123



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

When you have roles defined, you assign those Kubernetes RBAC permissions with
a RoleBinding. In AAD-integrated AKS clusters, bindings are how Azure AD users are
granted permissions to perform actions within the cluster. Role bindings are used to
assign roles for a defined namespace where you can segregate access to individual
clusters.

A ClusterRoleBinding on the other hand works in the same way as role bindings
but can be applied to resources across the entire cluster, not a specific namespace. This
approach is ideal in situations where you need to grant admins or support engineers
access to all resources across the board in an AKS cluster.

Control Deployments with Azure Policy (Preview)

Azure Policy can be integrated with AKS so that you can apply policy enforcement to
your AKS clusters in a centralized and consistent manner. Further complimented by
using GateKeeper, which is an admission controller webhook for Open Policy Agent
(OPA), Azure Policy allows you to centrally manage and report on the compliance state
of your Azure resources and AKS clusters.

Follow the following steps to enable and apply this feature to your AKS clusters.

Enable the Preview

First, you must enable the Microsoft.ContainerService resource provider and the
Microsoft.PolicyInsights resource provider and then be approved to join the preview.
The following example illustrates how you can do so using Azure CLI in Azure Cloud Shell.

Listing 7-15. Join the AKS Policy preview via Azure CLI

# Provider register: Register the Azure Kubernetes Services provider
az provider register --namespace Microsoft.ContainerService

# Provider register: Register the Azure Policy provider
az provider register --namespace Microsoft.PolicyInsights

# Feature register: enables installing the add-on
az feature register --namespace Microsoft.ContainerService --name AKS-
AzurePolicyAutoApprove

124



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

# Feature register: enables the add-on to call the Azure Policy resource
provider

az feature register --namespace Microsoft.PolicyInsights --name AKS-
DataplaneAutoApprove

Azure Policy Add-0On

This add-on, installed into the azure-policy namespace, connects the Azure Policy
service to the GateKeeper admission controller. The following are the functionalities of
this add-on:

e Checks with Azure Policy for assignments to the AKS cluster

e Downloads and caches policy details, including the rego policy
definition, as configmaps

e Runs a full scan compliance check on the AKS cluster

o Reports auditing and compliance details back to Azure Policy

Installation Prerequisites

You need to install the preview extension before you install the add-on in your AKS
cluster. Follow the following procedure to do so:

e Make sure that you are running Azure CLI version 2.0.62. Run az
--version to find the version.

e The AKS cluster must be version 1.10 or higher. The following Azure
CLI excerpt denotes how to check that.

Listing 7-16. Check AKS version

az aks list

o Install version 0.4.0 of the Azure CLI preview extension for AKS, aks-
preview.

125



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Listing 7-17. Install Azure CLI preview extension for AKS

# Install/update the preview extension
az extension add --name aks-preview

# Validate the version of the preview extension
az extension show --name aks-preview --query [version]

Note If the aks-preview extension has been deployed already, please uninstall any
updates executing the az extension update --name aks-preview command.

Installing the Azure Policy Add-on

Once the preceding perquisites are installed, you can proceed with installing the Azure
Policy add-on. The following Azure CLI excerpt illustrates how to do so.

Listing 7-18. Install Azure Policy add-on

az aks enable-addons --addons azure-policy --name jcbakscluO1l --resource-
group jcbaksrgo1

Assigning Policy Definitions to AKS

Currently Azure Policy for AKS is in limited preview and only supports built-in policy
definitions. You can find the built-in policies for managing AKS using the Azure portal as

follows:
o C(lick All services in the left pane and then search and select Policy.
o Inthe Azure Policy page, select Definitions.

o From the Category drop-down list, click Select all and then select
Kubernetes service.

¢ Select the policy definition you want to apply, and then select the
Assign button.

126



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Note Make sure the Scope must include the AKS cluster resource, when
assigning the Azure Policy for AKS definition.

Policy Validation

The Azure Policy add-on checks in with Azure Policy Service for changes in policy
assignments every 5 minutes. All configmaps in the azure-policy namespace are
removed and then recreated for GateKeeper during this refresh cycle by the add-on.

The add-on requests for a full scan of the cluster every 5 minutes. Once the details
are gathered from the full scan along with any real-time evaluations by GateKeeper of
attempted changes to the cluster, the results are reported back to the Azure Policy to
include compliance details such as Azure Policy assignment. During the audit cycle, only
results for active policy assignments are returned.

Note It’s not recommended or supported to make changes to the namespace,
although a cluster admin may have permission to the azure-policy namespace and
any manual changes made are lost during the refresh cycle.

Azure Policy Add-On Logs

The Azure Policy add-on logs are kept as a Kubernetes controller/container in the AKS
cluster. These logs are exposed in the Insights page of the AKS cluster.

GateKeeper Logs

You need to GateKeeper logs for new resource requests. Follow the procedure to enable
and review Kubernetes master node logs in AKS in the following URL: https://docs.
microsoft.com/en-au/azure/aks/view-master-logs.

Listing 7-19 is an example query to view denied events on new resource requests.

Listing 7-19. KQL query to view denied events on new resource requests

| where Category == "kube-audit"
| where log s contains "admission webhook"
| limit 100

127


https://docs.microsoft.com/en-au/azure/aks/view-master-logs
https://docs.microsoft.com/en-au/azure/aks/view-master-logs

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

To view logs from GateKeeper containers, follow the steps in the preceding article
and check the kube-apiserver option in the Diagnostic settings pane.

Security Concepts in Azure Kubernetes Service

Security of an AKS cluster is paramount like any other resource in your datacenter.
Kubernetes security components such as network policies and secrets are complimented
by Azure features such as network security groups and orchestrated AKS cluster
upgrades.

Master Security

The Kubernetes master components are part of the AKS managed service provided

by Azure. Each AKS cluster has its own single-tenant, dedicated Kubernetes master

to provide the API server, scheduler, and so on in Azure. This master is managed and
maintained by Azure. The default behavior for the Kubernetes API server to use a public
IP address and a fully qualified domain name (FQDN). Access to the API server can be
controlled by using Kubernetes RBACs and Azure Active Directory.

Node Security

AKS nodes are Azure VMs that are managed and maintained by yourself. Linux AKS
nodes run on an optimized Ubuntu distribution with the Moby container runtime.
Windows Server nodes (currently in preview in AKS) run an optimized Windows Server
2019 release with the Moby container runtime. During the creation or a scale-up
operation in an AKS cluster, these nodes are automatically deployed with the latest OS
security updates and configurations.

The following are some of the facts and considerations when planning for AKS node
security:

e OS security patches are automatically applied by the Azure platform
to Linux nodes on a nightly basis.

o IfaLinux OS security update requires a host reboot, it is not
automatically performed.

128



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

You can either manually reboot the Linux nodes or use Kured, an
open source reboot daemon for Kubernetes.

Windows Update does not automatically run and apply the latest
updates for Windows Server nodes.

You should perform an upgrade on the Windows Server node pool(s)
in your AKS cluster by yourself. This upgrade process creates nodes
that run the latest Windows Server image and patches and then
removes the older nodes.

Nodes are by default deployed into a private virtual network subnet,
with no public IP addresses assigned. SSH is enabled by default is
only available using the internal IP address for troubleshooting and
access purposes.

The nodes use Azure Managed Disks for storage. For most VM
SKUs, these are Premium disks with the stored data automatically
encrypted at rest within the Azure platform.

Additional security features such as Pod Security Policies or more
fine-grained role-based access controls (RBAC) are needed to secure
nodes from exploits that can occur with multi-tenant usage.

For hostile multi-tenant workloads, you should use physically
isolated clusters by leveraging hypervisor-level security where the
security domain for Kubernetes becomes the entire cluster, not an
individual node.

The best practice for multi-tenant workloads is to use logical isolation
to separate teams and projects. It is recommended to minimize

the number of physical AKS clusters you deploy to isolate teams or
applications.

129



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Cluster Upgrades

The AKS cluster upgrade process involves individually cordoning the nodes from the
cluster so that new pods cannot be scheduled on them. These nodes are then drained
and follow the following procedure to upgrade:

e A newnode is deployed into the node pool which runs the latest OS
image and patches.

e One of the existing nodes is identified and marked for the upgrade.
Pods on this node are gracefully terminated and scheduled on the
other nodes in the node pool.

o This targeted node is then deleted from the AKS cluster.

e The next node in the cluster is cordoned and drained using the
same process until all nodes are successfully replaced as part of the
upgrade process.

Kubernetes Secrets

Sensitive data such as access credentials or keys can be ingested into pods using a
Kubernetes Secret. The secret is first created using the Kubernetes API, and when you
define your pod or deployment, a specific Secret can be requested. These secrets are only
provided to nodes that have a scheduled pod, which requires a secret, and are stored in
tmpfs, not written in the disk. A Secret is deleted from the node’s tmpfs, when the last
pod on a node requests its deletion. Furthermore, Kubernetes secrets are stored within a
defined namespace and can only be accessed by pods within the same namespace.

By using Kubernetes secrets, you can minimize the sensitive information that is
defined in the pod or service YAML manifest. Here you will request the Secret stored in
the Kubernetes API server as part of your YAML manifest. By using this approach, you
are only providing specific pod access to the Secret.

Note The raw secret manifest files contain the secret data in base64 format,
and hence, this file should be treated as sensitive information and should never be
committed to source control.

130



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Monitoring Azure Kubernetes Service

An important part of operating Azure Kubernetes Service is being able to monitor the
cluster, the nodes, and the workloads running in that AKS instance. Running production
workloads requires a solid level of reliability. Azure comes with Kubernetes, and
container monitoring out of the box is available in Azure Monitor. In this section, we are
going to dive into the Kubernetes and container monitoring services that are available in
Azure Monitor.

Azure Monitor for Containers
Overview

The monitoring service in Azure Monitor is called Azure Monitor for containers. Azure
Monitor for containers gives you monitoring from two perspectives: the first one

being directly from an AKS cluster and the second one being all AKS clusters in your
subscription/s. The monitoring looks at two key areas “health status” and “performance
charts” and consists of

Insights: Monitoring for the Kubernetes cluster and containers.

Metrics: Metric-based cluster and pod charts. It is based on a time
series db which collects the data directly from the AKS resource
provider for basic and standard performance metrics on pods and
nodes.

Log Analytics: K8s and container logs viewing and search. It is the
platform where Azure Monitor for containers store the data. You
can run KQL queries to view all telemetries that Azure Monitor

for containers collects such as perf, health, kubernetes events,

container logs, and inventory.

131



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Audit Log
Contral Plane Logs

=

Container

\ Azure Kubemetes
Service

/—J

Operating System

4

Diagnostics Logs

Inventory
Performance
Logs

J Events

b

h 4

AKS Control Plane Data
Azure Monitor for containers observability
Azure Monitor for containers monitoring

Route to Azure Monitor logs

a .
‘. »
Containers
Visualize
P
HE E W
| Workbooks Views Dashboards  Power BI
Respond
P
Autoscale  Alerts

Figure 7-8. Azure Monitor for containers architecture

Enable Monitoring

The easiest way to enable monitoring for AKS is while deploying the AKS cluster.

Refer to Chapter 5, “Deploying Azure Kubernetes Service,” for details on deploying an

AKS cluster.

Monitoring of an existing AKS cluster can be enabled using one of the following

methods:

e Within Azure Monitor or within the AKS cluster in the Azure portal

o Azure PowerShell cmdlet New-AzResourceGroupDeployment using
the ARM Template from here: https://docs.microsoft.com/en-us/
azure/azure-monitor/insights/container-insights-enable-
existing-clusters#enable-using-an-azure-resource-manager-

template

e Azure CLI

o Terraform

132



https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

The best and fastest way to enable monitoring for an AKS cluster is from the Azure
CLI in Azure Cloud Shell. To do this from a web browser, navigate to https://shell.
azure.com PowerShell and run the following.

Listing 7-20. Enabling Azure Monitor for containers using Azure CLI

az aks enable-addons -a monitoring -n ExistingAKSCluster -g
ExistingAKSClusterResourceGroup

Azure Monitor

In Azure Monitor, you will find Containers under Insights. Here you will see a health
summary across all AKS clusters in your Azure subscription. Also, you will see how many
nodes and system/user pods an AKS cluster has and if there are any health issues with a
node or pod. Click a cluster from here, and it will bring you to the Insights section on the
AKS cluster itself. Clicking the AKS cluster will bring you to the Insights section of Azure
Monitor for containers on the actual AKS cluster. Here you will see Insights, Metrics, and
Logs. Let’s now dive into each of these three areas.

a0 Monitar - Contaren

Mgnitor - Containgrs

o Unten | B e v
= il [ —
P
iy 1 0e 0a 0o 10 0
o it wal  Critical Waming  Lrinown  Masithy  Nen-moritoned
| Monisored churtens (1) Mos-rsonitored chuties (0 roama [P Losnmen [

B amy s (-1 L]

Autsncate

Figure 7-9. Azure Monitor for containers overview page

Insights

Within the Insights area, you will find a lot of useful data in regard to monitoring your
AKS cluster. Inside Insights, you have these four areas: Cluster, Nodes, Controllers, and

Containers.
133


https://shell.azure.com/
https://shell.azure.com/

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Cluster

Within the Cluster tab, you will find charts with key performance metrics for your AKS
clusters’ health. It has performance charts for your node count with status and pod count
with status, along with aggregated node memory and CPU utilization across the cluster.
In here you can change the time range from real time, hours to days, and add filters to
scope down to specific information such as service, namespace, node pool, and nodes
that you want to see.

Nodes

On the Nodes tab, you will see the nodes running in your AKS cluster along with uptime,
number of pods on the node, CPU usage, memory working set, and memory RSS. You
can click the arrow next to a node to expand it, displaying the pods that are running on it.
This provides you a quick way to see the noisy neighbors in your AKS cluster.

Controllers

On the Controllers tab, you will find the health of the cluster’s controllers. Again, here
you will see CPU usage, memory working set, and memory RSS of each controller and
what is running a controller. For example, you could see a kubernetes-dashboard pod
running on the kubernetes-dashboard controller.

You can also view the properties of the kubernetes-dashboard pod. The properties
will give you information like the pod name, pod status, Uid, label, and more.

Containers

On the Containers tab, you will find all the containers in the AKS cluster. And as with the
other tabs, you can see CPU usage, memory working set, and memory RSS. You also will
see status, the pod it is part of, the node it’s running on, its uptime, and if it has had any
restarts.

You also can see a container logs in the containers tab. To do this, select a container
to show its properties. Within the properties, you can click View container live logs as
shown in the following screenshot or View container logs. Container log data is collected
every three minutes. STDOUT and STDERR is the log output from each Docker container
that is sent to Log Analytics.

134



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Urebesr | Bvenisoumes | @ remen

Trreniege s Lt dbouns | [y 200 fier

3 . azure-vote-front

er  Modes  Conuoliens  Contaimers

Smins

LI . TY ”
Pod name: azure-vote-front. T465E99999. Irkvt

.....

Figure 7-10. Azure Monitor for containers live logs and events

Clicking View live data (preview) will bring you to the Log Analytics log search page
with that container’s logs and events shown in the results pane.

Note Live data is available in node, controller, and containers tabs. They will
show you kubernetes events (per cluster, namespace, and/or nodes and/or pods)
and container logs.

Figure 7-11. Azure Monitor for containers analytics view

135



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

kube-system is not currently collected and sent to Log Analytics. If you are not
familiar with Docker logs, more information on STDOUT and STDERR can be found
on this Docker logging article here: https://docs.docker.com/config/containers/

logging.

Note If you want to collect logs for kube-system, you can do so by changing
the configmap as per the following article: https://docs.microsoft.com/
en-us/azure/azure-monitor/insights/container-insights-agent-
config

Metrics

In the metrics area, you can see metric-based nodes and pod charts that can help you
see information that is important to you about an AKS cluster. The following screenshot
shows a couple of example charts displaying pods by phase split based on namespace
and total of available cores in a cluster.

it ibazvappakactu - Mtrics (peevien] e
t rmamen Oteten  [Tougrase v 12 e v 5) esnen v
oo Kaarmbere o proi by i bt jebatvappaksthe Ly Narripace of the pod o

P ki samscout v Drensonre 2 Misaureses v =

Figure 7-12. Azure Monitor for containers metrics view

136


https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-agent-config
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-agent-config
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-agent-config

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

At the time of writing this book, the only available standard metric namespace is
microsoft.containerservice/managedclusters (from AKS resource provider) and
custom metrics namespaces insights.container/nodes and insights.container/pods
(from container insights). Aggregation can be Sum or Avg and the metrics you can see in
the following screenshot:

RESOURCE METRIC NAMESPACE METRIC AGGREGATION
¥ | icbazvappaksciu Container service (... || Numberof podsby... v | Avg v @
Number of pods by phase
10 Number of pods in Ready state
° ° a o ° o _ ot LA . . a
E Total amount of available memory in 2 managed dl...
x Total number of available cpu cores in a managed ...
"]

(=

Figure 7-13. Azure Monitor for containers available metrics

Within the metrics area, you can pin charts to your Azure dashboard, and you can
create an alert based on a condition such as when pods are in a failed state.

e Canfigure signal legie
FasoumtimigheLcor s
E; < mrsouRcT seIRARY St s s Cwtpuoi
B phaseppdad Wi & (8] pmcrary L el
T
« ComDmON Moarbly ront I8 skienatrd &
u 0 Whmees Whe PusiCinset 5 Gemeles e S0 1

T § 200

T

-3 e
e -t o
L}
u vk g yow finr o B rgt b wem I you de rut st ey orher bt e
AP A e e o 10 G R 8 BN 0 S BB Lo e KA T AT T e
—
ALERT DETARS = =]
] nea - =
o v ~
B ey e S
Ao
R e )
0 cramt Trwrsss i esmeeny el e e B S
| et e v | [ ne -

L =" o]
Figure 7-14. Create alert rules for Azure Monitor for containers

137



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Log Analytics

Log Analytics is a feature of Azure Monitor. Log Analytics is utilized for many Azure
services for viewing logs and searches; to analyze data to identify trends, patterns, and
issues; for anomaly detection through Machine Learning; and more. In Log Analytics
you can get deep insights into your AKS cluster and containers. The following screenshot
shows the log schema that is collected in Azure Monitor for containers:

Active
v (@ DefaultWorkspace-db2a3cfc-... ¥r
¥ Containerinsights
» &= Containerimagelnventory

» E Containerinventory

L4
b

= ContainerLog
ContainerNodelnventory

ContainerServicelLog

i HE

nsightsMetrics

f

fif M

KubeEvents

KubeHealth

ff

KubeMonAgentEvents

fif

KubeNodelnventory

i

KubePodInventory

» = KubeServices

Figure 7-15. Azure Monitor for containers log schema

The data types in the ContainerInsights schema are what appear in Log Analytics
search results. One way to show the Log Analytics search page is by clicking Logs from
within the AKS cluster. From the search page, you can filter down the results of a search
Or run a query.

From the Log Analytics search page, you can build queries to retrieve scoped data.
Here are three example Log Analytics queries for retrieving AKS data.

Listing 7-21. KQL query samples for retrieving AKS data
Pods that have a restart count greater than 0 in the last 48 hours

let startTimestamp = ago(48hrs);
KubePodInventory
| where ClusterName =~ "AKSCLUSTERNAME"

138



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

| where ContainerRestartCount > 0
| where isnotnull(Name)

Container lifecycle

ContainerInventory

| project Computer, Name, Image, ImageTag, ContainerState, CreatedTime,
StartedTime, FinishedTime

| render table

Kubernetes events

KubeEvents CL

| where not(isempty(Namespace s))
| sort by TimeGenerated desc

| render table

Creating an Alert Rule Through Log Analytics

We are using the following sample query that returns pod phase counts based on all
phases - Failed, Pending, Unknown, Running, or Succeeded - to create an alert rule
through Log Analytics queries.

Listing 7-22. KQL query sample to retrieve pod phase counts based on
all phases

let endDateTime = now();
let startDateTime = ago(1h);
let trendBinSize = 1m;
let clusterName = '<your-cluster-name>';
KubePodInventory
where TimeGenerated < endDateTime
where TimeGenerated >= startDateTime

distinct ClusterName, TimeGenerated
summarize ClusterSnapshotCount = count() by bin(TimeGenerated,
trendBinSize), ClusterName
| join hint.strategy=broadcast (
KubePodInventory

|
|
| where ClusterName == clusterName
|
|

139



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

| where TimeGenerated < endDateTime
| where TimeGenerated >= startDateTime
| distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus
| summarize TotalCount = count(),
PendingCount = sumif(1, PodStatus =~ 'Pending'),
RunningCount = sumif(1, PodStatus =~ 'Running'),
SucceededCount = sumif(1, PodStatus =~ 'Succeeded'),
FailedCount = sumif(1, PodStatus =~ 'Failed")
by ClusterName, bin(TimeGenerated, trendBinSize)
) on ClusterName, TimeGenerated
| extend UnknownCount = TotalCount - PendingCount - RunningCount -
SucceededCount - FailedCount
| project TimeGenerated,
TotalCount = todouble(TotalCount) / ClusterSnapshotCount,
PendingCount = todouble(PendingCount) / ClusterSnapshotCount,
RunningCount = todouble(RunningCount) / ClusterSnapshotCount,
SucceededCount = todouble(SucceededCount) /
ClusterSnapshotCount,
FailedCount = todouble(FailedCount) / ClusterSnapshotCount,
UnknownCount = todouble(UnknownCount) / ClusterSnapshotCount

| summarize AggregatedValue = avg(PendingCount) by bin(TimeGenerated,
trendBinSize)

Note The following procedure to create an alert rule for container resource
utilization requires leveraging a new log alerts API as in the following URL:
https://docs.microsoft.com/en-us/azure/azure-monitor/
platform/alerts-log-api-switch.

Follow the following steps to create a log alert in Azure Monitor by using Log
Analytics queries:

1. Loginto the Azure portal, select Monitor from the left pane,
navigate to Insights, and then select Containers.

2. Select a cluster from the list in the Monitored Clusters tab.

140


https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-log-api-switch
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-log-api-switch

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Select Logs to open the Azure Monitor logs page under
Monitoring. In this page, you can write and execute Azure Log
Analytics queries.

On the Logs page, select +New alert rule.

Under the Condition section, select Whenever the Custom log
search is <logic undefined> custom log condition. Since we're

creating an alert rule directly from the Azure Monitor logs page,
the custom log search signal type is automatically selected.

Paste the query from Listing 7-22 into the Search query field.
Follow the following steps to configure the alert:

a. Select Metric measurement under the Based on drop-down list.
Here a metric measurement creates an alert for each object in the
query that has a value above our specified threshold.

b. Under Condition, select Greater than, and enter 75 as an initial
baseline Threshold for the CPU and memory utilization alerts. For
the low disk space alert, enter 90. You can enter a different value that

meets your criteria.

c. Select Consecutive breaches, under the Trigger Alert Based On
section. In the drop-down list, select Greater than and enter 2.

d. If you want to configure an alert for container CPU or memory
utilization, select ContainerName under Aggregate on. If you want
to configure for cluster node low disk alert, select ClusterId.

e. Under the Evaluated based on section, configure the Period value to 60
minutes. By doing so, the rule will execute every 5 minutes and will return
records that were created within the last hour from the current time. When
you set the time span to a wider window that will result in potential data
latency to ensures that the query returns data to avoid any false negative
where the alert is never triggered.

Click Done.

Provide a meaningful name in the Alert rule name field. You can
also specify a Description that provides details about what this
alert does. Finally select an appropriate severity level for this alert.

141



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

10. Accept the default value for Enable rule upon creation, so that
the alert is immediately activated.

11. You can select an existing Action Group or create a new group.
This is how you can ensure that the same actions are taken every
time that this alert is triggered. You can configure this section,
depending how your ITSM team manages incidents.

12. Click Create alert rule to complete the alert rule. The rule starts
executing immediately.

For more information on the creating alerts using the Log Analytics query language,
you can visit the Microsoft documentation here: https://docs.microsoft.com/en-us/
azure/azure-monitor/insights/container-insights-alerts.

Kubelet Logs

If you have issues with a node, you should start your troubleshooting using the node
monitoring available in Azure Monitor for containers. If there is a need to go beyond
Azure Monitor for containers, you can use the kubelet logs. You can view the kubelet
logs from any of the AKS nodes using journalctl. To do this, you need to first SSH to the
cluster node you want to see the logs for. Once connected to the node through SSH,
execute the following syntax.

Listing 7-23. kubelet log retrieval
sudo journalctl -u kubelet -o cat

That will begin rolling through the kubelet logs giving you insight into activity
occurring on the node.

Kubernetes Master Component Logs

It is important to note that with AKS the Kubernetes master node logs are not collected
by default. These logs are not collected because AKS is a managed service by Microsoft
and they manage the master Kubernetes nodes. Hence, it is not common to dig into
troubleshooting master nodes. In the event that you need to see logs from any of

the master nodes, you can turn on log collection sending the logs to a Log Analytics
workspace.

142


https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-alerts
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-alerts

CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

To enable the master node log collection in the Azure portal, navigate to the

AKS resource group. Do not go to the AKS resource group with this name format
MC_ResourceGroupNAME_AKSClusterNAME_REGION. Once in the AKS resource

group, click Diagnostic settings. Click the AKS cluster.

n‘ jebazvapprg - Diagnostic settings
| Ressurce grovp

“ fi
[o aug x| U Refrzsn
Moditoing * Subscription @ ~ Resource group @
NIVE Azure v eanepprg

Diagnostic settings
MVP Azure » jcbazvapprg
Support + troubleshooting

@ Select any of the resources to view diagnostic settings.
m  New support request

NAME RESOURCE TYPE RESOURCE GROUP

DIAGHOSTICS STATUS

] -:-:- jebazvappaksclu Kubernetes service jcbazvapprg

@ Disabled

Figure 7-16. Diagnostics settings for AKS cluster

Then click Add diagnostic setting.

E jcbazvapprg - Diagnostic settings
Fasgurce grovp

« o
baw x| Uhien
Monitoring * Subscription @ e

[ nave azure <1 r‘“"’"‘ _

Bl Diagnostic settings
MVP Azure > jcbazvapprg > jcbanappaksciu
Support + troubleshooting
& Diagnostics settings
i New support request
HAME STORAGE ACCOUNT

No diagnostic settings defined

Click ‘Add Diagnostic setting’ above to configure the collection of the following data:

*  kube-apisarver

* kube-controller-manager
* kube-scheduler

*  kube-audit

+ cluster-autoscaler

+ AllMetrics

Figure 7-17. Add diagnostics settings for AKS cluster

EVENT HUE

Configure the diagnostics settings like in the following screenshot to send the logs

to a Log Analytics workspace. You will give the diagnostics collection a name, select or

create a new Log Analytics workspace, and select the master nodes that you want to

collect logs from.

143



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Diagnostics settings

FHsave X Discard [ Delete

*Name
| jebazvappaksciuMasteriodelogs ./

I:| Archive to a storage account

[] stream to an svent hub

Send to Log Analytics

Subscription
| MVP Azure w ]

Log Analytics Workspace
! Defauty o 5ee3.4041.5950. 0407c0e8252d-EUS | eastus ) ~ I

&

kube-apiserver

&

kube-controller-manager

&

kube-schaduler

[

kube-audit

O

cluster-autoscaler

METRIC

[v] AlMetrics

Figure 7-18. Configure diagnostics settings for AKS cluster

After you save the diagnostics log settings, you should now see this set on the AKS
resource group as shown in Figure 7-19.

= A1 O s
Mariasng * Subscription o Brscurce g @ Bescurce type @ Aeiouce
[ v | [imarasey o | | trates e v | [
B Dingrowsc wsing
VP At baTaopeR ' jchsaeaacs
St VoY
& Mo rpert reen Thjpeii s
s A AT TANT I 1 AT T TG
I-ﬁ"" delacitwodopase-cblaloiSecd-2F BTF0SFBAE.  Edtsonng I

T o——

Figure 7-19. Diagnostics settings for AKS cluster configured

To see the actual logs from the Kubernetes master nodes, go to the Log Analytics
workspace that you sent the logs to and run one of the search queries shown in
Listing 7-24.

144



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Listing 7-24. KQL queries to retrieve Kubernetes master logs

AzureDiagnostics
| Where Category == "kube-apiserver"
| project log s

AzureDiagnostics
| where Category == "kube-controller-manager"
| project log s

AzureDiagnostics
| where Category == "kube-scheduler"
| project log s

AzureDiagnostics
| where Category == "kube-audit"
| project log s

AzureDiagnostics
| where Category == "guard"
| project log s

AzureDiagnostics
| where Category == "cluster-autoscaler"
| project log s

Business Continuity and Disaster Recovery in Azure
Kubernetes Service

The applications that run in your AKS cluster will have certain service-level objectives
and agreements (SLOs and SLAs) that are requested by the business. As an AKS operator,
one of your responsibilities is to consider how to deploy and manage AKS to meet

those SLAs and SLOs. All services will have outages of one kind or another, and Azure
Kubernetes Service is no different. By understanding the underlying components of

AKS and how they provide services, you can meet or exceed the expectations of the
application owners.

145



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Thinking About SLAs and What You Need

When thinking about disaster recovery, it is useful to understand some basic concepts.
There are a few primary measures of protection when in DR, namely, the recovery time
objective (RTO) and recovery point objective (RPO). The RTO defines the amount of
time it will take to recover service in the event of an outage. The RPO defines the amount
of data that is lost when such an outage occurs.

Both terms rely on the declaration of a formal disaster, where an entire site or service
is completely unavailable. There may also be situations where a site or service is in a
degraded mode and the determination is made to failover to another site or instance of
the service. The RTO and RPO are measured against when a disaster declaration is made.

Before a failure is declared, you can ensure that your AKS clusters are deployed in
such a way as to protect against common failures. Let’s take a look at the various levels of
failure that exist and how to use AKS and Azure features to protect against them.

Data Persistence and Replications

Applications running within an AKS cluster may have stateful data that is written to
persistent storage. One point of consideration is the replication and protection level
afforded by that storage. The storage may be located on any of the following:

o Local storage on the Azure VM worker node
e Azure Managed Disks

e Azure Files

e Other NFS solutions

Local storage on the Azure VM worker nodes uses Azure Managed Disks, as does the
in-tree provisioning mechanism for persistent Managed Disk volumes. Managed Disks
provide locally redundant storage only, which provides protection against drive failures
within a datacenter, but does not provide protection against datacenter failures in Azure.
Azure Files can be configured to use Geo-redundant storage, where data is replicated
from one Azure datacenter to a paired datacenter in another region. Other NFS solutions
may provide different levels of redundancy.

If there is persistent data on the application volumes that must be protected against
a site failure, then some type of replication or data protection solution should be put in
place to protect that data in the event of a failure.

146



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

Protecting Against Faults

In addition to protecting against data failure, there are a number of other faults that
can occur in AKS. The following sections will review each of those faults and possible
mitigation strategies to protect your applications.

Master Node Failures

Azure Kubernetes Service is a managed service that does not provide visibility into the
master node layer of the cluster. In the event of a master node failure, the cluster will
automatically replace that master node with a new one. There is very little you can do as
an operator to protect against the failure of a master node.

Worker Node Failures

The Azure VMs functioning as worker nodes are subject to occasion faults and failures.
In the event that a node fails, the AKS service will replace that node with a functional
one. However, there will be a period of time when you are running at reduced capacity.
For critical clusters, it is recommended to run with enough spare capacity to absorb an
individual node outage without compromising performance.

The cluster can be configured manually with enough nodes to support the current
performance requirements with enough overhead to maintain performance during an
outage. For instance, let’s assume you have a four-node cluster running at 75% capacity.
If anode is lost, the other three nodes will need to run at 100% capacity to match the
current performance objective until the fourth node is replaced. That is a less than
desirable situation. By adding a fifth node to the cluster, the overall cluster utilization will
now be at 60%, and a single node loss will result in an increase to 75% during the outage.

Configuring your cluster size manually is an option, but as well all know, cluster
consumption is going to be variable. For that reason, it makes more sense to monitor the
current utilization and trigger an action to scale the cluster as needed or make use of the
cluster autoscale feature currently in preview.

Datacenter Failures

Microsoft Azure regions are comprised of multiple datacenters. Recently, the availability
zones have been introduced in many Azure regions. Each availability zone is a
geographically separate set of resources with high-bandwidth, low-latency connections

147



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

to other availability zones in the same region. The purpose of an availability zone is to
provide protection against datacenter failures in a given region.

AKS has a preview feature that allows an AKS cluster to span multiple availability
zones. In the event of a datacenter outage, your applications and the AKS management
plane will continue to operate uninterrupted, assuming that you have worker nodes
available in each availability zone. This feature is likely to become generally available
in the near future, but it will require redeploying your cluster to migrate it to availability
zones. For the time being, datacenter outages for AKS will need to be treated like
regional failures.

Regional Failures

While it is highly uncommon, a regional outage of Azure is not completely unheard
of. AKS clusters do not stretch across regions, so the question becomes what level of
protection is required for the applications running on your cluster. There are a few
different operations models:

e Cold start

o Pilotlight

e Warm cluster
e Hotcluster

Each has different cost and recovery characteristics. A cold start would involved the
creation of a new AKS cluster in another region. The persistent for applications in the
cluster would be recovered from a backup. Once the AKS cluster was provisioned and
operational, and the backups restored to the proper storage target, applications could be
spun up on the cluster. This is the lowest cost option and will have a high RTO and RPO.

A pilot light scenario would include a running AKS cluster in another region with
reduced capacity. Again the persistent data for the applications running in the cluster
would be recovered from a backup. In the event of a disaster, the cluster would be scaled
up, the backups restored, and applications deployed. This is a low-cost option, due to the
reduced capacity of the cluster, and still has a high RTO and RPO.

The warm cluster scenario involved running a fully provisioned AKS cluster in
another region with applications already running. Some type of storage replication
service would be in place with a lag of several minutes or hours. Recovery would simply
involve switching over public facing DNS entries to the warm site. This is a higher-cost

148



CHAPTER 7  OPERATING AZURE KUBERNETES SERVICE

solution due to the higher capacity of the cluster and data replication, but the RTO and
RPO are both reduced greatly.

The hot cluster scenario would have a fully provisioned AKS cluster running in
another region, with applications already running and serving request. The storage
replication solution in this case would need to be nearly synchronous. A failure of one
region would simply require scaling up the cluster on the over region to handle the
additional load. This is the highest-cost solution by far, but the RTO and RPO approach
zero for a failure.

Each of the solutions has its pros and cons; therefore, it is up to the application
owners to determine what is an acceptable amount of downtime and data loss for their
application compared to the cost of additional protection.

Summary

Before you deploy application in AKS, it is important to understand how to properly
administer your AKS resources. The role of an AKS cluster operator is the key here.
Although AKS is a managed Kubernetes service, there are management operations
such as scaling, identity and access, networking, securing, monitoring, and business
continuity planning that need to be planned out well ahead.

In this chapter, you learned about the common cluster management operations in
AKS that you will encounter frequently. We explored how to properly scale AKS clusters,
what are the storage options available for AKS, and the necessary AKS networking,
access and identity, and security concepts for you to get started with managing an AKS
cluster. Then, we examined how Azure Monitor for containers can help you to monitor
your AKS resources. Finally, we discussed the business continuity and disaster recovery
best practices for Azure Kubernetes Service deployments.

149



CHAPTER 8

Helm Charts for Azure
Kubernetes Service

Applications deployed on Kubernetes are typically made up of multiple parts. A common
practice is to combine multiple components into a single yaml file that will be submitted
to the cluster using kubectl apply with the -f switch. It is also common to deploy

the same application across multiple environments, whether those environments are
separate Kubernetes clusters or different namespaces within the same cluster. There

are several shortcomings to the approach of using a single yami! file and kubect1 for
application deployment across multiple environments. Helm was created to address
some of these shortcomings.

In this chapter, we will explore the use cases for Helm and how it enhances the
application deployment experience on Kubernetes. We will review the process for
installing the Helm client and Tiller on an AKS cluster in both a development- and
production-type scenario. Then, we will dive into the structure of Helm charts - the basic
construct for application deployment in Helm. Finally, we will go through the process of
deploying and updating Helm chart releases in AKS. By the end of this chapter, you will
have a solid understanding of what Helm is and how it can be used with AKS to simplify
and enhance the application deployment process.

Helm Overview

Helm is an open source project maintained by the Cloud Native Computing Foundation
in collaboration with Microsoft, Google, Bitnami, and more. The main goal of Helm is
to assist in the management of Kubernetes-based applications, including the definition,
installation, and upgrade of those applications. One useful way to think of Helm is

as a package manager for Kubernetes. In the same vein as apt, yum, or Chocolatey,

151

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_8



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Helm has repositories with packages that can be copied and installed locally - locally
meaning Kubernetes. It can also handle the upgrade and removal of those applications.
The fundamental construct used by Helm for managing Kubernetes applications

is the Helm chart. The chart defines the components that make up an application in a
standardized format that can be shared and stored in source control. When a chart is
combined with configuration information and deployed on a Kubernetes cluster, it is

called a release.

Use Cases

Helm is intended to simplify application management on Kubernetes. In that regard,
there are a few primary use cases that Helm simplifies. Kubernetes applications tend to
be composed of multiple resources and components. Helm charts help you manage the
complexity of these applications by describing the components and dependencies in a
declarative fashion.

Applications are not static deployments, rather they are routinely updated. The
update process on Kubernetes can be tricky. Helm provides a simpler update experience,
managing revisions and updates for the application as a whole instead of its component
parts. New versions of charts can include tests for validation, custom hooks for the
release process, and a simple rollback process if the newest chart has issues.

Developers try to follow the DRY principal of “don’t repeat yourself” Helm expands
that concept to the deployment of Kubernetes applications. A Helm chart can reference
other charts for dependencies, for example, a single web front-end chart can be reused
for multiple applications in an environment. Sharing of the charts can be on a public or
private repository, and in the case of Azure Container Registry, the charts can be stored
in the same registry as the containers being used by the chart.

Advantages over Kubectl

Kubectl is the CLI tool of choice for managing Kubernetes, and Helm is not intended to
replace kubectl for all activities. In fact, kubectl is often used in tandem with the Helm
CLI to troubleshoot, investigate, and track application deployments across the cluster.
Both kubectl and helminteract with the Kubernetes API to accomplish their work. Helm
has the advantage of being able to use the templates written for Helm, and it has several
higher-level commands that abstract away multiple kubectl commands. For instance,

152



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

when an application is deployed using helm install, the Helm software is interacting
with the Kubernetes API directly and orchestrating the deployment of resources on the
cluster in a way that would take multiple kubectl commands.

Key Components

To perform the work of making Kubernetes application management simpler, Helm has
several key components that make up an installation.

Note The current major version of Helm is version 2. Version 3 of Helm is in the
alpha stage of development and contains several large changes in how Helm is
constructed. In particular, the Tiller component will be removed in version 3. For the
purpose of this chapter, we will exclusively deal with version 2.

Helm Client

The Helm client is a binary written in Go that runs on the local machine of the user or
on some type of CI/CD platform. It is equivalent to kubectl in that regard. The client can
be installed on multiple operating systems, including Windows, MacOS, and Linux. The
most current version of the Helm client binary can always be found on the Helm GitHub
releases page (https://github.com/helm/helm/releases). To install the client locally,
you can use Chocolately for Windows, Homebrew for Mac, or Snap for some Linux
distributions. Listing 8-1 shows an example of installing the Helm client on a Windows
machine with Chocolately.

Listing 8-1. Installing the Helm client on a Windows machine

#Install the client
$ choco install kubernetes-helm -y

Chocolatey v0.10.3

Installing the following packages:

kubernetes-helm

By installing you accept licenses for the packages.

153


https://github.com/helm/helm/releases

CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

The install of kubernetes-helm was successful.
Software installed to 'C:\ProgramData\chocolatey\lib\kubernetes-helm\tools'

#Check the client version after installation
$ helm version

Client: &version.Version{SemVer:"v2.14.2", GitCommit:"a8bi3cc5ab6a7dbef0as58
f5061bcc7c0c61598e7", GitTreeState:"clean"}

Since we have not yet configured a connection to a Kubernetes cluster, the server
version will come back with an error.

Tiller

Tiller is the server-side component of Helm that takes the commands issued by the
Helm client and executes them on the cluster through the Kubernetes API. The Tiller
component is most often deployed on the Kubernetes cluster where it will deploy
applications, although this is not entirely necessary. It is also possible to run the Tiller
component outside of the Kubernetes cluster. The Tiller component is responsible for
four primary things:

1. Listening for requests from the Helm client

2. Deploying chart and config info as a release

3. Tracking releases through their life cycle

4. Upgrading or removing releases from the cluster

Tiller can run using a service account with RBAC rules that define what namespaces
Tiller has access to. Tiller will have the ability to create and destroy applications on
the Kubernetes cluster; thus, it makes sense to employ roles to restrict the actions an
instance of Tiller can take. In a production environment, or really any nondevelopment
environment, Tiller should be using a service account with proper restrictions in place to
control what resources it can manage in the cluster.

When Tiller is installed on a cluster, it creates an in-cluster gRPC endpoint that
is unauthenticated by default. Basically, this means that any process within the
cluster could issue commands to the Tiller endpoint, and they would be executed.
For a development cluster, that might be acceptable. All other cluster environments
should endeavor to use TLS to secure authentication on the Tiller endpoints. When

154



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

TLS is enabled with Tiller, all communication with the Tiller endpoints is mutually
authenticated with TLS certificates issued by a trusted root certificate authority.

Helm Repository

The charts used by Helm can be stored in a repository. The repository can either be
hosted privately or publicly. The Helm project maintains an official, public chart
repository located on their GitHub site (https://github.com/helm/charts). Thisis a
great starting point to find official versions of Helm charts for common applications,
such as Wordpress, FluentD, and Jenkins.

The chart repository is simply a web server with an index.yaml file that lists out
all the charts being stored in the repository, along with some information about each
chart. Standing up a Helm repository is outside the scope of this book, but the process
is relatively simple and can be accomplished using ChartMuseum, GitHub Pages, or a
simple web server.

Azure Container Registry is also able to store Helm charts. An example of using ACR
to store a Helm chart will be given later in the chapter.

Cloud Native Application Bundle

The Cloud Native Application Bundle (CNAB) is an open source project founded by
Microsoft and Docker to deal with the packaging of applications that leverage more
than just containers and Kubernetes for their deployment. For example, a three-tier
web application could be using Azure CosmosDB for database services, AKS for the
application and web tier, and Azure Functions for business logic processing. A CNAB
bundle would be able to deploy and manage all of these components. Helm is focused
solely on application components that are deployed in the context of Kubernetes. While
the landscape is still changing, CNAB and Helm accomplish two different, related goals.

Installing Helm on AKS

As mentioned in the Helm components section, there are two basic components to
installing Helm. There is the Helm client running locally on a workstation and the Tiller
server-side component running on the Kubernetes cluster. To set Helm up to work with
AKS, there are a few requirements that need to be fulfilled.

155


https://github.com/helm/charts

CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

Requirements

Azure Kubernetes clusters are deployed with RBAC enabled by default. Getting the
Tiller component working properly with RBAC on the cluster requires that a service
account be created and associated with a cluster role. Enabling TLS is also best practice
for a nondevelopment environment. In the next two sections, we will walk through the
process of setting up the service account and provisioning the necessary certificates to
enable TLS authentication between Tiller and the Helm client.

RBAC and Service Account

Role-based access control in Kubernetes includes several different components. The
role defines a set of actions that an assigned entity can perform on resources within
the cluster. There are built-in roles for the cluster, such as cluster-admin, admin, edit,
and view. A role can be one of two types, Role is namespace specific and ClusterRole
is cluster-wide. Roles can be assigned to service accounts, users, and groups by using
either the RoleBinding or ClusterRoleBinding type. In Listing 8-2, we are defining a
service account for use with Tiller.

Listing 8-2. Definition for a Tiller service account

apiVersion: vi
kind: ServiceAccount
metadata:
name: tiller
namespace: kube-system

Once the service account has been created, it can be assigned a role. In Listing 8-3,
we are going to associate the tiller service account with the built-in ClusterRole cluster-
admin by using the ClusterRoleBinding type.

Listing 8-3. Binding the cluster-admin role to the Tiller service account

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: tiller

156



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: tiller
namespace: kube-system

Depending on the requirements of the environment, it is also possible to create a
custom Role and bind it using RoleBinding to a specific namespace where Tiller will be
allowed to deploy resources. For our purposes, Tiller will be allowed to deploy resources
across all namespaces in the cluster. In Listing 8-4, both of these configurations have
been saved to the file helm-rbac.yaml, and kubectl apply is being run against an AKS
cluster where Tiller will be configured.

Listing 8-4. Binding the cluster-admin role to the Tiller service account
$ kubectl apply -f helm-rbac.yml

serviceaccount "tiller" created
clusterrolebinding.rbac.authorization.k8s.io "tiller" created

The service account for Tiller is now available and bound to the cluster-admin role.

TLS Considerations

Deploying a full Public Key Infrastructure (PKI) is just a bit outside the scope of this
book. In fact, whole books have been written on just that topic. If your organization
already has an internal PKI set up, it would make sense to take advantage of it. In the
following examples, we are going to create the certificates using openssl. There are three
certificates in play: the root certificate authority, the tiller certificate, and the helm client
certificate. The tiller and helm client certificates will be approved and signed by the root
CA certificate, and Tiller and Helm will be configured to trust the root CA certificate.
Since they both trust the root CA, they will trust certificates signed by the root CA,
meaning that Tiller and Helm will trust each other’s certificates to be valid.

All of the commands in Listing 8-5 will create the certificates and keys in the current
working directory.

157



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-5. Creating TLS certificates for Tiller and Helm communication
#First we must create the root CA.

#Big thanks to this article: https://medium.com/google-cloud/install-secure-
helm-in-gke-254d520061f7
$SUBJECT = "/C=US/ST=Pennsylvania/L=Springfield/0=IAKS, Inc./0U=IT/CN=iaks.sh"

#Create a CA key
openssl genrsa -out ca.key.pem 4096

#Creata a CA certificate
openssl req -key ca.key.pem -new -x509 -days 7300 -sha256 -out ca.cert.pem
-extensions v3_ca -subj $SUBJECT

#Then we need to create the certificate request for the Tiller certificate and
process it.

#Create a key for the tiller cert
openssl genrsa -out tiller.key.pem 4096

#Create a new certificate request
openssl req -new -sha256 -key tiller.key.pem -out tiller.csr.pem -subj
$SUBJECT

#Create the certificate from the request
openssl x509 -req -days 365 -CA ca.cert.pem -CAkey ca.key.pem -CAcreateserial
-in tiller.csr.pem -out tiller.cert.pem

#Finally, we need to create the certificate request for the Helm client
certificate and process it.

#Create a key for the helm client
openssl genrsa -out helm.key.pem 4096

#Create a new certificate request
openssl req -new -sha256 -key helm.key.pem -out helm.csr.pem -subj $SUBJECT

#Create the certificate from the request
openssl x509 -req -days 365 -CA ca.cert.pem -CAkey ca.key.pem -CAcreateserial
-in helm.csr.pem -out helm.cert.pem

158



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Now we have all the necessary certificates and their matching private keys. Looking
in the current directory, we should see the files in Listing 8-6.

Listing 8-6. Directory listing of TLS certificates and private keys

Mode LastWriteTime Length Name

-a---- 7/16/2019 1:39 PM 2070 ca.cert.pem
-a---- 7/16/2019 1:39 PM 3298 ca.key.pem
-a---- 7/16/2019  1:40 PM 18 ca.srl

-a---- 7/16/2019  1:40 PM 1946 helm.cert.pem
-a---- 7/16/2019  1:40 PM 1736 helm.csr.pem
-a---- 7/16/2019  1:40 PM 3298 helm.key.pem
-a---- 7/16/2019  1:40 PM 1946 tiller.cert.pem
P 7/16/2019  1:40 PM 1736 tiller.csr.pem
-a---- 7/16/2019  1:39 PM 3294 tiller.key.pem

Each user who will use the Helm client to connect should be issued their own
certificate, including any automation accounts running in a CI/CD pipeline. In a
production scenario, issuance of certificates would be handled through a certificate
authority. While it would be possible to use a third-party certificate authority, an internal
CA would make more sense in this context. The Kubernetes cluster will likely be using
internal names and be accessed by internal users. Spending money on certificates from a
trusted third-party would be unnecessary.

Helm init

Once the prerequisites for the installation of Tiller have been fulfilled, the next step is to
run the commend helm init to initialize the cluster. In a development environment, it
is enough to simply run helm init with all the defaults that the command implies. Since
we will be using a service account and certificates, we will need to add arguments to the
helm init command.

The commands in Listing 8-7 make use of the tiller service account and install
the tiller private key, certificate, and root CA certificate. Additionally, the certificate
information for Tiller is held in a ConfigMap by default. Due to the sensitive nature of the
information, the best practice is to override the default setting and instead use a Secret-
type resource to hold the data.

159



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-7. Initializing Tiller on the AKS cluster

$ helm init /
--override 'spec.template.spec.containers[0].command={/tiller,--
storage=secret}' /
--tiller-tls /
--tiller-tls-cert ".\tiller.cert.pem" /
--tiller-tls-key ".\tiller.key.pem" /
--tiller-tls-verify /
--tls-ca-cert ".\ca.cert.pem" /
--service-account tiller

Tiller is installed as a deployment on Kubernetes. By default, it runs a single pod in a
replica set and includes a service with a ClusterIP associated with it. Both the pod and
the service are described in Listing 8-8.

Listing 8-8. Tiller pod and service details

$ kubectl describe pod tiller-deploy-6656966795-7sxgx --namespace kube-system

Name: tiller-deploy-6656966795-7sxgx
Namespace: kube-system

Priority: 0

PriorityClassName: <none>

Node: aks-agentpool-28083664-0/10.240.0.4
Start Time: Tue, 16 Jul 2019 14:01:20 -0400
Labels: app=helm

name=tiller
pod-template-hash=6656966795

Annotations: <none>
Status: Running
IP: 10.244.0.8
Controlled By: ReplicaSet/tiller-deploy-6656966795
Containers:
tiller:
Container ID: docker://fd05f519da5911b07e0d2aa476b0c9661fe3181ee63a043
€a5188eb675bbb64b
Image: gcr.io/kubernetes-helm/tiller:v2.14.2

160



Image ID:

Ports:

Host Ports:

Command:
/tiller

CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

docker-pullable://gcr.io/kubernetes-helm/tiller@sha256:b
e79aff05025bd736f027eaft4a1b2716ac1e09b88e0e9493c9626425
19f19d9c

44134/TCP, 44135/TCP

0/TCP, O/TCP

--storage=secret

State:
Started:

Ready:

Restart Count:

Liveness:

Readiness:

Environment:

Running

Tue, 16 Jul 2019 14:01:32 -0400

True

0

http-get http://:44135/1iveness delay=1s timeout=1s
period=10s #success=1 #failure=3

http-get http://:44135/readiness delay=1s timeout=1s
period=10s #success=1 #failure=3

TILLER_NAMESPACE: kube-system
TILLER_HISTORY_MAX: o0
TILLER TLS VERIFY: 1
TILLER_TLS ENABLE: 1

TILLER TLS CERTS: /etc/certs

Mounts:

/etc/certs from tiller-certs (ro)

/var/run/secrets/kubernetes.io/serviceaccount from tiller-token-2dbcn

(ro)

Conditions:

Type Status

Initialized True

Ready True

ContainersReady  True

PodScheduled True
Volumes:

tiller-certs:

Type: Secret (a volume populated by a Secret)

161



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

SecretName: tiller-secret
Optional: false
tiller-token-2dbcn:

Type: Secret (a volume populated by a Secret)
SecretName: tiller-token-2dbcn
Optional: false

QoS (lass: BestEffort

Node-Selectors: <none>

$ kubectl describe svc tiller-deploy --namespace kube-system

Name: tiller-deploy

Namespace: kube-system

Labels: app=helm
name=tiller

Annotations: <none>

Selector: app=helm,name=tiller

Type: ClusterIP

IP: 10.0.84.117

Port: tiller 44134/TCP

TargetPort: tillexr/TCP

Endpoints: 10.244.0.8:44134

Session Affinity: None

Events: <none>

After running the initialization, connectivity to Tiller from the Helm client can be
tested by running the command in Listing 8-9.

Listing 8-9. Testing helm client connectivity to Tiller

$ helm version --tls --tls-ca-cert ca.cert.pem /
--tls-cert helm.cert.pem --tls-key helm.key.pem

Client: &version.Version{SemVer:"v2.14.2", GitCommit:"a8b13cc5ab6a7dbef0as58
f5061bcc7c0c61598e7", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.14.2", GitCommit:"a8b13cc5ab6a7dbef0a58
f5061bcc7c0c61598e7", GitTreeState:"clean"}

162



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

In the command, we are specifying that we want to use TLS and also passing the CA
cert, the helm client cert, and the helm client key. Obviously, we don’t want to specify
these options each time we run a helm command. The helm client will look in the .helm
directory of the user’s home directory for TLS files when the --t1s flag is used. The
commands in Listing 8-10 will copy the files to the correct path with the required file
names that the helm client expects.

Listing 8-10. Copying the helm TLS certs and keys to the .helm directory

copy ca.cert.pem "~\.helm\ca.pem"
copy helm.cert.pem "~\.helm\cert.pem"
copy helm.key.pem "~\.helm\key.pem"

With those files copied, it is only necessary to specify --tls when running helm
client commands. If the --t1s flag is not set on a command, then the helm client will
appear to hang indefinitely.

The Tiller service is up and running and ready to accept Helm commands. Now it’s
time to build a chart to submit to Tiller.

Helm Charts

Helm charts are the fundamental structure that Helm uses to deploy applications.
The chart is combined with configuration settings and submitted to Tiller. Tiller will
synthesize the chart and settings into a release and provision that release on the
Kubernetes cluster. A chart is a well-defined collection of files and directories. Some files
and directories are required, such as the Chart.yaml file. Other files and directories are
optional depending on the chart.

For the remainder of the chapter, we will be referencing an existing chart called iaks
that deploys a voting application with a node.js front end and a redis backend.

Chart Contents

A standard file and folder structure for a Helm chart is shown in Listing 8-11. Required
files are in bold.

163



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-11. Standard chart file and folder structure

ChartName (parent directory)
Chart.yaml: Contains information about the chart
LICENSE: Human readable license for the chart
README.md: Human readable markdown file
requirements.yaml: Listing of chart dependencies
values.yaml: Default configuration values for the chart
charts: Directory of charts which this chart depends on
templates: Directory of templates
templates/NOTES.txt: Human readable file with usage notes

Although the charts and templates directories are not required, they are reserved for
use by Helm. Any other files added to the chart will be included, but don’t necessarily
have any special significance.

Listing 8-12 shows the structure of the iaks chart.

Listing 8-12. iaks chart structure

C:.

|  .helmignore

|  Chart.yaml

|  values.yaml

|

L—templates
NOTES. txt
vote-back-deployment.yaml
vote-back-service.yaml
vote-front-deployment.yaml
vote-front-service.yaml

Chart.yamli

The Chart.yaml file defines values that Helm will use to interpret the chart. Listing 8-13
contains the potential file entries with required entries in bold.

164



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-13. Chart.yaml file entries
o apiVersion: Always set to vl for now
o name: The name of the chart
o version: A SemVer 2 version for this chart
o kubeVersion: SemVer range of compatible Kubernetes versions
o description: Single sentence describing the chart and its purpose
o keywords: A list of keywords
e home: Project homepage URL
o sources: Source code URLs for the project
e maintainers: List of maintainers for the project
o engine: Name of the template engine (defaults to gotpl)
e icon: SVG or PNG image URL
o appVersion: Version number for the application
o deprecated: Boolean value indicating if the chart is deprecated
o tillerVersion: SemVer range of compatible Tiller versions

Listing 8-14 shows the contents of the Chart.yaml file for the iaks chart.

Listing 8-14. iaks Chart.yaml contents

apiVersion: vi

appVersion: "1.0"

description: A Helm chart for deploying the IAKS Voting App
name: iaks

version: 0.1.0

Note that the appVersion and the version entries are not the same. The version of
chart may change without the version of the application changing.

Values.yaml

The values.yaml file defines the default settings to be used by the charts and templates
in the project. All charts and templates have access to the settings defined in the top-level

165



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

values.yaml file. It is also possible to supply values.yaml files in the templates and charts
subdirectories. The settings defined in the Values.yaml file can be overridden when the
chart is deployed by either supplying an additional yami! file with values or by using the
--set flag and supplying the settings at the command line.

Templates and charts will reference the settings defined in values.yaml by using
namespace style reference notation. The namespace starts with the . symbolizing the
top of the namespace, and then additional strings drill down through the values in the
file. For instance, the values.yaml file might have an entry like the one in Listing 8-15.

Listing 8-15. Example values.yaml snippet

image:
repository: iaks/azure-voting-app
tag: vi-alpine

A template would reference the tag by using the notation .Values.image.tag.

In addition to the values supplied by files or the command line, there are also
predefined values that are accessible to the charts and templates. These include
information about the release, chart, and files. An exhaustive list of predefined values is
available in Helm's documentation.

Listing 8-16 shows the contents of the values.yaml file for the iaks chart.

Listing 8-16. iaks values.yaml contents

# Default values for iaks.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.

voteBack:
replicaCount: 1
appName: azure-vote-back

image:
repository: redis
tag: 5.0.5
pullPolicy: IfNotPresent
ports:
name: redis
port: 6379

166



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

service:
port: 6379

voteFront:
replicaCount: 1
appName: azure-vote-front
image:
repository: iaks/azure-voting-app
tag: vi-alpine
pullPolicy: IfNotPresent

ports:
name: http
port: 80

vote1Value: "Chocolate"
vote2Value: "Peanut Butter"
title: "IAKS Voting App"
service:

type: LoadBalancer

port: 80

targetPort: http

name: http

License

The LICENSE file is written in plain text and is meant to lay out the software license
covered by the application being installed in the chart. The license is not read by the
Helm client. It is there for the user to parse and implicitly agree to, should they choose to
use the chart.

The iaks chart does not have a license file.

README.md

The README . md is written in markdown and is meant to assist the user in properly using the
chart. At a minimum, it should describe what the chart does, prerequisites for running the
chart, and the settings included in the values.yaml file and what the defaults are set to. Any
other useful information for deploying the chart should also be included in this document.
The README file will be displayed if the chart is published on certain repositories.

167



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

If there are some quick getting started notes that should be displayed to the user after
deployment, they can be included in a NOTES. txt file in the femplates directory. The
NOTES. txt file will be evaluated as a template and then displayed on the command line.

Listing 8-17 shows the truncated text from the iaks chart README .md.

Listing 8-17. iaks README.md contents
# IAKS Voting App

Example application for the Helm chapter of the Introducing Azure
Kubernetes Service book.

## Install Chart
To install the IAKS Chart into your Kubernetes cluster :
Clone the chart down to your local file system.

" “bash
helm install --namespace "iaks" --name "iaksv1" ./iaks

Requirements.yami

The chart being defined may use other charts as part of its deployment. Those charts

can be manually copied to the charts directory and kept there. For teams that need strict
control over the version and contents of the dependent charts, it may make sense to copy
them directly into the charts directory. However, this makes the charts static and requires
that they be updated manually.

Charts that are included in the requirements.yaml file are pulled dynamically when
the helm dependency update command is run. The resulting pulled charts are stored as
zipped-up charts - aka chart archives - in the charts directory. Within the requirements.
yaml file, each chart is listed out in the dependencies as shown in Listing 8-18.

168



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-18. Example requirements.yaml entry

dependencies:
- name: chart _name
version: 1.2.3
repository: http://mycharts.com/charts

When a new version is available for use, the version number can be updated in the
dependencies, and the helm dependency update command is run again. This will pull
the new version of the chart and store it in the charts directory.

There are a few additional optional fields that can be added to a dependency listing.
These optional fields are for more advanced deployment cases, and you likely will not
need them in your initial attempts with Helm.

If an application requires multiple copies of the same chart, or different versions of
the same chart, the alias field that can be included. The alias field will alter the name
of the downloaded chart to match the alias value.

The condition field specifies a comma-separated list of yaml entities in the top
parent’s values.yaml, each resolving to a Boolean value. Setting the value to false will
stop the chart from being included as a dependency in the chart.

The tags field is a list of labels associated with the chart. In the top parent’s values,
each tag can be enabled or disabled using the tag and a Boolean value. If any tag for a
dependent chart is enabled, it will be included in the dependencies.

The iaks chart does not have a requirements.yaml file.

Charts Directory

The charts directory will contain the charts to be included as dependencies for the
parent chart. As mentioned in the Requirements.yaml section, the charts can be
populated by coping the files manually, or dynamically by using the requirements.yaml
file. The charts contained within the charts directory can either be an unpacked chart or
a chart archive. Each chart should be its own separate file if using an archive or its own
directory if the chart is unpacked.

The iaks chart does not use any other charts as dependencies.

Templates Directory

The templates directory contains helm chart templates. When Helm is rendering charts
for a release, it evaluates all files contained within the templates folder. The template

169



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

files use the Go template language for the majority of their functions. Helm also borrows
some functions from the Sprig library and includes some specialized functions specific
to Helm.

The files in the template directory are used to create viable Kubernetes definition
files in yaml. The template language is used to manipulate the file content to produce
valid yaml files dynamically, incorporating the values supplied by the values.yaml file or
by the user when helm install is run.

The iaks chart has templates for the front-end and backend deployments and
services, as well as a NOTES. txt. We will examine these files in more detail in the section
dealing with template functions.

Chart Repositories

Helm works with charts stored in repositories. The helm client has a subset of
commands for dealing with both the locally stored charts and remote repositories. Let’s
start by viewing the list of chart repositories available from a default install of Helm as
shown in Listing 8-19.

Listing 8-19. Listing of Helm repositories

$ helm repo list

NAME URL

stable https://kubernetes-charts.storage.googleapis.com

local http://127.0.0.1:8879/charts

incubator http://storage.googleapis.com/kubernetes-charts-incubator

As you can see, Helm starts with the stable and incubator charts from the official
Helm repository. It has also created a local repository listening on port 8879. By default,
the local repository has no charts. We can confirm this by running the command in
Listing 8-20.

Listing 8-20. Contents of the local repository

$ helm search /local
No results found

Running the same command against the stable repository as shown in Listing 8-21
results in about 278 charts!

170



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-21. Contents of the stable repository

$ helm search stable/

NAME CHART VERSION  APP VERSION
DESCRIPTION

stable/acs-engine-autoscaler 2.2.2 2.1.1
DEPRECATED Scales worker nodes within agent pools

stable/aerospike 0.2.7 v4.5.0.5

A Helm chart for Aerospike in Kubernetes

stable/airflow 2.8.2 1.10.2

Airflow is a platform to programmatically author, schedul...

The list of charts is cached locally. To update the contents of a repository, the
command helm repo update can be executed. The process of packaging and pushing a
chart to a repository will be covered later in this chapter.

Deployment Process

Deploying a Helm chart as a running application on a Kubernetes cluster is performed
through the command helm install. The install command allows values to be
submitted in the form of an additional yaml file or using the --set flag in the command.
The settings in the values submitted at runtime are merged with the values.yaml file in
the chart to produce an updated values.yaml file containing the final configuration data
that will be used during the installation.

For instance, suppose helm install -f myvalues.yaml ./mychartisrun. The
contents of the existing values.yaml file in the chart are shown in Listing 8-22.

Listing 8-22. values.yaml file with default configuration

voteBack:
replicaCount: 1
appName: azure-vote-back
image:
repository: redis
tag: 5.0.5
pullPolicy: IfNotPresent

171



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

ports:
name: redis
port: 6379

The myvalues.yaml file has the contents shown in Listing 8-23.

Listing 8-23. Contents of myvalues.yaml

voteBack:
replicaCount: 2
label: mylabel

The two files will be merged together with the contents of the myvalues.yaml
file taking precedence over the contents of the values.yaml file. Listing 8-24 has the
contents of the resulting file.

Listing 8-24. Contents of the new values.yaml file

voteBack:
replicaCount: 2
label: mylabel
appName: azure-vote-back

image:
repository: redis
tag: 5.0.5
pullPolicy: IfNotPresent
ports:
name: redis
port: 6379

Tiller accepts the chart and values and creates a set of valid Kubernetes definitions,
which are submitted to the cluster through the Kubernetes API. The submitted
deployments are called a release in Helm parlance.

A Helm release contains several pieces of information describing the release
including the following:

o AppVersion: Version number based on the AppVersion setting in the
Chart.yaml

172



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE
o Chart: The chart name with the version number appended from the
Chart.yaml
e Name: The name given to the release during the install
o Namespace: The namespace in which the release was installed

o Revision: Starts at 1 for the first install and increments each time an
update or rollback is executed

o Status: The current status of the release, typically DEPLOYED for a
release that has completed installation

o Updated: The last time some aspect of the release changed

The current list of releases can be retrieved by running helm list or the shortened
version helm 1s. This command will only show releases with a status of DEPLOYED by
default. The flag --all can be added to see all releases with any status.

Helm releases can be updated by using one of the following commands:

helm delete: Deletes the release from the cluster and changes the
status of the release to DELETED

helm upgrade: Upgrades the current release with the submitted
values

helm rollback: Reverts the current release to the submitted
revision number

Creating a Helm Chart

There are many excellent charts already available as a starting point for creating you own
Helm charts. Helm also includes the tools to begin a chart from a predefined template.

Helm Create

Helm makes it simple to set up the file and directory structure for a new chart. The
helm create command will create a new directory at the path specified, and within the
directory it will create several of the required and optional files for a Helm chart. The
command helm create iaks-chart will create a new Helm chart called iaks-chart.

The command creates a directory called iaks-chart in the current path and populates
it with the files and directories shown in Listing 8-25.

173



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-25. Contents of the new iaks-chart Helm chart

C:.

|  .helmignore
|  Chart.yaml
|  values.yaml
|

|—charts

L—templates
|  deployment.yaml
|  ingress.yaml
| NOTES.txt
|  service.yaml
| _helpers.tpl

|
L —tests

test-connection.yaml

The files contain a basic nginx application, including an ingress controller, a service
for the nginx pods, and a deployment of the nginx pods. It also includes a test to validate
that the deployment of the nginx application is successful.

Template Functions

Templates in the helm chart use a combination of the Go template language functions,
Sprig functions, and custom functions from Helm. These functions take the contents
of the template file and the values submitted during installation and render out valid
Kubernetes definitions.

The Go template language is an advanced topic beyond the scope of this humble
chapter, but here are some pointers to get started with.

e Any values in the template file that should be evaluated by the
template engine will start and end with doubly curly braces {{ }}.

e Values from the value.yaml file are referenced using namespace path
notation, for example, Values.dockerTag.

174



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

e Helm has a primer on getting started with template development.
You can learn more at this link (https://helm.sh/docs/chart_
template _guide/#getting-started-with-a-chart-template).

Looking at an example will help illustrate how the template language is used.

Listing 8-26 shows the contents of the vote-back-service.yaml file in the iaks chart.

Listing 8-26. Contents of the new vote-back-service.yaml file

apiVersion: vi
kind: Service
metadata:
name: {{ .Values.voteBack.appName }}
spec:
ports:
- port: {{ .Values.voteBack.service.port }}
selector:
app: {{ .Values.voteBack.appName }}

The {{ }} invokes the template engine to evaluate the contents within the double
curly braces. In the listing, metadata. name is evaluating the expression .Values.
voteBack.appName. That refers to the setting in the submitted values.yaml file for the
release. The default for that setting is azure-vote-back, and so the template engine will
render that portion of the file as shown in Listing 8-27.

Listing 8-27. Rendered value for metadata.name

metadata:
name: azure-vote-back

Functions can be added to the evaluation in the pipeline to manipulate the value.

For instance, suppose that the name needs to be in all lowercase. Listing 8-28 shows how

the value can be piped to lower to manipulate the text.

Listing 8-28. Using the lower function on a value

metadata:
name: {{ .Values.voteBack.appName | lower }}

175


https://helm.sh/docs/chart_template_guide/#getting-started-with-a-chart-template
https://helm.sh/docs/chart_template_guide/#getting-started-with-a-chart-template

CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

This is a simple example of using template functions. More complicated evaluations
are possible depending on the needs of the application.

Chart Tests

Helm doesn’t know what the application defined in the chart is supposed to do. If all
components of the release are created successfully, then Helm considers the release
a success. Chart tests provide a way for the user to validate that the application
components are functioning properly. They can also be used in an automation context to
validate a release in the pipeline.

Chart tests are template files that reside in the templates directory, or more often in
a tests subdirectory within the templates directory. Each test is a pod definition. The pod
should run some actions and then exit with a value, 0 being considered success and any
other value being considered a failure. The pod definitions can be part of a single yam!
file or broken up into multiple yam! files, one per test.

Helm has two test hooks that indicate whether the test should be successful or not,
test-success and test-failure. These hooks are added into the annotations of the pod
as shown in Listing 8-29.

Listing 8-29. Helm test hooks

metadata:
annotations:
"helm.sh/hook": test-success

The annotations are what indicates to Helm that these pod definitions are tests, and
not part of the application. Tests are invoked by running helm test with the release
name to be tested.

Packaging a Chart

Once a chart is ready for usage, it can be packaged and uploaded to a chart repository.
Packaging a chart creates a versioned archive of that chart. The contents of the chart are
zipped up into a tgz file. A chart can be packaged by using the helm package command
and pointing the command to the directory that contains the chart.

Listing 8-30 shows the process of packaging the iaks chart.

176



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE
Listing 8-30. Packaging the iaks chart

$ helm package .\iaks\
Successfully packaged chart and saved it to: C:\gh\Introducing-Azure-
Kubernetes-Service\Helm\aks\iaks-0.1.0.tgz

The name of the file is a combination of the chart name and the version of the chart.
Both values are found in the Chart.yaml file.

The process for uploading the chart archive to a repository will depend on the
repository type. The index.yaml file for a repository must be updated when the chart
is uploaded so that it will be included in repository searches and listings. The Azure
Container Registry (ACR) can host packaged helm charts. The first step is to log into an
existing ACR repository and add it as a repository for Helm as shown in Listing 8-31.

Listing 8-31. Adding the ACR repo to Helm

$ az acr login --name iaksoO
$ az acr helm repo add
"iaks0" has been added to your repositories

$ helm repo list

NAME URL

stable https://kubernetes-charts.storage.googleapis.com

local http://127.0.0.1:8879/charts

incubator http://storage.googleapis.com/kubernetes-charts-incubator
iakso https://iaks0.azurecr.io/helm/vi/repo

Once the repository has been added to Helm, it is a simple matter of pushing a
chart archive to the ACR repository as seen in Listing 8-32. Then the local index of the
repository must be updated so that it will show up in the search results.

Listing 8-32. Pushing a package to the ACR repo

$ az acr helm push .\iaks-0.1.0.tgz

{

"saved": true

177



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

$helm repo update

Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository

...Successfully got an update from the "incubator" chart repository
...Successfully got an update from the "iaks0" chart repository
...Successfully got an update from the "stable" chart repository
Update Complete.

$ helm search iakso

NAME CHART VERSION  APP VERSION DESCRIPTION

iakso0/iaks 0.1.0 1.0 A Helm chart for deploying
the IAKS Voting App

The chart archive is now available for consumption through the ACR repository for
any other users that have access.

Deploying a Helm Chart

A Helm chart is deployed using the helm install command. The command will take
the chart, default values, and values submitted in the command and send them to Tiller.
Tiller will synthesize them into a release and instantiate that release on the Kubernetes
cluster.

Helm Install

Listing 8-33 shows the process of installing the iaks chart in the default namespace of an
AKS cluster.

Listing 8-33. Installing the iaks chart

$ helm install --tls --name iaksv1 ./iaks
NAME:  iaksvi

LAST DEPLOYED: Wed Jul 17 11:40:30 2019
NAMESPACE: default

STATUS: DEPLOYED

178



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

RESOURCES:

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE
azure-vote-back-78d97d47df-2hjbr 0/1 ContainerCreating O 0s
azure-vote-front-948444d79-m2ms2 0/1 ContainerCreating 0 0s

==> vi1/Service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
azure-vote-back  ClusterIP 10.0.40.25 <none> 6379/TCP 1s
azure-vote-front LoadBalancer 10.0.212.114 <pending> 80:30829/TCP 0s

==> vilbetal/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE
azure-vote-back 0/1 1 0 0s
azure-vote-front 0/1 1 0 0s
NOTES:

1. Get the application URL by running these commands:
NOTE: It may take a few minutes for the LoadBalancer IP to be
available.
You can watch the status of by running 'kubectl get --namespace
default svc -w azure-vote-front'
export SERVICE IP=$(kubectl get svc --namespace default azure-vote-front
-0 jsonpath="{.status.loadBalancer.ingress[0].ip}")
echo http://$SERVICE_IP:80

The installation process displays the resources being created and also prints out the
rendered NOTES. txt file found in the templates folder. The NOTES. txt file is evaluated
by the template engine and can provide simple directions for getting started with the
application.

Figure 8-1 shows the web page that is available once the external IP of the load
balancer finishes provisioning.

179



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

@ IAKS Voting App e +

< C (@ Notsecure | 40.85.173.41

- (]

IAKS Voting App

Chocolate

Peanut Butter

Reset

Chocolate - 0 | Peanut Butter - 0

Incognito @ H

Figure 8-1. Voting App web page

Helm Status

The command helm status will get the current status of a release. Listing 8-34 shows the

current status of the iaksvI release.

Listing 8-34. Status of the iaksvl release

$ helm status --tls iaksvi

LAST DEPLOYED: Wed Jul 17 11:40:30 2019
NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/Pod(related)

NAME READY STATUS  RESTARTS
azure-vote-back-78d97d47df-2hjbr 1/1 Running 0
azure-vote-front-948444d79-m2ms2 1/1 Running 0

180

AGE
4m36s
4m36s



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

==> vi1/Service

NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S) AGE
azure-vote-back  ClusterIP 10.0.40.25 <none> 6379/TCP 4m37s
azure-vote-front LoadBalancer 10.0.212.114 40.85.173.41 80:30829/TCP 4m36s

==> vilbetal/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE
azure-vote-back 1/1 1 1 4m36s
azure-vote-front 1/1 1 1 4m36s
NOTES:

1. Get the application URL by running these commands:
NOTE: It may take a few minutes for the LoadBalancer IP to be
available.
You can watch the status of by running 'kubectl get --namespace
default svc -w azure-vote-front'
export SERVICE IP=$(kubectl get svc --namespace default azure-vote-front
-0 jsonpath="{.status.loadBalancer.ingress[0].ip}")
echo http://$SERVICE_IP:80

The status gives essentially the same information as the initial installation, including
the NOTES. txt section.

Updating a Release

Over the lifetime of the release, it may be necessary to update the chart, application, or
settings. The command helm upgrade is used to perform such an update. Listing 8-35
shows the process of updating the iaksv1 release with new values for the voting buttons.

Listing 8-35. Upgrade of the iaksv1 release

$ helm upgrade --tls --set voteFront.voteiValue=Cats,voteFront.
vote2Value=Dogs iaksv1 ./iaks

Release "iaksv1i" has been upgraded.

LAST DEPLOYED: Wed Jul 17 11:50:14 2019

The output has been truncated for brevity. By running helm 1s as seen in Listing 8-36,
we can retrieve the status of the release and see that the revision number has incremented.

181



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-36. Listing of the iaksv1 release

$ helm 1s --tls iaksvi

NAME REVISION UPDATED STATUS
CHART APP VERSION  NAMESPACE

iaksvli 2 Wed Jul 17 11:50:14 2019 DEPLOYED
iaks-0.1.0 1.0 default

Viewing the updated web page in Figure 8-2 shows the updated content of the buttons.

= O
@ IAKS Voting App x +

&« C (@ Notsecure | 40.85.173.41 Yr  Incognito €@ i

IAKS Voting App

Cats

Dogs

Reset

Cats - 0| Dogs - 0

Figure 8-2. Voting App web page updated

It is also possible to roll back to a previous version of the release by using the helm
rollback command. Listing 8-37 shows the output of rolling back a release.

182



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

Listing 8-37. Rollback of the iaksv1 release

$ helm rollback --tls iaksvi 1
Rollback was a success.

$ helm 1s --tls iaksvi

NAME REVISION UPDATED STATUS
CHART APP VERSION  NAMESPACE

iaksvl 3 Wed Jul 17 11:54:45 2019 DEPLOYED
iaks-0.1.0 1.0 default

By looking at the revision number of the release, we can see that the revision is now
at 3 and not 1. The revision number will always increment when a release is altered,
regardless of whether the release is being upgraded or rolled back.

Looking at the web site again in Figure 8-3, we can see that the voting buttons have
reverted to their previous values.

- O
@ IAKS Voting App e +

&« C (@ Notsecure | 40.85.173.41 Yr  Incognito €@ i

IAKS Voting App

Chocolate

Peanut Butter

Reset

Chocolate - 0 | Peanut Butter - 0

Figure 8-3. Voting App web page rollback

183



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

Removing a Release

There comes a time in every release’s life cycle when it is no longer needed. The command
for deleting a release is helm delete. Listing 8-38 shows the output of deleting iaksv1.

Listing 8-38. Delete of the iaksvl release

$ helm delete --tls iaksvi
release "iaksvi" deleted

The resources in the Kubernetes cluster will be removed, but the release is not
entirely gone. Listing 8-39 shows all of the releases including deleted ones.

Listing 8-39. Listing of all releases

$ helm 1s --tls --all

NAME REVISION UPDATED STATUS
CHART APP VERSION NAMESPACE

iaksvi 3 Wed Jul 17 11:54:45 2019 DELETED
iaks-0.1.0 1.0 default

It is possible to use helm rollback to undo the deletion of the release from the
Kubernetes cluster.

Note Helm will not recover the exact pods and volumes from the deleted
release. Helm will only redeploy the version of the release specified in the rollback
command. Any data that was not persisted through other means will be lost during
deletion of a release.

To remove the release from Tiller permanently, the --purge flag must be used as
shown in Listing 8-40.

Listing 8-40. Purge of the iaksvl release

$ helm delete --tls iaksvi --purge
release "iaksvi" deleted

184



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

CI/CD Integrations

Continuous integration and continuous delivery - often abbreviated as CI/CD - are
the practice of creating an automated pipeline that moves code from a commit by a
developer to deployment into one or more environments. Helm can be incorporated
into the CI/CD process as a tool for deploying new releases to a Kubernetes cluster or

updating existing releases.

Automating Deployments

When code is committed to a repository, it may kick off a pipeline of events. Using our
iaks chart example, the chart makes use of the container image iaks/azure-voting-app.
There could be a pipeline that is triggered when a developer commits a new version of
the Dockerfile that builds that image. Once the image has been updated and passes the
necessary tests in the pipeline, the iaks Helm chart can be tested with the new image
version. Assuming all tests pass, the iaks Helm chart could be updated to use the new
image as the default tag in the values.yaml file.

Figure 8-4 demonstrates a potential pipeline.

Docker Build Helm Tests /b Deploy Q/A
Code Commit \b Image Tests Chart Update

e

Continuous Integration/Delivery l

Git Push Deploy Production

=] {}

Figure 8-4. Potential CI/CD pipeline

185



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

Testing Helm Charts

Helm charts can be tested in several ways. A test could be run to validate that the chart
is syntactically correct using the helm 1int command. Listing 8-41 shows the output of
running helm lint against the iaks chart.

Listing 8-41. Linting the iaks chart

$ helm lint .\iaks\
==> Linting .\iaks\
[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, no failures

The output is meant to be human readable, but it can be machine parsed to see if
there are any errors or warnings prior to moving the chart to the next stage of testing.

The next testing step could be locally rendering the templates with several different
possible values and validating that the generated Kubernetes definitions are valid.
Listing 8-42 shows the output of running helm template against the templates in the
iaks chart. The output has been truncated for brevity.

Listing 8-42. Helm template rendering

helm template .\iaks\
# Source: iaks/templates/vote-back-service.yaml
apiVersion: vi
kind: Service
metadata:
name: azure-vote-back
spec:
ports:
- port: 6379
selector:
app: azure-vote-back

186



CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE
The output from this command could be piped into kubectl to validate the content.
$ helm template .\iaks | kubectl apply --dry-run --validate -f -

The output could be scanned for errors to determine if any of the Kubernetes
definitions are invalid.

Once a chart has been validated according to requirements, it can be further
tested to validate that the application is functioning properly. Some of the tests can
be embedded in the chart using the Helm test functionality mentioned earlier in
this chapter. Most automation pipelines will have additional tests to perform on the
application that are beyond the basic testing performed by Helm. The tests included in
the Helm chart are meant to test basic functionality, and not more advanced scenarios.

There is an open source project related to Helm that is specifically centered around
testing Helm charts. The project is called Chart Testing and can be found on GitHub
(https://github.com/helm/chart-testing). The Chart Testing software is capable of
performing the linting, template validation, and even running the Helm tests contained
in the chart against a release.

Unattended Helm Chart Installs

Installing Helm charts on a Kubernetes cluster can be performed in an automated fashion.
The values used to customize a given release can be generated as artifacts in a CI/CD
pipeline and then passed to the Helm client either as a file or through the --set flag.

The same process can be used for performing upgrades of existing releases,
including running the Helm tests afterwards and preparing to run a rollback operation
if the tests fail or other issues are identified. The pipeline should record the current
revision number of the Helm release prior to upgrade to assist in the rollback process
should it be deemed necessary.

Integrating Helm with Azure DevOps

Azure DevOps (ADO) has a number of services that integrate with Helm to assist in
automating a development pipeline. Repos in ADO can serve as the source control for
Helm charts as they are developed. Artifacts can be used to store the generated values
for a Helm release. Pipelines can be used to set up a CI/CD pipeline that uses Helm to
deploy releases on an AKS cluster.

187


https://github.com/helm/chart-testing

CHAPTER 8  HELM CHARTS FOR AZURE KUBERNETES SERVICE

The Pipelines portion of Azure DevOps includes multiple tasks that enable the use
of Helm with the AKS service. The Helm tool installer task will install the Helm binary
on the agent machine running the job. The Package and deploy Helm charts task allows
the running of basically any Helm client command, including options for using TLS
authentication. The task targets AKS clusters, making the installation of a Helm chart
on an AKS cluster relatively straightforward. Listing 8-43 shows an example yam! Build
pipeline in Azure DevOps.

Listing 8-43. ADO Pipeline definition
# Helm deployment pipeline

trigger:
- master

pool:
vmImage: 'ubuntu-latest’

steps:
- task: HelmInstaller@i
inputs:
helmVersionToInstall: 'latest'

- task: DownloadSecureFile@1
inputs:
secureFile: 'ca.cert.pem'

- task: DownloadSecureFile@1
inputs:
securefFile: 'helm.cert.pem'

- task: DownloadSecureFile@1
inputs:
securefFile: 'helm.key.pem'

- task: HelmDeploy@o
inputs:
connectionType: 'Azure Resource Manager'
azureSubscription: 'MAS(4d8e572a-3214-40e9-a26f-8f71ecd24e0d)’
azureResourceGroup: 'iaks'

188



CHAPTER 8 HELM CHARTS FOR AZURE KUBERNETES SERVICE

kubernetesCluster: 'iaks1'
namespace: 'iaks'

command: 'install’

chartType: 'FilePath’
chartPath: 'Helm/aks/iaks'
releaseName: '$(releaseName)'
enableTls: true

caCert: 'ca.cert.pem'
certificate: "helm.cert.pem'
privatekey: 'helm.key.pem'

The pipeline pulls the TLS files from the Secure Files section of the build library,
installs Helm on the agent machine, and then runs helm install on the named AKS
cluster using the chart found at the path Helm/aks/iaks.

Summary

Helm is a tool to assist with the management of applications on Kubernetes. By
providing charts, Helm increases the reusability of applications and allows for
customization of an application to different environments through well-defined
configuration values. Helm is CLI based and easily fits into existing automation
pipelines and source control. This chapter serves as an introduction to Helm and a
guide for getting started with Helm on AKS.

In this chapter, you learned about what Helm is and how it provides benefits over
kubectl and traditional application deployment on Kubernetes. We reviewed the
process of preparing your AKS cluster to use Helm for application management. Then,
we went over the Helm chart structure and what is included in a functioning Helm chart.
Armed with a functional chart, you learned the process for deploying and maintaining
Helm releases on a Kubernetes cluster. Lastly, we briefly went over how Helm fits into
the world of automation and CI/CD.

189



CHAPTER 9

CIl/CD with Azure
Kubernetes Service

Software development has been steadily moving toward a model of Continuous
Integration and Continuous Delivery. A key enabler along the way has been the
introduction of cloud-native applications. The Cloud Native Computing Foundation
defines cloud-native as

An open source software stack to deploy applications as microservices,
packaging each part into its own container, and dynamically orchestrating
those containers to optimize resource utilization.

Hopefully, some of those terms are starting to look a bit familiar to you. Each part
of the application is packaged up as a container, most likely using Docker images. The
microservices are deployed and maintained by an orchestrator, such as Kubernetes. As
we'll see in this chapter, the process of continuously integrating and delivering software
can be more efficient if that software is packaged using containers and deployed in a way
that is consistent and repeatable. Kubernetes in tandem with a CI/CD pipeline tool, like
Azure DevOps Pipelines, empowers developers to iterate faster and create more reliable
applications.

In this chapter, we are going to break apart the mysterious CI/CD abbreviation
and dissect the components of both CI and CD. You'll see what it means to continually
integrate software and how that is accomplished using a build pipeline. Then we’ll look
at continuous delivery and deployment and how to accomplish each using a release
pipeline. Finally, we'll review a few best practices when it comes to using CI/CD with the
Azure Kubernetes Service.

191

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_9



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

We are going to be using the TAKS Voting Application from previous chapters to help
you apply the abstract concepts of integration, delivery, and deployment to a real-world
scenario. The voting application is a container-based application composed of a web
front-end running node.js and a storage backend running Redis as shown in Figure 9-1.

Voting Redis

_ _Deployment_ _ _ _Deployment _ _
7 N 7 N
[ | [ |
| I | I
: Voting Pod : : Redis Pod :
| | | |
- [ » - | |
| I | I
User Load | . I Internal | : |
Balan_cer I Voting Pod I Service I Redis Pod I
Service | [ | [
[ | [ ]
~ 7 ~N s

Figure 9-1. Voting App

The project has manifest files for deployment to Kubernetes that have been packaged
up in a Helm chart. We are going to follow the process of updating the application and
rolling that update out to a development environment and then to Production.

CI/CD Overview

You've probably seen the abbreviation CI/CD before and maybe wondered what it
means. It’s a weird-looking abbreviation, and marketing folks like to sprinkle it onto
products liberally as if it were some magic incantation. But CI/CD does actually stand
for something, or more specifically it stands for two things. The CI stands for Continuous
Integration, which is the idea that as developers write code, they should be checking
their code into a shared mainline several times a day. We'll expand more on that thought
in a moment.

The CD stands for either Continuous Delivery or Continuous Deployment. The
primary idea is that an up-to-date build of the software should be available and ready
to deploy to Production at any given time. If the build is ready, but not running in

192



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Production, then we can say it has been delivered. If there is an automated process than
moves a delivered build into Production, then we can say it has been deployed. Both
options conveniently abbreviate to CD, and so the common abbreviation CI/CD works in
either case. Which “D” - Deployment or Delivery - is being used can be inferred through
context.

Continuous Integration

Continuous Integration (CI) is a software development practice that has a few key
principles as illustrated in Figure 9-2. There should be a common shared code base that
developers are working from. Developers should check out the most recent version of code,
make their changes, and then merge their updated code back into the mainline. Before
check-in, developers will get the latest version of the mainline and integrate any changes
into their local version. By committing to the mainline often, developers will never be too
far off from the mainline version of the code, and therefore the integration process will be
simpler and less likely to require refactoring. The constant process of integrating a local
code copy with the mainline copy is what is known as Continuous Integration.

Mainline
Pull latest Pull latest Push to mainline
Commit Integrate

-_— = =0 —— 0@ — = — = = = = = =
Local Developer

Figure 9-2. Continuous Integration process

While CI is a good concept in theory, it wasn’t until supporting toolsets arrived
that the concept was turned into a reality. The primary components that enabled
the process were Source Control Management (SCM) software, build servers, and
automated pipelines. For our example of the IAKS Voting Application, we are going to
use Azure DevOps to provide these CI components. Azure Repos will provide a git-based
SCM. Azure Pipelines will provide the automation and build servers. Azure Container
Registry will be the target to store completed build artifacts.

193



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Shared Repository

When developers are collaborating on code, there are often several copies of the code
floating around. Each developer will have a local copy on their workstation that they
will use to develop a new feature or function. There is also a shared repository of code,
usually in a SCM service, that developers will commit their changes to and get the most
recent version of the code from. The most common SCM in use today is Git, although
there are others such as Subversion, CVS, and TFS.

Note A full discussion of Git and version control for software development is
way outside the scope of this little chapter. We will assume that you are somewhat
familiar with the idea of source control and branches. If that seems totally alien

to you, then we recommend checking out the hello-world activity on GitHub
(https://guides.github.com/activities/hello-world/) as a primer.

The IAKS Voting Application is using Azure Repos to host the shared copy of its code
as seen in Figure 9-3. The source control mechanism being used to manage the code is
Git. The application has a master branch for production usage and a feature branch used
to develop new features. Once a new feature has been tested and approved, the branch

will be merged into master.

194


https://guides.github.com/activities/hello-world/

CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

§° master v | Introducing-Azure-Kubernetes-Service / Type to find a file or folder...

<

i) You updated §*featurefvote3/0.5 4 ho
¢ Introducing-Azure-Kubernetes-Ser... - © £ ¥ i

Chapter 2

Contents  History = README -+ M

CICD T
Helm i -
Y .gitignore Chapter 2 6/
[ azure-pipelines-1.yml CICD Tu
9 azure-pipelines.yml Helm 7/
w+ READMEmd 3 .gitignore 7/
O azure-pipelines-1.yml Tu
O azure-pipelines.yml Tu
ms+ README.md 5/

Figure 9-3. Voting App git repository

Build Pipeline

The build pipeline enables the integration of committed code with the larger code base.
The build pipeline is the portion of Continuous Integration that occurs after a developer
performs a push to the mainline. There are many different products that will run a build
pipeline for you. While the terminology may change slightly from product to product, the
core concepts are consistent.

A build pipeline is composed of a series of steps that are carried out by build agents
in a serial or parallel fashion. The output of a build pipeline is a set of artifacts that
represent the functional application. A release pipeline should be able to take those
artifacts and deploy the application into target environments.

The build agents are usually virtual machines with agent software running and
listening for new requests to come in. When the build pipeline is ready to execute
one of the tasks in a step, it will look for an available build agent that meets the task
requirements and have that build agent execute the task. The results of the task will be

195



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

reported back to the build pipeline, whether the task is successful or not. At that point,
the pipeline may continue or fail depending on the task settings.

The TAKS Voting Application will be using Azure Build Pipelines shown in Figure 9-4
as part of its CI process. Azure Build Pipelines express their configuration using yaml. The
pipeline definition can live in source control along with the rest of the application, ensuring
that changes to the pipeline are tracked and versioned along with the rest of the code.

,:J:’ Introducing-Azure-Ku... + £ Search all pipelines

E D -+ New v
ﬂ Overview —
@ Introducing-Azure-Kubernetes-Se...
E Poa §* feature/vote3/0.5
Repos @ Introducing-Azure-Kubernetes-Serv...
}o feature/vote3/0.5
@ Pipelines
@ Introducing-Azure-Kubernetes-Serv...
gy Builds i feature/vote3
& Releases
B\ Library

= Task groups

" Deployment groups

Figure 9-4. Continuous Integration build pipeline

Triggers

The trigger in a pipeline defines the conditions under which the pipeline will execute.
A trigger is often scoped to a specific branch, tag, or feature so that the steps in the
pipeline will only execute when something in-scope is committed. For a large code base,
scoping the trigger is important to ensure that only the components that have changed
run through the build process.

The IAKS Voting Application uses a code branch called features to develop new
features for the application. The current version of the application only supports two

196



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

voting options. There is a feature in development to add a third voting option. The code
to add that feature is using the branch feature/vote3/0.5. Listing 9-1 shows the code in
the pipeline file that contains the trigger conditions.

Listing 9-1. Trigger conditions

trigger:
branches:
include:
- master
- feature/x

The pipeline will only kick off if a commit is made to master or a branch under
feature.

Variables

A build pipeline won'’t have all values being used by each task hardcoded into the file.
There will dynamic properties, secrets, and calculated values used as part of the pipeline.
For instance, a pipeline may need a database password or API key. That value should not
be stored in plaintext in a pipeline definition file; instead, it can be stored as a secret that
is injected at build time. Properties such as the build number, build branch, and build
date are also dynamic and can be used when naming artifacts. Listing 9-2 shows the
definition of variables for the IAKS Voting Application build pipeline.

Listing 9-2. Build pipeline variables

variables:
versionNumber: $[format('{0}.{1}", variables['Build.BuildNumber],
variables[ 'Build.BuildId'])]
repositoryName: 'iaks'

While these values are being defined within the pipeline file, it is also possible to
override these values at runtime.

Steps

A build pipeline is composed of steps to take as the pipeline progresses. A common set of
steps is shown in Figure 9-5.

197



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

/b Unit Tests Push Images Publish Artifacts

Code Commit \b Build Images \ Package Chart

Continuous Integration Pipeline

Figure 9-5. Continuous Integration pipeline

The build agent used to execute each step can be defined per step or at the beginning
of a pipeline. More complicated steps may require a build agent with a specific operating
system, specialized application, or geographic location. In the TAKS Voting Application,
the build agent in Listing 9-3 is defined as a hosted Ubuntu agent with the latest version
of the operating system.

Listing 9-3. Build pipeline agent definition

pool:
vmImage: 'ubuntu-latest’

Azure DevOps offers hosted Windows and Linux agents that are allocated on
demand. It is also possible to set up dedicated pools of build agents either in Azure or
another location.

The code will be tested, packaged, and placed in a designated location as a collection
of artifacts. The artifacts will be used by the release pipeline to deploy the application.

The IAKS Voting Application first builds the front-end web application container image
as shown in Listing 9-4.

Listing 9-4. Build pipeline docker task

- task: Docker@2
inputs:
containerRegistry: 'iaks'
repository: 'azure-voting-app'
command: 'buildAndPush'
tags: '$(versionNumber)'
Dockerfile: 'xx/CICD/azure-vote/Dockerfile’

198



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

The task builds the image on the hosted agent and then tags and pushes the image
up to an Azure Container Registry (ACR) using the versionNumber variable we defined
earlier as a tag to differentiate between multiple builds.

The next step shown in Listing 9-5 is to take the Helm chart being used to deploy the
application and package it up into a Helm archive file. The packaging process will also
update the Chart.yaml values with the submitted version and application version numbers.

Listing 9-5. Build pipeline Helm install

- task: HelmInstaller@1i
inputs:
helmVersionToInstall: 'latest’
- task: HelmDeploy@o
inputs:
command: 'package’
chartPath: 'xx/Helm/aks/iaks'
chartVersion: '$(versionNumber)'

arguments: '--app-version $(versionNumber)'

The build agent does not have Helm installed by default, so the first task installs the
latest version of Helm, and the second task creates the Helm package locally using the
versionNumber variable for both the chart version and the application version.

We are going to store the packaged Helm chart in the same ACR as the web front-end
container image. An Azure CLI command is used to push the package since there is no
built-in task that will push a Helm package to ACR as shown in Listing 9-6.

Listing 9-6. Build pipeline ACR task

- task: AzureCLI@1
inputs:
azureSubscription: $(AzureSubscriptionId)
scriptlocation: 'inlineScript'
inlineScript: 'az acr helm push $(System.ArtifactsDirectory)/$(reposi
toryName)-$(versionNumber).tgz --name $(AzureContainerRegistry);"

The last two tasks shown in Listing 9-7 place the version number for this build into
a text file and publish that text file as an artifact. The version number was defined in the
variables as a combination of the BuildNumber and the BuildId. The versionNumber

199



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

variable was used to tag the container image and the Helm chart. The release pipeline
will need the proper version number when it runs to find the correct image and chart.

Listing 9-7. Build pipeline bash script

- task: Bash@3
inputs:
targetType: 'inline'
script: 'sudo echo $(versionNumber) > $(System.
DefaultWorkingDirectory)/versionNumber.txt'

- task: PublishPipelineArtifact@1
inputs:
targetPath: '$(System.DefaultWorkingDirectory)/versionNumber.txt'
artifact: 'versionNumber'

Notifications

When a build pipeline completes, whether it is successful or not, a notification should be
sent out. There are many options when it comes to notification, the most common being
email, chat, or webhook.

Notifications for Azure DevOps are handled outside of the pipeline, defined in the
project settings. Third-party apps, such as Slack, can subscribe directly to a build or
release and provide notifications to a specific channel. The IAKS Voting Application is
being monitored on a Slack channel called iaks. When a build pipeline completes, the

following notification in Figure 9-6 appears in the channel.

Azure Pipelines APP 3:30 PMm
Build 20190724.2 succeeded

Build pipeline Branch
Introducing-Azure-Kubernetes-Service (1)refs/heads/feature/vote3/0.5
Requested for Duration

Ned Bellavance 00:01:24

Figure 9-6. Azure Pipelines notification

200



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Artifacts

A successful build pipeline will produce artifacts that can be used by the release pipeline
to deliver and possibly deploy the application. The artifacts being produced by the

build should be used consistently for any acceptance testing that happens in lower
environments as well as Production. That guarantees whatever code is deployed in
staging or QA will match what is deployed in Production. Tinkering with artifacts outside
of the build pipeline is strongly discouraged, as in don’t do it ever.

Why shouldn’t you tinker with the artifacts? Let’s say that you have built a new
version of the application and deployed it into QA and staging. There’s a small
issue in the staging environment, but you find that you can fix it by tweaking a
setting in a configuration file.

You make the change and the testing now passes. Since you tweaked the artifact
in staging, the code being deployed no longer matches what is in source control.
On a subsequent build, your change will be missing, and the thing you fixed is now
broken again.

At best, you broke staging. At worst, the missing change makes it to Production
and breaks there. Morale of the story? Don’t alter artifacts. Make the change in
code and run a new build.

The IAKS Voting Application creates three artifacts. The web front-end container image,
the Helm chart, and the versionNumber text file. The container image and chart are stored
in an Azure Container Registry instance. The text file is published as an artifact from the
build, which makes it available to any release pipelines. As we move into the release pipeline
section, we'll see how the artifacts from the build are ingested and used by the release.

Continuous Delivery/Deployment

As mentioned in the beginning of this chapter, CD can stand for Continuous Delivery or
Deployment. The primary difference is at what point the automated process halts. In a
continuous delivery environment, the end of the CD pipeline is a production-ready release.
There is a manual step to formally deploy the release into production. A continuous
deployment environment automates that last step.

201



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Note For the purposes of this section, we will be primarily looking at setting up a
continuous delivery pipeline. Continuous deployment will be explicitly noted when
applicable.

Release Pipeline

The end result of a build pipeline is a set of artifacts that make up the application. These
artifacts should be in a deployable state. It is the job of a release pipeline to take those

artifacts and deploy the application to one or more environments, as well as run tests to
validate the functionality of the application. A common example of a release pipeline is

shown in Figure 9-7.

Deploy to Dev Pull Request Acceptance Testing

Pull Artifacts \b System Testing \ Deploy to Staging

Continuous Delivery Pipeline

Figure 9-7. Continuous Delivery pipeline

The pipeline will pull the artifacts created by a specific build. Then, it will deploy
the artifacts as an application to a development environment and run the system tests.
Assuming those system tests pass, the pipeline will create a pull request to merge the
feature branch into the master branch. Then, the pipeline will deploy the same artifacts
to a staging environment where acceptance testing will occur. If acceptance testing is
successful, the artifacts can be tagged as production ready or moved to a production-
only repository. The movement of artifacts to a production repository could serve as a
trigger to kick off another stage in the pipeline that deploys those artifacts to Production.

The IAKS Voting Application is using two release pipelines from Azure Pipelines to
handle Continuous Delivery. Code built from the feature branch will trigger the helm-
dev-release pipeline. That pipeline will take the artifacts from the feature build and
deploy them to the development namespace on the AKS cluster. Rather than using a

202



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

single development namespace, it is also possible to enable the Dev Spaces feature on
the AKS cluster. Dev Spaces creates a dedicated development environment that can be
shared by multiple developers, with the ability to create per-user spaces within the larger
development environment to test new features in real time.

When code is merged to the master branch through a pull request, it will trigger the
helm-qga-release pipeline. That pipeline will take the artifacts from the last successful
build and deploy them to the ga namespace on the AKS cluster. Once acceptance testing
has been performed, a second phase will be invoked that takes the artifacts from the
build and copies them to a production repository on ACR. There is a third manual phase
that will deploy the production-tagged artifacts to the production AKS cluster.

Azure release pipelines are expressed using a graphical Ul rather than through yaml
files. It is likely that this will change soon to make the interface consistent across build
and release pipelines. The release pipeline can be exported or imported using JSON files.
For the examples in this section, a screenshot will be used to display the relevant portion
of the release pipeline configuration.

Triggers

A common trigger for a CD pipeline is the successful completion of a CI pipeline. There
may also be situations where the trigger is time-based and fires off on a daily schedule or
is based on a pull request from another branch.

The IAKS Voting Application is triggered by a successful build of code from the
Jeature branch or a pull request on the master branch. The configuration for the feature
branch trigger on the helm-dev-release pipeline is shown in Figure 9-8.

203



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Continuous deployment trigger
Build: iaks-build

0 Enabled

Creates a release every time 3 new build is available.

Build branch filters

Type Build branch Build tags
Include e 89 feature/” v
4+ Add | v

Figure 9-8. Continuous Deployment trigger

Each time a new build from a branch on the feature path is available, this pipeline
will execute. The configuration for the helm-qa-release shown in Figure 9-9 is identical,
except that the build branch is set to master and there is a pull request trigger added.

Pull request trigger
Build: iaks-build

0 Enabled

Creates a release every time a new version of the selected artifact is available as part of a pull request workflow

Target Branch Filters ©
Target Branch Build tags

‘ ¥ master v

Figure 9-9. Azure Pipelines QA Release

Stages

The terminology for the stages in a CD pipeline depends on the software, but broadly
there will be multiple stages in a CD pipeline. Each stage can be composed of one or
more jobs, and each job is composed of one or more tasks. The stages and jobs can be
sequential or run in parallel. The tasks within a job are usually run serially.

204



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

The helm-dev-release pipeline in Figure 9-10 is composed of a single stage, with one job.

Artifacts | -+ Add Stages | + Add v
2
ks %  Dev Release o
iaks-build 2 | 1job, 5 tasks i
Schedule
@ not set

Figure 9-10. Azure Pipelines Dev Release

The artifacts for the stage are sourced from the build process. It is possible to have
more than one source for artifacts. In a large application with several microservices, the
artifacts might be sourced from the successful build of each microservice pipeline.

The helm-qga-release in Figure 9-11 is composed of three stages, each with one job.

Artifacts | -+ Add stages | -+ Add
&
n
ksl & | Staging-Release 2 £ | Tag Artifacts a
iaks-build 8 | 1job,5tasks £ 8 | 1job, 7 tasks
® Schedule

not set

#  Production-Release a
a2 1job, 5 tasks

Figure 9-11. Azure Pipelines Staging Release
205



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

The jobs for all the stages run on a release agent, in the same way that build tasks are
executed on a build agent. The Dev Release job is shown in Figure 9-12 for reference.

Dev Release

Deployment process

Agent job +

1€

Download Pipeline Artifact

Download pipeline artifact

Bash Script

oo

r E4

2.9.1

-1 —

-
m
-
=

Install Helm

Azure CLI

r ® 3

-
m
-
=

helm upgrade

{

Figure 9-12. Azure Pipelines agent configuration

In Figure 9-12, you can see that the agent first downloads the pipeline artifact that
contains the versionNumber.txt file. The following task is a bash script that gets the
version number out of the text file and sets a release pipeline variable with that version
number. Then the agent installs Helm and uses the Azure CLI to add the ACR repository
where the Helm chart for the deployment resides. Finally, in Figure 9-13 Helm runs an
upgrade on the AKS cluster in the development namespace using the Helm chart and
container image that were part of the artifacts from the build pipeline.

206



CHAPTER 9

Display name *

CI/CD WITH AZURE KUBERNETES SERVICE

helm upgrade

Kubernetes Cluster A~
Connection Type * ®
Azure Resource Manager

Azure subscription® (i) | Manage 2

. Scoped to resource group ‘iaks’

Resource group* (O
iaks

Kubernetes cluster* (7
iaks1

Namespace (3

development

Commands A~

Command * 0)
upgrade

Chart Type*  (®)

Name

Figure 9-13. Azure Pipelines Helm deployment

207



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Chart Name * @

S(acrName)/iaks

Release Name (§)

iaks-S$(Build.Buildld)

Set Values @

voteFront.image.repository=S5(imagePath),voteFront.image.tag=$(versionNumber)

Value File (©

Install if release not present. (O
() Recreate Pods. (D

() Reset Values.

() Force ®

Wait O

Figure 9-13. (continued)

When the deployment is finished, the development namespace in the AKS cluster has
a new deployment of the IAKS Voting Application running as shown in Listing 9-8.

Listing 9-8. Helm deployment listing
helm 1s --tls --namespace development

NAME STATUS CHART APP VERSION
iaks-45 DEPLOYED  iaks-20190725.4.45 20190725.4.45
iaks-46  DEPLOYED  iaks-20190725.4.46 20190725.4.46

The naming of each release includes the BuildId property, so each successful build
will be created as its own deployment on the AKS cluster. The helm-qa-release uses the
same tasks to deploy a copy of the application to the ga namespace, but it does not use
the BuildId property to name the helm release. Therefore, when the helm-qa-release
pipeline is run, it upgrades any existing application in place.

208



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

At the end of the deployment task in helm-qa-release, Figure 9-14 shows there is an
approval condition. Someone from the QA department needs to review the deployment
and verify that it has passed all the acceptance criteria.

Post-deployment conditions
Staging-Release

R Post-deployment approvals A @D cnavied

Select the users who can approve or reject deployments to this stage

Approvers (i)

@ Ned Bellavance X Search users and groups for approvers
Timeout (@

30 Days W
Approval policies

[:] The user requesting a release or deployment should not approve it

Figure 9-14. Azure Pipelines post-deployment

By approving the Staging-Release stage, the next Tag Artifacts stage in the pipeline
as seen in Figure 9-15 is executed, which involves the movement of build artifacts to the
production repository. In Azure Container Registry, there is a separate registry instance
called acriaksprod. The goal of the Tag Artifacts stage is to take the artifacts stored in
acriaks and move them to acriaksprod.

209



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Tag Artifacts

Deployment process

Agent jo

T H

g

%

e
HELM
e

&3

Download Pipeline Artifact

NS Cowrload pipeline artifact

Bash Script

z

Install Helm 2.9.1

F@ Helm teol installe

Install Docker 17.09.0-ce

Uocker (LI installer

Azure CLI

helm

PREVIEW Il

Azure CLI

Figure 9-15. Azure Pipelines Tag Artifacts

The deployment process downloads the versionNumber.txt artifact and imports it
as a variable. Then, it installs both the Helm and Docker clients. The first Azure CLI task

adds the acriaks ACR as a Helm repository.

az acr helm repo add -n $(acrName)

Then, the Helm task gets the iaks chart from the acriaks repository and saves it

locally.

helm fetch $(acrName)/iaks

In the last task shown in Listing 9-9, the Azure CLI first pushes the Helm chart to the
acriaksprod repository. Then, it logs into both acriaks and acriaksprod. Using the docker
CLL, it pulls the current web front-end image from acriaks, retags it for acriaksprod, and

pushes the image to acriaksprod.

210



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE
Listing 9-9. Azure CLI tasks

az acr helm push iaks-$(versionNumber).tgz --name $(acrName)prod

az acr login -n $(acrName)prod

az acr login -n $(acrName)

docker pull $(imagePath):$(versionNumber)

docker tag $(imagePath):$(versionNumber) $(prodImagePath):$(versionNumber)
docker push $(prodImagePath):$(versionNumber)

The Helm chart and web front-end image are now both stored in the production
repository and ready for deployment to Production. The Production environment
runs on a separate AKS cluster. We can configure an admission policy using the
ImagePolicyWebhook to allow only images stored on the acriaksprod registry to be
deployed to the Production cluster.

In helm-qa-release there is a separate stage shown in Figure 9-16 that can be
manually run to deploy to Production.

# | Production-Release Q
82, | 1job, 5 tasks

Figure 9-16. Azure Pipelines Production Release

The tasks in the Production-Release stage mirror the tasks in the Staging-Release
stage, but some of the values have been changed as seen in Figure 9-17 to use the
correct ACR instance, acriaksprod, and to deploy to a separate AKS cluster reserved for
production use.

211



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Kubernetes cluster * @
1aks2

() Use cluster admin credentials ()

Namespace (O

production

Figure 9-17. Azure Pipelines Production Helm Task

Although the Production-Release stage is currently set to be triggered
manually - making it a continuous delivery pipeline - it could be updated to trigger after
the Tag Artifacts stage is completed and approved by a select group of people.

Testing

An integral part to the entire CI/CD process is proper testing. There are different stages
at which testing will occur, each test building off the last. Ultimately, the goal of testing is
to produce reliable software that meets technical and business requirements. A portion
of the testing will occur on the developer’s workstation prior to code being pushed to
the shared repository. Once code is pushed to the shared repository, a CI pipeline will
begin execution. The steps of the CI pipeline will include automated and sometimes
manual testing, with the goal of producing stable software that is ready to be deployed
and tested in a QA or staging environment. The last set of tests in the CI/CD context will
be executed during the CD pipeline, hopefully culminating in an acceptable release that
can be deployed in Production.

Depending on the deployment model, testing doesn’t necessarily end with
deployment to Production. Code may be gradually rolled out to a subset of users or
to certain geographic locations. Telemetry gathered during the rollout can be used to
further validate that the software is working as expected.

In the following subsections, we will briefly look at some of the more common
testing phases and where they sit within the larger context of the CI/CD process.

212



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Unit Testing

When a new feature or function is being developed, there are requirements that it must
meet. For a given set of inputs, it should produce certain outputs. For instance, let’s say
you were developing a function that adds two integers together. The unit tests would
validate that given two integers - 1 and 2 - the function produces the expected out of 3.
The unit test would have several cases to test with, including invalid input like a floating-
point number or text instead of an integer. We might know that peanut butter and
chocolate equals awesome, but our adding function should probably throw an error.

Unit testing will occur either on the developer’s local workstation or during the early
stages of the CI pipeline.

Integration Testing

After a feature or function is validated by itself, it then needs to be tested against the
other portions of the application it interacts with. In our example, there is a good chance
that portions of the application are already using a function to add integers together.
When you replace that function with your new one, you must test those portions of the
application to ensure that they are still working properly. In other words, you are testing
the integration of your code with the components it interacts with.

Integration testing will occur as a stage in the CI pipeline before the build is released
for deployment in the next testing stage.

System Testing

A cloud-native application is made up of microservices, each providing a service to other
components of the application or to an external source. Although not all components
will interact directly with the portions of the code being updated, there may still be
unforeseen collateral effects. System testing is performed on the application as a whole,
and not only on those components that directly interact with the update. In our example,
this would be a standard suite of tests that apply to the entire application, and not just
pieces that are using your new and totally awesome adding function.

System testing will occur after the release is built, typically during a CD pipeline that
tests the release in a development or QA environment.

213



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Acceptance Testing

System testing determines if the system is working as intended from a technical
perspective, but there are other criteria for validation. The security, compliance, and
QA teams may want to run their automated or manual test suites to validate that the
application meets their business requirements. Sometimes a group of users will also
be included in the testing to make sure that the user community is happy with the
functionality of the application.

Acceptance testing will occur after the CI pipeline is complete and before the
application is deployed to Production. There may be several rounds of acceptance
testing by different teams included in a CD pipeline which ultimately leads to a release
that is ready for Production rollout.

Dev Spaces

Within AKS, there is a feature called Dev Spaces that is currently in preview. The
intention behind Dev Spaces is to make the development and testing process simpler for
individual developers. Essentially, a parent Dev Space is created within the AKS cluster
with one or more child spaces for each developer on a team as displayed in Figure 9-18.
In the parent space, a complete version of the application is deployed. As a developer
makes updates to their code, the resulting build is deployed in their unique space, but it
can interact with the parent space running the rest of the application.

214



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

/ AKS Cluster \

Development Dev Space

Dev1 child space Dev2 child space

T o — — — — — — — — — — —

Figure 9-18. Dev Spaces layout

For instance, let’s think about a microservices application that contains a time
tracking service. You may be working on the time tracking service, and that service
interacts with many of the other services that make up the application. Rather than
trying to run the entire application on your workstation, instead an instance of the
application is running on AKS in a Dev Space called Development. When you commit
a new version of your time tracking service, Dev Spaces can deploy the resulting pods
in your personal space, a child space called Development/Devl. For testing purposes,
you can now use the application in Development, but have your application endpoint
use the newer time tracking service in Development/Dev1. Once you have successfully
performed your unit and integration tests, you could merge your code into the
development branch and the application in the Development space would be updated.

Dev Spaces does require preparing code to use it, creating a Dev Spaces
configuration file, and using some client-side tooling to interact with it. The primary
benefit is that developers don’t have to try and maintain a local copy of the application
for testing, and everyone on the team is using a common environment already running
in Kubernetes to perform testing and debugging.

215



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

CI/CD Best Practices with AKS

There are many best practices when it comes to CI/CD, and we won'’t try to summarize
them here. Instead, we would like to focus on applying CI/CD to the Azure Kubernetes
Service. The best practices can be broken into two distinct areas, cluster operators and

application developers.

Cluster Operators

Cluster operators are the folks responsible for managing and maintaining the AKS
clusters. They handle configuring the security of the cluster, updating the version of
Kubernetes, configuring scaling and node pools, and much more. You might be in

this category if you are often deploying and making changes to AKS clusters. Cluster
operators are primarily concerned with the Continuous Delivery portion of CI/CD,
although they may become involved in assisting developers with Dev Spaces or carving

out a permissioned namespace for integration testing.

Separate Environments

When it comes to delivery and deployment, there are going to be several environments
that a release moves through: development, QA, staging, production, and so on. These
environments will require some level of separation, and there are two primary ways to
accomplish this, namespaces and clusters.

Namespaces in Kubernetes are a logical construct to separate workloads.
Namespaces can be used in RBAC rules, restricting which namespaces an account could
deploy to. Namespaces also have their own DNS space for name resolution, for example,
a service in the development namespace might have the address app.development.svc.
cluster.local. Namespaces may have resource quotas assigned to them, allowing you to
limit the amount of resources a namespace can use within the cluster.

For environments that do not need hard separation from each other, namespaces
make logical sense. Extra attention needs to be paid to firewall rules and restrictions,
since namespaces do not provide network separation or segmentation between each
other. A common best practice would be using namespaces to separate multiple
development environments, as well as other nonproduction environments.

Clusters in AKS provide a harder separation between environments. Each cluster
is completely separate from others from the perspective of Kubernetes administration.

216



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Creating a separate cluster provides an additional level of segmentation from a
networking standpoint that may be desirable for certain environments like Production.
Multiple clusters increase the administrative burden, as now the cluster operator is
responsible for managing and maintaining them. A common best practice would be
using a separate cluster for the Production environment or other environments that
might require a higher level of separation.

There is a third potential option, which would be the use of node pools in AKS. Node
pools are in preview for AKS but should be generally available in the not too distant
future. A cluster can have multiple node pools, with each pool comprised of the same
node size and type. By using node tainting and selectors, it is possible to separate
environments into different node pools, which would increase the isolation without
requiring another AKS cluster to manage.

Restrict Access

With a proper release pipeline in place, developers should not be deploying directly
to AKS. They should be following the process of committing their code and letting the
CI and CD pipelines do the rest. Except for Dev Spaces, developers should not have
permissions to deploy directly to any of the environments in AKS.

Build and release pipelines can be associated with service principals in Azure, and
those service principals can be granted the necessary rights to deploy to AKS. Each
environment should be permissioned with its own service principal, and access to edit
pipelines should be restricted as well.

Restricting the developers access, as well as your own access, forces everyone to
follow the CI/CD process and stops them from making changes outside the process that
might be forgotten or overlooked in future deployments.

Admission Controls

Admission controls on a cluster help determine whether a deployment will be accepted
or if anything about the deployment needs to be altered prior to acceptance. This can
include requiring specific labels, resource limits, or image registries. To protect against
possible tampering within a release pipeline, it is a best practice to create admission
policies that prevent certain deployments from being successful. AKS has several
admission control plug-ins enabled depending on what version of Kubernetes you are
running on your AKS cluster.

217



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Azure Monitor for Deployment

Azure Monitor is the combination of multiple monitoring services in Microsoft Azure. A
big part of running an effective CI/CD operation is collecting feedback. Cluster operators
are primarily concerned about the health of applications after a deployment or cluster
maintenance. Azure Monitor can be configured to collect information from AKS for
operators to using in alerting or trend analysis.

Application Developers

Cluster operators are concerned with the proper functioning and maintenance of the
AKS clusters in their purview. Application developers are focused on the health and
performance of their applications. You might be in this category if you are writing code
that will run on an AKS cluster. Application developers are concerned with both the
Continuous Integration and Continuous Delivery components of CI/CD.

Debug on Kubernetes

Applications may function differently depending on what environment they are running
in. To that end, it makes sense to test and debug applications in an environment that
most closely mirrors Production conditions. AKS provides the ability to debug directly on
Kubernetes, either through a dedicated development environment for the whole team

or through Dev Spaces. Using Dev Spaces in particular provides a common baseline
environment for the whole team while still allowing individual development and

debugging for a specific component of the application.

Store Credentials Externally

Credentials and other secret information should not be baked into code, deployment
files, or CI/CD pipelines. They should be stored in a secure vault that is accessible at
application runtime with proper permissions and security controls.
AKS and Azure DevOps are able to make use of Azure Key Vault. Both AKS and Azure
DevOps use Azure Active Directory to authenticate against Key Vault and get access
to the secrets, certificates, and keys stored there. AKS can use both Managed Security
Identities for its nodes and pod-level Azure AD authentication to access Key Vault.
Application developers should take advantage of the Azure Key Vault integration to
move any credentials, secrets, and certificates out of their code.

218



CHAPTER9  CI/CD WITH AZURE KUBERNETES SERVICE

Azure Monitor for Development

Azure Monitor is the combination of multiple monitoring services in Microsoft Azure,
including App Insights and Log Analytics. Logs, traces, and debugging information
can all be sent to Azure Monitor for alerting and analysis. While the cluster operator is
concerned about the health of their AKS clusters, developers are more focused on the
health of their applications, especially when a new version of the application is deployed
or if there is a sudden spike in traffic. The CI/CD pipeline can also send information
to Azure Monitor as each stage executes, making that data available for alerting and
analysis.

Application developers should add hooks into their code and pipelines to enable
additional Azure Monitor integration.

Summary

Continuous Integration and Continuous Delivery are massive topics within the larger
DevOps world. While we have just touched on some of the core concepts behind CI/
CD, we hope that you can see how AKS ties into automating the build and release

of software. Kubernetes, generally, and AKS, in particular, provide a consistent and
stable environment for developing and deploying cloud-native applications. Working
in tandem with CI/CD principles, it is possible to iterate rapidly and produce stable
applications for the end user.

In this chapter, you learned what CI/CD is and some of the fundamentals behind
source control, application builds, and release pipelines. We reviewed a build pipeline in
Azure DevOps and saw how a code commit results in usable artifacts for delivery. Then,
we looked at a release pipeline and how the same artifacts could be used to deploy the
application in multiple environments. Finally, we reviewed some of the best practices
around using AKS with CI/CD.

219



Index

A, B
Apiserver, 39
Azure Active Directory (AAD), 123, 124
Azure Container Instances (ACI), 17, 106,
107,114
Azure Container Registry (ACR), 17
AKS integration, 33
formats, 27
overview, 27
permissions, 29, 30
registry creation, 27
security, 28, 29
tasks and automation, 30
mutli-step tasks, 31, 32
simple tasks, 30, 31
webhooks, 32, 33
Azure DevOps (ADO), 187-189
Azure Kubernetes Service (AKS), 33, 63
access and identity options, 122
AAD integration, 123
ClusterRole, 123
ClusterRoleBinding, 124
RBAC clusters, 123
RoleBinding, 124
roles, 123
service account, 122
ARM (see Azure Resource
Manager (ARM))
business continuity and disaster
recovery, 145

© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020

datacenter failures, 147
disaster recovery, 146
master node failures, 147
regional failures, 148, 149
replication and protection
level, 146
worker nodes, 147
cluster page
authentication section, 67
cluster dashboard, 70
configuration, 64
connection, 76
creation, 65
networking section, 68
validation section, 69
command line tool, 70-72
container monitoring (see Container
monitoring services)
control deployments
add-on, 125, 126
definitions, 126
GateKeeper logs, 124, 127
policy preview, 124, 125
prerequisites, 125, 126
validation, 127
deployment
Azure Portal, 63-69
overview, 63
Helm (see Helm charts)
master component logs

221

S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3


https://doi.org/10.1007/978-1-4842-5519-3

INDEX

Azure Kubernetes Service (AKS) (cont.)

configuration, 144
diagnostic settings, 143
KQL queries-retrieve, 145
networking concepts
CNI model, 120-122
kubenet, 120
security groups and
policies, 122
scaling concepts, 110
ACI connection, 114
automatically scale pods
or nodes, 111
cluster autoscaler, 113
horizontal pod
autoscaler, 111
pods and nodes, 110
virtual kubelet and
nodes, 114
security concepts, 128
cluster upgrade
process, 130
Kubernetes Secret, 130
master components, 128
nodes, 128, 129
storage options
architecture, 115, 116
classes, 117
PersistentVolumeClaim
classes, 118-120
PV, 116
volumeMount, 118
volumes, 116, 117
Terraform, 76
Azure Resource Manager (ARM)
QuickStart template, 73-76
service principal, 72
SSH key pair creation, 72

222

C,D
Cloud Native Application Bundle
(CNAB), 155

Command line interface (CLI), 2, 70-72

Community Edition (CE), 3
Container Networking Interface
(CNI), 119

advantages and disadvantages of, 121

clusters, 121
kubenet, 120
kubenet vs. Azure CNI, 120

Container monitoring services, 131

alert rule creation, 139
analytics view, 135
architecture, 132
cluster tab, 134
component logs, 142-145
containers, 134-136
controllers, 134
enable option, 132
insights, 133
Kubelet logs, 142
log analytics, 138-143
metrics, 136, 137
nodes tab, 134
overview, 131-133
Container registries
ACR (see Azure Container
Registry (ACR))
definition, 17
differences, 18
Docker Hub web site, 26
images, 18
operations, 20
image tags, 25-27
login, 20, 21
pull option, 22



push, 23, 24
search command, 21
principle, 17
private and public registry, 18-20
repositories
differences, 18
private and public
repositories, 19-21
Containers
definition, 1
Docker, 2, 3
build command, 13
command cheat sheet, 10-12
compose, 13-15
Dockerfile instruction, 12, 13
installation, 8
login screen, 10
management command
structure, 11
networking, 6, 7
orchestration systems, 16, 17
requirements, 9
running option, 15
steps of, 9
storage options, 8, 9
WordPress application, 14
images, 6
value of, 2
vs. virtual machines, 3-5
Continuous delivery/deployment (CD)
pipeline
IAKS voting application, 202
master branch, 203
stages, 204-212
triggers, 203, 204
stages
agent configuration, 206
CLI tasks, 211

INDEX

composed of, 205
deployment, 206, 207
devrelease, 205
development, 208
helm-qa-release, 205
helm task, 212
post-deployment, 209
production release, 211
tag artifacts, 210

Continuous integration and

continuous delivery
(CI/CD), 185
application developers, 218
credentials, 218
debug, 218
development, 219
automating deployments, 185
CD (see Continuous delivery/
deployment (CD))
CI (see Continuous
integration (CI))
cloud-native application, 191
cluster operators, 216
admission controls, 217
deployment, 218
restrict access, 217
separate environments, 216
DevOps, 187-189
installation, 187-189
overview, 192
testing, 186, 187
acceptance, 214
definition, 212
Dev Spaces, 214, 215
integration, 213
system, 213
unit testing, 213
voting application, 192

223



INDEX

Continuous integration (CI) installation, 187

build pipeline, 195 testing, 186, 187
artifacts, 201 CNAB project, 155
bash script, 200 create command, 173, 174
notifications, 200 deployment, 178
steps, 197-200 installation, 178-180
triggers, 196 release, 181-183
variables, 197 remove option, 184, 185

constant process, 193 status, 180

shared repository, 194, 195 web page, 180

init (installation), 159
copying files, 163
E, F, G pod and service details, 160-162
Enterprise edition (EE), 3 testing, 162
tiller service account, 159
key components, 153

H; I client, 153, 154
Helm charts repository, 155
advantages, 152 Tiller, 154
chart contents overview, 151
charts directory, 169 package command, 176-178
Chart.yaml file, 164, 165 primary use cases, 152
deployment process, 171-173 RBAC and service account, 156, 157
license, 167 requirements, 156
local repository, 170 template functions, 174-176
myvalues.yaml file, 172 TLS considerations, 157-159
README.md, 167, 168 Horizontal pod autoscaler (HPA), 111, 112

repositories, 170, 171
requirements.yaml, 168, 169

stable repository, 170 J
standard file and folder JavaScript Object Notation (JSON) files,
structure, 163 32,72,82,203
templates directory, 169
values.yaml file, 165-167, 172
chart tests, 176 K; L
CI/CD integrations, 185 Kubectl commands, 51
automating deployments, 185 categories, 52
Azure DevOps, 187-189 formatting output, 54

224



kubeconfig files, 51
operations, 58
apply, 59
delete, 61
describe, 60
exec operation, 61
get, 59
logs, 62
resources

debugging containers, 57, 58

deployments, 54, 55

generate config, 56, 57

remote and local config, 55

viewing pods associate, 57
syntax, 53

Kubenet (Basic) networking, 120
Kubernetes

annotations, 42

architecture, 37
cloud-controller-manager, 39
ConfigMaps, 45, 46
DaemonSets, 44

dashboard, 38

deployments, 45

Docker runtime, 38

features of, 36

functions, 35

interfaces, 37, 38

jobs, 44
Kube-controller-manager, 39
Kube-scheduler, 39

labels and annotations, 41, 42
master node, 39, 40
namespaces, 40, 41
networking, 47

orchestration platform, 35
pods, 43, 44

replicasets, 43

INDEX

secrets, 47
services, 44, 45
storage, 48-50
worker node, 40

Macvlan, 7

N

Network address translation
(NAT), 7,120

O

Open container initiative (OCI), 17
Open Policy Agent (OPA), 124
Operational process, 101
clusters

delete, 105

Kubelet architecture, 108

Kubernetes dashboard, 110-113

nodes, 102, 103

scale command, 102

show command, 102

upgrades commands, 103-105

virtual nodes, 105-107
Orchestration systems, 16, 17

P

Port mapping, 7 See also Network address
translation (NAT)
Public Key Infrastructure (PKI), 157

Q

QuickStart template, 73-76

225



INDEX

R

Rancher
administration, 80
AKS deployment, 92

account access settings, 93
cluster name, 94
components metrics, 98
dashboard, 97

DNS prefix, 94

Grafana UlI, 99

Kubernetes provider, 93
metrics, 98

provision, 95

resource group and SSH key, 95
resources, 96

authentication, 90-92
deployment and management, 80
deployment option

226

ARM template code, 82-89
parameters, 88

password setting, 89
resources, 88

save URL, 90

Kubernetes, 80, 81
overview, 79
RancherNode.JSON, 82-89
Role-based access control
(RBAC), 29, 123, 156, 157

S

Service-level objectives and agreements
(SLOs and SLAs), 145

Service principal name (SPN),
72,90, 92

Source control management
(SCM), 193,194

T, U

Terraform, 76, 77, 132

VW X, Y,Z
Virtual machines (VMs), 3-5,
81, 128, 129, 146



	Table of Contents
	About the Authors
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Inside Docker Containers
	The Value of Containers
	What Is Docker
	Containers vs. Virtual Machines
	Images and Containers
	Docker Components (Networking and Storage)
	Networking
	Storage

	Installing Docker
	Docker Command Cheat Sheet
	Understanding the Dockerfile
	Understanding Docker Build
	Understanding Docker Compose
	Running a Container
	Orchestration Platforms
	Summary

	Chapter 2: Container Registries
	Overview of Container Registries
	Registries, Repositories, and Images
	Private and Public Registries and Repositories
	Basic Registry Operations
	Login
	Search
	Pull
	Push

	Image Tagging

	Common Registries
	Docker Hub and Docker Registry
	Azure Container Registry

	Azure Container Registry Expanded
	Security
	Permissions
	Tasks and Automation
	Simple Tasks
	Multi-step Tasks
	Webhooks

	Azure Kubernetes Service Integration

	Summary

	Chapter 3: Inside Kubernetes
	Kubernetes Interfaces
	Docker Runtime
	Master Nodes Overview
	Worker Nodes Overview
	Namespaces
	Labels and Annotations
	Pods
	Replicasets
	DaemonSets
	Jobs
	Services
	Deployments
	ConfigMaps
	Secrets
	Networking
	Storage
	Summary

	Chapter 4: kubectl Overview
	Introduction to kubectl
	kubectl Basics
	kubectl Syntax
	Formatting Output in kubectl
	Listing Kubernetes Resources
	Creating a Resource from Config
	Remote Config
	Local Config

	Generating a Config from a Command
	Viewing Pods Associated with Resources
	Debugging Containers

	Common Operations with kubectl
	kubectl apply
	kubectl get
	kubectl describe
	kubectl delete
	kubectl exec
	kubectl logs


	Summary

	Chapter 5: Deploying Azure Kubernetes Service
	Azure Kubernetes Service Deployment Overview
	Deployment Through the Azure Portal
	Deployment Through Azure CLI
	Deployment Through Azure Resource Manager Templates
	Create an SSH Key Pair
	Create a Service Principal
	Using an Azure Resource Manager QuickStart Template

	Deployment Through Terraform
	Connecting to Your AKS Cluster
	Summary

	Chapter 6: Deploying and Using Rancher with Azure Kubernetes Service
	What Is Rancher?
	Why Use Rancher with Kubernetes?
	How to Deploy Rancher on Azure
	Authenticate Rancher with Azure Active Directory
	Deploy AKS with Rancher
	Summary

	Chapter 7: Operating Azure Kubernetes Service
	Cluster Operations in Azure Kubernetes Service
	Manually Scaling AKS Cluster Nodes
	Upgrading an AKS Cluster
	Deleting an AKS Cluster
	Creating Virtual Nodes
	Using Virtual Kubelet with Azure Kubernetes Service
	Using Kubernetes Dashboard


	Scaling Azure Kubernetes Service
	Manually Scaling Pods or Nodes
	Automatically Scaling Pods or Nodes
	Horizontal Pod Autoscaler
	Cluster Autoscaler (Preview)
	Burst On Demand with Azure Container Instances


	Storage Options for Azure Kubernetes Service
	Volumes
	Persistent Volumes
	Storage Classes
	Persistent Volume Claims

	Networking in Azure Kubernetes Service
	Kubenet vs. Azure Container Networking Interface (CNI)
	Kubenet (Basic) Networking
	Azure Container Networking Interface (CNI) - Adavanced Networking

	Network Security Groups and Network Policies

	Access and Identity in Azure Kubernetes Service
	Kubernetes Service Accounts
	Azure Active Directory Integration
	Azure Role-Based Access Controls (RBACs)
	Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings
	Control Deployments with Azure Policy (Preview)
	Enable the Preview
	Azure Policy Add-On
	Installation Prerequisites
	Installing the Azure Policy Add-on

	Assigning Policy Definitions to AKS
	Policy Validation
	Azure Policy Add-On Logs
	GateKeeper Logs



	Security Concepts in Azure Kubernetes Service
	Master Security
	Node Security
	Cluster Upgrades
	Kubernetes Secrets

	Monitoring Azure Kubernetes Service
	Azure Monitor for Containers
	Overview
	Enable Monitoring
	Azure Monitor
	Insights
	Cluster
	Nodes
	Controllers
	Containers

	Metrics
	Log Analytics
	Creating an Alert Rule Through Log Analytics

	Kubelet Logs
	Kubernetes Master Component Logs


	Business Continuity and Disaster Recovery in Azure Kubernetes Service
	Thinking About SLAs and What You Need
	Data Persistence and Replications
	Protecting Against Faults
	Master Node Failures
	Worker Node Failures
	Datacenter Failures
	Regional Failures


	Summary

	Chapter 8: Helm Charts for Azure Kubernetes Service
	Helm Overview
	Use Cases
	Advantages over Kubectl
	Key Components
	Helm Client
	Tiller
	Helm Repository

	Cloud Native Application Bundle

	Installing Helm on AKS
	Requirements
	RBAC and Service Account
	TLS Considerations
	Helm init

	Helm Charts
	Chart Contents
	Chart.yaml
	Values.yaml
	License
	README.md
	Requirements.yaml
	Charts Directory
	Templates Directory

	Chart Repositories
	Deployment Process
	Creating a Helm Chart
	Helm Create
	Template Functions
	Chart Tests
	Packaging a Chart

	Deploying a Helm Chart
	Helm Install
	Helm Status

	Updating a Release
	Removing a Release

	CI/CD Integrations
	Automating Deployments
	Testing Helm Charts
	Unattended Helm Chart Installs
	Integrating Helm with Azure DevOps

	Summary

	Chapter 9: CI/CD with Azure Kubernetes Service
	CI/CD Overview
	Continuous Integration
	Shared Repository
	Build Pipeline
	Triggers
	Variables
	Steps
	Notifications
	Artifacts


	Continuous Delivery/Deployment
	Release Pipeline
	Triggers
	Stages


	Testing
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Dev Spaces

	CI/CD Best Practices with AKS
	Cluster Operators
	Separate Environments
	Restrict Access
	Admission Controls
	Azure Monitor for Deployment

	Application Developers
	Debug on Kubernetes
	Store Credentials Externally
	Azure Monitor for Development


	Summary

	Index



