
The Modern
Data Warehouse
in Azure

Building with Speed and Agility on
Microsoft’s Cloud Platform
—
Matt How

www.allitebooks.com

http://www.allitebooks.org

The Modern Data
Warehouse in Azure

Building with Speed and Agility
on Microsoft’s Cloud Platform

Matt How

www.allitebooks.com

http://www.allitebooks.org

The Modern Data Warehouse in Azure: Building with Speed and Agility on
Microsoft’s Cloud Platform

ISBN-13 (pbk): 978-1-4842-5822-4			 ISBN-13 (electronic): 978-1-4842-5823-1
https://doi.org/10.1007/978-1-4842-5823-1

Copyright © 2020 by Matt How

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484258224. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Matt How
Alton, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5823-1
http://www.allitebooks.org

To my wife Amy and our children,
for the continual love and support.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: ��The Rise of the Modern Data Warehouse��� 1

Getting Started��� 2

Multi-region Support�� 3

Resource Groups and Tagging�� 3

Azure Security�� 4

Tools of the Trade��� 4

Glossary of Terms��� 5

Naming Conventions�� 7

Chapter 2: ��The SQL Engine��� 9

The Four Vs�� 9

Azure Synapse Analytics�� 11

Understanding Distributions��� 12

Resource Management�� 20

Workload Management�� 25

PolyBase��� 26

Azure SQL Database��� 29

The Cloud-Based OLTP Engine�� 30

The Benefits of Azure SQL Database�� 30

Hyperscale�� 35

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Azure SQL Deployment Options��� 38

Azure SQL Database Managed Instances��� 38

Azure SQL Database Elastic Pools�� 39

Azure SQL Database V-Core Tiers��� 39

Azure Synapse Analytics vs. Azure SQL Database��� 40

The Right Type of Data�� 41

The Size of the Data��� 41

The Frequency of the Data��� 42

The Availability of the Data��� 42

The Integration of Data��� 43

Chapter 3: ��The Integration Engine��� 45

Introduction to Azure Data Factory�� 45

The Data Factory Building Blocks�� 47

Linked Services�� 47

Integration Runtimes�� 49

Self-Hosted Integration Runtime�� 50

Azure SSIS Integration Runtime��� 50

Triggers��� 52

Datasets��� 54

Pipelines and Activities��� 55

Activity Types��� 55

External Compute Activities�� 56

Internal Activities�� 57

Iteration and Conditional Activities��� 58

Web Activities��� 60

Output Constraints�� 61

Implementing Azure Data Factory�� 61

Security in Azure Data Factory��� 62

Using the Managed Service Identity��� 62

Source Control of Azure Data Factory��� 63

Table of Contents

vii

Templates��� 63

Solution Structure��� 63

Getting Started with Azure Data Factory�� 64

Create Linked Services��� 65

Creating Datasets��� 72

Creating Pipelines��� 74

Debugging Your Pipelines��� 78

Monitoring Your Pipelines��� 78

Parameter-Driven Pipelines��� 79

Getting Started with Parameters�� 80

Using the Lookup Activity��� 82

Getting Started with the Lookup Activity�� 84

Additional Azure Data Factory Elements�� 85

Additional Invocation Methods��� 85

Mapping Data Flows��� 87

Execute Mapping Data Flows��� 89

Azure Data Factory Processing Patterns�� 95

Linear Pipelines�� 96

Parent-Child Processing��� 96

Iterative Parent-Child Processing��� 97

Dynamic Column Mappings�� 99

Partitioning Datasets�� 102

Chapter 4: ��The Ingestion Architecture��� 105

Layers of Curation�� 105

The Raw Layer�� 106

The Clean Layer�� 107

The Transformed Layer��� 107

Understanding Ingestion Architecture�� 108

Batch Ingestion�� 108

The Risks and Opportunities of Batch Ingestion��� 109

Table of Contents

viii

Event Ingestion�� 117

The Risks and Opportunities of Event-Based Ingestion�� 118

Implementing Event Ingestion�� 119

Stream Ingestion�� 125

The Risks and Opportunities of Stream Ingestion�� 126

Implementing Stream Ingestion��� 127

The Lambda Architecture��� 129

Blending Streams and Batches�� 130

The Serving Layer��� 130

Assessing the Approach��� 132

Chapter 5: ��The Role of the Data Lake�� 133

The Modern Enterprise and Its Data Lake�� 134

Azure Data Lake Technology�� 135

Azure Data Lake Gen 1��� 136

Azure Blob Storage��� 136

Azure Data Lake Gen 2��� 137

Planning the Enterprise Data Lake��� 138

Storing Raw Data�� 138

Storing Cleaned Data�� 139

Storing Transformed Data��� 141

Facilitating Experimentation��� 142

Implementing the Enterprise Data Lake��� 143

Security Configuration in Azure Data Lake��� 144

Implementing a Raw Directory��� 149

Implementing a Clean Directory��� 151

Implementing a Transformed Directory�� 155

Example Polyglot Architectures��� 157

Example One��� 157

Example Two��� 158

Example Three�� 159

Example Four�� 160

Table of Contents

ix

Chapter 6: ��The Role of the Data Contract�� 163

What Is a Data Contract?��� 164

Working with Data Contracts��� 165

Designing Data Contracts��� 166

Integrating Data Contracts��� 170

Chapter 7: ��Logging, Auditing, and Resilience�� 181

Logging the Data Movement Process�� 181

Basic Logging Requirements�� 182

Extended Logging Capabilities��� 189

Auditing the Data Movement Process�� 192

Basic Auditing Requirements��� 193

Incorporating Resilience into the Data Movement Process��� 199

Basic Resiliency��� 199

Extending Resiliency�� 214

Monitoring the Data Movement Process�� 216

Chapter 8: ��Using Scripting and Automation�� 219

The Power of PowerShell��� 219

Commonly Used Scripts��� 220

Code Generation��� 220

Invoke Data Factory Pipeline�� 222

Recurse Data Lake Structures�� 225

Chapter 9: ��Beyond the Modern Data Warehouse��� 229

Microsoft Power BI��� 230

Working with Power BI��� 230

Building a Power BI Report��� 231

Publish Report to Power BI Service�� 238

Azure Analysis Services��� 240

The Basics of Azure Analysis Services��� 241

Analysis Services as a Semantic Layer�� 241

Table of Contents

x

Analysis Services Security Model�� 242

The Vertipaq Engine�� 243

Creating an Analysis Services Project�� 245

Create Analysis Objects�� 249

Deploy Analysis Services to Azure�� 261

Processing an Azure Analysis Services Model��� 263

Azure Cosmos DB��� 267

The Cosmos DB Architecture�� 267

Index�� 275

Table of Contents

xi

About the Author

Matt How is a professional consultant and international

conference speaker who is passionate about data, analytics,

and automation. Having spoken at several large conferences

across the world, he is committed to sharing knowledge and

insight to the wider community. Specializing in the design

and delivery of modern data warehouse solutions using the

Microsoft Azure Platform, Matt focuses on simplicity and

resilience above all when designing cloud solutions. With

a growing focus on data science, Matt is now researching

techniques to integrate artificial intelligence capabilities into

the modern data warehouse at scale.  

xiii

About the Technical Reviewer

Carsten Thomsen is a back-end developer primarily

but working with smaller front-end bits as well. He has

authored and reviewed a number of books and created

numerous Microsoft learning courses, all to do with software

development. He works as a freelancer/contractor in

various countries in Europe, using Azure, Visual Studio,

Azure DevOps, and GitHub as some of the tools. Being

an exceptional troubleshooter, asking the right questions,

including the less logical ones, in a most logical to least

logical fashion, he also enjoys working with architecture,

research, analysis, development, testing, and bug fixing. He is a very good communicator

with great mentoring and team-lead skills, and great skills researching and presenting

new material.  

xv

Acknowledgments

Writing a book was much harder than I ever imagined and so I must start by thanking

my awesome wife, Amy, for her everlasting encouragement and support. She always kept

the big dreams alive while ensuring my aspirations were founded in reality. I also want to

thank my children for being the most welcome distraction to advanced modern analytics

I could ever have dreamed of.

Thank you to my parents, friends, brothers, and other family members for their

continued interest and encouragement. I sincerely hope they all enjoy receiving the

same Christmas gift this year.

I want to acknowledge and thank all my colleagues at Adatis, many of whom have

been an excellent sounding board for many of the concepts and ideas included in this

book. A special thanks to the directors for their support and guidance throughout the

process; they have always been exceptionally accommodating of both personal and

professional achievements.

Prior to this project, I had never considered authoring a book and so I am

sincerely grateful to Jonathan at Apress for reaching out to me and sparking the initial

conversation. His continued guidance and patience have been a true blessing. In

addition, I want to thank Jill for keeping everything on track and Laura for her sage

advice throughout the editing process.

Finally, I want to thank Carsten for an excellent eye for detail and for providing

an abundance of helpful comments and tips as part of his edit. I am very glad to have

someone of his experience play a part on the production of this book.

xvii

Introduction

An enterprise data warehouse (EDW) is a common, business-critical system that benefits

from highly mature concepts and design best practices. In the market today, there is a

wealth of books on the topic, some of which examine the differences between the two

fundamental ideologies behind the warehouse design, those of Ralph Kimball and his

drive for denormalized star schemas and Bill Inmon with his preference for a normalized

corporate data warehouse. Others may focus on specific patterns or techniques to solve

more tricky modeling problems. However, few focus on the platform that is being used

for the data warehouse. Taking nothing away from these books, the concepts they discuss

are still relevant today; however, very few books speak specifically about a cloud-based

implementation of a data warehouse and how the tooling is different, how the patterns

change, and how a developer needs to adapt to the new environment.

Gone are the days when a data warehouse project was a slow-moving, inflexible

venture that was difficult to maintain and impossible to extend. We now have an

impressive set of tools that allow us to surface analytical insight at massive scale and

at incredible speed, without the overhead of maintaining a gigantic server. Not only is

a cloud platform perfectly tailored for data processing, but the processes to feed that

platform can be completely automated and integrated to just about any source system,

making maintenance and development simple and enjoyable. Further to all this, we can

now fully explore the different ingestion architectures that comprise streaming, event-

based, and batch loading, allowing developers to break free of the “Nightly ETL Window”

constraint and fully discover how they can populate the warehouse at the rate of the

incoming data.

But is there a reason why an entire book needs to be dedicated to data warehousing

in the cloud? Doesn’t the cloud provide the same technology as on-premises just without

the server management? The short answer is no. As you go through this book, the hope

is that you will discover the nature by which the cloud completely changes the way a

data warehouse is built and why it is important to consider making this move. The core

concepts of on-premises data warehousing still very much apply, but the way in which

they are implemented has drastically changed. The cloud has revolutionized the way

developers can reason about a problem and even eliminated some compromises that

xviii

had to be made in the years gone by. This is not without cost however; there are new

problems to understand and tackle and part of the aim of this book is to talk these issues

through and make clear the patterns that solve those issues.

In this book, you will not find much discussion of Online Transaction Processing

(OLTP) type systems nor of the wider capabilities of the Microsoft Azure data platform.

This book will not discuss why you should implement either Kimball or Inmon

or explain how to create a flashy executive level dashboard. Instead this book is a

discussion about the key technologies in the Microsoft Azure data platform that lend

themselves to data warehousing and how they connect together. I will explain how to

choose a SQL engine that is tailored for your analytical requirements, how to create

data movement processes that scale, and how to extend your warehouse to become

intelligent and modern.

If you are already building SQL data warehouses, you may wonder if you need

a book such as this. You know SQL. You know ETL. What can this book tell you that

you do not already know? Well, SQL server is changing. And given that Microsoft is

a cloud-first company, the newest features and biggest developments are shipped

to the Azure versions of SQL months if not years before they hit the box product.

Not only this, there are features arriving in the Azure data platform that will NEVER

be available in the box product. Things like Accelerated Database Recovery (ADR)

simply cannot be implemented on-premises, and if your organization cares about

their recovery time objective (RTO) and recovery point objective (RPO), then this is a

feature you need to understand. Ultimately there are an increasingly small number of

reasons why a company would choose to avoid cloud software and this book hopes

to dispel the last of those.

I sincerely hope that this book eradicates any anxiety about making a move to the

cloud, and if your organization has embraced the cloud already, then I aim to provide

further insight into how the technologies work at a low level and advise on the patterns

and architectures that should be utilized to get the most out of them.

�Who This Book Is For?
If you are already building on-premises Microsoft SQL Server data warehouses using

common tools such as SSIS, then this book will explain how to move that knowledge into

the cloud, giving, where possible, comparisons about the way a thing was done in that

world and how it should be done in the cloud. If you are already utilizing some of the

Introduction

xix

Azure data platform, then this book will hopefully provide a better understanding of how

each service operates and why it works the way it does. If you are already successfully

running and developing data warehouses with Azure Synapse Analytics (formerly Azure

SQL Date Warehouse) or Azure SQL Database and Azure Data Factory, then I hope

this book will help to solidify your knowledge and perhaps provide some fresh ideas or

patterns that you could use in future development.

If you hope to understand the entire Azure data platform, then this book will not

be broad enough to answer all your questions. For example, we will not go deeply into

Cosmos DB or any of the third-party database offerings in Azure. Additionally, we

will not cover off core data modeling concepts other than where this is critical to the

implementation of an Azure Synapse Analytics instance. Despite this, a good working

knowledge of the other data stores and technologies available in Azure will open up

many new avenues for you to explore that can allow for exciting and highly valuable

extensions to a traditional data warehouse.

�Assumptions About You
The people that will get the most out this book will be already experienced with

data warehousing core concepts and the terminology that goes along with it. A good

understanding of the common challenges and why they need to be overcome is also

a good base to start from. I have made the assumption that you and your company

are already fairly comfortable that a cloud-based architecture will suit your business

requirements, taking into account security, cost, admin, and so on. As this book is not

a full examination of a cloud data platform, often a warehouse sits among many other

databases, it has to be assumed that you and your company have the ability to connect to

the cloud and create the necessary resources for testing and proof of concept work where

needed.

With this in mind, I am aware that readers may arrive at this book from a spectrum of

job roles. Some may come from an analysis background looking to develop the back-end

of their reports so that they are more scalable, whereas some may be more comfortable

with the data engineering concepts and therefore be looking to replicate existing

solutions but without the overhead and hassle of server management. Either way this

book will certainly help in making clear the concepts that need to be understood in order

to create a functioning data warehouse in Azure.

Introduction

xx

�The Scope of This Book
In any IT project, scope is key. You need to know what you are getting, so let me make

this abundantly clear what this book is and is not.

This book is

•	 A guide to cloud data architecture for data warehousing scenarios,

implemented using Azure SQL technologies, Azure data lake

technologies, and Azure integration technologies

•	 A guide to ingesting data with Azure Data Factory and developing

metadata-driven pipelines

•	 An introduction to ingestion patterns that can be automated, be

driven by metadata, utilize streaming, and make use of data lakes

•	 A point of reference for good practice around logging, auditing, and

resilience regarding the aforementioned technologies

•	 A guide to developing and using project accelerators to improve the

pace of development and ensure consistency across teams

This book is not

•	 A detailed description of how to conduct automated deployments to

an Azure platform.

•	 A guide to data modeling best practice. There will be some mention

of data modeling as this is key to the structure of Azure Synapse

Analytics, but this will not be a book on Kimball vs. Inmon modeling.

•	 A manual for data preparation and cleansing. I will explain where

these elements would slot into the process but not give an abundance

of material on how to clean and prepare your data.

Throughout this book, there are step-by-step guides to assist you getting to a basic

level of usage with a service; however, the book as a whole is not a step-by-step guide to

creating a functional modern SQL data warehouse on the Azure platform.

Introduction

xxi

�Organization of the Book
This book is laid out so that the most important topics are covered upfront and that the

key elements of a cloud data warehouse are well understood before continuing into how

the development process can be accelerated and some other more advanced topics.

However, at the very start, there are some handy sections that cover initial guidance for

using Microsoft Azure such as subscription organization, security, development tools,

and a glossary of common terms. For all of the walk-throughs in this book, you will need

access to an Azure subscription where you have a relatively high level of permission for

things like setting up service principals.

The bulk of the book begins from Chapter 2, “The SQL Engine,” and focuses on the

choices to be made when designing your modern data warehouse and how that process

can be accelerated and improved. The following is a brief summary of the content of

each chapter to allow you to skip to the most important discussions if needed:

•	 Chapter 2: The SQL Engine. The goal of this chapter is to make clear

the distinction between Azure SQL Database and Azure Synapse

Analytics and when one option should be chosen over another. The

conclusion of this chapter talks about your type of data and what SQL

engine would be best suited.

•	 Chapter 3: The Integration Engine. This chapter introduces Azure

Data Factory and explains the key building blocks that make it a

first-class cloud integration tool and really the only option for data

movement within the Azure platform. Additionally, an example of

how to copy data from source to sink is included.

•	 Chapter 4: The Ingestion Architecture. As this will be a modern

data warehouse that can cope with a much more varied workload, we

can now consider different types of data processing. You will discover

how you can capitalize on event-based processing and streaming and

the additional complexities these options introduce, as well as the

more traditional batch-based loading technique.

Introduction

xxii

•	 Chapter 5: The Role of the Data Lake. A revolution in cloud data

storage has been the advent of the data lake. While the data lake is a

broad topic, this chapter will relate specifically to its purpose in the

data warehousing architecture. Effectively, the data lake is a single

access point for an entire organization’s varied datasets, be it media,

tabular data, backups, and others. This makes it an ideal staging

location for the data warehouse and when properly implemented can

vastly improve the efficiency of the data warehouse.

•	 Chapter 6: The Role of the Data Contract. A large amount of data

warehouse processing can be automated and defined in metadata.

Things like file schemas, transformation rules, and processing steps

can all be stored as metadata in a database of some kind. Throughout

this chapter, you will gain an understanding of how metadata can be

used to solve several common problems and how to store, fetch, and

implement it.

•	 Chapter 7: Logging, Auditing, and Resilience. A crucial piece

of a production warehouse is the monitoring and auditing of the

ingestion process and being able to catch and resolve instances of

bad or mis-shaped data. The concepts outlined here will likely not

be new if you are an experienced data warehouse developer, but the

specific implementation covered will tie in closely with the metadata

mentioned previously in Chapter 6, “The Role of the Data Contract.”

•	 Chapter 8: Using Scripting and Automation. With any Azure

resource, scripting and automation can be a great asset to assist with

deployment and management. This chapter will expand on some

common scripts I often find useful and explain their usage.

•	 Chapter 9: Beyond the Modern Data Warehouse. This chapter

will talk about how the modern data warehouse can be extended

to support analytical tools and even application data. We will look

at integrations with Power BI, Cosmos DB, and Analysis Services,

explaining the security and reliability concepts at play and describe

best practice and patterns for implementation.

Introduction

1
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_1

CHAPTER 1

The Rise of the Modern
Data Warehouse
A data warehouse is a common and well-understood technology asset that underpins

many decision support systems. Whether the warehouse was initially designed to act as

a hub for data integration or a base for analytical consistency, many organizations make

use of the concepts and technologies that underpin data warehousing.

At one point, the concept of a data warehouse was revolutionary and the two key

philosophies on data warehousing, those of Ralph Kimball and Bill Inmon, were new

and exciting. However, many decades have passed since this point, and while the

philosophies have cross-pollinated, the core design and purpose has stayed very much

the same, so much so that many data warehouse developers can move seamlessly from

company to company because the data warehouse is such a prevalent design. The only

thing that changes is the subject matter. This is very unlike more transactional databases

that may be designed very differently to support the specific needs of an application.

As the cloud revolution began, more and more services began to find homes in the

cloud and the data warehouse is no exception. A cloud-based environment eliminates

many common issues with data warehousing and also offers many new opportunities.

First of which is the serverless nature of cloud-based databases. By not having to manage

the server environment, patching, the operating system (OS) or upgrades, and others,

the development team can really focus just on the data processing that needs to be

undertaken. In addition, the architecture itself can be scaled so that businesses pay for

what they actually use and not for a service that offers growth room for the next five

years. Instead, the size of the system can be tailed and charged at per hour increments so

that aggressive cost optimizations can be achieved.

In times gone by, the on-premises architecture of data warehouses meant that there

were hard limits on the amount of data that could be stored and the frequency at which

that data could be ingested. Further, the tools used to populate an on-premises data

https://doi.org/10.1007/978-1-4842-5823-1_1#ESM

2

warehouse had limited ability to deal with complex data types or streaming datasets,

concepts that are now prevalent in the application landscape that feed data warehouses.

Businesses now require these sources to be included in their reports, and so the data

warehouse must modernize in order to keep up. At present, Azure provides many tools

and services to help overcome these problems, many of which can be integrated directly

into what would now be known as a modern data warehouse.

In addition to modernizing the database, the tools that operate, automate, and

populate the data warehouse also need to keep up in order for the solution to feel

cohesive. This is why Azure offers excellent integration and automation services that can

be used in conjunction with the SQL database technologies. These tools mean that more

can be achieved with less code and confusion, by creating standard patterns that can

be applied generically to a variety of data processing problems. Common menial tasks

such as database backups can be completely automated, making the issue of disaster

recovery much less of a worry. With the latest features of Azure SQL Database, artificial

intelligence is used to recommend and apply tuning alterations and index adjustments

to ensure database performance is at its absolute best. This works alongside advanced

threat detection which ensures databases hosted in Azure are safer than ever.

Finally, businesses are increasingly interested in big data and data science, concepts

that both require processing huge amounts of data at scale and maintaining a good

degree of performance. For this reason, data lakes have become more popular and,

rather than being seen as an isolated service, should be seen as an excellent companion

to the modern data warehouse. Data lakes offer the flexibility to process varied data

types at a variety of frequencies, distilling value at every stage, which can then be passed

into the modern data warehouse and analyzed by the end users alongside the more

traditional measures and stats.

In recent years, many organizations have been struggling with the issues associated

with on-premises data warehousing and are now looking to modernize. The rise of the

modern data warehouse has already begun, and the goal of this book is to ensure every

reader can reap the full benefit.

�Getting Started
Microsoft Azure is a comprehensive cloud platform that provides the ability to build

Platform as a Service (PaaS), Software as a Service (SaaS), and Infrastructure as a Service

(IaaS) components on both Microsoft-specific services and also third-party and open

Chapter 1 The Rise of the Modern Data Warehouse

3

source technologies. Free trials are available for Microsoft Azure that provide 30-day

access and roughly £150/$200 worth of Azure credit. This should allow you to explore

most if not all services in this book and gather more of a practical understanding of

their implementation. There are also free tiers available for many services that provide

sufficient amounts of features for reviewing. Alternatively, you or your company may

already have an existing Azure subscription which could then be used to experiment

with the technologies listed in this book.

�Multi-region Support
A core element of Azure is its multi-region support. As you may know, the cloud is really

just someone else’s computer, and in this case, the computer belongs to Microsoft and it

is stored in a massive data center. It is these data centers that comprise an Azure region.

If you are based in America, then you can pick from a range of regions, one of which

will be your local region and will likely offer you the lowest latency; you could however

deploy resources to a European region if you knew you were supporting customers

in that part of the world. Most regions have a paired region which is used for disaster

recovery scenarios, but on the whole it is best to keep related resources in the same

region. This is to avoid data egress fees which are charged of data that has to be moved

out of a region and into another. Note, Azure does not charge data ingress fees.

�Resource Groups and Tagging
Once an Azure subscription has been set up, there are a few recommendations to help

you organize the subscription. First is the resource group. The resource group is the

root container for all single resources and allows a logical grouping for different services

that relate to a single system. For example, a modern data warehouse may sit within a

resource group that contains an Azure Data Factory, an Azure SQL Database, and an

Azure Data Lake Gen 2 (ADL Gen2) account. The resource group means that admins

can assign permissions to that single level and control permissions for the entire system.

As the subscription gets more use, you should begin creating resource groups per

project or application, per environment, so for a single data warehouse, you may have a

development, test, and production resource group, each with different permissions.

Chapter 1 The Rise of the Modern Data Warehouse

4

Another useful technique is to use tags. Tags allow admins to label different

resources so that they can be found easily and tracked against different departments,

even if they are stored in the same resource group. Common tags include

•	 Cost center

•	 Owner

•	 Creator

•	 Application

However, many others could be useful to your organization.

�Azure Security
From a security standpoint, Azure is an incredibly well-trusted platform. With over 90

compliance certificates in place, including many that are industry or region specific,

no cloud platform has a more comprehensive portfolio. Microsoft has invested over

one billion US dollars into the security of the Azure platform, having an army of cyber

security experts at hand to keep your data safe. These facts and figures offer assurance

that the cloud platform is secure; however, within your environment, it is important to

properly secure data against malicious employees or external services. This is where

service principals are employed. These are service accounts that can be assigned access

to many of the resources in the resource group without any human employees having

access to the data, ensuring the most sensitive datasets can remain protected.

Modernizing a data platform is no easy task. There are a lot of new terminology and

new technologies to understand. In order to work with the demos and walk-throughs

in this book, I have prepared some initial resources to review so that there is a common

understanding.

�Tools of the Trade
There are some tools that will make these technologies easier to use. These are easy to

download and work with and in most cases are cross platform compatible, meaning

they can work on Apple Macs and Windows machines. The following list explains the

key tools that will come in handy throughout this book and what technologies they will

assist with:

Chapter 1 The Rise of the Modern Data Warehouse

5

•	 Visual Studio: 2019 is the current version and is the primary

integrated development environment (IDE) when working with

Azure and other Microsoft-based technologies.

•	 Visual Studio SQL Server Data Tools: This add-in for Visual Studio

gives developers the ability to create database projects and other BI-

related projects such as Analysis Services.

•	 Microsoft Azure Storage Explorer: This lightweight tool allows

developers to connect to cloud storage accounts and access them as

if they were local to their PC. When working with data lakes, this can

be very useful.

•	 SQL Server Management Studio: If you are based on a Windows

environment, then this is a very powerful tool for monitoring and

managing your SQL databases that has been trusted for years.

•	 Azure Data Studio: This is a cross platform version of SQL Server

Management Studio. Essentially, this is the go-to place for managing

and monitoring any Microsoft SQL environment.

�Glossary of Terms
With many new technologies being incorporated into the data platform, a glossary of

terms is important to help introduce a conformed understanding. Additionally, many of

these terms can be searched online which will allow development teams and architects

to research the technologies more fully. The goal of this glossary, shown in Table 1-1, is

to act as a point of reference for readers of this book, in case some terminology is new to

them.

Chapter 1 The Rise of the Modern Data Warehouse

6

Table 1-1.  Common Azure Terms

Term Definition

Azure Automation A service that allows for the automated execution of PowerShell scripts

in the Azure platform. Scripts can be scheduled or executed using a

web hook. Parameters can also be passed in where needed

Azure Synapse Analytics A massively parallel processing (MPP) engine used for storing and

processing large structured datasets in Azure using the SQL server

engine over a distributed cluster of computers

Azure SQL Database A symmetric processing engine that specializes in OLTP workloads in

Azure. Equivalent to a single database in an on-premises SQL server

environment

Azure Data Factory A cloud-based integration engine capable of copying and transforming

data at scale

Azure Blob Storage A highly scalable storage platform that can hold data of all types and

sizes

Azure Data Lake Gen 2 Built on Azure Blob Storage with the addition of hierarchical

namespaces to allow for granular security with AAD integration

Azure Key Vault A REST-based cloud secret manager that is tightly integrated into the

Azure platform

Azure Cosmos DB A highly scalable document database that uses a variety of APIs to

implement different storage paradigms such as SQL, Graph, No SQL,

and key value pair

Azure Databricks A PaaS implementation of Spark, allowing you to scale and pause your

cluster with a rich notebook environment

Microsoft Power BI A market leading data visualization and end-to-end BI tool offering

excellent data exploration and collaboration capabilities

Analysis Services A semantic layer offering from Microsoft that uses Fact and Dimension

tables to create a compressed and optimized data model

Chapter 1 The Rise of the Modern Data Warehouse

7

Naming Conventions
All development projects can benefit from a rigorous naming convention in my opinion

and so a modern data warehouse is no different. A good naming convention should

supply those that read the name enough detail to understand what the object is and

roughly what it does. Additionally, a naming convention clears up any debate about what

a particular thing should be called, as the formula to produce the name already exists.

The naming convention included here is the standard recommended by Azure, which I

have simply described in a shorter format.

The name of a resource is broken down into several pieces, and so the following list

describes each section of the name. In the following, I will offer some examples of resource

names, assuming the project for the book is called “Modern Data Warehouse in Azure”:

•	 Department, business unit or project: This could be “mrkt” for

marketing, “fin” for finance, or “sls” for sales.

•	 Application or service name: For example, a SQL database would

be “sqldb,” a Synapse Analytics database would be “syndb,” an Azure

Data Factory would be “adf.”

•	 Environment: This could be “dev,” “test,” “sit,” “prod,” to name a few.

•	 Deployment region: This is the region in which the resource is

located and is usually abbreviated such that East US would become

“eus” and North Europe would become “neu.”

In Table 1-2, I have given examples of some common data warehousing resources

alongside their suggested names.

Table 1-2.  Example Azure resource names

Resource Resource Name

Azure SQL Database mdwa-sqldb-dev-eus

Azure Synapse Analytics mdwa-syndb-dev-eus

Azure Data Factory mdwa-adf-dev-eus

Azure Data Lake Gen 2 mdwaadlsdeveus

Azure Key Vault mdwa-kv-dev-eus

Chapter 1 The Rise of the Modern Data Warehouse

9
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_2

CHAPTER 2

The SQL Engine
The focus of this chapter is to break open the mysteries of each SQL storage engine and

understand why a particular flavor of Azure SQL technology suits one scenario over

another. We will analyze the underlying architecture of each service so that development

choices can be well informed and well reasoned. Once we understand how each

implementation of the SQL engine in Azure processes and stores data, we can look at

the direction Microsoft is taking that technology and forecast whether the same choice

would be made in the future. The knowledge gained in this chapter should provide you

with the capability to understand your source data and therefore to choose which SQL

engine should be used to store and process that data.

Later in this book, we will move out of the structured SQL world and discuss how we

can utilize Azure data lake technology to more efficiently work with our data; however,

those services are agnostic to the SQL engine that we decide best suits our use case

and therefore can be decided upon later. As a primary focus, we must understand our

SQL options, and from there, we can tailor our metadata, preparation routines, and

development tools to suit that engine.

�The Four Vs
The Microsoft Azure platform has a wealth of data storage options at the user’s disposal,

each with different features and traits that make them well suited for a given type of data

and scenario. Given the flexible and dynamic nature of cloud computing, Microsoft has

built a comprehensive platform that ensures all varieties of data can be catered for. The

acknowledgment of the need to cater to differing types of data gets neatly distilled into

what is known in the data engineering world as “The 3 Vs” – volume, variety, and velocity.

Any combination of volume, variety, and velocity can be solved using a storage

solution in the Azure platform. Often people refer to a fourth V being “value” which I

think is a worthy addition as the value can often get lost in the volume.

https://doi.org/10.1007/978-1-4842-5823-1_2#ESM

10

As the volume increases, the curation process to distil value from data becomes more

complex, and therefore, specific tools and solutions can be used to help that process,

validating the need for a fourth V. When attempting to tackle any one or combination of

the four Vs, it is important to understand the full set of options available so that a well-

informed decision can be made. Understanding the reasons why a certain technology

should be chosen over another is essential to any development process, as this can then

inform the code, structure, and integration of that technology.

To use an example, if you needed to store a large amount of enterprise data that was

a complete mix of file types and sizes, you would use an Azure Storage account. This

would allow you to organize your data into a clear structure and efficiently increase your

account size as and when you need. The aspects of that technology help to reduce the

complexities of dealing with large-scale data and remove any barriers to entry. Volume,

check. Variety, check.

Alternatively, if the requirement was to store JavaScript Object Notation (JSON)

documents so that they can be efficiently queried, then the best option would be to

utilize Cosmos DB. While there is nothing stopping JSON data being stored in Blob

Storage, the ability to index and query JSON data using Cosmos DB make this an obvious

choice. The guaranteed latency and throughput options of Cosmos DB mean that high-

velocity data is easily ingested. When the volume begins to increase, then Cosmos DB

will scale with it. Velocity, check. Volume, check.

Moving to a data warehouse, we know we will have a large amount of well-

structured, strongly typed data that needs to rapidly serve up analytical insight. We need

a SQL engine. Crucially, this is where the fourth V, “value,” comes into play. Datasets

being used to feed a data warehouse may contain many attributes that are not especially

valuable, and good practice dictates that these attributes are trimmed off before arriving

in the data warehouse. The golden rule is that data stored in a data warehouse should be

well curated and of utmost value. A SQL engine makes surfacing that valuable data easy,

and further to that, no other storage option can facilitate joining of datasets to produce

previously uncovered value as effortlessly as a SQL engine can. Value, check.

However, a wrinkle in the decision process is that Azure provides two types of SQL

engine to choose from; each can tackle any challenge in the four Vs; however, it is wise

to understand which engine solves which “V” best. Understanding the nuances of each

flavor of Azure SQL will help developers make informed decisions about how to load,

query, and manage the data warehouse.

Chapter 2 The SQL Engine

11

The first SQL engine we will examine in this chapter is Azure Synapse Analytics

(formerly Azure SQL Data Warehouse). This massively parallel processing (MPP)

service provides scalability, elasticity, and concurrency, all underpinned by the well-

loved Microsoft SQL server engine. The clue is certainly in the former title; this is a

good option for data warehousing. However, there are other factors that mean this may

not be the right choice in all scenarios. While Azure Synapse Analytics has a wealth of

optimizations targeted at data warehousing, there are some reasons why the second SQL

option, Azure SQL Database, may be more suitable.

Azure SQL Database is an OLTP type system that is optimized for reads and writes;

however, it has some interesting features that make it a great candidate for a data

warehouse environment. The recent advent of Azure SQL Database Hyperscale means that

Azure SQL Database can scale up to 100 TB and provide additional read-only compute

nodes to serve up analytical data. A further advantage is that Azure SQL Database has

intelligent query processing and can be highly reactive to changes in runtime conditions

allowing for peak performance to be maintained at critical times. Finally, there are

multiple deployment options for Azure SQL Database that include managed instances and

elastic pools. In essence, a managed instance is a full-blown SQL server instance deployed

to the cloud and provides the closest match to an existing on-premises Microsoft SQL

server implementation in Azure. Elastic pool databases utilize a single pool of compute

resource to allow for a lower total cost of ownership as databases can consume more and

less resources from the pool rather than having to be scaled independently.

�Azure Synapse Analytics
When implementing an on-premises data warehouse, there are many constraints placed

upon the developer. Initially there is the hassle of setting up and configuring the server,

and even if this is taken care of already, there is always a maintenance and management

overhead that cannot be ignored. Once the server is set up, further thought needs to be

applied to file management and growth. In addition, the data warehouse itself is limited

to the confines of the physical box, and often large databases have to utilize complex

storage solutions to mitigate this issue.

However, if you are reading this book, then it is clear you are no longer interested

in this archaic and cumbersome approach to data warehousing. By making the move

up to the Azure cloud, you can put the days of server management behind you, safe in

the knowledge that Microsoft will take care of all that. And what’s more, Azure does not

Chapter 2 The SQL Engine

12

just provide a normal SQL instance that is purely serverless; they have restructured the

underlying architecture entirely so that it is tailored for the cloud environment. This is

then extended further to the point that Azure Synapse Analytics is not only purpose-built

for the cloud but purpose-built for large-scale data warehousing.

�Understanding Distributions
A key factor that needs to be understood when working with Azure Synapse Analytics

is that of distributions. In a standard SQL server implementation, you are working in a

symmetric multi-processing (SMP) environment which means there is a single storage

point coupled to a set of CPUs and queries are parallelized across those CPUs using a

service bus. The main problem here is that all the CPUs need to access the same storage

and this can become a bottleneck, especially when running large analytical queries.

When you begin using Azure Synapse Analytics, you are now in a massively parallel

processing (MPP) environment.

There are a number of key differences between SMP and MPP environments, and

they are illustrated in Figure 2-1. The most important is that storage is now widely

distributed and coupled to a specific amount of compute. The benefit here is that each

node of the engine is essentially a separate SQL database and can access its own storage

separately from all the other nodes without causing contention.

Figure 2-1.  Diagram of SMP vs. MPP

Chapter 2 The SQL Engine

13

Figure 2-1 shows how in an SMP environment, there can be contention for storage

resources due to the single point of access; however, this problem is alleviated in the

MPP environment as each compute node is coupled to its own storage.

In an MPP environment, when a query gets executed, the control node sends a copy

of the query to each compute node in the engine. From here the compute node can

access its allotted storage, perform the query, and return the results back to control node

to be aggregated with the other result sets.

�The First Problem

The concept of separating compute and storage is fundamental to Azure Synapse

Analytics, and while this produces an ideal platform to run blazing fast analytical

queries, it can also begin to pose problems. As the service is built to run in the cloud,

the notion of scaling the resource to meet needs comes into play, and while it is simple

enough to add and subtract computation resource, scaling up distributed data storage is

trickier.

Let’s imagine we have ten glasses of water – these are our storage distributions. Now

let’s add two athletes that need that water as fast as possible – these are our compute

nodes. An essential consideration here is that we are only as fast as our slowest athlete; if

the water is poorly distributed and contains skew, then one athlete will have to become

idle and wait for the other to finish. Now, it would be easy for us to introduce two

additional athletes and clearly the water would be consumed twice as fast. However, as

the glasses get more and more full, we decide that we actually need 20 glasses to hold all

the water to avoid any overflow and so place 10 more glasses on the table. To avoid skew

and unbalanced consumption, we would now need to completely redistribute our water

across all 20 glasses, and this action becomes very inefficient when we want to do this

regularly.

Bringing this back to the warehouse scenario, you can see why scaling storage can

become problematic when the data needs to be evenly distributed. To get around the

issue, Microsoft has fixed the number of distributions at 60. Whatever the size your data

is, you will have to distribute it over 60 storage nodes. This ensures that the compute can

be scaled up to further parallelize the processing, but the storage layer does not need to

change at all. It is worth mentioning here that distributed tables are presented as a single

table, as if they were stored in an SMP type system.

Chapter 2 The SQL Engine

14

However, now that we know our data will be distributed 60 ways regardless of the

compute size, we are faced with the next question. How do we distribute our data? The

key thing to remember is that we want to minimize skew. To define skew more clearly,

it is the imbalance of data being stored on one storage node vs. another. Thankfully

Microsoft has made it easy for us to monitor skew with some handy Data Management

Views (DMVs), but I will introduce these fully, later. First let’s understand how we can

mitigate skew.

�ROUND ROBIN Distribution

The first way to mitigate skew is to use the ROUND ROBIN approach. At the point of

ingesting your data, Azure Synapse Analytics will assign each row to the next available

storage node in the system. Figure 2-2 shows how each new incoming row is distributed

to each compute node sequentially.

Figure 2-2.  Diagram of data begin distributed row by row onto each distribution

The syntax to write an Azure Synapse Analytics table that uses Round Robin

distribution is documented in Listing 2-1.

Chapter 2 The SQL Engine

15

Listing 2-1.  Data definition language (DDL) statement to create a table with

Round Robin distribution

CREATE TABLE myTable

 (

 id int NOT NULL,

 firstName varchar(20),

 lastName varchar(20)

)

WITH (

 DISTRIBUTION = ROUND_ROBIN,

 CLUSTERED COLUMNSTORE INDEX

);

This approach eliminates skew as it is completely removed from the context of your

data. You guarantee an even distribution. A simple sum of a column grouped by another

column would perform fine because each node can determine its result and pass it back

to the control node to be aggregated. However, at some point the data will need to be

joined back together, only now your data is spread far and wide across the warehouse

and importantly the server does not know which storage node holds each record.

To analyze the problem further, we can use the scenario of joining a fact table to a

dimension table. To perform the join, each node needs to obtain the dimension rows

from the other nodes in the warehouse and store that data on its own storage. Once it

has those rows, it can perform the join and return the result. This process is called data

movement and is a large cost on the query plan. Further, this movement is conducted

at query runtime, and therefore you must wait for these additional steps to take place

before any results can be obtained. Unfortunately, this movement is performed for each

query that requires it, and the result is removed once the query completes.

�HASH Distribution

If we are to avoid the problems of data movement, we need to distribute our data more

intelligently. The method for this is to use HASH distribution, which will create a hash of

a columns value and locate matching values on the same node. As shown in Figure 2-3,

when Hash distribution is used, each row is hashed using a set key and then grouped

with other rows that have the same hashed value.

Chapter 2 The SQL Engine

16

The syntax to write an Azure Synapse Analytics table that uses Hash distribution is

shown in Listing 2-2.

Listing 2-2.  DDL code to create a table with HASH distribution on the “id” column

CREATE TABLE myTable

 (

 id int NOT NULL,

 firstName varchar(20),

 lastName varchar(20)

)

WITH (

 DISTRIBUTION = HASH (id),

 CLUSTERED COLUMNSTORE INDEX

);

To use the fact and dimension scenario again, if all the dimension and fact rows are

stored on the same storage node, then no data movement is required. All the joining

can be performed in isolation. For this to work, however, the following things need to be

considered:

Figure 2-3.  Diagram of data being distributed using Hash keys

Chapter 2 The SQL Engine

17

•	 Which column to distribute on?

•	 What is the cardinality of that column?

�The Distribution Column

If we are to use the Hash distribution approach, then we must plan which column we

will use to distribute our data. For a column to be considered as a Hash distribution

column, it should contain the following properties:

•	 Low cardinality

•	 Even distribution

•	 Often used in joins

•	 Not used in filters

To expand on each of these points, a column with a very low cardinality (less than

60 unique values) will not use our entire storage allocation as the server will not have

enough values to distribute the data on. To avoid this and maximize performance,

an ideal number would be over 600, but really the more the better. Secondly, an even

distribution means that we can still eliminate the problem of skew. It is unlikely to be

as smooth as a Round Robin distribution, but by analyzing the data upfront, we should

get an idea of whether there is a strong favor for some particular values over others, and

if there is, then it would not be a good distribution column. If the chosen hash column

is often used in joins, for example, customer or product, then the likelihood of the

server being able to avoid data movement increases dramatically. Finally, if the column

is commonly used as a search predicate, then you will be limiting the opportunity for

parallelism as the filter could remove the need to run the query on certain nodes of the

warehouse.

If none of your columns have more than 60 unique values, then you should explore

the possibility of creating a new column that can be a composite of several columns in

the table, thereby gaining a higher cardinality. To remove the need for data movement,

you should use this column in the join arguments. You may also notice that in order to

understand the joins and filters that will be commonly used, you will need to establish

the types of queries being run on the warehouse by your users. Once you have this

knowledge, then you can plan your distribution accordingly.

Chapter 2 The SQL Engine

18

�How to Check if You Have the Right Column

Ultimately, if you are designing your warehouse with Hash distribution in mind, you

will choose a column to distribute on. Once you have this and have loaded your data,

you will need to determine if the distribution played out like you expected or whether

some unforeseen aspect of the data has made it not a good column for distribution. To

check your skew and distribution, there are Data Management Views (DMVs). These are

system views put together by Microsoft that provide easy insight into the inner workings

of your server. The following SQL code can be used to show one of these DMVs:

DBCC PDW_SHOWSPACEUSED('dbo.myTable');

From the information returned, you may determine that the designated column

is not the most appropriate, and in that case, you can easily redistribute the data by

redefining your table with a CREATE TABLE AS SELECT (CTAS) statement.

�REPLICATED Distribution

A third option for data distribution is to utilize the REPLICATED distribution. Rather

than distributing data across the server, a full copy of the table is placed on each

compute node of the engine, not storage node. When a query is executed that requires

joining to that table, data movement can be spared as the data is already in the right

place. In the context of a warehouse, replicated tables can be very effective when used

for smaller dimension tables (less than 2 GB on disk – more on how to determine this

later). When designing the warehouse, there is likely to be some tables that will be joined

using a column that is not used for distribution. In these instances, data movement

would be required unless one of the tables was replicated, in which case the data is

already accessible to the compute node. The syntax to write an Azure Synapse Analytics

table that uses Replicated Distribution is as shown in Listing 2-3.

Listing 2-3.  DDL statement to create a table using replicate distribution

CREATE TABLE myTable

 (

 id int NOT NULL,

 firstName varchar(20),

 lastName varchar(20)

)

Chapter 2 The SQL Engine

19

WITH (

 DISTRIBUTION = REPLICATE,

 CLUSTERED INDEX (lastName)

);

Note that in the preceding DDL statement, a clustered index is chosen over a

clustered column store index. This is because a clustered index is more performant than

a heap; however, a table that is being replicated is not likely to have enough rows to gain

any real benefit from the clustered column store index used for the HASH and ROUND_

ROBIN tables.

As with all design decisions, however, there are considerations that need to be made.

In the case of replicated tables, it is important to consider the logistics of replicating data

across each compute node. The goal is to reduce the number of rebuilds for that table,

and the operations that cause rebuilds are the following:

•	 Data is inserted, deleted, or updated.

•	 The warehouse is scaled up or down.

•	 The definition of the table is changed.

The rebuild itself is twofold. When the data is first updated, then the table is copied

to a master version of the table. This ensures that the insert, delete, or update operation

can be completed most efficiently. Only once the replicated table is selected from will

the data be further copied onto the compute nodes in the server. On the first read of the

data, the query will run against the master table while the data is copied asynchronously

to the compute nodes. After this, any subsequent queries will run against the replicated

copy of the data.

Hopefully this explanation of the different distribution types available through Azure

Synapse Analytics offers some insight into the benefits of massively parallel processing

and some of the challenges that need to be overcome. Without doubt, one of the

benefits of the cloud computing model is the separation of compute and storage and the

flexibility this can provide.

Chapter 2 The SQL Engine

20

�Resource Management
Understanding how to manage the resources allocated to an Azure Synapse Analytics

instance is vital to ensuring the engine performs well for the users it serves but also does

not cost the Earth to run. Ultimately the amount of compute assigned to your server is

determined by the number of Compute Data Warehouse Units (cDWUs). This setting is

a blended metric that comprises CPU, memory, and I/O into a normalized figure that

can be used to determine performance and is also known as the service objective. As a

starter, the smallest cDWU setting for an Azure Synapse Analytics instance is cDWU 100.

This equates to one compute node with 60 GB of memory and is therefore responsible

for all 60 storage distributions. This could be scaled up to a cDWU 500, meaning that you

still have a single compute node in charge of 60 storage distributions but now has 300 GB

of memory. As you get past cDWU 500, you begin to increase the number of compute

nodes, for example, a cDWU 5000 is 10x more powerful than the 500, meaning you would

have 10 compute nodes aligned with 6 storage nodes, each with 300 GB of memory. The

highest setting is cDWU 30000, meaning that each of your 60 compute nodes is attached

to a single storage node with 18,000 GB of memory available.

�Resource Classes

Given the amount of resource allocated by the service objective, it is up to you to further

tweak how this is utilized in the server to ensure maximum performance. The first concept

to grasp is that of resource classes. The purpose of resource classes is to pre-assign the

amount of compute that is assigned to each query so that you can plan the load on your

server more accurately. The two levers that are controlled by resource classes are that of

concurrency and resource utilization, and the interaction between the two is such that a

larger resource class will increase the resource utilization per query but limit the amount

of concurrency available to the server. A smaller resource class does the opposite and

will limit the amount of resource provided to a query but will increase the concurrency,

meaning more queries can be run at the same time. Concurrency slots is the name given to

the amount of concurrency available to the server, and this is explained later in the chapter.

The implementation of resource classes is done though user security roles which

have been preconfigured on the server for you to use. In practice there are two types of

resource class:

•	 Static resource classes

•	 Dynamic resource classes

Chapter 2 The SQL Engine

21

�Static Resource Classes

A static resource class provides a fixed amount of compute to a query regardless of the

service objective, meaning that as an Azure Synapse Analytics Cluster scales up, the

amount of concurrency available to run queries is directly increased. There is a range of

sizes to choose from ranging from staticrc10 up to staticrc80, and each level assigns an

increasing amount of concurrency slots to a query. Note that the amount of concurrency

slots assigned to a query does change as you scale up an Azure Synapse Analytics.

Within Azure Synapse Analytics, concurrency slots are akin to reserving seats at a busy

restaurant. Each query “books” a determined amount of concurrency slots, and that

number directly affects the number of other queries that can be run at the same time. As

soon as that query completes, the concurrency slot goes back in the pool. The static type

of resource class is tailored for scenarios where the data volumes are well understood

and consistent. Let’s look at a few scenarios.

If you are using an Azure Synapse Analytics that is scaled to cDWU1000c, you will

have 40 total concurrency slots. This means your maximum number of queries run

at any one time is 32. This could be 32 analyst type users running queries under the

staticrc10 resource class which, at DWU1000c level, assigns 1 concurrency slot per

staticrc10 query. However, not all of your users will be analysts, and some may be “load”

users – specific user accounts configured to run batch loads within the warehouse. These

loads may be large, and for the query to execute in good time, you can assign your load

user to a larger static resource class so that more memory is assigned for the query. If we

use a staticrc60, then our query will be gifted 32 concurrency slots, taking up a lot more

of the available resources. While this query is running, all queries that require more than

eight concurrency slots will be queued until the query completes.

Now let’s say you have a second load that needs to be processed regularly and

efficiently alongside your first load. To allow this to happen, you must scale the

warehouse up. If we were to choose a DWU3000c setting, then we now a have 100

concurrency slots to play with, and because a staticrc60 query consistently assigns 32

concurrency slots, we know we can safely run two of these queries side by side with

some additional head room for user queries on top.

Chapter 2 The SQL Engine

22

�Dynamic Resource Classes

Dynamic resource classes work very differently, and rather than assigning the same

amount of concurrency regardless of the service objective, they actually increase the

amount of concurrency per resource class as the Azure Synapse Analytics instance

scales. As a result, there are only four dynamic resource classes:

•	 smallrc: 3% of available concurrency (the default for all users)

•	 mediumrc: 10% of available concurrency

•	 largerc: 22% of available concurrency

•	 xlargerc: 70% of available concurrency

To use the same example, an Azure Synapse Analytics scaled to DWU1000c will allow

22% of concurrency slots to a largerc workload. Given that there are 40 available slots,

this equates to 8 being assigned to the query. However, if we found that the queries being

run under the largerc were becoming slow, we could again increase the service objective

to DWU3000c and now our query will be granted over 3x the amount of resource with 26

concurrency slots. While this will ensure our query completes faster, it does not mean

that more queries can run at the same time.

Obviously in a full implementation of an Azure Synapse Analytics, you would expect

to see a mix of both types of resource class being used – some static for predictable and

consistent workloads and perhaps some dynamic for less routine, occasional workloads.

�Pausing and Resuming the Warehouse

Because the compute and storage resources of the warehouse are not tightly coupled, it

means that you can have full control over the scale and even status of the warehouse. As

a user, you can scale the data warehouse at peak times to ensure maximum processing

power and then scale the server back down when processing is completed. You can

then turn the server off completely at night and weekends if required so that the cost

of your warehouse can be dramatically reduced. Bear in mind that while compute can

be paused, storage cannot, and this will be charged for regardless of compute scale.

As mentioned previously in this chapter, scale operations can have side effects and so

should be planned for in advance and not done on a whim. Additionally, pausing and

resuming the warehouse can take time, and this should be planned for when designing

the warehouse.

Chapter 2 The SQL Engine

23

The operation itself can be performed either through the Azure portal or by using

a REST API call from Azure Data Factory. Figure 2-4 points out the Pause/Resume

button.

Figure 2-4.  Diagram of portal button to pause and resume warehouse

Figure 2-5.  A Data Factory pipeline showing how to pause a Synapse Analytics
instance

The Data Factory pipeline shown in Figure 2-5 demonstrates a method to pause or

resume an Azure Synapse Analytics instance using Data Factory orchestration of REST

API calls.

	 1.	 Activity one is a Web activity that obtains a bearer token. This is

required in order to authenticate the request to pause or resume

the warehouse. The configuration of this activity is shown as

follows:

URL: https://login.microsoftonline.com/<tenant-id>/oauth2/

token

Chapter 2 The SQL Engine

https://login.microsoftonline.com/<tenant-id>/oauth2/token
https://login.microsoftonline.com/<tenant-id>/oauth2/token

24

Method: POST

Headers:

"Content-Type": "application/x-www-form-urlencoded"

Body: grant_type=client_credentials&client_id=<service-

principal-client-id>&client_secret=<service-principal-

secret-key>&resource=https%3A%2F%2Fmanagement.azure.com

	 2.	 Activity 2 is also a Web activity and posts the request to the Azure

management API, using the previously fetched bearer token for

authentication. The configuration for this activity is shown as

follows:

URL: https://management.azure.com/

subscriptions/<subscription-id>/resourceGroups/<resource-

group-name>/providers/Microsoft.Sql/servers/<sql-server-

name (without .database.windows.net)>/databases/<database-

name>/pause?api-version=2017-10-01-preview

Method: POST

Headers:

"Content-Type": "application/json"

"Authorization": @concat('Bearer ', activity('Obtain Bearer

Token').output.access_token)

Note T he “Authorization” header must be entered as dynamic content so as to
use the value from the previous activity. You can access this pane using “Alt + P”.

Body: {} (A valid body is needed to validate Data Factory but not

for the actual request.)

This pipeline could then be triggered using a wall clock type schedule or even by a

custom invocation. These types of invocations will be discussed later in the book.

Chapter 2 The SQL Engine

https://management.azure.com/subscriptions/<subscription-id>/resourceGroups/<resource-group-name>/providers/Microsoft.Sql/servers/<sql-server-name
https://management.azure.com/subscriptions/<subscription-id>/resourceGroups/<resource-group-name>/providers/Microsoft.Sql/servers/<sql-server-name
https://management.azure.com/subscriptions/<subscription-id>/resourceGroups/<resource-group-name>/providers/Microsoft.Sql/servers/<sql-server-name
https://management.azure.com/subscriptions/<subscription-id>/resourceGroups/<resource-group-name>/providers/Microsoft.Sql/servers/<sql-server-name

25

A further option for scaling your Azure Synapse Analytics instance is to use Azure

Automation. This provides a service that allows you to execute run books – read

PowerShell scripts, on a schedule or using a web hook API. It is important to consider

that the warehouse can take a short while to come back online, and while it is paused, no

queries can be run against the data, nor can you access the data by other means.

�Workload Management
Another feature of Azure Synapse Analytics is that of workload management and

importance. Importance is a feature that allows specific users to be tagged as higher

priority, and therefore this affects the order in which the server processes queries. As

mentioned earlier, if there are no concurrency slots remaining, then queries enter into

a queue and this queue is built up in a first in, first out (FIFO) manner, meaning that the

first query to queue will ordinarily be the first query to be processed.

However, let’s imagine a scenario where you have two users querying your busy

warehouse and are waiting in the queue. Let’s say one user is an analyst and the other is

the CEO who has been tagged with high importance. In this scenario, even if the analyst

submitted their query before the CEO, the CEO’s query will be pulled off the queue and

executed first.

Additionally, this importance feature can affect how the server handles locking.

Locking is used throughout the warehouse to ensure consistent reads and is a

fundamental concept in any database engine. If we have a table that is regularly updated,

then there will often be a lock in place on this table, thereby blocking other processes

until the lock is released. Without importance in place, queries will be handed the lock

in a chronological order. However, this can be changed with importance, ensuring that

the important queries obtain the lock prior to the normal queries, thereby ensuring the

important queries complete quicker.

Finally, importance will even permeate into the optimizer, as this is the part of

the Azure Synapse Analytics instance that estimates the size of each job and decides

when to execute them. Usually the optimizer prioritizes throughput and will therefore

execute jobs as soon as a sufficient amount of resource is available; however, in some

scenarios, this can cause big delays for larger processes. If there are a number of small

queries running and some further small queries in the queue, then as the small queries

complete, the small queued queries will be executed because the required resources

match up. If a large query enters the queue, it will have to wait until enough resource

is available at any given time before it can execute. However, if the query is tagged with

Chapter 2 The SQL Engine

26

importance, then the optimizer is aware that it needs to make room for the larger query

and will avoid continually pulling smaller jobs off the queue. This ensures that required

amount of resource is available quicker.

�PolyBase
PolyBase is a technology that provides a seamless interface between your data lake

platform and your Azure Synapse Analytics instance. The data in your data lake can be

exposed to your Azure Synapse Analytics instance as an external table, meaning the data

within the file or files can be operated on as if it were a table in the database.

To do this, there are a couple of additional components required which are

•	 Database scoped credential

•	 External data source

•	 File format

The database scoped credential is used to authenticate the Azure Synapse Analytics

instance into the data lake. The permissions here should be tightly controlled and well

planned out. Multiple versions of these credentials may be needed to ensure the correct

granularity. The pieces of required information are the service principal id (and its

accompanying authentication end point) and the secret or key that is created for that

service principal. The syntax for the credential creation is shown in Listing 2-4.

Listing 2-4.  The syntax used to create a database scoped credential

CREATE DATABASE SCOPED CREDENTIAL DataLakeCredential

 WITH

 IDENTITY = {service principal id}{OAuth End Point},

 SECRET = {service principal secret key};

The next requirement is the external data source. This now makes the connection

to your data lake and is used to describe the type of external source, as data lake is one

of a number of options, while also supplying the root path of the data. It is important

that the path specified here only goes as far as the top level required as further directory

navigation can be added on when using the data source from a query. This data source

also references the database scoped credential, so it is important to ensure that the

service principal you use has the access that is required for the external data source.

The syntax for the external data source is shown in Listing 2-5.

Chapter 2 The SQL Engine

27

Listing 2-5.  The syntax used to create an external data source for the data lake

CREATE EXTERNAL DATA SOURCE [DataLakeSource]

 WITH (

 TYPE = HADOOP,

 LOCATION = �N'abfss://{container name}@{account name}.dfs.core.

windows.net',

 CREDENTIAL = [DataLakeCredential])

Finally, we need to specify a file format so that our Azure Synapse Analytics

understands how to read the data it finds in the lake. Here we can set a number of

options about the files we want to read. A key point to bear in mind here is that the file

format cannot be parameterized, so it is important to read from a standardized layer in

your data lake so that you can reduce the number of file formats needed. The syntax for

creating the file format is shown in Listing 2-6.

Listing 2-6.  The syntax used to create a file format that reads pipe delimited data

and formats dates into the UK standard format

CREATE EXTERNAL FILE FORMAT PipeDelimitedText

WITH (

 FORMAT_TYPE = DELIMITEDTEXT,

 FORMAT_OPTIONS (

 FIELD_TERMINATOR = '|',

 DATE_FORMAT = 'dd/MM/yyyy',

 STRING_DELIMITER = '"'

)

);

We can now very easily ingest data into our warehouse by using these components

to access data in the lake in a secure and robust way. Given these three elements, we can

utilize external tables to expose the data in the lake as if it were a standard SQL table.

Alongside this external table, we can also determine what happens to rows that do not fit

the definition of our external table and where they should be landed. The feature allows

us to easily handle bad rows, whether they be caused by data type violation or additional

columns. Listing 2-7 shows how you can define the external table so that it uses the

previous three components to access data in the lake.

Chapter 2 The SQL Engine

28

Listing 2-7.  The syntax to define an external table that reads from the “Read_

directory” which is a subfolder of the root defined in the external data source.

Additionally, we have specified that PolyBase should fail the ingestion if 100 or

more rows are invalid, writing the bad rows into the “Reject_directory.”

CREATE EXTERNAL TABLE [dbo].[ExternalTable]

(

 [Col_one] TINYINT NULL,

 [Col_two] VARCHAR(100) NULL,

 [Col_three] NUMERIC(2,2) NULL

)

WITH

(

 DATA_SOURCE = DataLakeSource

 ,LOCATION = '/Read_directory'

 ,FILE_FORMAT = PipeDelimitedText

 ,REJECT_TYPE = VALUE

 ,REJECT_VALUE = 100

 ,REJECTED_ROW_LOCATION= '/Reject_directory'

)

The preceding REJECT_TYPE argument can be defined as “VALUE” or “PERCENTAGE.”

The value reject type means that PolyBase will fail reads from this table if the absolute number

of rows specified in the REJECT_VALUE argument is exceeded. Alternatively, if the type is set

to percentage, then the read will fail if the percentage of rows set are invalid. Additionally, you

must set the REJECT_SAMPLE_VALUE which tells Azure Synapse Analytics how many rows to

attempt to read as a batch before moving on to the next batch. If the batch size is set at 1000

and the reject value is 10 (note, not 0.1), then Azure Synapse Analytics will read in the first

1000 rows, and if more than 100 of those rows fail, the batch will be failed. If less than 100 rows

fail, then Azure Synapse Analytics will complete the batch and begin reading the next 1000 rows.

In order to finally persist this data into the warehouse, we need to land the data

in an internal table. An internal table can be treated exactly the same as a regular SQL

table; however, the data is of course distributed across the 60 storage nodes as defined

in the table definition. The way to do this is to utilize the CREATE TABLE AS SELECT

statement which allows you to create a table as the output of a select statement. The

syntax in Listing 2-8 shows how you can select the contents of the external table defined

previously (this is a file in the data lake) and land it in an internal table.

Chapter 2 The SQL Engine

29

Listing 2-8.  The CTAS syntax to read data from the external table

CREATE TABLE dbo.InternalTable

 WITH

 (

 DISTRIBUTION = ROUND_ROBIN

)

 AS

 SELECT

 Col_one

 ,Col_two

 ,Col_three

 FROM dbo.ExternalTable

An important point to emphasize here is that this method to ingest data into the

warehouse is the only to load data in bulk in a minimally logged manner. All other

methods, such as SSIS, Data Factory, and others, push data through the control node

which thereby causes a bottleneck. As a result, this route for loading data should be used

before all others to ensure data is processed as efficiently as possible.

�Azure SQL Database
Azure SQL Database (Azure SQL DB) is a major cloud-hosted database technology

offering from Microsoft and can be thought of as a Platform as a Service version of a

traditional on-premises SQL database. There are of course major alterations to the way

the service is deployed so that as a user, you get the much beloved SQL engine combined

with the benefits of it being cloud hosted. The point to make clear upfront is that an

Azure SQL DB is a single database ONLY, there is no server instance surrounding the

database, and this means no access to the SQL Agent, PolyBase, cross database queries,

and others; however, there are alternative deployment options that make some of those

things available. When creating an Azure SQL Database, you will see a logical server will

be created; however, this is a namespace only and holds none of the items mentioned

previously. This book is focusing on cloud data warehousing, and it may seem confusing

why a developer would not just choose Azure Synapse Analytics when designing their

architecture. This section will outline the reasons why an Azure SQL DB may be a better

fit for some scenarios and speak about the features that make it so.

Chapter 2 The SQL Engine

30

�The Cloud-Based OLTP Engine
Many data warehouse developers will be familiar with the difference between online

transactional processing (OLTP) systems and online analytical processing (OLAP)

systems and when to use which system. Generally speaking, an OLAP engine would be

preferable for a SQL data warehouse, particularly one used for decision support, because

most queries will be using aggregations and grouping to compute large-scale calculations,

and therefore the engine is tuned for enhanced query performance over transactional

inserts and updates. An OLTP type database would be more commonly used as a source

of data for a warehouse and may be the focal point of a great number of transactions,

often at very large scale and volume. That said, beneath a threshold, there is no reason

why a standard OLTP type system cannot handle the analytical queries presented by a

user; in fact for smaller data warehouses, this may be a more appropriate option.

�The Benefits of Azure SQL Database
When designing a data platform solution, there are several points that need to be

considered, and, in a number of categories, Azure Synapse Analytics falls short when

compared to Azure SQL Database. This is not to say that workarounds cannot be created;

however, some of the following benefits may be a really critical requirement. The rest

of this section discusses those concepts that may nudge Azure SQL DB in front of Azure

Synapse Analytics when designing a data platform for analytics.

�Improved Concurrency

One element that is perhaps taken for granted in an on-premises SQL server

implementation is that of a high level of concurrency. Having the ability to process

a great number of queries at any given time is often essential, given the nature of a

database. However, Azure Synapse Analytics has a limit on the number of concurrent

requests, and even at the highest service objectives, this limit is 128 queries at one

time. Just to be clear, this means that no more than 128 queries can be run at the same

time on Azure Synapse Analytics and often this number is smaller, for example, a

DWU1000c data warehouse has a concurrency limit of 32! If there is a large analytical

community looking to use the warehouse alongside a host of report and load users,

these concurrency slots will quickly run out and processes will be throttled unless you

can afford to scale up. Alternatively, you could review the option of using Azure SQL DB

Chapter 2 The SQL Engine

31

which, due to the nature of being a write optimized OLTP engine, is designed to process

a high level of transactions concurrently. Because the engine is built using a traditional

SMP architecture, the processing route for queries is much simpler; they are evaluated

by the optimizer and then passed to the execution service instead of, as in the case of

Azure Synapse Analytics, being distributed across a network of compute nodes to then

be aggregated back together once all nodes have completed.

�Trickle-Fed Data Warehouses

Before embarking on any data warehouse project, it is important to understand the

data that will be loaded and the queries that will be performed. Once you have a good

understanding of this, you can begin to make justified decisions about how you will

load and process the data in your warehouse. In some cases, there may be the need to

ingest very large files regularly and blend this with equally if not larger tables of existing

data; this is where Azure Synapse Analytics comes in handy. However, there can also be

instances where smaller more frequent files are common, and this is where an Azure

SQL DB may become a more desired option.

In Azure Synapse Analytics, the CREATE TABLE AS SELECT (CTAS) statement is the

go-to method for loading tables. This approach means that you literally recreate the table

every time using the result of a SELECT statement. To produce the effect of UPDATES

and INSERTS, you produce the data in multiple SELECT statements and union them

together to create the entire table in one query. While this is very efficient for blending

large datasets, it becomes very inefficient if you only need to add a few records – a simple

INSERT and UPDATE would suffice. While an INSERT and UPDATE both exist in Azure

Synapse Analytics, they do not automatically create statistics and therefore any stored

procedures using these need to do that manually and this additional complexity makes

the pattern cumbersome and difficult to maintain. In the case of Azure SQL DB, we can

easily reuse existing logic if it exists or create procedures using common patterns and

well-understood processes such as upserts or merges.

Further to this, data warehousing is no longer just about processing regular, batched

up source files; a warehouse should be able to accept event-driven or streaming data

and often these records can arrive in micro batches (one or so records at a time). Were

we to use an Azure Synapse Analytics, this would mean rebuilding the entire table every

few seconds or so just to incorporate a handful of records. Obviously, this approach is

completely inefficient; however, an Azure SQL DB would handle these micro batches

easily and allow for a wider variety of data ingestions patterns.

Chapter 2 The SQL Engine

32

�Managing Slowly Changing Dimensions

Often the issue of slowly changing dimensions is one to be tackled prior to ingesting any

data because it is important to document which dimensions will have slowly changing

elements and what type is needed. To allow for conformed understanding, the three

main types are

•	 Type 0: Data is not affected at all and no updates are made. The

dimension is append only.

•	 Type 1: Data is simply overwritten so that the latest state of the record

is maintained in the dimension table.

•	 Type 2: The latest version of the record is inserted into the dimension

table and the historical record is marked to indicate it is no longer

current. This can either be with a set of data bounds or an “is current”

flag.

While there are additional types that can be implemented, the logic can be derived

from one of the preceding three options. When using Azure SQL DB, the implementation

logic of slowly changing dimensions becomes simple because very often we can write

a single statement that can take care of the update in the case of Type 1 or a collection

of insert and updates to cover off Type 2. Conversely, in Azure Synapse Analytics, the

statement needs to be comprised of a number of SELECT statements that then get

unioned together to form a final result which is the entire table. This means that even

records that are not changing need to form part of the SELECT statement. Additionally,

this becomes more awkward to debug and report on as part of a warehouse processing

routine because the logic is not broken out into steps as is the case in Azure SQL DB.

�Intelligent Query Processing and Tuning

Another feature of Azure SQL DB that makes this technology stand head and shoulders

above others is that artificial intelligence has been integrated directly into the SQL

engine to allow for adaptive query processing and automated performance tuning. The

primary reason for this feature is to compensate for poor statistics in the database and

ensure that a query is as performant as can be, even once the plan has been sized and

handed off to the executer. Given a warehouse implementation is all about the ability

to query and read data, this feature helps to compensate for the fact that there are no

multiple compute nodes processing the query and instead allows for the warehouse to

Chapter 2 The SQL Engine

33

be proactively pursuing the best possible performance. The intelligent query processing

and tuning is manifested in a number of features of the SQL engine which are available

in all deployments of Azure SQL DB.

�Automatic Tuning

The first feature is automatic tuning, which learns from the collective pool of Azure

SQL Databases and feeds the insights gathered back into your target databases at times

of low activity. The feature itself can be turned off entirely or applied to a level where

recommendations are generated but not applied. However, in the full implementation of

automatic tuning, the service will generate tuning suggestions and automatically apply

them for you with the additional benefit that the engine will verify the benefit of the

recommendation and, if there is no discernible improvement, will roll back the change.

The recommendations will be made up of CREATE and DROP INDEX suggestions and

FORCE LAST GOOD PLAN suggestions. The CREATE INDEX element will identify

missing indexes and create them while also verifying the improvement to the workload,

whereas DROP INDEX will actively remove surplus or duplicate indexes. The FORCE

LAST GOOD PLAN element will identify queries that are using a query plan that is not as

performant as a previous plan and will query using the better plan instead of the more

recent one.

�Adaptive Query Processing

Adaptive query processing is a major change to the way a query is executed in SQL

server. In a usual query process, the plans are produced and sized with the smallest one

being chosen and executed; however, there can be times when poor statistics mean

that the query was incorrectly sized and is therefore not the most efficient. Despite this,

the optimizer continues to run the query based on the plan. Adaptive query processing

allows for the engine to adjust the subsequent plan based on the row counts that

are accumulated throughout execution and becomes effective through a number of

individual features which are

•	 Batch mode memory grant feedback

•	 Row mode memory grant feedback

•	 Batch mode adaptive join

•	 Interleaved execution

Chapter 2 The SQL Engine

34

�Batch Mode Memory Grant Feedback

The memory grant controls the amount of memory that is given to a query to process

and is estimated prior to the execution of the query by the optimizer. The reason for this

is to ensure that the query has enough memory to execute efficiently but not too much to

drastically reduce concurrency within the database. The value is then stored alongside

the plan in the plan cache. However, if the memory grant has not been correctly

estimated, then the performance hit to your query can be devastating. A grant that is

too low will cause spills onto disk which becomes very expensive compared to reading

directly from memory. Alternatively, an oversized estimate will unnecessarily reduce the

amount of parallelism and resource available to other activities in the database.

With this feature enabled, the SQL engine will review the estimated memory grant

vs. the actual required to read all rows into memory and update the number attached to

the plan in the cache. This means that subsequent queries will use the updated estimate

rather than the initial one that was incorrect.

The same feature is also available for row mode queries; however, at the time of

writing, this is in preview.

�Adaptive Joins

The adaptive join feature allows the SQL engine to choose a join mode after the first

input has been scanned, meaning that there is a realistic evaluation of rows before

deciding on the type of join to be performed. The types in question are Hash mode,

which is the default, and Nested loop mode. With this feature enabled, a threshold is put

in place to determine whether the number of rows is small enough to be executed better

by a Nested loop type join or whether the plan should continue to use Hash mode. If the

process does in fact switch from Hash mode to Nested loops but has already read in rows

from the input, then these rows are preserved and do not have to be read again; although

there is still a slight overhead in the use of adaptive joins, this is still a very useful feature

for workloads that often vary in size.

�Interleaved Execution

As mentioned previously, a standard query plan will be produced by the optimizer and

then run by the executor; however, this linear mode of planning and running queries

can cause performance issues when the estimates are not correct. Currently, without

Chapter 2 The SQL Engine

35

interleaved execution, Multi-statement Table-Valued Functions would always use a

fixed cardinality estimate of 100, regardless of the actual number. This often means

there can be large discrepancies between that estimate and the actual number of rows;

however, interleaved execution allows for the optimization process to be paused, a better

estimate to be gathered and then resumed with that estimate in hand, thereby informing

the optimizer of how to write the subsequent plan in the best way. This means that

subsequent join algorithms are more efficient and memory spills are far less likely to

occur.

�Hyperscale
By this point, I am sure you can see that there are many reasons why an Azure SQL

Database may provide a richer feature set than Azure Synapse Analytics and certainly

an on-premises solution. However, a standard deployment of Azure SQL DB does have

an upper limit on the size of your database which is currently set at 4 TB, not tiny, but

not enough by many standards, and that is why Microsoft has completely redesigned the

architecture from the ground up to be entirely tailored to the cloud. The new approach

is termed Azure SQL Database Hyperscale and is the latest addition to the V-Core

purchasing tier. The technology has been tested with databases up to 100 TB although

this is not a technical limitation and Microsoft actively encourages customers with larger

databases to push that limit further, claiming confidently that the Hyperscale technology

will cope with it.

The reason that Hyperscale databases can scale to such large capacities is because

the entire architecture of the resource has been adapted to exploit the cheap storage

and flexible compute resources that are made available when working in a cloud-based

platform. In much the same way that Azure Synapse Analytics separates storage from

compute, Azure SQL DB Hyperscale does the same. This means that storage can scale

linearly, but the compute power used to process that data can grow and shrink as

required. Despite this similarity, the data in Azure SQL DB Hyperscale is not distributed

like in Azure Synapse Analytics. The architecture still facilitates an SMP approach to data

access which means that storage is essentially held in one place and only written to using

a single master compute node.

Chapter 2 The SQL Engine

36

�The Hyperscale Architecture

To start from the top of the Hyperscale stack, we have the compute nodes. The compute

nodes house the relational engine, SQL server, and control all interaction with the rest of

the Hyperscale service. There will always be a single primary compute node that handles

read and write transactions for the database; however, this can be supported by multiple

read-only secondaries that can be used as hot secondaries for failover functionality but

can also handle read-only workloads – such as hefty analytical queries. Additionally,

these compute nodes utilize SSD caches, named Resilient Buffer Pool Extensions

(RBPEX), so that the time to fetch page data can be minimized. A key point of interest

relating to the purpose of this book is the concept of read-only secondaries. These can be

utilized by specifying the Application Intent parameter as true in the connection string,

indicating to the service that this is a read-only query and can therefore be routed to the

read-only secondary nodes rather than the read-write master node.

Supporting the compute nodes is a set of page servers, which are really what allow

Hyperscale to reach the scale that it does because there is no finite number of page

servers in a given Hyperscale implementation. As the database continues to grow, more

page servers are allocated to the service. Each page server handles a 1 TB subset of the

data pages and delivers them to the compute nodes on demand, additionally making

use of the RBPEX caching to avoid network round trips and support the low latency

guarantees made by Microsoft. Importantly, the page servers are allocated 1 TB at a time,

so each time a new page server is created, it will handle the next 1 TB of data; however,

the service itself is billed in 1 GB increments so you do not pay for excessive storage

although it is allocated to your service anyway. The other role of the page servers is to

ensure the pages are kept up-to-date by replaying log transactions from the log service.

At the lowest level is remote storage, which is updated by the page servers and is

the final place for data storage and is therefore used to support the snapshots that are

created for backups and to enable Accelerated Disaster Recovery.

The final piece of the Hyperscale puzzle is the log service which again is

implemented very differently to an on-premises transaction log. In an on-premises

implementation of SQL server, the server itself will maintain a log file that continues to

populate until it reaches a certain threshold and then begins to overwrite the previous

log items, giving the impression that the log is circular. With Hyperscale, this is not the

case. Because cloud storage is cheap, the log can easily be portioned off and stored in

long-term cold storage, meaning that the log storage is practically infinite. The other

Chapter 2 The SQL Engine

37

key role of the log service is to accept transactions from the primary compute node and

apply those changes to the secondary compute nodes and the pages stored on the page

servers. As you can imagine, having to wait for the log service to complete that level of

activity would add significant latency to a query response so the log service is designed

so that there is essentially a landing area that persists the transaction record into a cache.

Once persisted, the transaction is considered to be logged and then the replication of

the transaction to compute nodes and page servers is done in the background, without

delaying the query response.

With this architecture in mind, the flow of data through the Hyperscale service

can be somewhat convoluted. In the first instance, data would be stored in an RBPEX

cache on the compute nodes and therefore accessed very quickly. Alternatively, if the

data is not on the compute node, then the read may have to go back to the page servers

to fetch the data from there. When doing writes, the transaction is passed from the

primary compute node to the log service. It is then the role of the log service to apply

the transaction to the secondary compute nodes and the page servers; finally the page

servers apply the change to the remote Azure Storage files.

�Accelerated Disaster Recovery

A key concern for anyone managing a large database is “how long will it take to restore

were it to go offline.” In Hyperscale, this operation can be done very efficiently regardless

of the size of data. It makes no difference to the restore activity whether the data is 1 TB

or 100 TB which is an incredible level of comfort to provide for whoever must answer

that question. Were the database to go offline and require a restore, the only activity

that is needed is to repopulate the page servers with the data stored in Azure remote

storage. Given that this operation can be scaled out by the number of page servers in

the instance, it means that only a single TB must be restored onto any given page server

regardless of the size of the database. To put this into perspective, a restore operation of a

50 TB Hyperscale database would mean that 50 page servers are created and populated

with a TB of data from the remote storage; Microsoft has demoed this 50 TB restore

completing in just 8 minutes.

While it is of course possible to manage a large, multi-terabyte database

on-premises, a restore of that database would take considerably longer than 8 minutes.

These kinds of disaster recovery options simply could not be achieved with the box

version of SQL server because of the scale out operations required to facilitate them.

Chapter 2 The SQL Engine

38

�Azure SQL Deployment Options
When assessing the features that set Azure SQL Database and Azure Synapse Analytics

apart, a key consideration is the deployment options. Often this can drive a number of

conversations, that of cost, maintainability, management overhead, and alike. As both

are cloud native solutions, scalability and compute size can be tailored with ease. Even if

an initial deployment is very small and lightweight, a production scale up can easily be

planned and implemented. Further to this, the size and scale of each solution can then

be further tailored to meet the needs of users/processes throughout the day or week

using Azure Automation scripts.

Both Azure SQL DB and Azure Synapse Analytics have support from Visual Studio

SQL Server Data Tools (although Azure Synapse Analytics is in preview currently)

allowing for seamless deployment and schema compare via Visual Studio. This means

that from a development perspective, there should be little change between current

on-premises practices and cloud practices; both are maintained and source controlled

through Visual Studio.

Even though the development experience may be roughly the same between the two

Azure SQL options, the target deployment platforms can vary greatly. Azure Synapse

Analytics has a single deployment option as a stand-alone resource managed through

the Azure portal. The deployment can be automated through the use of ARM templates;

however, this only makes the deployment of that single Azure Synapse Analytics instance

more efficient. Conversely, Azure SQL DB has a variety of options that can make the

move to the cloud easier due to the flexibility of the platform.

�Azure SQL Database Managed Instances
A managed instance is the closest cloud alternative to a traditional on-premises

deployment of SQL server. Without a managed instance, you would create a logical

SQL server that is no more than a namespace to group individual databases; however,

with a managed instance, there is a real SQL server instance that hosts the databases

and therefore access to the SQL Agent, Database Mail, Linked Servers, cross database

queries, change data capture, and others. While this offers a level of comfort and the

ability to reduce the amount of application rework, you also benefit from the Platform as

a Service gains that Azure has to offer. Features such as automatic patching, automated

backups, and v-nets are all configured out of the box without any management overhead

Chapter 2 The SQL Engine

39

for the business. For users looking to simply migrate to Azure with minimal disruption,

this can be a very useful deployment option; however, significant cost optimizations are

available if the stand-alone database deployment option can be used.

�Azure SQL Database Elastic Pools
A second deployment option is that of elastic pools. Here, a pool of resources is created

and shared between a multitude a single databases so that there is a single cost to pay

and also a lot more ability to deal with sporadic spiking in database usage. Elastic pools

work well when multiple databases need occasional high levels of performance but

generally average at quite a low eDTU setting especially when the peaks are at varying

times. In the scenario that you are supporting multiple databases that occasionally

require high performance, without elastic pools, you would need to trade off between

scaling to a tier that can handle peak usage and overpay the rest of the time and scaling

to a lower tier and sacrificing performance, particularly at peak times. When designing

an Azure SQL DB deployment, if elastic pools seem like a good option, then it is

important to plan the size of the pool, the service tier of the contained databases, and the

times at which those databases peak. You will need to know how many databases can

spike at any given time while still remaining within your elastic pool size but also how

you ensure that you have enough activity in the pool to make it more cost efficient than

scaling the databases separately.

�Azure SQL Database V-Core Tiers
When Azure SQL Database first arrived, the scale, and therefore pricing, of your database

was configured using DTUs (Database Transaction Units). A single DTU is an abstracted

metric that comprises storage, memory, and CPU to provide an easy single figure that is

directly related to the overall performance of the database. However, the arrival of the

V-Core option allows you to scale storage and compute separately, meaning the database

can be completely tailored to your individual needs. When creating the database,

you would choose the number of V-Cores to instantiate and then set a max storage

size. The V-Core purchasing model is also available at different tiers, offering different

performance characteristics and high availability/disaster recovery options.

Chapter 2 The SQL Engine

40

•	 The lowest tier is General Purpose, being the standard for most

business workloads.

•	 Next is Hyperscale which offers compatibility for databases

above 4 TB while also guaranteeing high performance even at

very high scale.

•	 Last is the Business Critical tier that offers the highest level of

performance and reliability although still limited to a 4 TB maximum.

A point worth mentioning is that Hyperscale databases use the V-Core purchasing

model but vacillate between the General Purpose and Business Critical tiers in terms of

performance. When data is stored directly on the compute node’s local RBPEX, then the

performance will be at Business Critical scale without the cost overhead. Only when the

Hyperscale service gets a cache miss on the compute node’s local RBPEX would it have

to go back to the page server, and this performance would replicate that of a General

Purpose tier.

Inside of the V-Core tier is the ability to choose a “provisioned” deployment and a

“serverless” deployment. The provisioned deployed means that the deployed resource

is always active and therefore chargeable. Alternatively, a serverless deployment

allows the service to be paused and resumed as needed, meaning you would only pay

for what you actively use. This can provide a huge cost saving in development and test

environments but may not be suitable for a production deployment. The base reason

for this is that once the database is paused, the first query issued to the service will

resume it but not complete successfully. Once resumed, all other queries will complete

as expected unless the specified inactivity threshold is reached, and the service will

pause again automatically. If this deployment option is of interest, it is possible to

orchestrate a dummy query as an early part of the ETL process so that the service is

running when needed.

�Azure Synapse Analytics vs. Azure SQL Database
Now that the fundamentals of each technology option have been outlined, it is important

to understand the attributes about your data that may drive you to use a particular Azure

SQL engine over another.

Chapter 2 The SQL Engine

41

�The Right Type of Data
The first thing to confirm in this design process is that your data is going to be structured

in a tabular format. These two SQL options only support tabular data and therefore

should not be used to store non-/semi-structured data such as documents, JSON data,

or multimedia files directly, unless stored as text in a tabular column. For JSON data,

you could consider Azure Cosmos DB, and non-structured data and multimedia can

be stored in the data lake. Of course, there may be scenarios where you need to process

JSON from a source system into the data warehouse in which case you can load the

JSON into a NVARCHAR (MAX) column and then read it using the OPENJSON table-

valued function. If the data you need to store cannot be loaded and queried using a SQL

database engine, then neither of these options are for you.

�The Size of the Data
When choosing your SQL engine, the size of data plays a key role. If your database is less

than 1 TB and not likely to increase beyond that point, then Azure Synapse Analytics is

not a good option and you should look to use Azure SQL DB. Conversely, if the database

is already 1 TB or bigger and is expected to grow, then Azure Synapse Analytics is firmly

back on the table. If your data volumes are between 1 and 4 TB, then the cheaper option

sits with Azure SQL Database – here we see a 2 TB database costing roughly £1.3k per

month vs. an Azure Synapse Analytics at the same size costing £3.9k. When we scale this

up to 100 TB, then there are a number of changes to be aware of. Firstly, only an Azure

Hyperscale SQL Database can support a database that large, so your options are limited

to using Hyperscale if you want to use an Azure SQL Database. Alternatively, you could

swap to using an Azure Synapse Analytics as at 100 TB; you are able to really benefit

from the massively parallel nature of the architecture. Full disclosure, the Azure Synapse

Analytics instance is still more expensive but importantly will likely perform large-scale

analytical queries better than a Hyperscale database due to the distributed nature of

the database, especially when the data is correctly spread across distributions ensuring

that common joins are heavily optimized given that the Hyperscale database cannot

store data in this way. Ultimately, an Azure SQL Database will always be cheaper than

Azure Synapse Analytics instance; however, it is also not optimized for analytical loads

and does not contain features such as PolyBase, and so at small scales of data, a SQL DB

will almost always be a better option. However, as the volumes increase, performance

becomes more critical and this is where Azure Synapse Analytics earns its place.

Chapter 2 The SQL Engine

42

�The Frequency of the Data
Given this book is focused around data warehousing, I am discounting the need for

traditional OLTP workloads; however, there are very often scenarios where a data

warehouse needs to be trickle fed. In these scenarios, the patterns that are often used

in Azure Synapse Analytics become inefficient and cumbersome; however, when the

opposite is true, and data arrives at massive scale at more regular intervals, then the

PolyBase and CTAS pattern make Azure Synapse Analytics a much more efficient

processing option. When planning the ingestion process for your warehouse, it is

essential to understand the needs of your users and the availability of your data. If you

need to have rapidly refreshing dashboards that can be loaded from an event-based

source system, micro transactions are needed and therefore an Azure SQL Database

is likely a better option. Should you only need to refresh a dashboard once or twice

a day with data that arrives with row counts in the billions, Azure Synapse Analytics

will be able to ingest and process that data much faster. Should you need to combine

approaches, then you could experiment with a SQL DB that processes your micro

transactions into batches and loads them in Azure Synapse Analytics or explore the

lambda architecture that is detailed later in this book.

�The Availability of the Data
Any data warehouse project comes with a bunch of nonfunctional requirements, things

that are required to satisfy the brief but don’t necessarily deliver a functional advantage

to the solution. Often these requirements include the recovery point objective (RPO),

the amount of data lost after an incident, and the recovery time objective (RTO), the

time it takes to get a system back up and operational. In Azure Synapse Analytics,

regular automatic restore points are taken throughout the day and kept for a default

of 7 days; however, you can also manually create restore points after significant events

in the warehouse to ensure the maximum granularity of restore options and therefore

minimal RPO. Conversely, Azure SQL Database also has very good options for RPO and

RTO, and particularly within Hyperscale, giant databases (e.g., 50 TB+) can be restored

in under 10 minutes with a 0-minute RPO due to the limitless page servers that simply

need to be populated from the snapshots in Azure Storage. In addition to the RPO and

RTO requirements, concurrency can heavily affect the availability of your data, and in

Azure Synapse Analytics, availability is limited depending on the cDWU setting you have

Chapter 2 The SQL Engine

43

configured, whereas Azure SQL DB has a much higher concurrency given that it is an

SMP system. If there are a very large number of concurrent users looking to query the

warehouse, then an Azure Synapse Analytics may struggle to cope with this requirement

without the use of Azure Analysis Services or another database on top.

�The Integration of Data
Both flavors of Azure SQL integrate seamlessly with Azure Data Factory – the cloud

integration tool of choice when working in Azure. However, Azure Synapse Analytics

can make use of PolyBase providing a seamless layer between the data lake and the data

warehouse.

In summary, Azure SQL Database is a cheaper option and potentially more flexible

to a number of scenarios; however, there are specific features of Azure Synapse Analytics

that make it a candidate for any data warehousing scenario assuming the data volumes

are larger than 1 TB. When designing the warehouse, a worthwhile exercise is to write

down all the pooled knowledge of the incoming data, incoming queries, ingestion

patterns, and others and determine where each one of those attributes would be served

better. From there, you can begin to discuss the features that mean the most to you and

your organization and ignore those that are not essential. A final point to touch upon,

and a pretty fundamental one, is that while the core concepts of each technology remain

consistent, the features do change and improve over time, and it is important to keep up

with each technology in case a really key feature comes about that changes the way you

think about a particular technology.

Chapter 2 The SQL Engine

45
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_3

CHAPTER 3

The Integration Engine
The concept of data integration often sparks a lengthy and convoluted debate as to the

best approach and technology for the given sources and destinations. In addition to

the out-the-box products such as SQL Server Integration Services (SSIS), there is also a

wealth of open source tools to consider, not forgetting the third-party connectors and

bespoke, source system–specific integration tools that all help to muddy the water.

When operating on the Azure platform, the established convention is to use Azure

Data Factory (ADF) V2. This is the primary integration and orchestration engine for any

data movement in to or out of Azure, and the goal of this chapter is to remove the need

for any upfront debate about tooling by justifying why Azure Data Factory is a one-stop

shop for data integration.

�Introduction to Azure Data Factory
Within Azure, there is really only one option for cloud scale data integration and this is

Azure Data Factory (ADF). No other engines exist within the Azure service itself, and

while this may seem limiting, it is actually refreshing because there is no real debate to

be had; if you want to remain on the Azure platform, you use ADF.

Some developers may be warned off Data Factory and there may be good reason for

this. In its first carnation, Azure Data Factory V1, many developers were expecting SSIS

in the cloud and unfortunately this service fell well short of that mark. While the concept

had promise, the service itself had some initial limitations. In this first iteration, the

concept of parameters was not realized, and the only authoring option was to manually

write JSON into the portal or in a local editor to be deployed using PowerShell. Far from

the orchestration capabilities on offer today, in ADF V1, dummy datasets would have to

be created, not to produce any kind of output but just to be used as an interface between

daisy-chained activities. The limitations also extended to the triggering of Azure Data

Factory which was based around tumbling windows. With these triggers, you could set

up a start and end date and Data Factory would divide that time span into specified

https://doi.org/10.1007/978-1-4842-5823-1_3#ESM

46

chunks, for example, days. ADF would then pre-populate these chunks in its execution

queue and run the Data Factory every time a new window came into scope. However,

there were no other triggering options to speak of.

As a user of ADF V1, easily the biggest pain point was the total lack parameters

and variables; everything had to be hard coded upfront and could not then adapt to

changes in the runtime environment, nor could you pass information between chained

activities. Often when performing data integration, indeed in any programming task,

you look to build generic elements that can be reused efficiently when supplied with

varying parameters and this simply was not possible. Ultimately, Azure Data Factory V1

was difficult to work with and offered little to the developers looking to replace an on-

premises SSIS implementation with a cloud alternative.

Luckily, Microsoft had many improvements up their sleeve, and Azure Data Factory

V2 quickly became a much more exciting prospect. From a user’s perspective, it appears

as though the learnings gained from developing a well-matured integration tool such

as SSIS had been blended with the recognized need for a cloud-based alternative as

the software itself now does a lot more out of the box and has options for implementing

many common programming routines. At first the focus was not on traditional ETL

(extract, transform, load) but more on an ELT (extract, load, transform) approach which

meant that data could be moved from source to sink and then transformed using the

compute power of the destination, but some of the newer features of ADF V2 mean that

either ETL or ELT can be implemented, depending on the scenario.

Initially there was a small step back – the only way to work with ADF V2 for the

first few months was by writing JSON locally and deploying it to the ADF service using

PowerShell. There was no way to visualize the objects that had been created, nor

could you monitor the run of a pipeline. However, this did give users a great way of

understanding the key concepts that underpin Data Factory, and even though there is

now a full UI, the underlying JSON is still accessible and often is the easiest way to debug

an issue. This inconvenience was forgivable though as we now had parameters to play

with, and flexible, parameter-driven data processes that make use of reusable generic

routines were now an option. In addition to this, we also began to receive other forms of

activities such as the “If” activity and “Execute Pipeline” allowing developers to operate

conditional logic and execute different pipelines depending on the result. With more and

more features regularly arriving, we now have an integration engine that can live up to

the demand, and what’s more, it is fully integrated with Git and can even execute SSIS

packages in the cloud. This chapter will focus solely on ADF V2 and the features that

make it an all-round integration engine.

Chapter 3 The Integration Engine

47

�The Data Factory Building Blocks
When starting out with Azure Data Factory V2, it is important to understand the different

elements that give it the ability to move data and orchestrate activities in a disparate

cloud environment. Those key elements are

•	 Linked services

•	 Triggers

•	 Datasets

•	 Pipelines

•	 Activities

Each of these elements can be configured from within the Azure portal or scripted

locally and deployed to the service using PowerShell or via source control (Git is the only

source control option for ADF currently).

�Linked Services
To begin with, the Data Factory needs to be able to make connections to the services

it will copy data between or orchestrate jobs for. These connections are made through

linked services, and these objects hold all the required parameters such as connection

strings and credentials. Any credentials being used by Azure Data Factory should be

stored in key vault as this ensures that your passwords and connection strings can easily

be managed and updated in one place rather than having to track down every instance

of a password that needs changing. To make use of Azure Key Vault, you would first need

to create a key vault resource within the subscription and set up your secrets there. Once

your key vault resource is in place, you can create a linked service connecting to that key

vault account and your secrets will be automatically pulled from there when they are

referenced through your Data Factory Linked Services. The steps to create a key vault

and link it to your Data Factory instance via a linked service are described in the section

“Getting Started with Azure Data Factory.”

Typically, a data store linked service would connect to a service at a very high level.

For example, if we use a linked service to connect to an Azure SQL Database, then it

does only that; any logic to access a certain table with a certain query is routed through

a dataset which sits on top of the linked service, more on this later in the chapter.

Chapter 3 The Integration Engine

48

From within the UI, you can create a linked service connection to over 80 different data

stores, some of which are Azure native such as Azure SQL Database and Azure Data

Lake, while some are totally outside of Azure and even Microsoft such as Salesforce,

Amazon S3, HDFS (Hadoop distributed file system), and local file systems on virtual

machines (VM). As each of these data stores have different connection protocols you

will find that you will need different pieces of information for each linked service option.

Again, another reason why key vault is a preferable option over the native Data Factory

credential management is because all these disparate pieces of information can be

stored and maintained through one resource.

Data store linked services allow you to fetch data or deposit data; however, you can

also create Compute Linked Services that allow you to execute jobs on Azure-based

compute resources such as Azure Databricks, Azure Functions, and Azure Synapse

Analytics, to name a few. This capability means that you can create processes and

solutions outside of Data Factory that can then easily be executed as you run your Data

Factory pipeline. Some examples of how this may work could include creating an Azure

Databricks notebook that cleans and standardizes the data within a cloud data store

before it is processed into your warehouse. Alternatively, you could utilize the Azure

Batch compute service to create a scalable C# application that handles a particularly

tricky or bespoke piece of logic that may have been implemented using an SSIS custom

activity in an on-premises solution. This added flexibility makes Azure Data Factory

more than just a service to copy data between storage locations but an orchestrator of

cloud integration patterns executing jobs across your Azure subscription at scale!

A fundamental part of any linked service is the connection credentials, and there

are several options supported here depending on the service you are connecting to

although, as always, there are some best practices to be aware of. Most organizations

prefer to administer permissions across an Azure subscription using Azure Active

Directory groups as this allows for a single configuration of the permissions and then the

group can just be populated as new users join or need that permission set. Additionally,

this means that both service accounts and individual users can be added to a group

ensuring that service accounts are not secret backdoors to a higher level of permission

than was intended.

When applying this to a linked service connection, it means that we can use a service

principal to authenticate our Data Factory and then just ensure that the service principal

is added to a group that has access to the resource we want to connect to. In most cases,

a service principal is an option for the connection credentials and needs only to be

Chapter 3 The Integration Engine

49

supplied with the service principal app id and the authentication key which could be

supplied via key vault. In some cases, you may decide that you need a single connection

that can read data from a given source but then only write into a particular folder in your

cloud data store and then a second connection that can only read and write to different

folders within the data store. This configuration means that writing into your data store is

tightly controlled, as data can only arrive in one place due to permissions, and that data

cannot leave the data store without explicitly creating a third connection or modifying

an existing one. To support this scenario, you would need to create two linked services

specifying the different service principal connection details on each.

Another option that is commonly available is to utilize the Azure Data Factory

Managed Service Identity (MSI), which is essentially a service principal that represents

the Azure Data Factory instance. This can be a useful option as it allows you to grant

permissions explicitly to your Data Factory, knowing that you are not inadvertently

granting permission to a different service you were not aware of. Also, the MSI is

managed by the Data Factory service, so you do not need to manage the credentials of

the identity through key vault or any other method – you simply tell the linked service to

authenticate using the MSI. Of course, you still must provide the MSI with permission

onto the service you want to connect to, and you can locate the MSI application id by

following the setup instructions later in this chapter.

�Integration Runtimes
Underpinning all activity in Azure Data Factory is the integration runtime (IR). This is

the scalable, cloud compute resource that actually does the heavy lifting when copying

data from one place to another or routing jobs to the required external compute

resources. In most cases, you can default to using the Azure Integration Runtime

which leaves the provision of the compute resource up to Azure itself and requires no

further thought on the part of the developer. When executing jobs in external compute

resources, there is no need to scale the compute as the process is simply to route the

job to the correct resource. However, when doing data movement, you may want to kick

the compute up a notch in order to get the job running quickly. The number of data

integration units and degree of parallelism can easily be configured in the settings of

the Copy Data activity within your Data Factory pipeline. Examples of how to do this are

later in the chapter.

Chapter 3 The Integration Engine

50

�Self-Hosted Integration Runtime
When connecting to an on-premises data store, the connection must go via a Self-

Hosted Integration Runtime (SHIR), which is a special gateway that is configured on

the machine you are connecting to. For clarification, an Azure Virtual Machine (VM)

falls under the bracket of on-premises even though it is technically IaaS. The reason a

Self-Hosted Integration Runtime is needed is primarily focused around security. The

Azure Data Factory service is exposed through a set of public IP addresses, and therefore

without the Integration Runtime, you would have to configure an inbound connection

to your network, undermining many security best practices. The SHIR means that the

Azure Data Factory service simply needs to post a request to the Integration Runtime

queue, which is then responded to as an outgoing connection from the machine.

This is now far more secure as no inbound traffic is required. When connecting to

the on-premises server, you will need to create the standard username and password

credentials and these should be stored in key vault to ease administration.

There are some considerations to bear in mind when configuring the SHIR. The

first is that only a single SHIR can be installed on a given machine; however, you do

not need to install the SHIR on to the machine that holds the data. In the scenario that

two Data Factories need to access the same dataset separately, you can create a second

SHIR on a different machine in the same network and allow it access to the dataset.

Consider that the second SHIR is further away from the data source and therefore may

incur some degree of latency over the SHIR that is on the same machine as the data

source. Alternatively, you can configure the sharing feature of the first SHIR so that it can

be shared between Data Factories. Another point to consider is that a single SHIR can

access multiple on-premises data sources, meaning that, in most cases, a single SHIR

within your network is enough to cover off most scenarios. The recommendation from

Microsoft is to install the SHIR on a separate VM than those that host the data source as

this removes the risk of resource contention. In most implementations, a separate VM is

created solely to support the SHIR.

�Azure SSIS Integration Runtime
In some cases, there is a need to simply migrate existing SSIS packages from their on-

premises environment into the cloud. This enables the cloud first approach but can

avoid the need to rebuild logic and processing steps that are perhaps well tested and

mature already. In an ideal world, these packages would get rebuilt eventually using

Chapter 3 The Integration Engine

51

pure Azure Data Factory components, but if time is of the essence, then this is certainly a

worthwhile option.

In response to this need, Data Factory has the ability to execute SSIS packages using

its cloud-based architecture so that you get the PaaS benefit but can also reuse your

existing code base if needed. In order to make use of this, you will need to create the

Azure SSIS Integration Runtime (IR) and also maintain a separate Azure SQL Database

that will host your SSIS DB Catalogue. When creating the Azure SSIS IR, Data Factory

will create the SSIS DB Catalogue for you on the nominated database. When configuring

the Azure SSIS IR, you can specify the node size and the node number which allows you

to configure your scale up/scale out requirements. For example, to run large, compute

heavy packages, then you should choose a large node size, and if you want to be able

to run many of these in parallel, you should choose a large node number. Of course, if

you want to run many small packages in parallel, then you can choose a small node size

and a large node number. At later stages in the process, you will also be asked to specify

connection strings for your SQL database and the degree of parallelism to use when

running the packages.

In order to deploy and run packages using Data Factory, you will need to create a

connection to the Azure SQL Database that is running the SSIS DB Catalogue and deploy

the SSIS project using the deployment wizard that can be accessed by right-clicking the

project and choosing “Deploy Project….”

Finally, to run and monitor the SSIS package execution, you can simply choose to

execute using the SSMS dialog, passing in any parameters or settings for connection

managers as needed. Once the package is running, the overall status can be monitored

using the Azure Data Factory UI which can also report back the SSIS DB Operation ID to

allow for a more detailed view to be surfaced using the SSMS execution report.

As you can see, this method does allow a fairly painless adoption of a PaaS-based

architecture while maintaining the same processes and tools that would be used were

this to be running in an on-premises solution. It is worth remembering however that

while this approach does allow for backward compatibility, the goal should be to make

the move into the cloud a decisive one and rebuild the existing functionality using the

native Data Factory tools. The result of this will be a drastic reduction in maintenance

overheads as no SSIS IR or SSIS DB Catalogue is required, but also your developers will

have a much fresher, cleaner development experience that thrives in a big data scenario

where sources and sinks are widely distributed.

Chapter 3 The Integration Engine

52

�Triggers
Triggers are the method by which pipelines are invoked and allow ADF to support a

variety of types of automation. When developing a Data Factory pipeline, you can test

the pipeline in debug mode which allows the pipeline to execute fully only on a debug

cluster and does not require a publish action. You can monitor your pipeline from within

the authoring UI and check the input and output of each activity as execution occurs.

Additionally, any activities that are configured to run in parallel will be run sequentially

so that you can easily step into any activity in the pipeline. An alternative to the debug

method that can be used once the development process is completed is to publish the

Data Factory definition to the service and trigger the pipeline from the UI, effectively

testing the pipeline against runtime conditions. This is called a manual trigger and can

be monitored not from the authoring UI but from the Azure Monitor UI. The reason

for this is that ADF understands that this invocation is no longer just for testing and

therefore fully logs the pipeline execution while also honoring the parallel configuration

of activities. Once you are satisfied that development is complete and that appropriate

testing has been completed using a manual invocation, automatic triggers can be

established so that processing can occur at defined intervals or at acknowledgment of a

specific event. The automatic triggers cater for a wide variety of automation options and

fall under three categories which are listed here:

•	 Schedule triggers

•	 Tumbling window triggers

•	 Event triggers

The first of these, the schedule trigger, will execute the specified pipeline based on

a given recurrence and can be set to run on a regular interval based on minutes, hours,

days, weeks, or months. The start time is the root of the schedule, and so it is important

to set this correctly when building the trigger as the intervals that are defined are then

based as an offset of that date and time. For example, to set a schedule that would

run twice a day, you would set the interval to be “hours” and the recurrence to be 12.

Assuming the trigger was started at 12:00, you would get two executions of your pipeline

in a 24-hour window, once at midday and once at midnight. A common requirement

however is to run pipelines multiple times in a day but not on a symmetric schedule like

the preceding example but perhaps on a workday schedule such as at 08:00 and 17:00. To

support this scenario, you would have to create two triggers, each set to run once a day,

that start at the desired times.

Chapter 3 The Integration Engine

53

The tumbling window trigger is maintained in Data Factory from version 1 and

works in some ways similar to the schedule trigger but does have some key differences.

To make use of this trigger, it is important to know at what intervals your source data

is refreshed because the upshot of the tumbling window is that it will automatically

create slices of data based on its configuration. For example, if you know that the source

data is refreshed daily, then you can create a trigger that has an interval of daily and

recurrence of one, and then Data Factory will create a daily slice of data for each day

from the start date up to the current date. As soon as the next day comes around, and

therefore the next slice of data, then Data Factory creates a new data slice and execute

the Data Factory pipeline to process it. This type of processing can be really useful when

loading historical data into a cloud data store as you often want to maintain some sort of

date/time-based partitioning even though the data is historical. If you need data from 5

years ago to be loaded and partitioned by day, then you simply set your start date to be

5 years in the past, set the recurrence to be once daily, and then Data Factory will churn

through each of those 1825 data slices sequentially. Furthermore, you can configure the

concurrency of this type of execution to ensure the Data Factory does not consume too

many resources while it runs.

The issue with both of these types of triggers is that they do not understand what

is going on in the source data, and so if the data is held up for any reason, they will still

execute the pipeline and potentially process old data if the proper precautions have now

been put in place. What is more, the triggers do not actually filter any source queries you

may have configured in the dataset, so while Data Factory may know when the window

of data you are interested in starts and ends, it does not actually enforce that onto the

data source. This must be done by the developer by accessing the trigger properties

using notation such as @trigger().outputs.windowStartTime and passing the dates/

times of that trigger into your query.

To get around this, there is a final type of trigger which utilizes events to invoke the

Data Factory rather than a clock. Events in this instance are constrained only to when

blobs are created or deleted in a Blob Storage account, and while ideally this would be

slightly less constrained, this method of invoking Data Factory does allow the process to

be run once the source data is ready to be processed and not before. When configuring

this type of trigger, you can optionally specify filters that ensure you are only listening for

events created by blobs in a particular container or folder or alternatively blobs that have

a certain name of extension.

Chapter 3 The Integration Engine

54

�Datasets
With a linked service, you have a connection, but you now need to add a layer on top of

that to implement logic that allows you to access specific tables, files, directories, and

others. This layer is known as the dataset and you can specify as many of these as needed

that utilize the linked service. A common usage of a dataset is to specify a specific folder

location in a cloud data store that you may want to load data from or copy data to. At the

time of data movement, the dataset is used to reference a specific file to copy or write to

and passes its configuration via the linked service to the data store and either fetches the

file or writes to the specific location.

Further to this, datasets can be used to compress or decompress files after a

Copy Data activity and even understand the metadata of the file so that it can be fully

accessed by Data Factory. With this capability, you can configure the elements such as

the file format, column delimiter, and row terminator to be used when reading the file

and then specify different metadata to write the file using. With this capability, you can

easily read text files from the raw source but then drop them into a cloud data store in an

optimized format such as Parquet or Optimized Row Columnar (ORC). Conversely you

could unzip a collection of files and either flatten their hierarchy to give you a single level

of files in your copy destination or preserve the hierarchy to ensure consistency between

your source and destination. A final option is the use of binary copy which removes the

complexity of trying to read the file and simply copies the file as is into your destination.

This is particularly useful if you want to copy totally unstructured data across your

subscription.

As this book is focused around data warehousing, I will make the assumption that

the majority of loading done through Data Factory is with structured source files that

are either in a raw text-based format such as CSV or already in an optimized format

such as ORC or Parquet. Depending on which stage of your data processing pipeline

you are building in Data Factory, you may wish to enforce a schema on your file to

ensure consistency is maintained. Of course this is optional, as often when reading

files from a source system, you may want to disregard the fact that some rows may not

conform to your schema because ultimately you would rather have the data in a domain

that is accessible to you as a developer. When creating schemas in Data Factory, you

first need to input the schema for each dataset. This is where heavy parameterization

of your datasets can become problematic as you will need to import the schema for

each file it will read, but assuming a dataset aligns to a table, then this should be pretty

simple. Data Factory even offers an “Import Schemas” option that reads the metadata

Chapter 3 The Integration Engine

55

of your database and creates the schema for you. Once you have a schema for both

your source and your sink, you can then provide those to the Copy Data activity. In the

Copy Data activity configuration there is a “Mapping” tab which allows you to do just

that – map each source column to a sink column. Here you can either choose to map an

incoming column directly or utilize an expression to populate the sink column. Also you

can remove a sink column if you do not wish to map a value to it.

�Pipelines and Activities
Azure Data Factory Pipelines are the heart of engine. They define the routine of activities

that are to be executed and can be roughly likened to the control flow concept in SQL

Server Integration Services. Underneath the covers, every object in Data Factory is just

a JSON definition that is interpreted by the service, and while both linked services and

datasets are stand-alone objects, a pipeline definition contains multiple JSON objects

called activities. In addition, the pipeline also holds the definition of any parameters

and variables that may be utilized throughout the pipeline as part of an activity. Without

pipelines, a Data Factory is really a collection of data source connections and pointers

to specific locations within those sources. It is the pipelines that make sense of these

connections and define how one source feeds data into another while also providing a

parameter-driven interface so that these connections and pointers can be dynamic and

reusable depending on the specific runtime environment. Additionally, pipelines allow

for interconnectivity across the Data Factory by having the ability to pass parameters

into subsequent pipelines and receive parameters from prior pipelines. We can go a

level deeper, however, and reveal that pipelines are more of a canvas for you to distribute

activities on, applying an operating scope for parameters and variables to interact

within. Activities themselves can take many shapes and forms depending on the type of

activity and what the activity is doing; these are examined in the next section.

�Activity Types
Activities are highly specialized JSON objects and provide the ability to do just one

action. If you want to use the Databricks activity, then you must specify which Notebook

or Python job to execute as well as the cluster linked service. Alternatively, if you want

to call a web service, then you must provide the web URL of the service, the header

and body values, as well as any authentication parameters that are needed. For that

Chapter 3 The Integration Engine

56

reason, it is worth the time and effort before development begins to plan and structure

the activities you need in your pipeline so that you can define patterns upfront to avoid

creating unnecessary activities that require further maintenance and understanding.

Additionally, some activities execute compute jobs, some perform data movement,

some run nested activities, while others implement control logic and looping. This huge

amount of variety is what makes ADF so flexible but also requires prior thought to ensure

the right activities are used.

Broadly speaking, the activities within Data Factory can be bucketed up into four

groups. These are

•	 External compute activities

•	 Internal copy activities

•	 Iteration and conditional activities

•	 Web activities

�External Compute Activities
As previously mentioned, Azure Data Factory is heavily used to orchestrate external

resources and can efficiently execute, monitor, and report the result of jobs being run

outside of Data Factory. The activities that fall into this category include

•	 Custom: Scalable C# activities that are executed using Azure Batch compute.

•	 Databricks: Notebooks, Python Scripts, or compiled .jar files

executed on a Databricks job cluster.

•	 Data Lake Analytics: Jobs written in U-SQL executed using the Data

Lake Analytics service.

•	 HDInsight: Spark, Pig, MapReduce, and Hive job executed against an

HDInsight cluster.

•	 Machine Learning: Execute machine learning tasks such as batch

scoring against an Azure Machine Learning resource.

•	 Stored Procedure: Call a stored procedure on a linked SQL service.

Be aware that this is a non-query execution and will not return a

result set to Data Factory even if one is generated by the stored proc.

Of course, you can pass parameters into the stored procedure which

can even be derived by Data Factory parameters or variables.

Chapter 3 The Integration Engine

57

For each of these resources, you would need to create a linked service to store the

authentication and connection details; however, a dataset is not required as you are not

referencing a dataset. An additional consideration with the external services is that of the

timeout and retry policies. As these services are not directly controlled by Data Factory,

there can be scenarios where the first attempt at the connection fails but the second will

succeed, so be sure to specify a retry attempt number and interval.

�Internal Activities
Probably one of the most used activities in Data Factory is the Copy Data activity. This

is because it allows you to move data, at scale, from one disparate data store to another

with very little complexity. To make use of this activity, you will need both a linked

service and at least one dataset although assuming you are moving data from one place

to another, you would have two for each. The nomenclature of the Copy Data activity

describes the origin of your data as the “source” and the destination as the “sink,” and

you can also specify configuration properties about the Copy Data activity such as

•	 The number of integration units to use (the scale of the job).

•	 The degree of parallelism to utilize.

•	 The fault tolerance setting: When you make use of the copy

schemas, you can either set this to fail on first incompatible row,

skip incompatible rows, or log and skip incompatible rows. Rows

commonly fail if the data type is not supported by the .NET type

system or if the source type is not compatible with the destination

type; however, it can also conduct primary key validation.

Another option in the internal activities is the Delete activity, allowing you to use a

dataset to define files for deletion; again you can fully utilize parameters to make this

highly dynamic. In this activity, you also have the option to log the deleted file names to

a storage account.

A relatively recent addition to these internal activities is that of data flows which

allow for proper data transformation activities to be applied to your datasets. The data

flows are authored and configured separately to the pipelines and can then be executed,

monitored, and daisy chained just like any other activity in your pipeline. Under the

covers, the information about how to perform the data transformation is packaged

up and executed using Databricks clusters which allows for configurable scaling and

Chapter 3 The Integration Engine

58

compute type selection. However, the management of the Databricks cluster abstracted

from you, the developer, does not incur the need for an additional linked service. To give

a flavor of some of the transformations that a data flow can perform, there are four main

categories of transformation which are listed here with some examples included:

•	 Multiple inputs/outputs: Branching, joining, and lookups – break

up datasets into multiple processing flows and look up data from

sources using a lookup key

•	 Schema modifier: Derived columns, aggregations, windowing,

and pivoting – transform the schema of the file by computing new

columns or performing aggregations and grouping

•	 Row modifier: Select, filter, and sort data with the additional

capability to apply updates, inserts, and deletes to individual rows in

the dataset

•	 Destination: Add an output destination to land the transformed

dataset into one of the supported sinks

In addition to these transformations, data flow also supports options for allowing

schema drift and validating that incoming data meets the specified schema before

processing in the data flow to allow flexibility or enforce consistency depending on the

scenario.

�Iteration and Conditional Activities
One major piece of functionality that was missing from the first version of Azure Data

Factory was the ability to implement some very common programming concepts such

as looping and conditional logic. With version 2, we can now use activities that allow us

to write these kinds of procedures into the control flow. The activities that fall into this

bucket are

•	 Set and Append variable: Two separate activities that allow

developers to create variables that exist with the scope of the pipeline

and optionally append further values to an array variable. Note that

parameters can be passed between pipelines, however variables

cannot.

Chapter 3 The Integration Engine

59

•	 Execute Pipeline: Using this activity, parent and child pipelines can

be created that allow for layers of logic to be built up rather than have

single gargantuan pipelines. This also facilitates passing parameters

into the executed pipeline and can be very easily called from within

a loop. For example, iterate a list of file location and execute a copy

pipeline for each one.

•	 Get Metadata: Returns a configurable list of metadata attributes

about the target file or directory.

•	 Lookup: This is a useful activity that allows the developer to access

a data store, retrieve values, and then assign them into variables or

pass them into subsequent activities as parameters. Importantly

this activity can be run against SQL datasets using queries or

stored procedures but also cloud data stores such as Blob Storage

meaning configuration metadata can be stored in JSON format and

read in at runtime using the Lookup activity.

•	 Wait: Implements a delay in the pipeline of a specified interval.

•	 For Each Loop: This is one of the major developments in ADF V2 that

allows developers to really make their pipelines more than just many

repeated activities. You can pass an array of items into this activity

and then execute a nested activity for each item in the array. What is

more, you can access the items inside your array using the @item().

{arrayitem} notation, meaning you can very simply Lookup a list of

files to process and then pass their locations into Copy Data activity

nested within a For Each loop, accessing the file location as an

attribute of the list on each iteration. Finally, this activity can be run

either sequentially or in parallel. If parallel is chosen, then a batch

limit can optionally be specified to control the amount of concurrent

executions.

•	 If Condition: As described in the name, you can use the If Condition

activity to assert conditional logic on your pipeline. By first writing

an expression that evaluates to either true or false, you then nest

the various activities to be called in each scenario. Be aware that

the subsequent activities do have to be nested within the activity

Chapter 3 The Integration Engine

60

definition, so the best practice when having many activities following

an If Condition is to utilize an Execute Pipeline activity based on the

output of the expression. Additionally, there is a restriction on the

activities you can call when you are working within a nested activity

already. For example, you cannot call another If Condition, For Each

loop, or Until Loop when you are defined the set of actions to be

nested within one of these activities. The reason is to prevent infinite

looping that can occur when nested activities continually call further

nested activities.

•	 Until Loop: This loop executes the nested activities until the

specified expression evaluates to true. Here the developer could

utilize variables to control the number of iterations from within Data

Factory or make use of the Lookup activity and parameters to control

the iteration from outside of Data Factory.

With the exception of the Lookup and Get Metadata activities, none of these

activities require datasets or linked services as they execute internally to Data Factory,

but they may require a good working knowledge of the expression builder as many of

these require the ability to access array items using expressions or determine a valid

Boolean result using an expression.

�Web Activities
The final category of activities are the web activities, and the reason for these being

separate and not considered as external compute is that these are not for heavy lifting of

data. These are designed to be “chatty” rather than chunky and are great for facilitating

lightweight messaging and alike. In truth, they are simply a way to call a REST API, so

they are generally very flexible, but any large-scale data processing that needs to use

C# or another programming language should be written using Azure Batch and the

custom activity. The Web activity can make generic HTTP calls to any web service when

provided with a URL and the required headers, body, and authentication, while an Azure

Function does essentially the same but means that you can simply create the linked

service and then call the function by name, rather than having to specify the full URL.

Chapter 3 The Integration Engine

61

�Output Constraints
It is worth making the point that all Data Factory activities will report on their

completion status, and so if an activity does fail, you can create a separate branch of your

pipeline that handles the failure in the appropriate way. Further to this, you can create

multiple output constraints on any given activity that allow for several branches to be

created depending on the job’s outcome. The possible configurations for these output

constraints are

•	 Success: Execute subsequent activities only if the job succeeds

•	 Failure: Execute subsequent activities only if the job fails

•	 Completion: Execute subsequent activities whether the job fails or

succeeds but is run

•	 Skipped: Execute subsequent activities even if this activity is skipped

At this time, the output constraints are AND only, meaning that all constraints must

be met in order to execute the subsequent activity. This is not generally an issue but

does make handling errors perhaps slightly more cumbersome than it needs to be. The

approach for any pipeline should be a standard error handling routine that logs the

error and alerts an individual at the very least. Once a routine has been built, this can

be hooked into each one of your activities so that they can all benefit from this method;

however, if you use multiple failure outputs, then all of the connected activates MUST

fail in order to execute your error handling process. Unfortunately, the best alternative

is to abstract the logic into a separate pipeline and connect an “Execute Pipeline” task to

every activity that you want to handle errors for.

�Implementing Azure Data Factory
With any technology decision, there should always be a discussion beyond the

theoretical benefits of using a given tool. This discussion should look at the real-world

usage of the item in question and examine it through a number of lenses, for example,

security, developer productivity, and source control. This next section unpacks these

topics to offer assurances about how Azure Data Factory can be used in the real world by

real developers.

Chapter 3 The Integration Engine

62

�Security in Azure Data Factory
The essential feature of Azure Data Factory is being able to connect up to a wide variety

of data sources and either read data from them or write data into them. Of course

nearly all of these sources have some form of security in place, and, depending on

the number of sources, there is a high likelihood that you will need to store a good

number of credentials. As discussed earlier in this chapter, best practice dictates

that any credentials are stored in key vault and referenced with your linked service

definition. This means that the security of these sources is transparent to ADF and allows

for administrators to update passwords and details without making any changes to

ADF. Often credentials are not only usernames and passwords but may also be service

principal details, which are Azure service accounts used for interacting with Azure native

services, and this too can be configured as an option on your linked service. Using either

of these options means that Data Factory will execute as the given service principal or

user when interacting with a connected service.

�Using the Managed Service Identity
An alternative option for authentication in Azure Data Factory is to use the managed

service identity (MSI), which is essentially a service principal that represents the Data

Factory instance. All Azure Data Factories are created with an MSI and the details of

this can be collected from the Azure portal. Providing these details are then granted the

appropriate permissions, you will be able to utilize the MSI when running Data Factory

jobs by choosing the “Managed Service Identity” options when configuring the linked

service. To locate the MSI details, you can follow these steps:

	 1.	 Navigate to the Azure Data Factory resource from within the Azure

portal – you cannot use the Azure Data Factory UI for this guide.

	 2.	 Choose “Properties” and locate the “Service Identity Application

ID.” You can copy this ID and configure permissions for it as you

would a usual service principal.

	 3.	 Navigate to your data lake and grant permissions to access the

data needed for the Service Identity Application ID.

	 4.	 Once you have set the appropriate permissions, then you can

choose the “Managed Identity” option in the “Authentication

type” drop-down.

Chapter 3 The Integration Engine

63

�Source Control of Azure Data Factory
As with any ETL tool that is used in a production system, source control is crucial. In

Data Factories’ formative years, there was no integrated source control and the only

option was to store the JSON definition files in a source-controlled folder. This meant

that developers had to go through several manual steps in order to protect their work

and remember to do those steps in the first place! Nowadays, Data Factory can be

integrated directly into a Git repository hosted either on GitHub or within an Azure

DevOps workspace, thus ensuring changes are automatically detected and committed

when working in the Azure Data Factory UI. By default, the Data Factory instance will

not be connected to source control of course, and therefore changes are made to the

single Data Factory version. If left unchanged, changes can easily be overwritten and

lost as there is no option for branching or merging. When specifying your source control

option, you can define the account and project to associate your ADF instance to and

then easily choose from any branch in the repo to begin updating. What you will notice

when working in this way is that you can save and run your Data Factory in debug mode;

however, you will need to create a pull request in order to publish code back to the

master Data Factory instance and trigger the process in a non-debug way.

�Templates
Templates allow developers to define a pipeline and then save it into the template

repository. For this feature to work, your Data Factory instance must be connected to

a source control option. Once created, all developers can benefit from the templates

by pulling the definition into their workspace, thereby removing the need to create any

objects that might be considered standard throughout the solution.

�Solution Structure
When creating a Data Factory solution, indeed any ETL solution, the structure is very

important as this dictates how the objects are organized. A well-defined and logical

structure here ensures that even as your Data Factory instance grows, the essential items

are no more difficult to find. To maintain a good solution structure, the following points

should be considered:

Chapter 3 The Integration Engine

64

•	 Use folders: Folders allow you to group similar objects together

within the scope of pipelines, datasets, and data flows. As Data

Factory often deals with source systems, it is good practice to create

a folder for each source system and place the relevant objects within

it. Additionally, if some pipelines deal with ingestion from source and

some deal with data cleaning, then a hierarchy of folders can be used

to further partition the objects.

•	 Use a clear naming convention: A strong and consistent naming

convention means that items are easily identified without developers

having to review any code to understand what the object is for.

Source system names, source and sink references, pipeline purpose,

and others are all useful attributes to highlight in the object name.

•	 Use templates: Templates ensure that developers can easily pick

from agreed patterns when building a Data Factory, therefore

increasing efficiency standardization. This is particularly useful when

addressing common requirements such as logging mechanisms.

�Getting Started with Azure Data Factory
In order to create the Azure Data Factory V2 resource, you will need access to an

Azure subscription and resource group with contributor or owner access. With these

permissions in place you can use the “Add” button within the resource group and search

for “Data Factory” to create the resource. Once you have this, you can start to work

through the subsequent configuration steps to perform an initial Copy Data activity. The

following steps provide a basic starting point from which to further develop your use of

Data Factory. The first piece of configuration to prepare is that of the linked service. In

the example here, we will be performing a common data movement task that is required

in almost all data warehousing scenarios by copying a file from a cloud data store into an

Azure SQL Database, and to complete this action, we will need two linked services, one

for the data store and one for Azure SQL Database.

Chapter 3 The Integration Engine

65

�Create Linked Services
The following steps will explain how to create a linked service in Azure Data Factory.

This particular walk-through will use Azure Data Lake Gen 2 as the source connection

but will also make use of a key vault linked service to ensure security best practice.

	 1.	 Navigate to the resource group containing your resources and

click add in the top left corner. Search for “key vault” and choose

the “Azure Key Vault” resource. Navigate through the wizard and

use the form to supply a name, region, and pricing tier (standard

is all that is needed here). Figure 3-1 shows a completed form.

Figure 3-1.  A completed form to create an Azure Key Vault

Chapter 3 The Integration Engine

66

	 2.	 Click “Next: Access Policy” and click “Add access policy.” Use

the form to choose the “Secret Management” access policy

template. By clicking the “Select principal” field, a new blade

will appear on the right where you can select which principal

is attached to this access policy. Type the name of your Data

Factory and this will automatically select the Managed Service

Identity. See Figure 3-2.

Figure 3-2.  Adding an access policy for the Data Factory managed identity

Chapter 3 The Integration Engine

67

	 3.	 Once selected, click “Add” to get back to the main key vault wizard

shown in Figure 3-3.

	 4.	 Click “Review + create” to complete the setup and validate the

deployment by opening the resource once finished.

	 5.	 To create the linked services, navigate to the Data Factory resource

and click the “Author & Monitor” button. This will open the Azure

Data Factory UI. Figure 3-4 highlights this button.

Figure 3-3.  Access policies created for the key vault

Figure 3-4.  The Author & Monitor button

Chapter 3 The Integration Engine

68

Tip  Use the link https://adf.azure.com to navigate straight to the Data
Factory UI

 	 6.	 In the bottom left corner, you can choose “Connections” and click

“New” in the connections pane. Figure 3-5 shows the Data Factory

UI and points out the key elements.

Figure 3-5.  The key elements of the Data Factory UI

Chapter 3 The Integration Engine

https://adf.azure.com

69

 	 7.	 From the menu, choose “Azure Key Vault.” Using the form that

pops up, supply a name and choose the key vault resource as

shown in Figure 3-6.

Now that you have the key linked service, you can utilize this with all other linked

services.

	 8.	 Add a new connection, and from the menu that opens on the

right, select “Azure Data Lake Storage Gen2” and hit “Continue.”

See Figure 3-7 for an example.

Figure 3-6.  Creating the key vault linked service in Data Factory

Chapter 3 The Integration Engine

70

	 9.	 Here you can now provide the following:

•	 Name and description: Use a name and aim to conform to a

standard naming convention like the one included in Chapter 1,

“The Rise of the Modern Data Warehouse”.

•	 Integration runtime: You can use the Azure IR by default as this

leaves the resource negotiation to the Azure platform.

•	 Authentication method: There are a few options here to choose

from. The first being Account key which allows you to simply

specify the key for your Blob Storage account. Other methods

include using a service principal or using the ADF MSI as

mentioned previously.

Figure 3-7.  Choosing the Azure Data Lake Storage Gen2 option for a linked service

Chapter 3 The Integration Engine

71

•	 For the Account selection method, choose “Enter manually” and

then select “Azure Key Vault.” You can now choose your key vault

linked service and specify the secret name. Leave the Secret version

field blank to ensure the latest version of the secret is always fetched.

•	 Finally, test the connection and ensure you have successfully set

up the linked service via key vault as per Figure 3-8.

Figure 3-8.  A completed Azure Data Lake Gen2 linked service, utilizing key vault secret

Chapter 3 The Integration Engine

72

	 10.	 Once you have navigated back to the main linked services pane,

click “New” again to begin setting up the Azure SQL Database

Linked Service.

	 11.	 From the list that opens on the right, choose “Azure SQL

Database” and supply the name, subscription, server name, and

database name to the linked service.

	 12.	 You can now choose the type of SQL authentication. For

simplicity, we can use SQL authentication and you should only

need to supply the username and password.

	 13.	 Again, test the connection and ensure the linked service is set up

correctly.

�Creating Datasets
Now that we have the base level connection, we can configure datasets to operate these

connections as desired, and in this scenario, we will need to create a dataset for the Data

Lake Gen 2 and the Azure SQL Database.

	 1.	 Hovering over the dataset folder header, you can see the ellipses

button become visible. Open this menu and choose “New dataset”

as shown in Figure 3-9.

Figure 3-9.  Creating a new dataset in Data Factory

Chapter 3 The Integration Engine

73

	 2.	 Choose “Azure Data Lake Storage Gen2” and then “DelimitedText.”

Click “Continue” to navigate to the next form. Figure 3-10 shows

the selection of data lake storage and delimited text.

	 3.	 Supply a name and choose your existing Data Lake Gen 2 linked

service in the “Linked service” drop-down and then enter the

following details:

FilePath: File system = “datalake”, Folder = “RAW”,

File = “DemoSales.csv”. See Figure 3-11 for an example.

Figure 3-10.  Choosing a delimited text option for Azure Data Lake Storage Gen2

Chapter 3 The Integration Engine

74

	 4.	 Tick the “First row as header” box to ensure the column names

are removed from the data. Also, set the Import schema option to

None for the time being.

	 5.	 Click “Continue” and you will see your new dataset appear on the

left of the authoring view. Select the “Connection” tab and review

the settings, noting the different parameters that can be supplied

to help ADF read your file.

	 6.	 To create the second dataset for your SQL database, you can

follow the same logical steps as before, only instead of choosing

Data Lake Gen 2, you should choose Azure SQL Database.

	 7.	 Once chosen, you will be prompted for a name and a linked

service and can then choose a table from the database to be

attached to the dataset.

�Creating Pipelines
Finally, we can use the pipeline to execute a set of activities that utilize the datasets and

linked services that have been previously created:

Figure 3-11.  Entering the directory details for Data Lake Gen 2 dataset

Chapter 3 The Integration Engine

75

	 1.	 Hover over the Pipelines header and open the ellipsis menu,

choosing “Add Pipeline” from the list of options as shown in

Figure 3-12.

	 2.	 In the “Activities” tool bar on the right, expand the “Move &

transform” node and drag the “Copy Data” activity onto the design

surface. Provide a name to the activity. See Figure 3-13 for an

example.

Figure 3-12.  Creating a new pipeline

Figure 3-13.  An example of a copy data activity

Chapter 3 The Integration Engine

76

	 3.	 Move to the “Source” tab. Here you can choose your Azure Data

Lake Gen 2 dataset. Note the tick box “Recursively” which allows

you to specify a folder to the dataset and allow Data Factory to

copy each file as it navigates through the subfolders. Further

to this, you can specify wildcard folder paths and file names to

enable maximum flexibility and efficiency when reading data.

Figure 3-14 shows the configuration for this dataset.

	 4.	 Move to the “Sink” tab and choose the SQL Database dataset

previously created. Depending on the sink you use, there are

different options available here, and as we have a SQL sink, we can

use the table name specified in the dataset definition or supply

a stored proc name. To use the table name, simply leave the

configuration as their default values. Doing so allows for maximum

copy throughput as the data movement is done in Bulk mode and

minimally logged. Selecting the Stored Proc option means you

could process the data into the target table using a merge/upsert

proc applying custom logic as required; however, this is then

performed as a transacted operation and is much less efficient.

Additionally, the pre-copy script could be used to truncate data or

other cleanup activities prior to the Copy Data activity starting.

Figure 3-14.  Setting the source dataset property for the Copy Data activity

Chapter 3 The Integration Engine

77

Figure 3-15 shows the configuration for this activity.

	 5.	 You now have a configured pipeline that can copy data between

two systems and you can optionally debug the pipeline in place,

which will execute the process on a debug cluster and allow you to

watch the activities progress or trigger the pipeline manually and

observe the pipeline execution through the monitor window.

The JSON definition of all of these objects can be found alongside all of the other

artifacts at the following GitHub repo: https://github.com/MattTheHow/Modern-Data-

Warehouse-In-Azure

Figure 3-15.  Configuring the sink dataset for the copy data activity

Chapter 3 The Integration Engine

https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure

78

�Debugging Your Pipelines
An essential part of any programming scenario is the ability to easily debug the activities

and methods that are being executed by the service. Azure Data Factory offers the ability

to debug your pipelines from the author window using the “Debug” button. Rather

than needing to save and publish your changes to the service, you can simply execute

the pipeline in debug mode and the Data Factory service deploys the configuration to a

debug environment for execution. When in debug mode, the developer is free to make

use of break points to pause execution but can also closely monitor the state and values

of variables and parameters by using the “Output” tab in the pipeline editor. This makes

tracking the lineage of data very easy as each activity will show as a row in the output

window with its inputs and outputs available through the UI so you can clearly see

what the activity is passing across into subsequent activities. Additionally, each activity

will report back any errors that may have occurred throughout the execution. A key

difference between the debugging and fully triggering a pipeline is that any activities that

were configured to run in parallel will now be run sequentially. This is so that they can

easily be analyzed one by one, but bear this in mind when debugging, as many activities

that would usually run in parallel will now take much longer to execute.

�Monitoring Your Pipelines
In debug mode, the pipeline only executes in the debug environment and is not logged

through the main monitoring UI. The monitoring UI only shows data for pipelines

that have either been manually triggered or invoked by a trigger created through the

“Triggers” panel. Inside the monitoring portal, each pipeline is represented as a row in

the table which can be filtered by the final status of the pipeline and also the execution

start date. From this view, you can see some useful metrics such as the start time,

duration, and resulting status of the pipeline, and you can also access the parameters

that were specified at the time of pipeline invocation as well as any errors that occur

within the pipeline. As each pipeline is a collection of activities, you can use the []

button to retrieve the detail of each activity that was executed as part of the pipeline.

In the activity view, you see a similar table as that in the debug mode, therefore giving

access to inputs, outputs, and errors. Additionally, you can rerun the entire pipeline

from this view or choose a specific activity to rerun the pipeline from. This means that

lengthy pipelines are much easier to fix and maintain. See Figure 3-16 pointing out the

aforementioned features.

Chapter 3 The Integration Engine

79

In this view, the parameters dialog can be expanded and the parameter values

shown can be added to the main monitor view above by clicking “Add column,” as

demonstrated in Figure 3-17.

Finally, there is also a dashboard view that uses log analytics data to show the

number of successful pipelines, activities, and trigger runs in the last 24 hours although

the time period is configurable.

�Parameter-Driven Pipelines
In almost all data integration scenarios, there is a high level of repeatable code and

reusable connections, and the role of a good data integration engine is to allow the

developer to efficiently manage these common elements so that the resulting code is

clean, easy to maintain, and efficient. Azure Data Factory uses parameters and variables

to enable these concepts in much the same way that SSIS did before. A definition of the

difference between an ADF variable and a parameter is the following.

Figure 3-16.  An example of Data Factory monitor view

Figure 3-17.  Adding input parameters to the monitor view

Chapter 3 The Integration Engine

80

A variable is scoped to a single pipeline and can only be assigned to, and read

from, using activities within that pipeline. There are specific activities available to set a

variables’ value and to append elements to it if it were an array.

A parameter is defined within the pipeline but can accept values when the pipeline

is invoked whether that be from an “Execute Pipeline” activity or via a totally separate

calling service such as a trigger, PowerShell, or an Azure Function.

When operating within a pipeline, a variable and a parameter are very similar. Either

can be assigned to almost every aspect of the Data Factory’s configuration, whether

that be an attribute of the pipeline or even a dataset or linked service. A common

use is to configure the specific file or location that the dataset refers to at runtime by

either passing in the directory path when it is called or deriving the value by using an

expression (such as if you were to need today’s date as part of the file path). To use an

example, we could create datasets that are at a 1:1 ratio to linked services where the

linked service expresses the connection and the dataset is parameterized to the point

that it can access every conceivable location within the linked service that stores the

data. A common problem with this level of parameterization is that of varying file

formats; however, when authoring an object in Data Factory, you will often see the

“Add dynamic content [Alt+P]” button that allows you to dynamically supply the value

associated to that attribute either through expressions or direct parameter and variable

values. All of those common attributes for reading files, such as column delimiters and

row terminators, are able to be defined as parameters and variables and assigned to

when the pipeline is invoked or “looked up” from a metadata store. Later in this book, we

will utilize a metadata-driven approach to allow us to make full use of these parameters

to define the reading attributes for each file at runtime.

�Getting Started with Parameters
Extending on the previous guide, we can now utilize parameters to make the process

more flexible. To achieve this, you should follow these steps:

	 1.	 Create a new pipeline and name it something similar to your

original pipeline but with some text that distinguishes it as a

parameter-driven pipeline.

	 2.	 Navigate to the parameter tab and click “New.” You will now be

able to create the following three parameters:

Chapter 3 The Integration Engine

81

	 a.	 SchemaName

	 b.	 TableName

	 c.	 FileName

	 3.	 Now create replicas of your original datasets; only rename them to

denote them as parameter driven.

Tip  Use the “Clone” feature to quickly recreate your existing datasets and pipelines.

	 4.	 Once you have created both of the new datasets, navigate to the

SQL database dataset and choose the “Parameters” tab. Here you

create the TableName and SchemaName parameters.

It may seem confusing to have to create these parameters twice;

however, they are needed for two different objects. The pipeline

needs them so that they can be passed in from the service that

invokes the pipeline and the dataset needs them so that the values

can be passed in from the pipeline and then applied to the dataset.

 	 5.	 Now navigate to the data lake dataset and create a TableName

parameter.

 	 6.	 Once you have these parameters created, you can navigate to the

connection tab for each dataset and specify the connection to use your

parameter values instead of the hard-coded ones provided before.

	 a.	 For the SQL dataset, check the “Edit” box and click the first empty

text field. Hit Alt+P to enter edit mode and then you should see

a “SchemaName” parameter available at the bottom of the “Add

Dynamic Content” pane. You can repeat this process for the

TableName parameter.

	 b.	 For the data lake dataset, click the third box under the “File path”

header and use Alt+P to enter the dynamic content window. You

can then supply the “FileName” parameter to this dataset.

 	 7.	 If you now save and debug your pipeline, you will notice that you

are prompted to provide values for your three parameters. This is

because they are defined on the pipeline.

Chapter 3 The Integration Engine

82

All of the code for this guide can be found using the following GitHub link: https://

github.com/MattTheHow/Modern-Data-Warehouse-In-Azure

In the next guide, we will extend this further by looking up the parameter values from

the control database, thereby replicating the movement of metadata throughout the

ETL system.

�Using the Lookup Activity
The Lookup activity in Azure Data Factory allows for the developer to call out to a remote

service and retrieve some values to be utilized later in the data processing pipeline.

Most of the data store connections can be used as a lookup source, but some common

examples include

•	 Cosmos DB: JSON data stored in a document database

•	 Azure SQL Database: Structured tabular data accessed with a query

•	 File system: JSON files stored locally or on a remote VM

•	 Blob Storage/data lake: Files stored in cloud storage

•	 HTTP: Web endpoints

•	 Third-party sources: Salesforce, ServiceNow, Jira, and others

To utilize the lookup, you simply need a dataset that is associated to a linked service

for the given source of data, and then this can be referenced in the Lookup activity

configuration pane. There is a limitation on the amount of data returned by the Lookup

activity which is 5000 rows or 2 MB depending on the source. However, whatever the

source, the data arrives back at Data Factory in JSON format, so in order to access a

value in the first item of the array (or the first row), you can use the following syntax:

@activity('Lookup').output.value[0].AttributeName

Using this expression, you can assign a given value to a parameter or a variable or

even assign the entire set of rows to an array so that it can be used at any point in the

pipeline.

To explore some examples, a Lookup activity can be particularly useful when

implementing logging in your data processing. If we create a stored proc in an Azure SQL

Database that logs a record for each run of an ADF pipeline and returns the unique id of

that record after creating the row, then we can call this stored procedure from the Lookup

activity. The stored procedure code may look something like the code shown in Listing 3-1.

Chapter 3 The Integration Engine

https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure

83

Listing 3-1.  A stored procedure used to log a pipeline run and return the unique id

CREATE PROC logging.logPipelineRun (

 @pipelineName VARCHAR(50) NOT NULL

)

BEGIN

 INSERT INTO logging.PipelineRun

 VALUES (@pipelineName, GETDATE())

 SELECT @@Identity AS loadId

END

To use this proc in conjunction with the Lookup activity, we can create a linked

service and dataset that reference that proc. When you configure the lookup, you just

need to select the dataset from the drop-down. If you created a parameter in the pipeline

called loadId, then you easily assign the unique id of the pipeline run returned by the

SQL proc by using the following expression:

@activity('Lookup').output.value.loadId

Additionally, because we know that our proc returns only a single value, we can

check the “Return first row only” box that signals to Data Factory that it will be a single

record or scalar value returned and not an array. Once the value of the loadId is stored in

a parameter, you can pass that into any child executions or even pass that load id back to

the SQL source when the pipeline completes to log whether the pipeline was successful

or not. As you can see, using this method allows lightweight pieces of data to be traded

between sources and Data Factory to enable logging or other granular transactions.

An alternative scenario is using the Lookup activity to retrieve an array of values, such

as a list of tables to load or files to process. These can then be passed into a For Each

Loop activity, executing a child pipeline for each file or proc in the array in parallel. Once

you are operating inside of the array, you could pass each file location or proc name into

a single dataset that is parameterized to receive an input. Of course you could use both

approaches in parallel by fetching a load id at the top of the pipeline and passing that

into each child pipeline so that the child executions are logged against the parent.

We will go into more depth about these scenarios later in Chapter 7, “Logging,

Auditing, and Resilience.”

Chapter 3 The Integration Engine

84

�Getting Started with the Lookup Activity
This guide will extend the previous guide to utilize the Lookup activity to fetch the

required values from a control database:

	 1.	 Create a new pipeline – this could be a clone of your parameter-

driven pipeline – and specify its new name.

	 2.	 For this guide, we will only need to change the pipeline definition

and not the datasets or linked services.

	 3.	 Add a new “Lookup” activity to the pipeline which is located

under the general node of the activities menu. Give the activity a

sensible name.

	 4.	 From this new activity, you can now create a new linked service and

dataset that is linked to the Demo Control Db. This database can be

created using the script located using this link: https://github.

com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/

SQL/Control%20Database/Scripts/CreateDatabase.sql. Once

created, use the “Settings” tab of the new Lookup activity, you can

optionally choose a Table, Query, or Stored Procedure. By choosing

“Stored Procedure,” you can see the Guide.ObtainSampleValues

proc that should be used here. You can leave “First row only” ticked.

Now that we have the Lookup activity, we can plumb the returned

values into the subsequent Copy Data activity. In order to access the

returned values from the Lookup activity, you should use the syntax:

@activity('Lookup Metadata').output. This snippet can also be

acquired by using Alt + P to open the dynamic content window and

choosing the appropriate value under the “Activity Outputs” section.

This snippet only gets you some of the way; however, you still need

to specify the required attribute from the output object. Because

the “First row only” option was left ticked, the object immediately

beneath the output object is named “firstRow.” Inside the firstRow

object are the named attributes returned by the SQL database, using

the column names, and so if we are to obtain the file name value, we

would extend the preceding snippet to resemble the following:

@activity('Lookup Metadata').output.firstRow.FileName.

Chapter 3 The Integration Engine

https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control Database/Scripts/CreateDatabase.sql
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control Database/Scripts/CreateDatabase.sql
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control Database/Scripts/CreateDatabase.sql

85

	 5.	 In order to complete the pipeline, you should replace the

FileName, TableName, and SchemaName parameter placeholders

with the following values:

	 a.	 FileName: @activity(‘Lookup Metadata’).output.firstRow.FileName

	 b.	 TableName: @activity(‘Lookup Metadata’).output.firstRow.TableName

	 c.	 SchemaName: @activity(‘Lookup Metadata’).output.firstRow.SchemaName

	 6.	 Finally, you can debug your pipeline to see how Data Factory

retrieves the data from the SQL database and passes the values

into the Copy Data activity.

�Additional Azure Data Factory Elements
This section advances on the essential elements of Azure Data Factory and discusses

some of the additional concepts that can influence design choice and developer practice.

�Additional Invocation Methods
In addition to the manual and automated triggers mentioned previously, you can also

create a new execution of the pipeline using either PowerShell or the REST API. A

PowerShell execution of Data Factory means that ADF pipelines can easily be scripted

and gives developers a flexible method of calling pipelines based on events and

processes outside of Data Factory. For example, if you wanted to do a one off copy of 100

sequentially incremented files from a folder into a SQL server instance, you could easily

create a loop within PowerShell and invoke a single pipeline containing a Copy Data

activity on each iteration of the loop. The alternative, using an ADF-only approach,

would mean creating an exterior pipeline to look up the 100 tables to process and then

creating several activities to increment variables and execute interior pipelines. For a

one-off exercise, this is perhaps a little excessive, although this depends on how familiar

you are with PowerShell. Additionally, many database professionals use PowerShell

to automate any number of menial administration tasks, and given that ADF can be

triggered from PowerShell, they can now trigger Data Factory pipelines at appropriate

times in their scripts – for example, after a backup/restore.

Chapter 3 The Integration Engine

86

Listing 3-2 gives an example of how to call a Data Factory pipeline using PowerShell.

Listing 3-2.  Invoking Data Factory pipelines using PowerShell

$paramObj = @{

 InstanceName = "MDWA-Instance"

}

Invoke-AzDataFactoryV2Pipeline `

 -DataFactoryName "mdwa-datafactory" `

 -PipelineName "Pause Synapse Analytics" `

 -ResourceGroupName "moderndw" `

 -Parameter $paramObj

As mentioned before, pipelines can accept parameters, and so when invoking

pipelines from PowerShell, you can declare a parameter object containing each value

and pass that into ADF. This method is shown in the preceding code listing, passing in

the parameter name “InstanceName” with the value “MDWA-Instance.”

Another invocation approach outside of Azure Data Factory is to use Azure

Functions. Azure Functions are serverless pieces of C# code that allow developers

to hook into HTTP events and triggers without having to go through the lengthy

configuration process of servers. When coupled with Azure Data Factory, they act

as an extension to the already existing trigger schedule option. Currently, the trigger

schedule option only listens to events arising from Blob Storage; however, Azure

Functions provide a much broader interface and, once triggered, can call the Azure

Data Factory invocation API so that essentially your Data Factory can be invoked from

a much wider variety of sources. A similar approach in terms of execution is to use

Azure Logic Apps; however, this approach allows for a no code solution to much the

same problem. Logic Apps are heavily integrated across Azure and beyond, having

many useful third-party triggers straight out of the box, and also have the ability to call

Data Factory with a simple activity.

All of the preceding invocation methods extend the ability to integrate Data Factory

with existing or new processes that are not accessible to Data Factory out the box.

Chapter 3 The Integration Engine

87

�Mapping Data Flows
Azure Data Factory Mapping Data Flows provide a graphical interface to enable detailed

data manipulation in a step-by-step, left-to-right format. Without this feature, you could

copy data and transform its storage format, but any actual manipulation would have to

be performed within an external compute service. Passing data around external services

requires a degree of orchestration to ensure the jobs are executed correctly and that

the outputs are then properly passed further down the pipeline. With Mapping Data

Flows, this process can be built directly into the pipeline so that debugging becomes

much more seamless and external compute resources are not required. In fact, the

computation itself occurs on a Databricks cluster that is managed by the Data Factory

service, and there is no need for the developer to configure or understand any aspect of

Databricks. However, the developer should be familiar with the idea of ETL vs. ELT as

Mapping Data Flows mean that data can actually be transformed in flight akin to tools

such as SQL Server Integration Services.

An advantage of Mapping Data Flows is that they have some useful options for

analyzing the source data before it progresses into the flow itself. Primarily the developer

can choose to “Allow schema Drift,” meaning that data will always be accepted into

the data flow and passed through to the sink. This is very useful when the source data

changes frequently. Alternatively, Mapping Data Flows can validate the schema of the

source data and fail if any columns do not match what is set out in the dataset. These

options mean that the developer can cater for a much wider array of scenarios with

a minimum degree of effort. In any data integration process, there will always be an

element of schema drift, and while sometimes it is best to reject this, there are definitely

times when it is preferable to capture the data as it arrives and handle the schema

changes later in the pipeline. Alternatively, this could be used to raise a detailed alert to a

developer that schema drift has occurred. Even if it does not progress further through the

pipeline, being able to capture the data in its new schema rather than it being rejected

with an error is likely to be a better solution.

The transformations that are available closely resemble those that were available

through SSIS and fall into several categories which are

•	 Multiple Inputs and Outputs

•	 Schema Modifier

•	 Row Modifier

Chapter 3 The Integration Engine

88

�Multiple Inputs and Outputs

This collection of transformations allows for data to be joined, split, unioned, and looked

up. It is good to point here that the lookup transformation is not the same as the Lookup

activity in the Data Factory pipeline editor. Rather than returning single values or an

array that can be used in processing, this uses a column value to join to another table

and retrieve an associated value, such as providing a business key to a dimension table

to retrieve its surrogate key.

�Schema Modifier

This collection of transformations provides the ability to modify the actual shape

of the data that is passing through the data flow. This includes activities such as

derived columns to create additional columns using calculated values or expressions,

aggregations to summarize data, and also pivoting, windowing, and the ability to create

surrogate keys. In particular the ability to summarize data within the data flow and apply

surrogate keys can be very useful in a warehousing scenario as this means that logic can

be removed from being implemented with stored procs in the SQL engine and placed in

the Data Factory. While this approach may not be ideal in all scenarios, it does provide

the ability to implement these concepts in a low or no-code fashion.

�Row Modifier

The final collection of transformations provides the ability to change the number of rows

that flow through the data flow. This implements filtering, sorting, and exists concepts as

well as selecting a set of columns to be passed through to the next transformation step.

Additionally, this set of transformations contains the “Alter Row” transform which allows

the developer to specify one to many Boolean expressions that when evaluating to true can

execute different activities for each row of the dataset. These can be one of the following:

•	 Update

•	 Insert

•	 Delete

•	 Upsert

These activities can only operate on databases sinks (destinations), and each type of

activity must be explicitly enabled on the sink itself.

Chapter 3 The Integration Engine

89

�Execute Mapping Data Flows
To use a Mapping Data Flow as part of your pipeline, you simply choose the activity from

the “Move & transform” segment of the activity list. Here you can configure the activity

name, the data flow name, and the runtime to utilize for the execution. Additionally, you

can specify the compute type and core count of the Databricks cluster that will execute

the data flow through the settings tab of the activity. Figure 3-18 shows how the pipeline

can be configured to invoke a Mapping Data Flow.

Figure 3-18.  Using the Mapping Data Flow activity to invoke a Mapping
Data Flow

Chapter 3 The Integration Engine

90

The following steps walk through how to configure a simple Mapping Data Flow

process that performs some basic ETL steps.

	 1.	 Hover over the Data Flows node and click the ellipsis, choose “Add

Data Flow,” and this will take you into the Mapping Data Flow UI

where you can begin creating your Data Flow. In order to avoid

waiting later on, switch the “Data flow debug” on. Note this does

incur an additional cost.

	 2.	 Click “Add Source” to begin configuring the source activity of the

data flow. You can supply a name and choose which dataset will

be used to supply your source data. Uncheck “Allow schema drift.”

Tip N ote the other options on offer here which can be very useful for more
complex data integration scenarios.

•	 On the “Source options” tab, you can choose to add actions

that occur after completion such as deleting or moving

source files.

•	 On the “Projection” tab, you can tailor your schema which is

defined in the source dataset. My preference is to leave these

all as strings to avoid any early typing errors as we will address

these later in the flow.

•	 Finally, on the Optimize, Inspect, and Data preview tabs, all

defaults can remain the same.

Figure 3-19 demonstrates how to set the schema using the “Projection” tab.

Chapter 3 The Integration Engine

91

	 3.	 Click the + icon in the bottom right corner of the source activity

and choose “Sink” from the drop-down list. Here we can configure

the output of our flow which in this case will be a SQL database.

•	 Specify the name and choose an existing SQL database

connection if you have one or create a new one.

•	 On the “Settings” tab, you can choose which methods can be

used by ADF when working with your table. These can be any

combination of Insertion, Deletion, Upserting, or Updating. Also,

you can define actions to occur in the database before loading the

data such as recreating the entire table or truncating the existing

table before loading into it.

•	 Finally, on the “Mapping” tab, you can map columns from source

to sink. Be aware that any columns that are not strings in your

database will not be mapped until the data typing has occurred.

Figure 3-20 shows the mapping configuration.

Figure 3-19.  Using the Projection tab to tune the schema

Chapter 3 The Integration Engine

92

At this point, Mapping Data Flow is performing a basic copy; however, we can begin

doing the actual transformation.

	 4.	 The first transformation will trim whitespace from columns.

Click the + icon and choose “Derived column’s settings.” Within

the “Derived column’s settings” tab, you should add each of the

columns in your source dataset and then enter the following

expression for each one in the expressions editor: trim({column

name}). This expression will remove any whitespace from the

column value ensuring the database receives a clean value.

Figure 3-21 shows how this should look once completed.

Figure 3-20.  Mapping fields from source to sink in Mapping Data Flow

Chapter 3 The Integration Engine

93

	 5.	 The next transformation step will standardize any NULL-Like

values into true NULL values.

•	 Click the + icon again and choose “Derived column’s settings.”

Similar to the preceding step, add an entry in the “Derived

column’s settings” tab for each column, and use this expression

to replace empty and “Unknown” values with database NULLs:

replace(replace({column name}, " ',"),'Unknown',").

•	 In some cases, there may be the need to cast string values as

other datatypes such as ints or decimals. To do so, the preceding

expression can be wrapped in a toInteger() or toDecimal()

function as shown in Figure 3-22.

Figure 3-21.  Applying a trim function to incoming columns

Chapter 3 The Integration Engine

94

	 6.	 A final check should be done on the sink activity to ensure that

the casted data types have been pulled through. By navigating

to the sink activity and choosing the “Mapping” tab, you can

ensure the correct columns are selected from the drop-down

menu. Figure 3-23 shows how the mapping is configured for

the sink activity.

Figure 3-22.  Adding data types to column values

Chapter 3 The Integration Engine

95

At this point, the data flow should consist of four steps that resemble the preceding

screenshot. Once your Data Flow debug session is online, you can debug the data

flow and see the cleaned values load into the database. While completing these steps,

I recommend reviewing the Inspect and Data preview tabs. The Inspect tab gives a bit

more information about what steps are taking place on the data in that activity and the

Data preview will show you how the data will look, although the Debug session needs to

be active for this to work. Finally, the Optimize tab allows you to set the partitioning of

the data using techniques such as Round Robin, HASH, and range distribution.

�Azure Data Factory Processing Patterns
When designing your Data Factory instance, it is essential to consider the methods and

configurations used for loading data in certain scenarios. These methods are known as

patterns and can be used to reference a whole collection of activities or perhaps just a

single configuration option. In my experience, the best way to remove confusion in any

debate about a Data Factory implementation is to define the pattern used and then refer

Figure 3-23.  Mapping the columns into the sink dataset

Chapter 3 The Integration Engine

96

to the pattern specifically. This means that however complex the pattern, it can easily be

referenced in conversation and documentation. The next section introduces a number of

orchestration patterns that can be implemented using Azure Data Factory.

�Linear Pipelines
The simplest pipelines are linear and execute activities from left to right, in sequence. In

Data Factory, an example of linear pipelines could be a copy process that moves data from

a file-based data source into a database. The pipeline may accept parameters to determine

which source and which destination to connect to, but the process is encapsulated into a

single pipeline only. A diagram showing the linear pattern is shown in Figure 3-24.

�Parent-Child Processing
The parent-child pattern in its simplest form describes a two-level process; however,

any number of tiers could exist to implement the pattern much like grandparents having

children who then produce grandchildren and so on. At any level, there will be the concept

of an exterior pipeline, the parent, and an interior pipeline, the child. The parent pipeline

is responsible for initiating a process using an Execute Pipeline activity and then optionally

awaiting the result of that pipeline or continuing to move through the rest of the activities.

The child is then in charge of accepting the values passed from the parent, executing the

“heavy lifting” of data, and then passing execution back to the parent when complete.

The benefits of this pattern are several:

•	 Simpler error handling: Handling multiple errors in a single

pipeline requires the need for the same error handling activity to be

copied for each activity that needs to be covered. This is cumbersome

and difficult to maintain, whereas with a parent-child pattern, a

single error handling activity can be placed on the “On Failure”

output of the Execute Pipeline activity, thereby catching any error

that happens in the child pipeline. See Figure 3-25 for an example.

Figure 3-24.  An implementation of a linear pattern

Chapter 3 The Integration Engine

97

•	 The ability to await a child process: Data processing pipelines are

often comprised of different tiers of activities and there is usually

at least one or two that must complete before anything else can

continue. Conversely there may also be some long running processes

that do not need to be awaited. By using the Execute Pipeline activity

with the “Wait on completion” box ticked, Data Factory will ensure

no further processing is started before the child activity begins.

This is useful when orchestrating sequential segments of a larger

pipeline, for example, data acquisition or ingestion. With the “Wait

on completion” box unticked, Data Factory will fire and forget the

child pipeline, meaning that process is not depended on at all and

processing will continue immediately. This is useful for running

logging activities or error handling routines.

�Iterative Parent-Child Processing
A slight extension to the parent-child process can be achieved by preceding it with

a Lookup activity. The Lookup activity can be used to collect a list of items to be

processed from the metadata database, and this list can then be iterated by a For Each

Loop activity, executing the child pipeline for each element in the list and passing in the

necessary information at the point of invocation. This pattern has a few benefits over the

linear pipeline:

Figure 3-25.  An image of single error handling activities being hooked to the “On
Failure” outputs of Execute Pipeline activities, avoiding the need for duplicated
error activities

Chapter 3 The Integration Engine

98

•	 Parallel execution: Data Factory can be configured to execute a set

number of child pipelines at once, meaning ETL windows can be

shortened as data can be copied more efficiently.

•	 Logical batching of tasks: As a list of work has to be obtained by the

parent pipeline, these tasks can be batched together to ensure related

processes happen together. This also allows for better options around

error handling and logging. More detail on error handling and

logging is discussed in Chapter 7, “Logging, Auditing, and Resilience.”

Figure 3-26 describes a basic implementation of the iterative parent-child pattern.

In practice the parent-child pattern is implemented very simply in Azure Data

Factory with the key elements being a For Each Loop activity and an Execute Pipeline

activity. The For Each Loop activity accepts an array of JSON objects; this is essentially

the list of jobs to complete. Then, nested within the For Each Loop activity is the

Figure 3-26.  An implementation of the iterative parent-child pattern. The boxed
activities sit within the For Each Loop activity

Chapter 3 The Integration Engine

99

Execute Pipeline activity which should accept a set of values passed in by the iteration

context (the “row” the For Each Loop activity is on at that time) and execute the

specified pipeline with the aforementioned values as parameters. This ensures that

the pattern is very flexible, as the array passed to the For Each Loop activity can easily

be extended to include any values as required and then the receiving pipeline just

needs to have a parameter configured to accept those values. An added benefit of this

pattern is Azure Data Factory’s ability to parallelize items in a For Each Loop activity.

While sequential execution can be chosen, and is sometimes appropriate, more often

than not developers can maximize processing efficiency by starting multiple child

pipelines at a single time. If the array happens to contain a large number of items, then

a maximum batch count can be set to limit the number of jobs that are executed at any

one time.

�Dynamic Column Mappings
A key component of data movement technologies is the ability to map source columns

to destination columns. In Data Factory this is available through the “Mapping” tab, but

in order for this to be done visually, you have to import the schemas into the source and

sink datasets. In doing so, you fix these datasets for that single table or file structure and

not exploiting the full dynamic nature of Data Factory. A further issue is the ability to

handle files without header rows. Of course you can derive the schema from the file and

create a mapping; however, this again locks the schema to the dataset, crippling your

flexibility.

The recommended approach is to use a column mapping JSON object which is

supplied to the mapping tab by way of a parameter. This method allows the developer to

create a JSON mapping object at runtime and use that to define how Data Factory routes

the columns, instead of having to pre-populate the mapping object. The required JSON

object is built using an array of mapping objects, and each mapping object has a source

and sink attribute, making it very clear which columns are to be used where. By using the

metadata stored as part of the data contract, a query such as the following can be used

to create a stored procedure that can generate these mapping objects as required. This

stored procedure is documented in Listing 3-3.

Chapter 3 The Integration Engine

100

Listing 3-3.  Stored procedure code to create a dynamic mapping object

DECLARE @EntityName VARCHAR(100)

SELECT (
 SELECT
 'TabularTranslator' AS 'type',
 JSON_QUERY(
 (SELECT
 SourceColumnName AS 'source.name',
 'String' AS 'source.type',
 ColumnName AS 'sink.name'
 FROM [Metadata].[EntityColumn]
 WHERE EntityCode = @EntityName
 FOR JSON PATH
), '$') mappings
 FOR JSON PATH, WITHOUT_ARRAY_WRAPPER

) AS JsonMapping

The preceding code generates a mapping object like the one shown in Listing 3-4.

Listing 3-4.  The output JSON from stored procedure shown in Listing 3-3

{

 "type": "TabularTranslator",

 "mappings": [

 {

 "source": {

 "name": "UserId",

 "type": "Guid"

 },

 "sink": {

 "name": "MyUserId"

 }

 },

 {

 "source": {

 "name": "Name",

 "type": "String"

Chapter 3 The Integration Engine

101

 },

 "sink": {

 "name": "MyName"

 }

 },

 {

 "source": {

 "name": "Group",

 "type": "String"

 },

 "sink": {

 "name": "MyGroup"

 }

 }

]

}

This object could be fetched from the SQL database using a Lookup activity and

pushed into the dynamic mapping object value using the Mapping tab in the Data

Factory portal as per Figure 3-27.

Figure 3-27.  An image of the dynamic mapping setup in Azure Data Factory

Chapter 3 The Integration Engine

102

With this approach, the source and sink columns both need to exist in the database;

however, a similar but slightly different approach could be taken if the mapping needs to

be derived each time a file is loaded. By using a Get Metadata activity prior to the Copy

Data activity, the columns in a file could be detected and mapped as needed at runtime.

�Partitioning Datasets
When working with large amounts of data or highly volatile data, it is important to utilize

partitioning to either maximize parallelism or eliminate parts of the larger dataset that

are not relevant to the query. SQL tables often get intelligently partitioned, by year, for

example, to facilitate data warehousing performance, and this is handled by the SQL

engine. Unfortunately, using a CETAS pattern to write data back into the lake from

SQL (as described in Chapter 4, “The Ingestion Architecture”) will only create a non-

partitioned table, even if the source table is partitioned. This same issue is apparent even

if you decide to use the Azure Data Factory native Copy Data activity.

In order to write data out of the database with intelligent partitioning, Azure Data

Factory Mapping Data Flows can be used. This technology has the ability to partition

datasets in a number of different ways:

•	 Round Robin: Each row is handed to a different partition

incrementally up to the max number of partitions. This guarantees an

even distribution of data across partitions and avoids skew.

•	 Hash: Each value of the designated column(s) is hashed and

matching values are stored in the same partition.

•	 Dynamic range: ADF will determine the correct ranges for

partitioning based on the number of partitions set by the developer

and the column designated for partitioning on.

•	 Fixed range: The developer can set the ranges used for partitioning

with an expression.

•	 Key: Every distinct column value for the designated column incurs

a new partition. This should be used when the number of distinct

values is fairly low.

The use of this part of Azure Data Factory incurs the cost of a Databricks cluster and

so should be carefully considered before being built.

Chapter 3 The Integration Engine

103

The following steps describe the process of loading a file from a source database and

landing that in a data lake, partitioned by year and company name:

	 1.	 Following a similar set of steps as the Mapping Data Flow guide

mentioned previously, create a pipeline and add a Mapping

Data Flow activity. Once in the UI, create a source activity and

choose a SQL dataset that needs to be stored in the data lake with

intelligent partitioning.

	 2.	 Add a sink activity and ensure the connection string of the sink

does not have a specified file name; it must be just a path. Be

aware that the partitioned files will be deposited using a GUID for

their name.

	 3.	 Open the “Optimize” tab of the sink and choose a partition

strategy. By selecting “Key,” the Mapping Data Flow will create a

folder for each unique value of the specified column and place

the partitioned data inside. Figure 3-28 contains an image of the

optimize options in a Mapping Data Flow.

Figure 3-28.  Choosing the “Key” partitioning option in a Mapping Data Flow

Chapter 3 The Integration Engine

104

The configuration shown in Figure 3-28 produces the folder structure in the data lake

that is shown in Figure 3-29.

Figure 3-29.  A portioned dataset in Azure Data Lake Gen 2

Chapter 3 The Integration Engine

105
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_4

CHAPTER 4

The Ingestion Architecture
Data does not stand still. As data warehouse developers, this is a known fact on which

our careers are based. For data to have value, it has to be reliably moved to a place where

that value can be realized and the method by which we move data should depend on the

needs of our users and the frequency of the data, not on the physical or technological

limits of the system. As this book examines a modern data warehouse, we need to

research beyond the traditional defaults such as batch-based ingestion and simple lift

and shift extract, transform, and load (ETL) patterns and explore how we offer more

flexibility to the end users. This chapter outlines an approach for warehouse loading

that promotes efficiency and resilience, moving on to describe three ingestion modes.

By defining the risks and benefits of batch-based, event-based, and streaming modes,

you will know how to implement each approach while also being aware of the additional

complexities of each, ensuring a successful implementation.

�Layers of Curation
ETL describes the process of lifting and changing data so that it can be used in an

analytical data warehouse. Often this process requires many complex steps involving

data cleaning, data transformation, and data integration, and in some systems, there is

an attempt to negotiate all of these steps in once single process. Arguments are made

regarding the efficiency or compact nature of such an approach, but ultimately, these

ETL designs nearly always become slow, difficult to maintain, and a primary reason for

rebuilding ETL pipelines.

For these reasons, it is crucial to partition the ETL work up into clearly defined

layers that separate loading and cleaning concerns from transformation and integration

concerns.

https://doi.org/10.1007/978-1-4842-5823-1_4#ESM

106

�The Raw Layer
The initial layer in your data warehouse loading process should hold your source data

in its rawest format. No cleaning, no filtering, just data exactly as it arrives from your

source provider. This convention should be followed even in the instances where you

collect data directly from a database yourself. Even though that data could go directly

into another database, having the forethought to snapshoot the data in a raw layer will

have numerous benefits downstream. Additionally, data in this area should be truly

immutable (never deleted or updated). By storing data in this way, you ensure that in

the worst possible case, your warehouse can be truncated and rehydrated from data

that exactly matches how it arrived in the first place - an ultimate rollback option from

any given point in time. Additionally, if your source datasets need to be consumed and

integrated by other areas of the business, you can easily provide access to this consistent

raw layer without the need to make any changes to your ETL processing pipeline.

Because of the demands of this layer, the most fitting technology is a data lake.

Primarily, data lakes have the ability to scale to limitless capacity and can store files of

any type and size without the need for a set column structure or data types, as would

be the case in a database environment. In order to make your data lake as efficient as

possible, it should be a developer lead initiative that promotes clear organization and,

while allowing datasets to be easily ingested, should also enforce a rigorous convention

for placing datasets in a well-defined, logical directory structure. In almost all cases,

this structure should have an initial layer that is divided by source system. This is so

that cleaning and sensitivity concerns can be considered separately and ensures that

changes to one source systems processing should not have any knock-on effects to other

source systems. Beneath this source system–driven layer, you should then split data by

individual dataset with further year, month, and day partitioning below that. This instills

a degree of metadata into the lake directory itself but also helps to derive chronology and

lineage in a very intuitive way. An example of this structure is shown in Figure 4-1.

Chapter 4 The Ingestion Architecture

107

�The Clean Layer
The first step in moving data from its raw source format into a curated, data warehouse–

ready format is to clean and standardize that data. By cleaning your data, you ensure

that bad records are not processed into the warehouse and the standardization allows

you to integrate data consistently across your platform. Depending on the quality of data

that arrives from your source systems, you may find that cleaning rules can become very

complex, hence why they should be performed in their own layer so as not to interfere

with your immutable source but also so that value adding business logic is not hindered

by complex cleaning rules.

The output of the clean layer should be stand-alone datasets that are primed and

ready to be integrated, and this could mean that data has been filtered, columns have

been removed, or that values have been transformed in some way so that they will align

better with similar type values from different systems.

�The Transformed Layer
The final movement of data in this layered system is from its clean location into

an analytical data warehouse. The demands of this layer require data to be joined,

aggregated, and integrated, and again the processing logic can get very complex. Of

course, this is made simpler because you know you are only working with clean, valid

Figure 4-1.  A folder hierarchy showing the RAW directory with one source system
and two datasets

Chapter 4 The Ingestion Architecture

108

data and can therefore focus solely on the business logic that is required. Ultimately this

layer will have to implement slowly changing dimensions, surrogate keys, conformed

dimensions, as well as many other warehousing concepts and therefore should attempt

to utilize patterns that perform each operation consistently as opposed to designing each

flow per dataset. In much the same way as you would want to clean strings consistently

across all inputs, you would also want to implement data warehouse concepts

consistently so that debugging and maintenance can be simplified. Additionally, new

feeds of data can then be integrated very quickly because the patterns exist; it is simply a

matter of choosing the right pattern and supplying the right columns.

Now that you understand the layers of processing that go into building the

warehouse, and the justification for each layer, we can discuss how the differing

processing architectures can interact with each layer.

�Understanding Ingestion Architecture
At the start of a modern data warehousing project, there should always be a phase of

planning and discovery. Part of this phase should be spent understanding the methods

by which data arrives and then using this knowledge to plan how that data will be fed

into the warehouse. For example, if a source provider delivers datasets at a single point

on a daily basis, then there is no need to ingest that data into the warehouse more than

once a day. Streaming this data constantly would provide no benefit to the users as

nothing would change. Conversely, if a source provider has the ability to stream data

into your environment, then this opportunity should be realized. There should be no

reason why the users cannot see the data in near real time. By understanding each of

the potential ingestion scenarios, you can begin to plan how your data warehouse might

handle each of these.

�Batch Ingestion
By far the most tried and tested method of populating a data warehouse is to use

batch ingestion, a process where data is loaded from raw through clean and into the

warehouse in regular, predefined, scheduled increments. The reason for this method

being so popular is that it promotes resilience and stability above all other attributes.

Optimizations can be made for speed and efficiency, but the batch is still a batch, with

Chapter 4 The Ingestion Architecture

109

a start and an end and a relatively stable amount of processing in the middle. Were

the batch to fail, then we can safely say that the entire batch failed and that it would

need to be processed again. Additionally, batch loads often have to conform to a fixed

window and so users can easily grasp the schedule by which their data arrives and know

when to refresh reports and dashboards. For a long time, batch ingestion suited nearly

all scenarios; however, there are of course increasing needs to have data arrive more

frequently or perhaps not based on a schedule but on the occurrence of an event.

�The Risks and Opportunities of Batch Ingestion
The term “risks” is applied loosely here as batch ingestion is by far the most stable

ingestion method; however, there are certainly things it cannot do, the risk being you

may need to do those exact things some other way.

�The ETL Window

In nearly every batch-based scenario, there is an allowable start and end time. This

window is known as the ETL window, and it is the role of the developers to ensure that

the entire end-to-end processing occurs within these times to avoid disruption to the

business. Generally, these times are set to ensure the processing starts a safe amount of

time after the last daily transaction and then to complete a safe amount of time before

the next day begins. Often between midnight and 5am are peak processing times for ETL

solutions. The rigid nature of this scheduled window gives developers key metrics to

work toward, and its simplicity comes from being analogous to a calendar date. All being

well, report users can rely on their data being no more than one day out of date and can

live in certainty that no numbers will change between the first glance at a dashboard in

the morning and a last check before going home.

However, as data feeds increase, it is not long before what may have seemed like a

generous ETL window begins to feel constricting. More and more pressure will be placed

on performance, but ultimately, things can only go so fast, and while speed is a focus,

reliability is likely to suffer. Of course, you can explore options around splitting batches,

prioritizing certain workloads, or beefing up servers; however, these are only kicking the

can down the road. Ultimately, there is the risk that your batch can become too big for

your ETL window. Of course there is always the risk that a user may require data to be

processed outside of the ETL window; now you have to handle the fact that transactions

are happening throughout your batch load, greatly increasing the chance for error.

Chapter 4 The Ingestion Architecture

110

A final issue with the ETL window is that there can be times when data arrives late.

How can you process a critical dimension if the data of the required day has not yet

arrived? What is more, your batch is only aware of schedules, so unless this delay is

pre-arranged, there is a high chance of failure or worse, success, but with the wrong

data! Ensuring that scenarios such as this are handled is critical to a batch processing

architecture, and often the ability to programmatically decide to halt or postpone a batch

using a series of checks saves a large amount of headache further down the line.

�The ETL Anti-window

Given that a batch process happens within a set window, it means therefore there is

an anti-window, the passage of time that is not considered critical for processing. This

regular ETL anti-window means that the development teams have a prime opportunity

to deploy new code or data feeds into the batch process without the risk of immediately

creating problems. New solutions can be deployed and tested safely with the knowledge

that if the tests fail, the deployment is rolled back, and the batch continues as normal,

again, reiterating the point that batch equals resilience and stability.

�Failure Investigation and Troubleshooting

Continuing from the idea of the anti-window, this also provides the development team a

chance to investigate and resolve any issues that occurred in a nightly batch. Knowing that

the system does not need to operate again for several hours allows team members free reign

to investigate issues without the risk of accidentally interfering with some ongoing process.

Once an issue is determined and a fix implemented, this can be tested and then promoted

into the production environment all within the relative safety of the anti-window.

However, while this activity is going on, there are potentially two problems that are

unfolding in the background. The first is that an analyst or C level exec is waiting for a

report to arrive. Because the issue happened overnight, often issues are not discovered

until the next morning, and even if an on-call service is provided, there needs to be

significant investigation to determine if the whole batch is bad or if only part of the batch

needs rerunning.

The second problem is that regardless of whether you must completely restart a

batch or can operate on a subset, you will likely still have some amount of processing

time ahead once the issue is resolved. The point of a batch is that it is a larger amount

of data processed at a convenient time. However, in this occasion, you could be dealing

with a large amount of data that needs to be processed at a very inconvenient time.

Chapter 4 The Ingestion Architecture

111

�The Batch Ingestion Tools

An implementation of batch ingestion could be stood up using a variety of tools.

Most SQL engines lend themselves nicely to batch-based tasks, and I imagine most

developers reading this will have tools in mind to perform such a solution. To elaborate,

Azure Synapse Analytics can connect directly to several cloud data stores and utilize

PolyBase and external tables to read data straight from a file, into an internal SQL table.

This approach requires only that Azure Synapse Analytics is running and that it has a

connection to the relevant data store; no other tools would be required.

However, the more common scenario is that a database does not have PolyBase

technology, for example, Azure SQL Database, and will need to be fed using some kind

of integration engine. In this case, Azure Data Factory is by far the best tool as it supports

a multitude of connectivity options and has specialized activities for the task of loading

databases. Of course, SQL Server Integration Services (SSIS) is an alternative option here;

however, it cannot scale to the realms of big data as easily as Azure Data Factory can.

Finally, there may be times when files are simply too large or too complex to be read

using SQL engines, and therefore, extended processing to a data lake–based tool may

be required. One such tool is Azure Databricks, a PaaS implementation of Spark, which

will be discussed later in this book as a potential alternative when data exceeds the

reasonable limits of Azure SQL engines.

�Batch Ingestion for Azure Synapse Analytics

Reading large batch files efficiently is something Azure Synapse Analytics does very

well, and when reading from a data lake, there is a huge efficiency gained from using the

PolyBase engine. A common pattern is to define an external table root location that is the

starting point for a partitioned set of data made up of any number of files, for example:

/Raw/Sales System/Daily Sales/...

This root location is then the starting point for PolyBase when it begins searching for

data in the lake. Underneath the root location, you could create many files and folders;

PolyBase will be able to see and read them all. Often you would extend from the table

root with a year/month/day structure although you could use other partitions as well

such as customer, product, and so on.

Chapter 4 The Ingestion Architecture

112

Many file types are not type safe, meaning the data within each column may not

conform to a set data type. In these cases, it is important to either remove the offending

rows using the PolyBase rejected rows functionality, or assuming you do not want to lose

data, set each column of the external table to be NVARCHAR(1000). However, a Parquet

file type is type safe and therefore the external table can be strongly typed also, removing

the need to cast as part of the ETL, and this is a major reason for choosing Parquet files

when performing ETL a large scale.

Once the data is visible to Azure Synapse Analytics through the use of an external

table, it needs to be read into a persisted table in the database. There are a few ways to do

this; however, the CTAS method provides a minimally logged option that also surfaces

the most flexibility for the developer.

The Create Table As Select statement is the staple method to move data around in

Azure Synapse Analytics. The reason for this is that it works in a parallelized manner

but also provides a great deal of control to the developer. With a CTAS statement, many

key parts of the DDL can be changed, such as the distribution type, the index type, the

partition values, and even the columns data type. These inherent capabilities make the

CTAS statement ideal for loading data through a layered processing pipeline because

each transformation can be optimized down to the index, distribution, and partitioning

level. The following steps show how the CTAS pattern can be used to facilitate ETL

through each layer of the warehouse:

	 1.	 A raw CSV file in the data lake would be exposed as an external

table with NVARCHAR(1000) type columns. By using the Create

Table As Select statement, the DDL of the produced internal table

will be derived from any casting or transformation implemented

by the developer. Additionally, indexing and distribution can be

configured intelligently as opposed to relying on the defaults. An

example of CTAS for this layer is documented in Listing 4-1.

Listing 4-1.  A CTAS statement used to load data into a clean area

IF OBJECT_ID('Clean.DirtyCSVFile') IS NOT NULL

DROP TABLE Clean.DirtyCSVFile;

CREATE TABLE Clean.DirtyCSVFile

WITH

(

Chapter 4 The Ingestion Architecture

113

 HEAP,

 DISTRIBUTION = HASH([OrderNo])

)

AS

SELECT

 ISNULL(CAST([ID] AS INT),'0'),

 ISNULL(CAST([SkuItemId] AS VARCHAR(18)),''),

 ISNULL(CAST([CustomerId] AS INT),'0'),

 ISNULL(CAST([OrderNo] AS INT),'0'),

 ISNULL(CAST([Quantity] AS INT),'0'),

 ISNULL(CAST([Price] AS DECIMAL(10,2),'0'),

FROM [Ext].DirtyCSVFile

OPTION (LABEL = 'Clean.DirtyCSVFile.CTAS');

Note that in the preceding code, the index has been defined as a HEAP; this is

because there is an overhead to creating a formal index, and as the whole dataset will

be loaded, there is no benefit to be gained. A further detail is the distribution being set

to hash on OrderNo. This ensures that all data relating to the same order will be stored

on the same storage node of the server and therefore provide better performance for

joining downstream. In the SELECT itself, all the columns definitions have an ISNULL

and CAST statement which enforces a NOT NULL and the CASTED data type on the

destination table (Clean.DirtyCSVFile in our case). Finally a label has been added

which allows the engine to identify this query later for gathering aspects such as row

counts and error details.

	 2.	 The now clean data is to be joined and integrated with other

tables. The resulting dataset will no longer resemble the source

datasets, and so the CTAS offers maximum capability in terms

of table definition but also in optimizing the data for its new

purpose; now it has been enriched. A CTAS statement to carry out

this step is shown in Listing 4-2.

Listing 4-2.  CTAS statement to create a warehouse fact table

CREATE TABLE Warehouse.DirtyCSVFile

WITH

(

Chapter 4 The Ingestion Architecture

114

 CLUSTERED COLUMN STORE,

 DISTRIBUTION = HASH([OrderNo])

)

AS

 WITH

 cte_Orders AS

 (

 SELECT

 OrderNo,

 SkuItemId,

 CustomerId,

 Quantity,

 Price

 FROM Clean.DirtyCSVFile

),

 cte_DimCustomer AS

 (

 SELECT

 CustomerKey,

 CustomerBusinessKey

 FROM Dim.Customer

),

 cte_DimProduct AS

 (

 SELECT

 ProductKey,

 SkuItemId

 FROM Dim.Product

)

 SELECT

 CAST(o.OrderNo AS INT) AS OrderNo,

 CAST(dc.CustomerKey AS INT) AS CustomerKey,

 CAST(dp.ProductKey AS INT) AS ProductKey,

 CAST(o.Quantity AS INT) AS Quantity ,

 CAST(o.Price AS DECIMAL(10,2) AS Price

Chapter 4 The Ingestion Architecture

115

 FROM cte_Orders AS o

 INNER JOIN cte_DimCustomer AS dc ON dc.CustomerBusinessKey = o.CustomerId

 INNER JOIN cte_DimProduct AS dp ON dp.SkuItemId = o.SkuItemId

OPTION (LABEL = 'Warehouse.DirtyCSVFile.CTAS');

In the preceding code, the index definition has changed from HEAP to CLUSTERED

COLUMN STORE so that the data is more efficient for analytical queries such as

aggregations; however, the distribution configuration has not changed which will ensure that

the lowest amount of data movement should occur. The SELECT part of the statement uses

more complex logic by employing common table expressions (CTEs); these are common in

data integration and demonstrate that all SELECT capabilities exist within the CTAS.

While the CTAS pattern offers a number of efficiencies, there is a functionality gap

in that when data is selected from the external table, any filter predicates in the WHERE

clause cannot be pushed down to the data lake. In practice, all of the data below the root

is read and only then is the filtering done – obviously this is not the most efficient way to

extract a small daily batch from what may be a much larger set of data.

One solution to this problem is to use an active partition, where the most recent data

is stored, and an inactive partition, where the less recent data is located. As the data is

ingested, it can then be copied into the inactive partition so that it is available if needed

but will not unnecessarily increase the volumes of data to be loaded to Azure Synapse

Analytics. The structure for this might look like that shown in Figure 4-2.

Figure 4-2.  An example of a file structure used to load active data and obstruct
loading of inactive data

Chapter 4 The Ingestion Architecture

116

In this case, the external table definition would resemble the code in Listing 4-3.

Listing 4-3.  Data definition language (DDL) statement to create an external table

in Azure Synapse Analytics

CREATE EXTERNAL TABLE External.DirtyCSVFile

(

 [ID] NVARCHAR(1000) NULL,

 [SkuItemId] NVARCHAR(1000) NULL,

 [OrderNo] NVARCHAR(1000) NULL,

 [CustomerId] NVARCHAR(1000) NULL,

 [Quantity] NVARCHAR(1000)) NULL,

 [Price] NVARCHAR(1000) NULL,

 [LastUpdateDateTime] DATETIME2 NULL

)

WITH (LOCATION='/Raw/Sales System/Active/Sales',

 DATA_SOURCE = DataLakeSource,

 FILE_FORMAT = CSV,

 REJECT_TYPE = VALUE,

 REJECT_VALUE = 0);

You can see that by specifying active in the location string, the inactive data will not

be read. An alternative solution is to use a stored procedure containing dynamic SQL to

create a new external table each time an ETL process is kicked off. This could have the

specific location string passed in as a parameter, meaning that only a single file is read at

that specific time.

�Create External Table As Select (CETAS)

When working with batched data and Azure Synapse Analytics, there may be a need to

write transformed data back out into the data lake for consumption by other systems. The

way to do this using Azure Synapse Analytics is to use the CREATE EXTERNAL TABLE AS

SELECT (CETAS) statement. When considering this statement, remember that a CREATE

TABLE AS SELECT (CTAS) statement generates a brand new internal table based on the

select that is provided and a CETAS is no different other than the data for the table is stored

externally, that is, in the data lake. Provided that the required PolyBase objects are created

(the external data source and the file format), the SQL engine can use PolyBase to push

data back to the lake. The syntax for this statement is shown in Listing 4-4.

Chapter 4 The Ingestion Architecture

117

Listing 4-4.  Creating an external table as SELECT

CREATE EXTERNAL TABLE ext_FctOrders

WITH (

 LOCATION='/DWH/Fact/Oders.pqt',

 DATA_SOURCE = DataLake,

 FILE_FORMAT = PqtFormat

) AS SELECT TOP 100 PERCENT FROM Warehouse.FctOrder;

One consideration here is that the produced file will be written to the data lake and

partitioned according to the storage engine and not how the data was partitioned in

Azure Synapse Analytics. There is a method to achieve intelligent partitioning and this is

described in more detail in Chapter 7, “Logging, Auditing, and Resilience.”

�Event Ingestion
Event ingestion is not dissimilar to batch ingestion although instead of multiple files

being processed at once, now a single file is considered your batch. Of course, the

challenges and opportunities of single file batches are much closer to traditional batch

processing than stream processing, which is based on a record by record flow. The

primary difference is that files are processed the minute they arrive within the agreed

location and not based on an arbitrary schedule. In nearly all cases, this means that

files are processed as a single unit, without any dependence on other files that may also

arrive throughout the course of the day.

A warehouse will almost always require multiple files to be ingested in order to be

refreshed; however, the early cleaning and validation stages for those files can be entirely

independent.

Many services within Azure can generate events when things happen, and also

many services can listen to these events and take actions when they do. An example is

Blob Storage, and therefore Azure Data Lake Gen 2; the storage engine can fire events

when new files are added or existing files are deleted. Subsequently, Azure Data Factory

can listen for those events and then trigger a pipeline, utilizing the metadata provided

with the event, for example, file name and location. Generally speaking, event data

is implemented using JavaScript Object Notation (JSON) because many services can

process and understand this simple object type while it also is not schema bound,

meaning additional attributes can be added to the object without disrupting existing

Chapter 4 The Ingestion Architecture

118

processes. The Azure platform also has a wide number of tools for managing and

working with event data, some of which will be discussed later in this section; however,

an exhaustive list of event-enabled services is out of scope for this book.

�The Risks and Opportunities of Event-Based Ingestion
The primary benefit of event-based ingestion is that files can be processed quicker and

the warehouse can be updated sooner. If a file arrives early, then the processing can be

completed earlier. Although if a file arrives late, this should not collapse the integration

process because the process would not have started until the file arrives. In batch

ingestion, files could arrive at any point during the day but still not be processed until

the evening, assuming a nightly ETL window is implemented. The only other way to

manage file ingestion in such a way is to build intraday ETL loads, but this would require

managing multiple schedules and ETL windows; ultimately this can quickly become

very complicated. The reason for event-based ingestion being better is that the trigger is

the event, perhaps a file arriving in Blob Storage, and the integration engine knows how

to respond to the event because of the associated metadata of that event.

This seems like a great way to build upon a batch process; however, it is not without

its own pitfalls. In a more simplistic event-based application, you have to realize that you

are relinquishing the ability to decide when files are processed. You are no longer telling

the engine to get to work when you know the environment is ready; you are granting the

data provider that ability. Even if this is done with no intention to negatively affect your

system, you must ensure that the platform is always able to process data, day or night. If

for some reason it cannot, then you need other options for storing events and returning

to them later in the day.

Finally, you will need a mechanism to determine when all the required files have

arrived in clean and therefore the warehouse is ready to be refreshed. This can often start

out as a simple stored procedure but can quickly become a complex mesh of intertwined

dependencies that becomes very difficult to navigate and resolve. The risk here is that

the data warehouse will never be processed because the necessary files were never all

ready at the right time; it is essential that you manage this process closely and ensure

that your warehouse will not be starved.

Chapter 4 The Ingestion Architecture

119

�Implementing Event Ingestion
As discussed, event-based processing can present many benefits, but there are also

challenges and technical considerations. This next section aims to focus on the real-

world implementation considerations needed when working with events.

�Decoupled Processing

The essence of decoupled processing is in the absence of unnecessary dependencies.

When datasets are dependent on each other, there is a higher chance of failure, and

particularly at early stages of an ETL pipeline, there is little reason to enforce these

dependencies. Instead, each dataset can be processed independently, and if there

was a failure, this should not disrupt any of the other datasets being processed at the

same time.

Often ETL designs originating from a batch-based paradigm tend to favor complete

success or complete failure, whereby all datasets are coupled, and a single error means

the entire batch must be fixed and reprocessed. The issue is that this is inefficient in

terms of compute power, every second counts in a cloud-based environment, but also

in the amount of time, it takes to deliver insights to your users. Instead, all successful

datasets can be handled according to their individual needs.

In a data warehouse scenario, decoupled ingestion allows the loading process

for an individual file to be triggered by an event, usually the file arriving in a storage

repository. An event could occur at any time of day and be handled in several different

ways, but this concept allows the file to be ingested as soon as it arrives, allowing

BI teams to move away from a single, monolithic nightly ETL load. This approach is

illustrated in Figure 4-3.

Chapter 4 The Ingestion Architecture

120

In the preceding diagram, files 2 and 4 both have failures between layers; however,

files 1 and 3 can be fully processed into the warehouse, if appropriate.

Assuming the cleaning process completes successfully, the next procedure is to

transform and integrate datasets to produce warehouse tables. In contrast to the load and

clean routines, the transformation procedure needs to interact with multiple datasets in

order to add value. With the possibility that some datasets may fail to reach the clean layer,

a special type of query is needed that can check the dependencies for each warehouse table

and tell the ETL engine which tables can be created and which are not yet ready to run.

Referring to the preceding image, a warehouse table that was dependent on files 1

and 3 could be created; however, a file that required files 1 and 2 could not. In order to

resolve this kind of processing logic, a dependency resolution engine is required.

A dependency resolution engine can take many forms depending on the prevalent

technologies in your platform though one common method may be to use a stored

procedure. This assumes you are storing your dataset processing runs, high watermarks,

and dependency mappings in an auditing database, as is the pattern recommended

and explained in more detail in Chapter 7, “Logging, Auditing, and Resilience.” A

dependency resolution query would be triggered each time a dataset is successfully

cleaned and would comprise of several steps. These are described as follows using

dataset 1 as the dataset just cleaned, with the warehouse tables depending on datasets

1, 2, and 3 in order to be refreshed:

Figure 4-3.  A decoupled process loading data between layers

Chapter 4 The Ingestion Architecture

121

	 1.	 Knowing the identifier of the dataset just cleaned, query for all of

the subsequent tables that are dependent on that dataset.

	 2.	 Using those identifiers, query for all the other datasets that would

be required to fulfil each list of dependencies.

	 3.	 Using the high watermarks, determine which of those datasets

have a watermark that is greater than the warehouse table

enforcing the dependency.

	 4.	 For those where all high watermarks are greater, run the proc to

generate the table. For the others, do not run the proc and check

again when the next file arrives into the clean layer.

A more visual example of these steps is shown in Figure 4-4.

Figure 4-4.  An example of a simplistic dependency resolution process

More complex scenarios can develop of course, and a common requirement is

to daisy chain dependencies together, otherwise known as recursion. This can be

implemented simply by triggering the dependency engine query from later stages in

the process. In Figure 4-5, a warehouse table needs to be produced in order to generate

subsequent warehouse tables and so the dependency query would be called as the

datasets arrive in clean but also when tables are refreshed in the warehouse layer.

Chapter 4 The Ingestion Architecture

122

Figure 4-6.  Showing how optional and mandatory files can ensure processing is
not held up by late or infrequently arriving files

Figure 4-5.  Using a dependency resolution engine to resolve a meshed dependency
structure. In this second scenario, all subsequent processing is blocked until file
2 arrives. If file 2 was a low-priority dataset or did not change often, but its data
was still required as in the preceding scenario, it would be reasonable to question
whether this is a worthwhile endeavor. To overcome this, we can overlay the
dependency engine with a simple policy concept that can override the fact that a
required file was not refreshed. This is exemplified in Figure 4-6

Chapter 4 The Ingestion Architecture

123

In the preceding figure, files 1 and 3 are mandatory; however, file 2 is optional and

therefore should not delay processing. A real-world example could be to have file 1 as

a product file, file 2 as a product type file, and file 3 as a product sales file. The types

change infrequently, so we are happy to take a latest version of that file even if it is not as

recent as the other files.

�Listening for Events

The ability to listen to events being raised across an Azure subscription is fairly common.

While there are many services that can manage and process events, the most relatable to

the content of this book is Azure Data Factory, which has the ability to be triggered by either

a blob creation or blob deletion event. The event has to come from a Blob Storage account

and so Azure Data Lake Gen 1 (ADL Gen1) is out of the question; however, the architecture

of Azure Data Lake Gen 2 means that it is compatible with this event trigger. A limitation

here however is that the event can only be filtered by the name of the file triggering the event

although there is the ability to wildcard this filter to a point. When filtering for events, you

can either choose to react to blobs that have a certain prefix or suffix, and this means you can

either be entirely specific about a particular blob to look out for or very generic to pick up on

any event that occurs within a set directory. See the following Table 4-1 for some examples.

�Queuing Events

In an event-driven architecture, the goal is to listen and process events in real time;

however, this is not always possible. Whether it be agreed downtime with the business

to maintain analytical consistency throughout the day or a scheduled maintenance

window to allow for deployments, there is guaranteed to be a time when your platform

Table 4-1.  A table demonstrating some implementations of event filters

Filter Type Filter Expression Would Find

Blob path begins with (prefix) Sourcefiles/SalesDetail/ Any file in the SalesDetail folder in

any container

Blob path begins with (prefix) /Sourcefiles/ Any file in the Sourcefiles container

Blob path ends with (suffix) .csv Any CSV file in any container

Blob path ends with (suffix) /Sourcefiles/SalesDetail/

sales.csv

Any files named sales.csv in the

specific directory

Chapter 4 The Ingestion Architecture

124

cannot respond immediately to events. During these windows, it is essential that the

platform has a robust mechanism for queueing the events in the correct order so that

they can be processed at a later date or time.

To tackle this, delayed event processing can be employed to listen to all events;

however, only process them outside of the agreed downtime, similar to an ETL window.

Events that happen within the downtime should be stored in order and processed when

the platform resumes. See Figure 4-7 for a diagram of how this would work.

Figure 4-7.  A diagram showing an implementation of delayed event processing

Figure 4-8.  A diagram showing an implementation of selective event processing

A similar but alternative pattern is to implement a period of selective event listening

whereby some files are allowed to process as they will not disturb the other activities

going on in core business hours. However, some may be withheld until the ETL window

opens. A diagram for this pattern is shown in Figure 4-8.

Chapter 4 The Ingestion Architecture

125

The benefit in both delayed event processing and selective event processing is that

your stable period throughout the day is maintained; however, throughout the course of

the evening, data is allowed to process freely as and when it arrives, alleviating pressure

vs. a single batch load. Further to this, now that file processes are decoupled, a failure

for one file has absolutely no bearing on whether any other files will fail to process or

not. This can make debugging much simpler because the affected file will be clearly

identified and there is less work to do once the issue is resolved. A full explanation and

implementation of this pattern is held in Chapter 8, “Using Scripting and Automation.”

�Event Ingestion for Azure Synapse Analytics

The method for ingesting event-based datasets in Azure Synapse Analytics is broadly

the same as for batch-based data. The additional consideration is that you may receive

smaller volumes of data more frequently. Because the standard pattern in Azure Synapse

Analytics is to use the CREATE TABLE AS SELECT (CTAS) syntax, you essentially have to

re-create the entire table for every dataset you want to append, and also you will be more

frequently using up limited concurrency slots. In some scenarios, however, you may

find there is a disconnect between the rate your data arrives and the frequency that your

users need it. Therefore, you should be open to the possibility of batching your data to a

frequency that is agreed with your users. Fortunately, because of PolyBase technology,

your multiple files can remain separate and Azure Synapse Analytics will be able to read

the data in one pass.

�Event Ingestion for Azure SQL Database

Azure SQL Database is a good fit for event-based ingestion because it is architected

to be more transactional than Azure Synapse Analytics. This means that data arriving

in smaller and more regular batches is easily ingested at the same frequency as the

originating events, unlike Azure Synapse Analytics where you may group datasets

together. Of course, without PolyBase, you still need to use an integration engine such as

Azure Data Factory to push the data into the database.

�Stream Ingestion
When reading about event-based and batch-based processing, you will see that there

are a number of similarities between the two modes. Both use files that can be processed

in a decoupled manner although event based perhaps processes smaller files more

Chapter 4 The Ingestion Architecture

126

regularly and is more responsive than a scheduled batch process. Ultimately, however,

there is a regular interval in which data is processed and clear beginning and end to

the process routine. This third mode, stream ingestion, is completely different from

the previous two and relies on a constant flow of data from a source which can then be

landed into files or passed directly into a destination system. Many modern systems are

now able to offer the ability to tap into data streaming outlets, and with the increasing

dependence on Internet of Things (IoT) technology, stream-based ingestion is becoming

increasingly popular. Azure has a whole set of technologies dedicated to streaming

capabilities, and this is in addition to the open source technology options, such as

Databricks that can support a streaming architecture.

�The Risks and Opportunities of Stream Ingestion
Data streaming presents a number of benefits against the slower pace of batch- and

event-based ingestion, and while the available technologies go a long way to making

this approach simple, there are still challenges that need to be overcome. The most

obvious benefit is the speed at which data is available to your users. Mere moments after

transactions occur in your source system, they will be available to your users via their

analytics dashboards and reports. This can lead to incredibly efficient decision making

and the ability to react to changes in real time, not hours or days later. This can not only

have a commercial benefit to a business but also can allow for critical systems to be

monitored continuously. By streaming events from IoT sensors, businesses are able to

monitor attributes of hardware such as temperature or pressure to detect the possibility

of failure before any real problems occur.

A further benefit of data streaming is the size of data being processed through

the system is likely to be very small, usually single records or micro batches of one or

two records at a time, and this means that architecture components can be relatively

inexpensive as there is no memory pressure.

Though the speed of data streaming is arguably the key benefit it also presents the

primary challenge. The rate of the arriving data means that solutions must be always

running and available to process records successfully or at least store them securely in a

system that can preserve the order in which records arrived. Additionally, the speed of

the arriving data means you want to limit the number attributes arriving through your

stream to only what is needed to be displayed in real time. This could perhaps mean

that some attributes are being removed and therefore a mop-up routine that pulls the

remaining data into your data warehouse for later analysis could also be required.

Chapter 4 The Ingestion Architecture

127

A further challenge is the granularity and isolation of the data. Because each record

is isolated from all other records and also not processed in the same scope as any other

records, aggregating data to achieve a different grain cannot be done as part of the

constant stream but would have to be completed in a subsequent processing phase.

This can delay the records arriving in your destination and should encourage you to

keep data as granular as possible right through to the destination. The other side of this

challenge is the isolation. Unlike in event or batch processing where we, at some point at

least, have a chunk of static data for a period of time which can then be used to join and

transform, the data is constantly in motion, although streamed records could be joined

to reference datasets.

Finally, the layered approach used in both batch-based and event-based processing

does not really apply here; the data does not sit still for long enough. Therefore, data

cleaning and standardization needs to be written directly into the stream and requires

developers to maintain multiple sets of cleaning logic.

�Implementing Stream Ingestion
In this section, we will look at a method for stream-based ingestion. The core of this

method utilizes event hub and stream analytics; however, there are some differences

depending on the location. While one version writes data directly into a destination

database, the other writes data into a Blob Storage account and assumes the streamed

data will be batched and processed in batch mode. At the time of writing, hierarchical

namespace-enabled storage accounts are only supported in preview mode.

�Stream Ingestion with Azure Event Hub’s and Stream
Analytics Jobs

As mentioned, the core of this method uses Azure Event Hubs, which by design makes

many sources available as inputs to your streaming job, and likewise, there are many

options for destination. This gives ultimate flexibility when working in Azure as streams

can be routed to wherever needed through a very simple interface. Another great

advantage to this method is that the streaming jobs are written in an approximation

of SQL and so are easy to pick up for developers already working in a SQL-based

environment. The actual development of these streaming jobs is performed from within

the Azure portal and can easily be tested using the UI. This does however pose a problem

from a source control perspective, as the streaming jobs themselves cannot be source

controlled other than in ARM templates.

Chapter 4 The Ingestion Architecture

128

A key feature of Azure Stream Analytics Jobs is the ability to integrate with reference

datasets. Because records are being loaded very regularly and may only have a minimal

amount of data, such as an IoT device, the reference data allows for the streamed records

to be enriched while in flight. Azure Stream Analytics supports reference data stored in

Blob Storage or in an Azure SQL Database. In the case of Blob Storage, the data is stored

under a set path and then split by date and time values as lower levels of the directory;

the reference query can then load each set of data as and when it becomes relevant.

Alternatively, Azure SQL Database reference data can either be queried fetched once

at the start of the job and used throughout or periodically refreshed down to the grain

of a minute. For very static data then, a single dataset will likely suffice; however, if you

have regularly updated values, then you can make use of this periodic refresh capability.

Additionally, if the dataset is very large, then a delta query can be supplied to avoid

lengthy operations that would result in timeouts. Reference data is loaded into memory

by the streaming runtime, and this allows for very quick joining of data. However, this

dataset is limited to a size of 300 MB at a level of six streaming units and above. Less

than six and the limit is half of that if not smaller. This means that care needs to be taken

when writing the reference data queries to ensure that the snapshot times are correct

and that deltas are employed if needed. Further to this, compression is not supported for

reference data.

�Stream Ingestion for Azure Blob Storage

As previously mentioned, Azure Data Lake Gen 2 is not a generally available destination

for a streaming analytics job; it is currently in preview for select regions and therefore

not a reliable production option. While this does present an issue from an architectural

conformity perspective, it does make the route for inputting data from streaming

devices simpler. Data is simply written into a file that is hosted in a specific directory. In

order to assist with file management, the stream analytics config UI allows for dynamic

placeholders to be used so that file names and directory locations can accurately

describe the window of data that is contained. Examples of these are shown as follows.

Alongside these placeholders, a minimum batch row count and maximum time

window can be set to restrict the size of each batched file. For example, the maximum

time parameter can be set so that a batch is written every 5 minutes, even if that does

not meet the minimum row count. In this scenario, an event can be raised by the Blob

Chapter 4 The Ingestion Architecture

129

Storage account when the batch is completed, which is then interrupted and processed

by Azure Data Factory. These batch windows can be 1 minute or greater, and while

this is not quite record by record immediacy, it certainly is near real time and would

comfortably cover off many fast-moving data scenarios.

�Stream Ingestion for Azure SQL Database

The preceding streaming approach shows how a stream can be rolled into a batch and

then ingested; however, direct integration is also very simple to achieve by using Azure

SQL Database as a destination. Records can be inserted near to the rate of generation if

required, and while this speed is clearly a benefit, it can pose issues when it needs to be

integrated with other datasets. Without the rigorous structure of the ETL processing, you

must assume that the data arriving from a stream may have some cleaning problems that

are only acceptable given the speed at which the records arrive. To work around these

problems and blend the data with the slower moving batch or event-based data feeds,

you should employ a lambda architecture.

�The Lambda Architecture
The lambda architecture approach is defined as a blend of streaming and batch-based

ingestion that allows for historical, well-curated data to be seamlessly integrated

with high-velocity data, allowing for a cohesive and contextualized view of real-time

information. The technical challenges when implementing a lambda solution are not

generally the individual feeds; while streaming and batch-based feeds can present their

own challenges, the main issue to overcome is that of integrating the data. Slow-paced,

batch, or event data will be well cleaned, prepared, and accurate; however, streamed

data will often be very raw and close to its original source format. For this reason, there

is the need to have a serving layer that can tightly control the way in which data is

presented to querying applications and users. Additionally, a modicum of cleaning can

be applied here at the frequency defined by the business requirements without slowing

down or interfering with the stream.

Chapter 4 The Ingestion Architecture

130

�Blending Streams and Batches
In all cases, stream data should be loaded into a separate table that is designed

specifically for the stream and never into a pre-existing warehouse table. This is so that

the accuracy and integrity of your warehouse is not compromised but also so that long

running processes for loading dimensions and facts are not continually interrupted by

frequently arriving stream data. Given the two tables of information, a view should be

built that consistently picks common attributes from both tables and present them in a

way that is transparent to the end user or application. Due to the nature of streamed data,

the records in this table will be far less enriched than those of a proper warehouse table,

and therefore the view should utilize logic that can provide defaults or lookup values in

order to make the streamed records meaningful alongside the warehouse datasets.

�The Serving Layer
Any tables or views that are exposed to a user or application need to be carefully

designed; however, with a lambda solution, this is even more critical. The requirements

of the reports need to be well understood so that the real-time data can deliver the

metric values to fulfil these requirements but also the absolute minimum set of

dimension attributes so that the aggregated values can be sliced and diced. In some

cases, the warehouse data may already be aggregated and stored at a higher grain than

that of the streamed data. In those cases, the logic behind the view layer will need to

aggregate the granular data to the correct grain and then blend the two datasets.

As mentioned earlier, a degree of cleaning could be performed in this layer and in fact

this is highly recommended. By allowing the stream processors to focus solely on pushing

data to your database or file system, you ensure that records are passed off quickly and

reliably. Any increase in complexity midstream only makes the process more likely to

fail while also consuming more streaming units without a returnable benefit. Even if the

serving layer was queried every 30 seconds, this would allow ample time to apply common

data cleansing techniques on the delta of records since the previous 30 seconds.

In most lambda scenarios, the records arriving from the speed layer would be

considered fact information in that they are individual transactions or readings from a

sensor, for example. Each of these records is then loaded and stored at their lowest grain

and aggregated into the serving layer. To enrich the existing fact data, streamed records

can be unioned, that is, to join the data vertically like stacking to the existing data. The

key here is that both sets of data must have the same schema, and so the stream records

Chapter 4 The Ingestion Architecture

131

must hold a minimum set of attributes to allow this to happen or at least be enriched to

that point, within the serving layer. There is however the possibility that the stream data

applies to existing dimension records, for example, customer statuses that are regularly

changing. In this scenario, dimension data that is already enriched is then further

enriched with real-time data. In this case, speed data is joined horizontally and so needs

to have at least one joining characteristic, for example, customer id, so that both versions

of the record can be aligned.

The following code shows how a core warehouse table and a stream table can be

unioned together to present a consistent set of facts to an end user. Additionally, the

streamed data is being enriched with product names as part of the view definition,

instead of these taking up part of the stream. Listing 4-5 shows how the two tables can be

unioned to create a single presentation view.

Listing 4-5.  Creating a single presentation view

CREATE VIEW Warehouse.Sales

AS

 SELECT

 [SalesPerson]

 ,[SalesAmount]

 ,[ProductName]

 ,[ProductId]

 ,[CustomerId]

 FROM [Clean].[Sales]

UNION ALL

 SELECT

 'Anon Sales'

 ,[SalesAmount]

 ,p.[ProductName]

 ,p.[ProductId]

 ,[CustomerId]

 FROM [Stream].[Sales] AS s

 INNER JOIN Warehouse.DimProduct AS p

 ON p.ProductId = s.ProductId

SELECT * FROM Warehouse.Sales

Chapter 4 The Ingestion Architecture

132

�Assessing the Approach
The goal of this chapter was to outline a range or ingestion architectures that can be

employed in varying degrees across a data warehouse ETL solution. By having a full

understanding of the risks, opportunities, and implementation considerations of each

approach, you can determine how each might fit with the data you have to process

into your data warehouse. The approaches in this chapter were laid out in order of

complexity, and so if ETL in Azure is a new concept to you and the developers you work

with, then a batch-based architecture is a great starting point. By implementing this

and doing it well, you will have the fundamental building blocks for an event-based

architecture. Only once you have a solid grasp of how these two methods hydrate your

warehouse should you begin to plan how streamed data could be used to further enrich

your data warehouse.

Chapter 4 The Ingestion Architecture

133
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_5

CHAPTER 5

The Role of the Data Lake
As the data needs of a business change, the methods to store, organize, and audit

data need to change as well. Big data is the buzz word of the day, and big data needs a

scalable storage platform. Multimedia files such as images, videos, and audio files need

to be co-located and reported against, and so a platform that can accommodate such

diverse data types is required. A modern data platform may also need to ingest data at

incredibly high speeds, and having a platform that can cope with streaming and scale

accordingly is essential. There is such a variety of requirements for data storage with

modern businesses that managing and maintaining storage systems specifically for each

would be impossible. What is needed is a simple option that implements a “less is more”

approach to offer the scalability and diversity required. What is needed is a data lake.

The term data lake was first used in 2010 by founder and former chief technical

officer of Pentaho, James Dixon, who was speaking about the inherent restrictions

of a regular data mart. These of course are size, time to deliver value, and research/

experimentation capabilities.

If you think of a Data Mart as a store of bottled water, cleansed and pack-
aged and structured for easy consumption, the Data Lake is a large body of
water in a more natural state. The contents of the Data Lake stream in from
a source to fill the lake, and various users of the lake can come to examine,
dive in, or take samples.

—James Dixon 2010
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

The way the data lake overcomes these restrictions is by being a much more generic

store for raw data, meaning that users can easily deliver data of any type into the lake

while rapidly deriving insight from it because the data does not need to be coerced and

bound to the schema of a data mart. No longer will analysts have to wait for months

to even begin exploring a dataset, only to discover that the essential data they need

has been aggregated away into the ether. Now they can dive straight into the data lake,

https://doi.org/10.1007/978-1-4842-5823-1_5#ESM
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

134

doing as much cleaning as necessary, and once a proven value has been asserted, a

proper process can be built to funnel the data into a warehouse. In practice, the high-

value datasets may well go via the data lake and more or less immediately into a data

mart; however, with the limitless storage capabilities of a data lake, there is never

a reason to throw data away. In fact, these datasets often can hold unprecedented

insight that can only be discovered when enough of the data is held in the same place

and in its raw, low-level format.

Additionally, users can benefit from unstructured datasets such as images and

videos that could never be represented in a traditional data mart. This capability is

of particular interest to data science teams looking to extrapolate tags or metadata

about images before blending that data with some other dataset such as customer or

product. What’s more, in a data lake environment, the data can be nicely co-located so

that a semi-structured JSON file can easily be joined to a Parquet file which can then

be updated to hold the output of some AI algorithm – the possibilities are truly endless

when data storage is not a barrier.

The key point here though is that the data in a data lake is in a raw, untranslated state

and cannot easily be read or evaluated using traditional SQL-based methods. Depending

on the user and their intention this can be beneficial, often data science teams prefer to

do all cleaning and loading from raw to model stage themselves; however, to fuel a data

warehouse, a degree of structure is required. In order to use a data lake in conjunction

with a data warehouse, we must use the lake as a raw storage area that is used as a

landing and staging platform. Crucially, we need a structure for the lake that allows us

to properly segment business areas for security or logical reasons. Without this kind of

structure, we would find ourselves in charge of a data swamp – a place where data comes

to die and insights cannot be discovered.

�The Modern Enterprise and Its Data Lake
Any organization will likely have a data lake although they may just not call it that. They

may call it SharePoint, or “The Intranet,” or even just the shared network drive. Branded

data lake technologies such as Azure Data Lake Gen 1 and Gen 2 are flagship products

that specialize in being data lakes; however, these other systems can also compete in

some areas. Just because a data lake is not called a data lake doesn’t mean it doesn’t

do the same job. Often however, a cloud-based data lake holds a special place between

these technologies – it is not quite so user friendly as to be used daily by a nontechnical

Chapter 5 The Role of the Data Lake

135

user, yet it is much easier to access and load data to than an SFTP site. What’s more, the

Azure Data Lake technologies make use of AD integrated security and can be closely tied

in with existing security configurations.

So, if your organization does not have an Azure data lake, but you do already use

some sort of large-scale file repository, do you still need a data lake? The answer is yes.

Whereas systems like an Intranet or SharePoint are built to maximize collaboration,

the data lake should be a developer lead initiative so that the structure is conducive to

warehouse loading and data science research if required. This may mean breaking apart

data silos; where data was previously kept together in isolation, files should be relocated

so that they can be loaded more efficiently, and because the lake is easily accessed and

defined by users with the right permission, development of the lake in this way can be

rapid and agile, lest we forget that the lake is also scalable to almost limitless capacities.

It requires very little maintenance or up keep as there are no servers that you need to

worry about, Microsoft takes care of all of that for you; the only concern to the business

is the structure and quality of the data in the lake. This founding feature of cloud data

lakes means that there is never a reason to throw data away without a very good reason

(GDPR, etc.). Any data stream that is identified in the enterprise should be directed

to output data into the lake in some capacity. Even if there is no actual processing or

defined purpose for the data, the fact that it is captured means that it can be profiled,

analyzed, and built upon when the time is right.

�Azure Data Lake Technology
The Azure platform has three offerings that can be considered candidates for a Data Lake

which are

•	 Azure Data Lake Gen 1

•	 Azure Data Lake Gen 2

•	 Azure Storage

From a functional perspective, these products are obviously fairly similar; however,

there are aspects about them that are different, and these distinguishing features are

important to understand. Additionally, Microsoft are fully bought into the concept of the

data lake and therefore continually develop their offerings to ensure they are competitive

products that lead the market.

Chapter 5 The Role of the Data Lake

136

�Azure Data Lake Gen 1
The initial data lake offering, Azure Data Lake Gen 1 (ADL Gen1) is a well-matured

product at this point and has been the go-to data lake technology in Azure for a good

number of years. While this has been moved on in the form of Azure Data Lake Gen 2 (ADL

Gen2), it is worth a few sentences to explain why this product was beneficial and how

the architecture was structured. ADL Gen1 is built using an Apache Hadoop file system

(HDFS) and exposes the WebHDFS REST API Layer to calling applications. This means it

is easily integrated into other technologies that understand those APIs such as Spark and

Hive. A feature of an HDFS type file system is that it can store files of any type and size;

there are no restrictions whatsoever. Files can range from bytes to petabytes in size, and

ADL Gen1 will have no problems storing, reading, and writing them. In fact, when files are

deposited into the Azure Data Lake Gen 1, they are split across a number of storage servers

to offer maximum resiliency but also parallel reading capabilities. This splitting of data

means that analytical compute resources that run on top of the lake, such as Spark, Hive,

and Azure Synapse Analytics, are able to run as efficiently as possible. Lastly, ADL Gen1

implements Active Directory integrated security, so that access to folders and files can be

managed through groups to a high degree of granularity.

�Azure Blob Storage
Before Azure Data Lake Gen 2 became generally available in February 2019, the only

alternative to Azure Data Lake Gen 1 was Azure Storage or Blob Storage as it is commonly

known. Azure Storage also uses the HDFS-based file system client and therefore offers

optimizations for parallel reads and analytical queries; however, it exposes its own

set of Azure Storage APIs rather than the more generic WebHDFS APIs using its own

Windows Azure Storage Blob (WASB) driver. One more major difference between the

two technologies is the way that files and folders are implemented. In Azure Data Lake

Gen 1, folders are true folders in that they are stand-alone objects in the system, and this

is known as a hierarchical file system. In Blob Storage, the files are stored as objects in a

container which is a flat namespace. The concept of folders does not really exist; however,

virtual directories can be implemented using part of the object name. Despite this, all the

tools to work with Blob Storage use the name “folder” to describe levels in the system;

however, if you create an empty “folder” and navigate away from it, you will notice that the

folder does not appear to exist and this is because there is no object that has that folder

as part of its name. Therefore, the “folder” does not exist either. This can be confusing

Chapter 5 The Role of the Data Lake

137

at first although in practice this is rarely an issue. A further benefit that Blob Storage has

over the Azure Data Lake Gen 1 is the concept of redundancy. In ADL Gen1, data is locally

redundant, meaning copies are stored within the same Azure region. However, Blob

Storage can offer locally redundant, zone redundant, and globally redundant levels of

geo-redundancy making the recovery options a bit more flexible.

�Azure Data Lake Gen 2
Finally, we have Azure Data Lake Gen 2, which is essentially the marriage of ADL Gen1 and

Azure Storage. Mostly the technology is based on Azure Blob Storage so that costs are low

and features such as geo-redundancy are implemented by default. There are, of course,

a couple of differentiating factors that make this a true data lake technology optimized

for big data analytics instead of a generic object storage engine. The first is hierarchical

namespaces. This feature allows a directory structure to be realized physically rather than

being mimicked as is the case in Azure Blob Storage. As mentioned earlier, the folders

do not technically exist in Blob Storage, and so any changes to the directory structure

incur the need to iterate each object and perform an update. With the implementation of

hierarchical namespaces, a directory update becomes a simple metadata change in the

storage engine and data access is simplified greatly, thereby improving query performance.

Another addition is that of the ABFS driver, which is a driver that is available in all

Apache Hadoop environments such as Azure Databricks and Azure Synapse Analytics

and is specifically optimized for big data analytics. Previously, the WASB driver was

used to complete the complex mappings between the HDFS semantics and the object

store interface used in Azure Blob Storage. However, due to the arrival of hierarchical

namespaces, the system semantics are now aligned and therefore the mapping exercise

is no longer required making reads much more efficient. The security implementation

for Azure Data Lake Gen 2 is very similar to that of Gen 1 now that folders are no longer

virtualized. Azure Active Directory is fully integrated and permissions can be set for each

file and folder. The permissions themselves can be assigned through the Azure Portal and

also using Azure Storage Explorer.

Each of these data lake technologies interacts excellently with Azure Synapse

Analytics as the PolyBase engine and can make full use of the distributed storage

structure to read data into the instance in parallel. However, Azure SQL DB on the other

hand is not a distributed system that has support for HDFS type file storage, meaning

that data moving from any of the preceding data lake options into Azure SQL DB must be

loaded via an integration engine such as Azure Data Factory.

Chapter 5 The Role of the Data Lake

138

�Planning the Enterprise Data Lake
When you first begin using an operating system (OS), such as Windows, the first thing

you probably take for granted is that all the files are neatly packaged into folders for

you and the OS provider will usually have already created some empty ones that are

preconfigured for things that you use regularly such as downloads, music, images, and

others. Despite this, there will always be an area where you are encouraged to put in your

own organization structure – this is your documents folder for users of Windows. Here,

the file system has been well thought out so that when new data arrives in your system,

there is a clear place for it to go and files can easily be located when needed. Imagine

firing up your PC to find that every file on your machine was stored in a single folder.

You would be completely lost! Additionally, some folders are purposefully locked down

to avoid you accidentally deleting something that it critical to your system, again, good

planning of the file structure.

Moving out of the realm of a user’s PC and into that of cloud data lakes, the same

principles still very much apply. A data lake without a folder structure is a data swamp

and is of very little use to anyone, in much the same way as a machine with all its files

stored in one place would be. The first step is to define the purpose of your lake and

determine which parts of the data processing pipeline will be hosted in the data lake.

Commonly, the data lake is used to store data in its rawest form. However, there are

tools that can perform complex cleaning and relational logic to data, all within the data

lake. This next section will explore when to use a data lake to fulfil various needs that are

common in data warehouse scenarios.

�Storing Raw Data
The primary usage of the data lake should be storing files in their raw format and so a

specific directory should be defined for that purpose. Once data arrives in this directory,

it should be immutable (never overwritten or changed) so that you can always roll back

to a previous point in time if needed. Additionally, keeping all files in their raw state

means that future solutions developed outside of your data warehouse do not have a

dependence on your cleaning and transformation logic, thereby reducing the need for

regular changes to the ETL processing. It is also best practice to group data by source

system, again to ensure that future solutions can easily be developed without interfering

with warehouse processing.

Chapter 5 The Role of the Data Lake

139

In terms of security, the data in this directory should be tightly locked down so that

files cannot be deleted or overwritten, and only new files can be added. Often, the Azure

Data Factory responsible for copying the data into this directory would have write-only

access, and a separate Data Factory (or at least linked service) with read-only access

would be used to move data out of this directory. Generally, only an administrator would

have both read and write access, and this configuration ensures that there is isolation

of concerns for each Data Factory that is working with the files. This directory could be

called “RAW” and an example structure is shown in Figure 5-1.

Figure 5-1.  A folder hierarchy showing the RAW directory with one source system
and two datasets

�Storing Cleaned Data
Often a SQL engine is used for all processing once RAW data has been ingested because

it has all the cleaning capabilities available out of the box. Azure Synapse Analytics and

Azure SQL DB could be used to clean and standardize your data from its RAW state into

a prepared state, and this is a recommended approach for most integration scenarios;

however, there are some exceptions. If, for example, your data is particularly large,

it may be much more efficient to leave it in the data lake and use a compute engine,

such as Spark or Hive, that can operate on data that is stored in the lake without the

need for data movement. Additionally, if your data is a complex semi-structured file or

completely unstructured media files, the logic to read and standardize that data may

be easier to implement using Spark or Hive. In these scenarios, I recommend cleaning

Chapter 5 The Role of the Data Lake

140

your data within the data lake, and as files are cleaned, sterilized, and perhaps batched

or split, they should be stored in a new area that indicates that the aforementioned

activity has taken place. It is important to separate this data because it is no longer true

to its source and therefore may obscure some detail that is required by another team or

process perhaps now or in the future. This could be called “Clean” and is the first step

to distilling value. The security here could be more relaxed as there may be analysts

wishing to access this cleaned but still relatively untouched data. As with Raw, this

space should continue to group data by source system and will very closely resemble the

structure of Raw so that the path from Raw to Clean is easily followed. Figure 5-2 shows

how both Raw and Clean could be laid out.

Figure 5-2.  A folder hierarchy showing the RAW and CLEAN directories with one
source system and two datasets

Chapter 5 The Role of the Data Lake

141

�Storing Transformed Data
As with the clean directory, simple tabular data that needs to be transformed in some

way should be loaded into a SQL engine. Again, all the capability is built into the engine,

and often development teams have pre-agreed patterns or methods for transforming

data so that it is ready for ingestion into a data warehouse. However, the same exceptions

are still valid because at this point your large or less structured files are cleaned and

prepared but not necessarily any smaller or more structured. If they were not tabular to

begin with, then they most likely are still not tabular, and therefore it may again be easier

to read and transform the data using an HDFS-based engine such as Spark or Hive. The

goal of this processing step however is to coerce the data into a tabular format so that it

can live in a SQL table as part of your data warehouse. That said, avoid the temptation

to transform and load your data into the data warehouse in one step. While this might

seem more efficient, having the process split out makes maintenance much simpler and

provides a clear checkpoint for data before it arrives in your warehouse. As such, a new

directory should be created to store these transformed files separately to your raw and

clean files. This new directory will no longer follow the source system-based structure,

as nearly all data transformation steps alter the files schema or join rows across datasets,

and we should now start to group data by its logical usage. An example would be the

processing of customer records from multiple source systems into a single conformed

dimension. This file no longer belongs to any single source system and therefore should

be grouped under “Customer.” As you can see, the data stored here would closely

resemble facts and dimensions and so this directory should be called “Warehouse.”

Here you may have both analysts and applications consuming your data, so security

needs to be heavily considered here. Figure 5-3 shows how the data lake may support the

Warehouse directory.

Chapter 5 The Role of the Data Lake

142

�Facilitating Experimentation
If you have users that want to experiment in the lake, by perhaps transforming data in

new, unexplored ways, this may also require a separate “Experiments” area so that the

data arriving here will not affect the more defined movement of data through the lake.

The security here is very much dependent on the scenario; however, you could have

user-specific folders where the security is set up as such. Generally, the usage of this area

varies although most organizations that use this concept successfully have analysts or

developers pull data from Raw into their own defined spaces and build proof or concept

reports to whet the appetite of the business. When a report is considered valuable, then

the processing created in the Experiments area of the lake can be replicated easily on top

of Raw because the data is in the same state. Figure 5-4 shows how user-specific folders

can be used to copy Raw data from RAW that can be used for experimentation.

Figure 5-3.  A folder hierarchy showing the RAW, CLEAN, and WAREHOUSE
directories

Chapter 5 The Role of the Data Lake

143

�Implementing the Enterprise Data Lake
When implementing an enterprise data lake on Azure, it is important to remember that

the lake should be for the benefit of every single employee – even those users without

requirements currently may well have business-critical data in the future, and the goal is

to create a solution that is generic and future proof enough to ensure these scenarios can

be implemented with the least amount of developer effort. This can easily be achieved

with proper planning of directory structure and security, but as the lake develops over

time, this principle is important to keep in mind. Despite this point, we are looking at

data warehousing and how a warehouse can be feed from a data lake. Therefore, we will

begin to discuss the specifics of this approach, but in practice, these steps should only

form part of the lake and not dictate the entirety of its purpose.

Another key attribute of the lake is its relative cost compared to its value. A data

lake is a way to store immense amounts of data while paying very little to do so, with the

added benefit that the implementation of the HDFS APIs means data is very efficiently

Figure 5-4.  An implementation of an EXPERIMENT area where Joe Bloggs can
experiment with Raw data without affecting the warehouse processing

Chapter 5 The Role of the Data Lake

144

read from the lake. For any solutions that have a tight budgetary constraint, a data lake

means that the expensive compute resource is only spent deriving actual analytical

value and not cleaning and transforming data, a task that can be done by a lower-level

technology. In this section, we will discuss cleaning opportunities in the lake and how

these activities can be completed without the use of an expensive SQL engine.

�Security Configuration in Azure Data Lake
Before explaining the details for each directory in the lake, it is important to discuss

the nature in which permissions are applied in Azure Data Lake Gen 1 and Gen 2. The

permissions that can be set are either

•	 Read: The ability to read a file or list the contents of a folder

•	 Write: The ability to add, delete, and overwrite folders and files

•	 Execute: The ability to iterate through a folder and access the

subfolders within it

Each folder and file are treated as a separate object in the hierarchy and therefore

have their own set of permissions. A common “gotcha” for people new to administrating

a data lake is that of the EXECUTE configuration. This permission is essential when a

process needs to navigate through the data lake, as the READ permission alone does

not permit access to any subfolders in a directory structure. Figure 5-5 shows how to

correctly configure permissions for file access.

Figure 5-5.  The correct permission setup to allow for file access

A key aspect to keep in mind is that permissions do not inherit from their parent

folders. Where a principal has access to a folder, new files and folders added to that

folder will not, by default, be accessible to that principal. This sounds problematic at

first because any new file or folder incurs the need to update permissions; however, if

we know that a principal will need access to every new addition into the parent folder,

Chapter 5 The Role of the Data Lake

145

we can create a default permission entry that ensures the security configuration of the

parent is applied to every new object for that principal. This concept is illustrated in

Figure 5-6.

Figure 5-6.  Default permissions are configured on the “Sales” folder to allow for a
new file to be accessed by a principal

If there is a chance that folders will be added to the “Sales” folder, then the “Sales”

folder would need READ and EXECUTE configured as Default. Figure 5-7 shows how to

configure these permissions correctly.

Figure 5-7.  A diagram showing the correct configuration for folders that may
become parent folders

Chapter 5 The Role of the Data Lake

146

�Applying Security in Azure Data Lake Gen 2

In order to apply security configurations to Azure Data Lake Gen 2, you must have the

Storage Explorer application downloaded. Assuming you have this application, follow

these steps to configure security for either a service principal or AD group:

	 1.	 The key piece of information you need is the AD object id of the

group or principal. This can be found by accessing the Azure

Active Directory resource via the Azure portal. See Figure 5-8

for reference.

Figure 5-8.  Highlighting where Azure Active Directory can be accessed

	 2.	 From here you can locate any of the key principles that you may

need to configure security for. Figure 5-9 shows the main areas of

interest.

Chapter 5 The Role of the Data Lake

147

	 3.	 Within each of these areas is the ability to search for a group or

principal by name or application id, and the Object id is then

easily located either within the search result itself or by clicking

the application and locating the object id item. For reference, an

object id is a GUID that could resemble the following: 1abc6475-
79cd-4292-8203-c6c926b3b679.

	 4.	 Once you have your Object id for the object you want to configure

permissions for, open the Azure Storage Explorer application and

locate your Data Lake Gen2 instance from the tree menu on the

left-hand side. Click it to open the folder view in the main window

and right-click the first folder to see the dialog box shown in

Figure 5-10.

Figure 5-9.  Emphasizing the key areas to configure security in Azure Active
Directory

Chapter 5 The Role of the Data Lake

148

	 5.	 In the bottom text box, copy the object id in and click Add.

Once the object id is validated, you will see the new object id

highlighted and the boxes below unchecked. From here you can

check the “Access” boxes to determine what permissions are

applied directly to the folder and the “Default” boxes to determine

what permissions are applied to new files and folders that are

created underneath the selected object.

Figure 5-10.  An image showing the “Manage Access” dialog in Azure Storage
Explorer

Chapter 5 The Role of the Data Lake

149

�Implementing a Raw Directory
As mentioned previously, the first area for inbound data should be the Raw directory

of the data lake. The route into this area should be simplistic and low maintenance so

that there is little to no barrier to entry and data can quickly be consumed and stored

securely away in a place where it will not be lost. Immediately within the Raw folder

should be top-level source system folders that group related data together. By operating

in this way, security can be configured to meet any requirement. If you have a source

system that is capable of writing data directly into the lake, then this system can be

granted access to write into this single folder without the ability to affect any other source

systems. Conversely, if you need to obtain data yourself using Azure Data Factory, then

you could allow this Data Factory the ability to write into each of the folders as required.

Further to this, with the advent of GDPR, there is the need to understand and process

sensitive data separately to nonsensitive data. For reference, sensitive data includes

attributes such as race, ethnic origin, politics, religion, genetics, and others that can be

linked to specific individuals by either a unique identifier or more natural aspects such

as name, email address, and phone number. As such it may be prudent to subcategorize

Raw into Sensitive and Non-Sensitive, also ensuring that any processes that are writing

into the lake are only able to do so into the correct folders. This could therefore mandate

the need for two Data Factories, one that operates with Sensitive and one that operates

with Non-Sensitive.

A further key benefit of the Raw directory is the resilience that it offers to the overall

solution. By storing data redundantly in the lake, you can ensure that you always have

the ability to rehydrate your data warehouse should the need arise. Of course, the larger

the data volumes, the more difficult a full hydration may be, but at least with the data

stored in Raw, you always have the option.

�Partitioning

A common pattern in any file system that is updated daily is to partition the data

by a batch id or arrival date. This is so that deltas can be easily derived and lineage

accurately tracked. A data lake is no exception to this, and it is encouraged that any

writing processes can create a daily folder or batch folder for each of the loads. Were the

frequency to be even higher, for example, hourly or minutely, then you could weigh up

the pros and cons for partitioning the structure to that level or grouping data by date.

If you are receiving data from a source provider, then it should be mandated that they

Chapter 5 The Role of the Data Lake

150

create date folders within the lake, underneath their source system folder. Alternatively

if you have to obtain data yourself with Data Factory, then these folders can easily be

created using an expression. Listing 5-1 shows some code that could be inserted into the

sink dataset directory to create folders for the year, month, and day.

Listing 5-1.  Data Factory expression to concatenate current datetime values with

directory paths

@concat(

 'raw/Source System 1/',

 formatDateTime(utcnow(),'yyyy/MM/dd'),

 '/'

)

Once this pattern is in place, most tools that operate over a data lake (including

Azure Synapse Analytics) can begin reading data at the table root level which in this

case would be /raw/Source System 1/. All of the date partitioning and subfolders

underneath are completely transparent to the engine, and the data can therefore be

treated as a single dataset, regardless of which year, month, or day partition the file is

stored under. It does not matter how many files are included within the hierarchy; Azure

Synapse Analytics will have access to them all. A key point to understand here is that

over-partitioning of data can be a bad thing. This is known as the small file problem and

generally arises when files are split up to a point that the overhead to read multiple files

exceeds the benefit that is generated through parallelism. Essentially the engine has too

many files to read, and because the files are so small, the engine reads them too quickly

and then has to go through the overhead of reading the next file. Depending on the scale

of your data warehouse, you can achieve different amounts of parallelism when reading

data from your data lake. For example, an Azure Synapse Analytics running at 500 cDWU

can have a maximum of 40 external readers, meaning that 40, 512 MB chunks of data can

be read at once. Be aware that compressed files can bottleneck performance because

although there may be less data to retrieve from disk, PolyBase cannot open multiple

threads on a compressed file.

An additional consideration when implementing an enterprise data lake that

needs to feed Azure Synapse Analytics is that the PolyBase engine cannot push filtering

predicates down onto the data lake layer. This means that an external table that is

pointed at the table root will have to read the full dataset every single time, and this will

gradually degrade performance over time. In order to mitigate this issue, files could be

Chapter 5 The Role of the Data Lake

151

loaded into an Active table location so that only relevant files are exposed to the external

table and any nonrelevant files are moved out of this location so that a full history can be

accessed when needed, but daily loads are optimized.

�Choosing a File Format

A major consideration with any data platform implementation is that of the file formats

used throughout the system. In principle, the data lake can house files of any type;

however, best practice dictates that a standard file type convention is used so that

standards can be maintained. The formats available to PolyBase are

•	 Delimited text files: CSV files and alike.

•	 RC files: Record columnar format that generates groups of rows and

then processes these into key value pairs.

•	 ORC files: Optimized row columnar format that uses encoding and

lightweight indexes.

•	 Parquet: Similar to ORC files, however also lend support for nested

attributes and hard data typing. PolyBase, however, cannot read

nested Parquet files but can utilize the internal metadata that defines

data type information.

With delimited text files, the data types are not enforced, and so the external table

should define each column as a NVARCHAR(1000) type so that any value can be read in.

However, this also then mandates that an additional processing step is implemented to

coerce the untyped values into strongly typed values. To mitigate this, Parquet files could

be your default because the files themselves contain metadata describing each column,

meaning data does not have to be loaded into an untyped table and then transformed

into a table that is strongly typed.

�Implementing a Clean Directory
Up until now we have discussed mostly the Raw area of the data lake, and while this is

arguably the most critical area to get right, there are other areas to focus on. Depending

on how you choose to clean your data, there are some major considerations to evaluate

and the route into this area can vary greatly depending on the technology choices of the

platform.

Chapter 5 The Role of the Data Lake

152

�Cleaning Within a Database

Both Azure SQL Database and Azure Synapse Analytics are highly capable of applying

complex and repeatable cleaning rules to datasets, and therefore if your data is all

tabular, then this should be your primary method. The T-SQL language that is native to

both Azure Synapse Analytics and Azure SQL DB contains reams of functions designed

to help developers achieve these goals. Common functions that are used heavily are

TRIM, SUBSTRING, LEFT, RIGHT, UPPER, LOWER, COALESCE, REPLACE, CAST,

CONVERT, and CONCATENATE, and often they are used in conjunction with each

other. Further benefits of this approach include easier deployment and source control

using Visual Studio. While the code to clean the data can be common across both Azure

SQL engines, the method to hydrate your database with Raw data to be cleaned would

be different. Of course, Azure Synapse Analytics would use PolyBase to obtain the data

directly from the data lake, while Azure SQL DB would have to use Azure Data Factory

to bulk copy the data. When using Data Factory, you may be tempted to call a cleaning

stored procedure from the copy activity itself as per Figure 5-11; however, this is poor

practice as this changes the insert from a minimally logged bulk operation into a highly

transacted one, and this hits performance. Figure 5-11 shows the configuration to use a

stored procedure as part of the Data Factory copy activity.

Figure 5-11.  Image of Data Factory using stored procedure called from Copy
activity

There is of course a redundancy benefit to writing the cleaned data out into the

lake which could also enable subsequent solutions that require clean data to piggyback

on this output. Were this to be of interest, then Azure Synapse Analytics can again use

PolyBase to do the opposite of the import. By creating an external table from an internal

table, you create a new file in the data lake that could be picked up by a subsequent

process. An example of this is shown in Listing 5-2.

Chapter 5 The Role of the Data Lake

153

Listing 5-2.  An example of a Create External Table As Select (CETAS) statement

CREATE EXTERNAL TABLE dbo.CleanCustomer

WITH

(

 LOCATION = '/Clean/Sales System/Customer/',

 DATA_SOURCE = AzureStorage,

 FILE_FORMAT = TextFile

)

AS

SELECT TOP [N]

*

FROM

clean.Customer;

The preceding code shows how to create the external table from the internal

clean.Customer table specifying the location and file type. Additionally, note the

use of TOP here. This is used to force all the data into the control node of the Azure

Synapse Analytics engine and thereby producing one file instead of 60, one per storage

distribution.

While processing data in Azure SQL engines should be your primary choice,

there are also issues with this approach. The first is that Azure Synapse Analytics is

expensive. The massively parallel processing (MPP) engine that is the core of Azure

Synapse Analytics is designed for blazing fast analytics and should not be thought of as

a regular SQL engine in terms of cost or capability. To maximize on your investment in

Azure Synapse Analytics, you want to ensure that you are using it to serve users queries

across giant datasets rather than consuming concurrency slots to perform menial ELT

tasks. To avoid placing these activities on your Azure Synapse Analytics, you could of

course utilize the cheaper SQL engine, Azure SQL Database. The drawback here is that

data movement pipelines need to be defined and orchestrated to move data into and

out of your SQL engine. Figure 5-12 shows how data can be moved between different

components of a solution.

Chapter 5 The Role of the Data Lake

154

�Cleaning Within a Data Lake

A different approach is to leave the data in the lake and not move it into a SQL engine at

all. This relies on specialist data lake processing tools which are becoming increasingly

popular due to their flexible nature and their ability to really capitalize on the underlying

storage engine. Databricks is one such processing tool and is built upon the Apache

Spark engine, therefore using clusters to scale out compute jobs and in-memory storage

to enhance performance. Working with Databricks to clean data is beyond the scope of

this book; however, all required cleaning activities can be easily undertaken using either

•	 Spark SQL: A SQL language that abstracts a set of dataframe APIs

•	 Python: The world’s most popular programming language with a

whole heap of external libraries to solve every possible scenario

Figure 5-12.  A diagram showing a polyglot approach to ingest, process, and egress
data to and from the data lake

Chapter 5 The Role of the Data Lake

155

•	 R: Traditionally a statistical language that can perform complex data

transformations

•	 Scala: The native language of Spark and the language that Spark SQL,

Python, and R compile into

The benefits of this approach are that the data does not have to move as far;

Databricks connects to the data lake by impersonating a service principal and then

exploits its deep integrations with the HDFS ecosystem. Additionally, a truly immense

file that would be difficult or too time consuming to load into SQL can easily be

processed by Databricks as its partitions will be exploited and the workload parallelized.

Databricks can also rack up a cost; however, be cautious with features such as auto

scaling and default sizing as often you can begin to consume compute resources long

before you realize how much it is costing and be sure to terminate a cluster when not

needed.

�Cleaning Within Azure Data Factory

A final option that coincides nicely with the topic of Databricks is that of Azure Data

Factory Mapping Data Flows. These are graphical data flows that are created using Azure

Data Factory but executed as Scala jobs on a Databricks cluster. They allow developers

to drag and drop well-defined activities into a left to right flow and configure properties

at each step. Similar to SSIS Data Flows, they can perform row- and column-based

transformation operations while also handling aggregations lookups and filtering. At the

time of writing, Mapping Data Flows were recently released (May 2019) and are therefore

a fairly immature offering at this stage; however, they do provide a low/no code option to

working with data not within a SQL environment.

�Implementing a Transformed Directory
Once again, certain characteristics of your data may dictate that the role of your data lake

extends all the way to implementing business logic using Spark or Hive instead of using

a traditional relational engine. In this case you would want to carve out a further area of

the data lake likely to be named “Warehouse.” “Warehouse” is the area where clean data

is joined and transformed into a shape that resembles facts and dimensions, although

the data has not been surrogate and dimension keyed or undergone slowly changing

dimension logic. The operative word here is “joined” and joining requires a relational

Chapter 5 The Role of the Data Lake

156

engine because often we are combining two or more source entities to create a single

conformed warehouse entity that encompasses the constituent parts. Databricks has

a relational capability through the implementation of Spark SQL and PySpark, which

allows a developer to write traditional looking SQL that can perform joins without the

need to actually move data into a SQL engine. This approach can drastically decrease the

overhead to process data as the relational engine is brought directly to the data, rather

than the data being brought to it. Additionally, Spark’s performance is founded upon

processing data in memory and can perform such tasks at a very large scale due to its

distributed architecture.

Regardless of SQL or data lake being chosen for each step, all of the cleaning and

warehouse operations can be orchestrated using Azure Data Factory. ADF can call stored

procedures in either SQL engines and also invoke Databricks “notebooks,” like repeatable

scripts, and this means that wherever the processing of the data is done, the orchestration

and control of the processing is handled by ADF. This approach is now known as ELT.

•	 Extract data from source files or source database.

•	 Load data into a SQL engine or data lake.

•	 Transform data using SQL stored procs or notebooks that are

executed by Azure Data Factory.

This approach is most effective when datasets begin to cross the boundary into

that of “big data” as the data is now transformed, aggregated, processed, and so on in

a proper engine that can have the scale to cope with such a task, rather than inflight

between a source and destination, as is the pattern with SQL Server Integration Services.

Essentially the compute resource is brought to the data and is transformed in place.

In summary, the role of the enterprise data lake is to support a SQL engine when the

data becomes too large or too loosely structured. And in either of these cases, there is

very little trade-off between using the data lake against using SQL because of the quality

of tools that are available, such as Databricks. Further, the integrations between the lake

and Azure Synapse Analytics mean that the two can work cohesively to provide a “best

of both” solution. Of course the data lake holds another benefit in that no matter what

the data, the lake can handle it. Whether it be multimedia files, frequently arriving log

files, or ginormous data files, the lake cannot only store this data but provide a base for

rich analytics against these datasets. Of course, multimedia files cannot be read into a

relational SQL data warehouse, but by being in an accessible location, their metadata

can be used for reporting and analytics if needed.

Chapter 5 The Role of the Data Lake

157

Another key point is that when a new stream of data is uncovered, it can simply

be pointed at the data lake to be stored away safely until a team of developers is ready

to do something with it. With no limits on storage, there is never a reason not to store

everything. Even if no value is derived specifically from that data immediately, by storing

the data in a platform such as a data lake, it is ripe for analytics as soon as the need

arrives. While I mention that technologies such as SharePoint and Shared drives can

be treated as data lakes in many organizations, the offerings within the Azure platform

implement features that ensure the storage platform is not only limitless and accessible

but also easily integrated into database engines and existing security structures. This

ensures the data lake is flexible to the needs of the business but robust enough to

underpin mission critical systems such as a data warehouse.

�Example Polyglot Architectures
The following figures and explanations discuss a number of different ways the

technology offerings could be blended to produce a solution that covers all bases.

�Example One
Figure 5-13 contains a diagram displaying a solution with the following characteristics:

•	 Small/medium data warehouse that ingests moderate amounts of

data per day

•	 Has little need for processing data back to lake after RAW

•	 May have a need for regular micro inserts or updates

Chapter 5 The Role of the Data Lake

158

�Example Two
The diagram in Figure 5-14 displays a solution with the following characteristics:

•	 Large warehouse that ingests massive amounts of data per day

•	 Has need for processing data back to lake after RAW

•	 Ingests data only in large batches – no micro batches

Figure 5-13.  A diagram showing a polyglot architecture with a SQL preference

Chapter 5 The Role of the Data Lake

159

�Example Three
Figure 5-15 displays a solution with the following characteristics:

•	 Small/medium warehouse that needs Spark or Hive to clean complex

or ginormous datasets

•	 Has ability to accept smaller batches or micro inserts

•	 Needs to serve a broader analytical community of analysts

Figure 5-14.  A diagram showing a polyglot architecture with a blend on Azure
Synapse Analytics and Azure Data Lake Gen 2

Chapter 5 The Role of the Data Lake

160

�Example Four
Figure 5-16 displays a solution with the following characteristics:

•	 Large warehouse capable of processing highly complex and

ginormous datasets

•	 Has ability to ingest giant datasets from the lake in parallel

•	 Seamless lake integration via PolyBase

Figure 5-15.  A polyglot architecture that utilizes Databricks to assist with data
cleaning and preparation

Chapter 5 The Role of the Data Lake

161

Figure 5-16.  A polyglot architecture that utilizes mostly lake processing, with a
SQL engine layer for presentation

Chapter 5 The Role of the Data Lake

163
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_6

CHAPTER 6

The Role of the Data
Contract
In all data integration projects, there is always a concern about datasets changing their

properties. This could be changing columns, changing data types, or even changing the

degree of quality instilled in the data. The technical name for this is “Schema Evolution,”

sometimes known as Schema Drift, and whether that be new columns arriving or

known columns dropping off, how these situations are handled can have a huge effect

on the success of the project. At a basic level, you need to be able to detect and react to

occasions when a datasets schema has evolved, and with the vast amount of file and

database types available, this task is getting more complex. Not only do you need to

detect changes in tabular data (CSV files, database extracts) but also in semi-structured

datasets such as JSON and XML. Expanding on this basic concept, you need to be able

to handle the schema drift so that you can continue to integrate the data without having

to manage multiple extraction methods for the same type of data. This may be manual

to begin with, but there are tools out there now that can automatically handle schema

evolution. As you begin to write ingestion procedures, remember that maintaining these

schemas through schema evolution needs to be simple. If you get to a point where you

are ingesting over 20 different files or datasets, then you do not want to have to visit each

script to update the schema. Instead we need a centralized schema store so that we can

easily make updates in a controlled way.

Another major component in data integration is the rules that are applied to data to

transform and clean it, ready for ingestion to the data warehouse. Often these rules are

used all over the integration solution, and there may even be a subset of these rules that

are applied to all values, such as a trim to remove excess whitespace. Of course, the bane

of a developer’s life is duplication of code as this causes consistency and maintenance

issues, and so to avoid having versions of these rules in every script, the rule definition

itself should be stored centrally and distributed as needed. This means that as the

https://doi.org/10.1007/978-1-4842-5823-1_6#ESM

164

understanding of the incoming data matures, and therefore the rules implemented

change and develop, all rules across the solution are updated together but from a

single source. An additional benefit here is that anybody looking to understand the

transformation and cleaning logic applied in the ETL phase can simply look in one place

to review the entire set of rules.

Any integration system that ingests data from more than one source likely needs

to manage scheduling and dependencies to some degree. Often these schedules and

dependencies can become intertwined in complex ways, and if they are spread out

across scripts, then locating an out-of-date schedule or invalid dependency can become

very difficult. Ultimately this makes debugging and maintenance very difficult, and given

that you may need to change scheduling and dependencies frequently, it makes sense to

store this information centrally so that changes are made once and in a single place.

All these problems are common and have been solved many times and in several

different ways. However, the solution that I always opt for is that of an overarching set of

metadata known as a data contract. In much the same way as a legal contract enforces

obligations to partaking parties and specifies details of how they can operate together,

the data contract does the same for how the data should look when it arrives and how it

should be treated in the solution. Because the data contract is stored centrally, it ensures

all the key elements as mentioned previously are managed from a single access point.

Importantly, however, a data contract should not have to be long winded and difficult

to read like a legal contract. In fact, they should only hold exactly what is needed to be

useful and nothing more.

�What Is a Data Contract?
In reality, a data contract could take several forms; however, the nature of this book

suggests that a set of related SQL tables is the best option for a reader who is a data

warehouse specialist. Of course, the concepts can be applied to many other data storage

platforms such as document databases and key value pair stores, but it is important

to remember that the data contract will be called upon frequently and so should be

in a format that is comfortable with your development team and will fit easily into

your intended architecture. To satisfy basic requirements, your data contracts should

store the incoming and intended schemas of datasets; however, these could then be

extended to include transformation rules and scheduling logic. Arguably the easiest

way to understand a data contract is to see one and there is an example of a SQL table

implementation in Figure 6-1.

Chapter 6 The Role of the Data Contract

165

As you will see, the diagram is relatively simple to understand and is normalized

so that rule definitions are only stored once. And clearly data contracts do not need to

be complex to be useful as their benefit comes from their consistency. Being able to

connect to the database and know exactly how to retrieve the schema, or the cleaning

rules, or both, in every single ingestion scenario can make ETL development much more

efficient. Common patterns for implementing the schema or rules can be built and then

used across the platform wherever needed.

�Working with Data Contracts
Data contracts can be useful for any organization or integration solution, and there are

two main elements to consider for the implementation to work well. First is how you

will design your data contracts so that they cover all requirements consistently. Second

is how you will integrate the contracts into a solution so that the contract can become

useful. This next section will focus on both design considerations and integration

considerations respectively.

Figure 6-1.  An entity diagram showing how the primary elements of a data
contract can be implemented in SQL tables. A detailed SQL script to create the
tables shown in Figure 6-1 is included in the appendices

Chapter 6 The Role of the Data Contract

166

�Designing Data Contracts
The strength of a data contract is in its consistency. Because you will have repeatable

methods to fetch each aspect of the contract, the overall solution can be built out much

more efficiently. However, because of this consistency, which is partly enforced by the

virtue of SQL table definitions, all contracts need to contain the same attributes. To look

at this another way, if one particular entity requires a special configuration option, you

would need to design your SQL tables to hold this option and therefore supply a value

(e.g., NULL) for every other entity in your solution. Therefore, before implementing a

system that uses data contracts, there needs to be a discovery and planning exercise

to determine what should be stored in the contract and how it should be translated

into the solution. Without this, it is all too easy for the contract and the solution to miss

each other in the middle, incurring rework of either the solution or the contract. When

planning your data contracts, there are several points to consider. These are

•	 Generating data contracts: How you will create and populate data

contracts in a consistent way?

•	 Storing data contracts: Determining a location that is easily

accessed by your integration components.

•	 Modifying data contracts: Detailing the process for ongoing work

with data contracts including how to handle schema drift.

�Generating Data Contracts

The way in which data contracts are built can greatly affect their uptake in an

organization. Having to manually write INSERT statements for schemas that have

many columns is not going to be a fun exercise, and because these contracts will be

largely repeatable, there should be a thought given to the possibility of automation.

However, you may decide that due to the importance of these contracts, you want to

ensure a human has validated the contract before it is deployed to the metadata store.

Of course, you may also find that the sheer number of contracts needed renders the

task of manually creating them impossible to achieve in the given time frames. Bear in

mind that the contract structure may go through several iterations as they are first being

introduced.

Chapter 6 The Role of the Data Contract

167

An easily adopted option for automating the creation of data contracts is PowerShell,

which provides an easily scripted approach to the generation process. There needs to be

a balance here of course as automation requires metadata, and we are now at a point of

creating metadata to then create more metadata. An ideal solution would be to read a file

and inherit its data types and column names. This would mean that you could point your

script at a repository of source files – ideally with one source file of each type – and have

the script iteratively generate metadata for each file in a consistent and repeatable way.

The output of this script could of course be SQL insert or merge statements that can

write data directly into the metadata store or be added to post deployment scripts that

are executed each time the database is deployed from Visual Studio. This ensures that

the metadata is regularly up-to-date and also offers developers a consistent way to work

with metadata. Chapter 8, “Using Scripting and Automation,” will go into more detail

about how a script such as the one described could be written; for now, consider that

data contract generation should be automated as much as possible. An example of a post

deployment script that uses a MERGE statement to insert data into the Entity table is

shown in Listing 6-1.

Listing 6-1.  A post deployment script for merging entity metadata

SET IDENTITY_INSERT Metadata.Entity ON;

MERGE INTO Metadata.Entity AS tgt

USING (

 VALUES

 ('1','Daily Sales', '1'),

 ('2','Product', '2'),

 ('3','Product Category', '2')

) AS src ([Entity Id], [Entity Name], [Source System Id])

ON src.[Entity Id] = tgt.[Entity Id]

-- UPDATE MATCHED ROWS

WHEN MATCHED THEN

UPDATE

 SET

 [Entity Name] = src.[Entity Name],

 [Source System Id] = src.[Source System Id]

Chapter 6 The Role of the Data Contract

168

-- INSERT NON MATCHED ROWS

WHEN NOT MATCHED BY TARGET THEN

INSERT

 (

 [Entity Id],

 [Entity Name],

 [Source System Id]

)

VALUES

 (

 src.[Entity Id],

 src.[Entity Name],

 src.[Source System Id]

);

SET IDENTITY_INSERT Metadata.Entity OFF;

The preceding script uses a SQL MERGE statement to allow for entities to be inserted

into the metadata store if the entity does not exist. If, however, the entity does exist, then

it can be automatically updated to reflect any changes. This approach allows metadata to

be created automatically using scripting but can also be tweaked easily by developers as

and when needed.

�Validating Data Contacts

Regardless of how the contracts are generated, it is essential that there is a degree of

validation before they are deployed into the metadata store. These contracts will define

how the system operates and so a faulty contract could cause a wide swathe of issues

across your solution. Of course, with SQL tables, there is the reliability of a schema that

enforces correct data types and that essential values are not left NULL; needless to say,

these best practices should be followed. In addition however, there may also need to

be a business sense check to ensure that a dataset is handled properly and this is why

contract authoring should be limited to a small group of super users and each contract

supplied should be approved by a data steward before being committed to the system.

Any contracts that are found to be invalid or non-(business) sensical should be

rejected and sent back to the author. This could be done with some kind of alerting

mechanism depending on how sophisticated the validation mechanism is.

Chapter 6 The Role of the Data Contract

169

�Storing Data Contracts

When storing data contracts, there are some critical considerations to bear in mind. In

order to protect your SQL engine that would host your data warehouse, it is important

to store data contracts on a separate SQL database. For this job, Azure Synapse Analytics

would not be suitable as the volumes are small and transactions and concurrency are

potentially quite high. A further benefit is that changes to metadata can be deployed

without affecting any of the business-critical processes that run the data warehouse.

Figure 6-2 shows how such an architecture would be deployed.

Figure 6-2.  A diagram showing the data contract host database as a pivotal
element in the processing of data between data lake and the SQL engine

Once the data contracts are located on an independent SQL database, the next

consideration is that of versioning. It is key that as a schema of a file evolves, the contract

is evolved with it. However, it is also key that the previous schema is preserved so that

comparisons can be made and that older files can be reconciled to newer versions if

required. As you can see from the data model shown in Figure 6-1, the Entity Column

table contains a version attribute that allows each set of columns attached to an entity to

be associated to a particular version of that entity.

Chapter 6 The Role of the Data Contract

170

The second consideration of the metadata store is that it is central to your solution

and widely available. It is likely that this metadata will be called upon very frequently

and by a variety of services, so ensuring that the store can interface with every required

service is crucial. One solution may be to surface all data using SQL stored procedures

and ensure that all services that require metadata can execute those stored procedures.

�Modifying Data Contracts

In some scenarios, you may want to modify data contracts. This may be the case when

the schema itself has not evolved but you want to change something less critical such as

the rule configuration used for a particular column. In these scenarios, it is important to

be able to rely upon your source control system to provide versioning and the ability to

roll back if needed. A system such as Git allows for developers to deploy changes to the

repository while also maintaining a full lineage of the file in question.

�Integrating Data Contracts
The design of the data contract is critical but is only half the battle. Even the best

designed contract will be useless unless it is well integrated. The essential requirements

for integrating metadata are the following:

•	 Fetching metadata: Retrieving metadata in a way that can be used by

the required systems

•	 Utilizing metadata: Using the metadata to facilitate orchestration or

provide entity information

•	 Harmonizing schema evolution: Writing scripts that can move files

with an older schema to a newer schema

•	 Utilizing orchestration metadata: Using scheduling metadata to

ensure processes run at the correct time and in the correct sequence

�Fetching Metadata

The method by which your system fetches its metadata should be well thought out. It is

important to consider if other solutions outside of your data warehouse processing will

need to read your metadata and if so, how you will facilitate that. Additionally, given the

size and scale of your ETL processing, how available and powerful the mechanism is that

powers the metadata fetch.

Chapter 6 The Role of the Data Contract

171

�Fetching Orchestration Metadata

Orchestration metadata is generally needed at runtime to determine the way in which

the processing should proceed. This could be scheduling information or details on how

to fetch the relevant data. Given that Azure Data Factory is the primary Azure native

integration engine, a simple starting point is to use Data Factory’s native connectivity to

query your metadata store and fetch the elements you need.

As mentioned in previous chapters of this book, Azure Data Factory has the ability

to connect to a great number of data stores. These can be databases, semi-structured

stores, and even file storage engines, both on premises and in the cloud. This means that

however you decide to store your data contracts, there is a very strong chance that Data

Factory can connect and read the metadata from them. While Data Factory will not limit

which data store you can connect to, you want to ensure that Data Factory can actually

query the data store, so that you can fetch specific metadata as and when you need it.

The key activity to facilitate the metadata fetching in Data Factory is the Lookup

activity. This activity provides the ability to either execute a query or stored procedure

and then expose the result to Data Factory in a way that can be utilized later in the

processing pipeline. A simple and common request might be to fetch a SQL query string

that is used to obtain the correct data from a table. A query performed using the lookup

activity against a SQL metadata store, using the database structure shown previously,

might resemble the code in Listing 6-2 and the result set shown in Figure 6-3.

Listing 6-2.  SQL code used select an entity record using the Lookup activity

SELECT

 [EntityName] AS EntityName

 ,[EntityObtainString] AS EntityObtainString

FROM [Metadata].[Entity]

WHERE [EntityId] = 1

The preceding code would fetch the entity name and obtain SQL string for entity 1.

Chapter 6 The Role of the Data Contract

172

However, when the result of this query is returned to Data Factory, it must be in

JSON format, as that is the object notation used by Data Factory. Therefore, the following

query would return a result set resembling the JSON code shown in Listing 6-3.

Listing 6-3.  JSON code that represents the query results shown in Figure 6-3

{

 "count": 1,

 "value": [

 {

 "EntityName": "Sales",

 "EntityObtainString": "SELECT * FROM dbo.Sales"

 }

],

 �"effectiveIntegrationRuntime": "DefaultIntegrationRuntime (West Europe)"

}

As you will notice, the tabular result of the query is now transformed into a JSON

array of objects where each column of the table is represented as a JSON attribute within

the object. When creating this type of activity in Data Factory, be sure to untick “First row

only.” It is on by default but will restrict your query to returning only one row and will

also change the attributes that are included in the response. To walk through a guide on

using the Lookup activity, refer to section “Getting Started with the Lookup Activity,” in

Chapter 3, “The Integration Engine.” Now that we can access the data, we need to start

using it in Azure Data Factory.

Figure 6-3.  An image showing the query results that will be returned to Data
Factory

Chapter 6 The Role of the Data Contract

173

�Utilizing Orchestration Metadata

In the preceding example, we use a lookup activity to fetch a simple SQL select query

that we could use to fetch a relevant set of records. In order to utilize this metadata in a

way that ensures reusability, we need to be able to reference the object and attributes

that are returned. This is the reason why it is so crucial to use a Lookup activity in Data

Factory and not a standard stored procedure activity, only the Lookup makes the result

available for later use.

To use the obtained SQL string, we need to pass it to the “Query” attribute for the

dataset that is linked to the source of a Copy activity. This is easily done using the Data

Factory UI, and provided the Lookup and Copy activities are connected, the syntax

shown in Listing 6-4 can be used to reference an attribute from a previous activity output.

Listing 6-4.  Data Factory expression to fetch value from previous activity

@activity('Metadata Lookup').output.value.EntityObtainString

This same approach can be used for any number of attributes that need to be passed

around your processing pipelines and can also be used to provide parameter values for

child pipelines executed using an Execute Pipeline activity.

You may notice however that the preceding method of identifying an attribute

assumes there is only a single entity object returned. If multiple entity objects were

returned, such as the JSON snippet shown in Listing 6-5 you would need to handle each

individual record iteratively.

Listing 6-5.  Multiple entities returned from the metadata lookup

{

 "count": 2,

 "value": [

 {

 "EntityName": "Sales",

 "EntityObtainString": "SELECT * FROM dbo.Sales"

 },

 {

 "EntityName": "Product",

 "�EntityObtainString": "SELECT * FROM dbo.Product WHERE

ProductName IS NOT NULL"

Chapter 6 The Role of the Data Contract

174

 }

],

 "effectiveIntegrationRuntime": "DefaultIntegrationRuntime (West Europe)"

}

The preceding expression would not be able to determine which entity obtain string

to fetch. In these scenarios, we would want to iterate the result objects using a ForEach

activity. This is simple to do; however, the key difference is that we now have to obtain

the required values from inside the scope of the For Each loop so that we can reference

a single object, even though multiple were returned. Because each iteration of the loop

is anonymous (we don’t know which item we are on while iterating the objects), we can

use the @item()syntax to reference the necessary attributes:

@item().EntityObtainString

Now, depending on whether you are working with a single entity or multiple, you

can use these approaches to utilize the obtained metadata in your downstream data

processing.

�Fetching Entity Metadata

The primary purpose of entity metadata is to grant your solution the ability to

understand the datasets that you will be processing. By telling your system what columns

are needed and how they should be treated, you can automate much of the repetitive

processing. However, complex, business-driven transformations cannot be automated

without a great deal of complex metadata, more than I could possibly describe in this

book. While full automation could be achieved, the developer would need to consider

the following as a start:

•	 Complex transformations such as pivoting and mapping

•	 Columns that use layered conditional logic such as CASE statements

and IIFs

•	 Joins that use several different predicates and span multiple tables

To refer to the layered structure mentioned previously, entity metadata should allow

you to process data from raw to stage to clean very efficiently. Subsequent processing

would need to be written by hand and tailored to each specific target dataset.

Chapter 6 The Role of the Data Contract

175

With this in mind, it is clear that entity metadata needs to be implemented at the

point where data is cleaned and standardized. In a traditional on-premises ETL solution,

cleaning was regularly done in SSIS packages, meaning the data was altered “in-flight”

as opposed to at rest. Due to the potential scales of modern data warehouses, an “in-

flight” approach is not always appropriate due to the increased overhead of picking the

data up, cleaning it, and then putting it back down again. Not to mention, the current

Data Factory solution, Mapping Data Flows, cannot be parameterized to a point where

data cleansing pipelines can be generically applied to any given dataset. Therefore, it

is clear that SQL stored procedures are the most appropriate way to approach this task,

albeit with Data Factory invoking those procedures at the appropriate time. In short, we

need to provide entity metadata to the appropriate SQL engine, although without using

cross database queries (cross database queries are not supported in Azure SQL Database

unless using a managed instance).

�Utilizing Entity Metadata

As you now know, you need to pass metadata into your SQL engine so that it can

dynamically check column names, enforce data types, apply rules, and transform values

so that they are ready to be ingested into your data warehouse. The most reliable method

I have found for this is code generation.

�Code Generation

Code generation describes the process of generating all of the SQL artifacts (stored procs,

table definitions, etc.) ahead of time and then deploying them onto the database ready

for execution at runtime. The role of the data contract here is to supply entity metadata

to the code generation tool in order to produce all the required scripts. This approach

is so reliable as it ensures the orchestration is kept simple but still allows developers to

update stored procs relatively quickly when a schema evolves. Additionally, the objects

that are deployed to the server are readable and easily maintained. This is opposed to be

a dynamic SQL approach whereby values are supplied at runtime. While this approach

may be more agile, it makes debugging a troublesome stored procedure very tricky.

To implement code generation, I often use a PowerShell script that queries for the

metadata, does some text replacement against a preformatted template, and then saves

the new .sql files back into a source-controlled folder structure. The program flow for

such a script would resemble the diagram shown in Figure 6-4.

Chapter 6 The Role of the Data Contract

176

�Getting Started with Code Generation

The following guide walks through how to use a PowerShell script to create completed

SQL objects from pre-existing templates and metadata fetched from a SQL database:

	 1.	 Check that the correct proc exists on your Azure SQL Database.

The name of the proc is Metadata.ObtainEntityMetadata and the

result of the proc when run should be three tables resembling that

in Figure 6-5.

Figure 6-4.  An example program flow diagram for a code generation application

Chapter 6 The Role of the Data Contract

177

	 2.	 Locate the GenerateScripts.ps1 file from the GitHub repo. It can

be found in the following directory: PowerShell/Code Generation/

GenerateScripts.ps1. Be sure to open this script in the 64-bit

version of PowerShell ISE, not x86.

	 3.	 Update the critical parameters. As you can see from the

screenshot in Figure 6-6, there are some key parameter values

that are used to create a connection to your SQL database and

template repo.

Figure 6-5.  An image showing the correct result of the ObtainEntityMetadata
stored procedure

Figure 6-6.  An image showing the critical parameters in PowerShell

Chapter 6 The Role of the Data Contract

https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/PowerShell/Code Generation/GenerateScripts.ps1
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/PowerShell/Code Generation/GenerateScripts.ps1

178

TemplateRepo: The folder that contains the templates. This can again be

downloaded from the GitHub repo (https://github.com/MattTheHow/Modern-Data-

Warehouse-In-Azure/tree/master/SQL/Control%20Database/Templates); however,

you may need to change the location here slightly to match the location of your repo.

AzureDatabaseServer: The name of the SQL database server. This can be found via

the portal. Use Figure 6-7 as a guide to help locate the correct property.

Figure 6-8.  An image showing the three completed templates

Figure 6-7.  An image highlighting where you can obtain the server name property
for your Azure SQL Database in the Azure portal

AzureSQLDatabaseName: The name of the SQL database

AzureSQLDatabaseAdminUserName: The admin username supplied when

creating the Azure SQL Database

AzureSQLDatabaseAdminPassword: The admin password supplied when creating

the Azure SQL Database

Query: The query to be run against the SQL database. In this case, it is just executing

the proc shown previously.

	 4.	 Once these parameters are completed, you should be able to

execute the script using F5. By default, the script will create a

new “Complete” folder within your TemplateRepo and drop the

completed files in there. Check this folder once the script has

completed. You should see the templates as per Figure 6-8.

Chapter 6 The Role of the Data Contract

https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/tree/master/SQL/Control Database/Templates
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/tree/master/SQL/Control Database/Templates

179

	 5.	 Now that the files have been generated, they can be deployed to

the SQL engine that will host your data warehouse. The output

of the script is a stored proc that copies and cleans data between

stage and clean schemas and two table definitions, one de-typed

for the “Stage” schema and another typed definition for the

“Clean” schema.

By using the preceding approach, you can see how the metadata provided from

the data contract can drastically improve your ability to onboard new datasets. As

these new datasets arrive, all that is needed is some data profiling to understand

the columns and required cleaning. Once these elements are known, they can be

implemented as a data contract and the code generation can build all the SQL

required to process those new datasets. Couple this with orchestration metadata and

the process becomes even more efficient.

For a more detailed walk-through and explanation of this process, refer to Chapter 8,

“Using Scripting and Automation.”

�Harmonizing Schema Evolution

As datasets change over time, a key task of a data warehouse developer is to update

the processing routines so that they keep step with the dataset provider. To assist with

this process, data contracts can store schema versions, meaning every change to the

dataset can be tracked over time. When the time comes to harmonize files with differing

schemas, the delta between the two structures can very easily be determined. The term

harmonize here refers to the process of updating older versions of a dataset so that they

match a newer version. By instilling this consistency, it ensures tools such as PolyBase

and Data Factory can easily read all the data when needed, without having to hold

multiple definitions of that dataset.

In some simple cases, datasets can be harmonized automatically. If you imagine a

scenario where a dataset simply has one additional column and all the other columns

remain identical, a script could easily be written that would match columns by name,

identify the new column, and simply provide NULLs for new column in the older

datasets. See Figure 6-9 for an example diagram.

Chapter 6 The Role of the Data Contract

180

While the preceding change is very simple, it is very common for schema drift to be

much more complex. In fact, it is likely that a developer would need to write a bespoke

script in order to harmonize data, as often you may want to provide more than NULL to a

new column. In these cases, it is highly recommended that data harmonization occurs as

soon as possible and that the scripts are stored and source controlled so that should the

harmonization need to happen again, it can be done so consistently.

Figure 6-9.  A diagram showing how two tables with a simple difference could be
harmonized using SQL

Chapter 6 The Role of the Data Contract

181
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_7

CHAPTER 7

Logging, Auditing,
and Resilience
Things will go wrong in your data processing pipeline. I wish there was a less blunt

way to say it, but it is true. In the majority of cases, it may not even be the fault of the

platform or the developers. It could be the source provider updating their software,

or an intermittent loss of connectivity to an Azure service, or even a harmless comma

manually entered into just the wrong place. Whatever the fault is or how trivial it may be,

they all have the ability to disrupt your warehouse and ultimately cause loss of service to

your users.

Something to bear in mind is that your platform is about data integration, and rarely

do source system designers consider downstream data warehouse processes when they

build systems, and you can never expect them to put off updates that may well contain

breaking changes to your platform. For that reason, you and your development team are

obliged to not just know how your platform behaves when running smoothly but also to

have a deep understanding of how it behaves when things go wrong. In these moments,

when processing grinds to a halt and all the little green ticks turn to red crosses, what

your platform tells you about what is happening and why will make all the difference to

how efficiently that issue is resolved.

�Logging the Data Movement Process
Imagine a scenario where no logging is in place, a large yet critical file that is essential

to one of your most used reports fails to load. Manually checking the file indicates that

the data is not corrupted and the correct number of columns are present; however,

eyeballing each row is not an option due to sheer volume. Checking the SQL database

is online proves successfully and all credential checks come back positive. As you begin

to take calls from impatient users expecting the report, you begin to suspect the issue is

https://doi.org/10.1007/978-1-4842-5823-1_7#ESM

182

with the SQL Db layer, although without any evidence to suggest whether the problem

is with the table, column, or a single value, you realize you need to look at the data row

by row. Perhaps a PowerShell script would work? Maybe a profiler session while the data

is run through a second time? Either way, you are hours away from implementing and

testing a fix for this issue. Logging is a must.

Now, fast forward a few weeks and logging is fully enabled. A similar issue occurs,

so you check your audit database. Against the problem file is an error message captured

using data factory that states there is an extra field on line 356,789. Depending on the

contents, you reject the file back to the user or fix the issue yourself and reprocess. The

logging here enables the fix to be done confidently and in minutes.

While logging is always a good idea, excessive logging can be painful to work with,

and applications that are too chatty in the logs will frustrate developers and support

teams more than they help them. Finding the right balance of logging, and layering

different sets of logs, is therefore important to ensure your solution does not log itself

into disuse.

�Basic Logging Requirements
To avoid over-logging, there should be some basic log requirements that are met. These

ensure that a base level of information is held consistently without it disrupting the day-

to-day running of your platform.

�Where to Store Your Logs

The first question to ask when planning a logging approach is “where should we store

our logs?” The answer is simply somewhere that is easy to access for all users, being you,

your team, and Data Factory, and also somewhere that provides the ability to be queried

efficiently. Logs can often get large and generally have a fair amount of repetition, and

so the ability to write detailed filtering logic is very useful. For these reasons, Azure SQL

Database is always my recommendation and I generally embed a logging schema in the

same database that would serve as a metadata store. These databases could be separated

if that was required by the teams managing the different parts of the solution, although

bear in mind that it can be occasionally useful to join logged data to entity metadata. An

example Audit schema is shown in Figure 7-1.

Chapter 7 Logging, Auditing, and Resilience

183

Some users may be tempted to use a completely Azure native logging strategy,

employing Azure Monitor and the Operations Management Suite; however, I

personally find this cumbersome and liken it to a square peg in a round hole. I feel

strongly that there is no substitute for well thought-out, customized logging routines.

Azure SQL Database is one of many options that could be employed here;

however, the only other option that I feel is really worth mentioning is Azure Cosmos

DB. Cosmos DB is a document database that stores semi-structured JSON documents

and can be very efficient for logging due to its less structured nature. Essentially

log records can take any shape and do not have to conform to a set schema the way

SQL records do. If, for example, a log from an ingestion routine holds vastly different

attributes to that of a transformation routine, then Azure Cosmos DB would allow

you to store these two differing records side by side in the same database. Of course,

a SQL log platform requires that every log entry holds the same attributes or has to be

loaded into a different table. Additionally, Cosmos DB uses extensive indexing that

can be queried using a SQL-like language, so it can offer up log insights very quickly

and easily.

Figure 7-1.  An example schema that logs pipeline execution and provides storage
for alerting metadata

Chapter 7 Logging, Auditing, and Resilience

184

�Events to Be Logged

There is an argument to say that every activity in your platform should be logged.

Surely if everything is tracked, then nothing can slip through the net; however, this

kind of approach often obscures the critical information from the people who need it

as important records get lost in the purely informational log entries. For an initial setup

of logging to be successful, there should be a handful of key events that are logged, but

anything on top of that should be determined through necessity and not purely because

of technical capability. The first events to be logged should be the start and end of each

pipeline that is run in Data Factory. By top and tailing each pipeline with a log entry, you

have the ability to frame each of your processes and derive a success or failure value for

each. As a minimum, the platform should track

•	 Load id: The load identifier that is assigned to the individual

execution of the pipeline

•	 Date and time: The date and time the log event occurred

•	 Pipeline name: The Data Factory pipeline name pulled from a system

variable

By logging these basic attributes, additional insights can be established such as

duration of process and even duration of process based on time of day, a very important

metric when working with a system that has fluctuations in usage. By trapping these

two events, you have the ability to know which pipelines have failed and when, but you

can also begin to plan when those pipelines are run in order to achieve the shortest

durations.

Importantly, any pipelines that are executed as a child of a parent pipeline should

log not just their own unique load id but also that of the parent, so that a hierarchy can

be established. This allows developers and support staff to understand the context in

which a child pipeline was run, providing critical detail when trying to debug a failure.

Figure 7-2 shows how top and tail logging should be implemented for all pipelines in a

hierarchy.

Chapter 7 Logging, Auditing, and Resilience

185

Logging in such a way can easily be captured and Figure 7-3 is an example of such a

logging structure.

Figure 7-2.  Diagram showing the structure of top and tail logging

Figure 7-3.  An example table showing the how parent-child processes can be
tracked in a SQL table

This logging structure means that infinite descendant pipelines of the parent can be

captured; however, in order to tie each back to the original, you need to use a query like

the one shown in Listing 7-1 which employs a recursive common table expression (CTE)

to recreate the hierarchy.

Chapter 7 Logging, Auditing, and Resilience

186

Listing 7-1.  A recursive common table expression used to monitor multiple

levels of pipeline invocation

WITH cte_PipelineLoad

AS

(

 SELECT

 pl.LoadId,

 pl.ParentLoadId,

 pl.PipelineName

 FROM

 Audit.PipelineLoad AS pl

 WHERE

 LoadId = 101042

 UNION ALL

 SELECT

 pl.LoadId,

 pl.ParentLoadId,

 pl.PipelineName

 FROM

 Audit.PipelineLoad AS pl

 INNER JOIN cte_PipelineLoad AS cte

 ON cte.LoadId = pl.ParentLoadId

)

SELECT * FROM cte_PipelineLoad

ORDER BY LoadId

The preceding code locates every descendant pipeline of load id 101042 and

produces the result set shown in Figure 7-4. Related pipelines have been highlighted in

darkening shades of blue, showing how the hierarchy is constructed.

Chapter 7 Logging, Auditing, and Resilience

187

The next set of events to be logged are anything that involves an external process.

If the pipeline calls a SQL activity, log the output. If the pipeline calls a web service, log

the output. Particularly if the pipeline relies upon an external compute resource, log the

output. These integration points are common areas for failure, as the execution has to be

passed outside of Data Factory, and so logging a success or failure with an accompanying

message can shortcut a great deal of investigative work that would have to be otherwise

carried out. Often these external services return varying amounts of information. Some

may provide standard error messages, and some may pass back a detailed stack trace.

However, others may just provide a link to their own suite of logging reports. In these

cases, it can be useful to use the Cosmos DB logging approach mentioned before as

the schema-less nature of a document database is conducive to data that regularly has

different attributes. The alternative is to store the JSON data returned to Data Factory in a

text column within your SQL database. With this approach, you can easily store the data

consistently and also neatly package the additional detail into a single structure. You can

then use the JSON_QUERY functionality to read that data when needed.

The table in Figure 7-5 shows that schema-less JSON data can be stored in a SQL

column. Note that the rowsSkipped value does not exist for the first row within the

Pipeline Info column.

Figure 7-4.  A result set highlighting how a processing hierarchy can be reported or
queried

Chapter 7 Logging, Auditing, and Resilience

188

Listing 7-2 shows the code to read the table shown in Figure 7-5.

Listing 7-2.  Code used to extract JSON data from the Audit.PipelineLoad table

SELECT

 LoadId,

 JSON_VALUE(PipelineInfo, '$.rowsRead') AS RowsRead,

 JSON_VALUE(PipelineInfo, '$.rowsCopied') AS RowsCopied,

 JSON_VALUE(PipelineInfo, '$.rowsSkipped') AS RowsSkipped,

 JSON_VALUE(PipelineInfo, '$.throughput') AS KbThroughput

FROM

 Audit.PipelineLoad

The code in Listing 7-2 uses the JSON_VALUE function to extract several scaler

values from the JSON stored within the table. This query will produce the result set

shown in Figure 7-6; note the NULL value returned for the missing rowsSkipped value.

Figure 7-5.  A table showing JSON data stored alongside regular tabular data,
allowing for schema-less information to be logged

Chapter 7 Logging, Auditing, and Resilience

189

�Extended Logging Capabilities
The events mentioned previously should be considered mandatory when creating a

reliable platform; however, there are additional events that may also be considered

useful of even mandatory depending on the type of workload your platform undertakes.

One such example is when you need to schedule the startup of an external compute

resource. Often in Platform as a Service (PaaS) environments, services can be paused

to save cost and therefore need waking up again before they can do any processing.

When working with these services, you may find you need to schedule the “waking up”

of a resource and regularly check to see if that resource is ready or not. In these cases,

you are likely to want to log the fact that a check happened and the result of that check.

Additionally, if the resource is paused, then you should log that you had to start it and

couple that with a final start time or “duration to start” type calculation. By storing these

events, you can begin to see if your processing speeds are being extended purely through

wait times for services to become available. If this were the case, then you could review

their busy times and bring the schedule forward by 10 minutes to avoid those waits in

future.

A further “nice to have” logging opportunity is when you refresh any semantic

layers that sit on top of but outside of your data warehouse, for example, Azure/SQL

Server Analysis Services (SSAS). The Analysis Service database itself will track when it

was last refreshed, but it can be very useful to you as a developer to know how long the

process took to complete and then also at what point in time the data that is presented

to a user was last refreshed. Often teams measure success by delivering on service level

agreements (SLAs), and the time that it takes to refresh the presentation layer is often a

critical key performance indicator (KPI). By logging the semantic layer process complete

time, this KPI can easily be calculated.

Figure 7-6.  The result set of a query that blends tabular data with schema-less
JSON data fed from the Data Factory pipeline

Chapter 7 Logging, Auditing, and Resilience

190

�Aggregating Your Logs

In some cases, a single log record does not warrant much attention although several

hundred of a similar nature may well indicate a significant problem. When relying

regularly on external compute services, you may occasionally get transient failures where

the service is offline for short periods of time. These may log a single failure and would

be rectified with a simple retry; however, were you to see many of these type of failures

in a given time window, you would be fairly certain that there was a problem with that

service that needs to be investigated or worked around.

The preceding example is common but not very close to the actual data. There

could also be scenarios where a particular type of file occasionally has specific errors

on a column. Again, single instances of failures might be expected and can be resolved

with some specific data cleansing; however, if every file of that type begins failing, you

could make the assumption that the file has changed significantly and therefore some

work needs to be done on the data contract. Similarly, when loading very large files, it

is often preferential to accept an amount of failures or data quality issues in the interest

of loading the majority of rows into the warehouse. Despite this, a threshold should still

be maintained to ensure that the quality of data in the warehouse is not lowered too

drastically.

In both of these cases, your logging system would need to be smart enough to know

that some types of log records are only a problem when they are aggregated together

and that simply tracking individual failures does not go deep enough. This is where the

logging tables can actually take on a dual role and act akin to a fact table in an analytical

system. By regularly running jobs to aggregated failures of a certain type or that are

attached to a certain entity, you can easily start to flag alerts that are only relevant at

that aggregated level. In order to support these scenarios however, you should design

the table with this in mind and ensure all the attributes that you may need to group by

are first-class attributes of the logging table. This means that queries over many rows

can perform sufficiently. To further support this type of log analysis, you should store

threshold values at the appropriate grain which can then be joined to the fact table as

per the diagram in Figure 7-7 and Listing 7-3.

Chapter 7 Logging, Auditing, and Resilience

191

Listing 7-3.  Code to count the number of each failure type and flag any types

that exceed the threshold

SELECT

 rtp.EntityId

 ,pa.FailureId

 ,COUNT(pa.FailureId) AS FailureCount

 ,eft.ThresholdValue

INTO #tmpError

FROM

 audit.PipelineLoad AS pa

INNER JOIN audit.RowCountLog AS rtp

 ON rtp.LoadId = pa.LoadId

INNER JOIN audit.EntityFailureThreshold AS eft

 ON eft.EntityId = rtp.EntityId

 AND eft.FailureId = pa.FailureId

GROUP BY

 rtp.EntityId,

 pa.FailureId,

 eft.ThresholdValue

HAVING

 COUNT(pa.FailureId) >= eft.ThresholdValue

IF @@ROWCOUNT > 0

BEGIN

Figure 7-7.  A diagram showing how a threshold table can be related to an audit
table to generate threshold-based aggregated log analysis

Chapter 7 Logging, Auditing, and Resilience

192

 �DECLARE @errorMessage VARCHAR(250) = 'Errors were encountered that

exceeded the threshold. Error Details: '

 SELECT

 @errorMessage += STRING_AGG('Entity '

 + CAST(EntityId AS VARCHAR)

 + ' exceeded threshold for failure '

 + CAST(FailureId AS VARCHAR)

 + '. Threshold: '

 + CAST(ThresholdValue AS VARCHAR)

 + ' Failure count: '

 + CAST(FailureCount AS VARCHAR)

 ,', ')

 FROM #tmpError

 RAISERROR(@errorMessage, 16,1)

END

The code in Listing 7-3 counts the number of specific failure types according to

the threshold table and entity values and will return any combinations that exceed the

threshold. It will then raise a detailed error message back to Data Factory detailing the

entities that failed and what the failures were. By using the RAISERROR function, an “On

Failure” path can be used in Data Factory which could fire off an alert email as detailed

later in this chapter.

�Auditing the Data Movement Process
Logging that data movement occurred is perhaps the most important part of your

platform, given its use when things go wrong. However, there will always come a time

when you need to know what normal looks like for your platform so that you estimate

what a strenuous load might look like. This is particularly important in sectors such as

retail where seasonal milestones can cause huge peaks in traffic. While a data warehouse

is unlikely to be too heavily involved in an operational process that utilizes many

transactions, if your users are expecting downstream reports to be refreshed frequently,

then being able to estimate peak data processing needs is important.

Chapter 7 Logging, Auditing, and Resilience

193

�Basic Auditing Requirements
There are two main basic auditing requirements that will allow you to measure what

normal looks like for your solution. These are

•	 Data volumes: The amounts of data flowing through your platform

•	 Processing times: The frequency of ingestion jobs and the time it

takes to complete them

•	 Watermarks: The max values for each dataset after each ingestion

run, helping to detect change

�Auditing Data Volumes

By tracking volumetric information about the data that flows through your platform, you

can begin to assess the need to scale services, increase storage sizes, and spot potential

issues before they become problematic. The most common metric when talking about

data volumes is row counts. This metric succinctly indicates the amount of data a file

may hold in a single integer and is also generally easy to get hold of. Certainly Microsoft

SQL engines provide useful functions to get this number, as does Data Factory and

Databricks if you were to be working more in a data lake.

When working within Data Factory, a successfully completed copy activity

can, depending on the source and sink settings, produce 22 data points that detail

the specifics of that action. The most useful of these regarding row count audit

information are

•	 rowsRead: The number of rows read from a data. source

•	 rowsCopied: The number of rows copied into the sink.

•	 rowsSkipped: The number of rows that were skipped. For rows to be

skipped, a setting needs to be configured on the copy activity.

•	 redirectRowPath: The path to the “skipped rows” file that sits within

the Blob Storage location of the Azure Storage account, supplied

when configuring the “rowsSkipped” setting.

In order to obtain these values from within Data Factory, you can use the following

snippets in any activity that comes after the copy activity, assuming it is connected:

Chapter 7 Logging, Auditing, and Resilience

194

rowsRead: @activity('Copy Data').output.rowsRead

rowsCopied: @activity('Copy Data').output.rowsCopied

rowsSkipped: @activity('Copy Data').output.rowsSkipped

redirectRowPath: @activity('Copy Data').output.redirectRowPath

These snippets could be used to assign values to stored procedure parameters as

per Figure 7-8, which passes the rowsCopied and rowsSkipped values into a logging

stored procedure.

Figure 7-8.  An example showing how copy activity outputs can be passed into a
SQL stored procedure for logging in the control database

Once datasets have been copied into a warehousing database, the movement will be

done using stored procedures and not through the Data Factory copy activity, meaning

the copy activity outputs will not be available. In order to audit this information and log

row counts, they will need to be obtained using the stored procedure and passed back to

Chapter 7 Logging, Auditing, and Resilience

195

data factory so that the numbers can be pushed into the logging database. Critically, any

stored procedures that are called from Data Factory, where an output is expected, must

use the Lookup activity, not the stored procedure activity. A stored procedure activity

will not produce an output to Data Factory, even if one is generated from the stored

procedure.

Listing 7-4 shows how an insert statement can be written in SQL that will produce

the associated row count of that statement.

Listing 7-4.  SQL code to execute an operation and store the row count into a

variable

DECLARE @InsertCount INT = 0

INSERT INTO dim.Product

SELECT

 ProductName

 ,ProductCategory

FROM clean.Product

SET @InsertCount = @@ROWCOUNT

In Listing 7-4 the @@ROWCOUNT system function is used immediately following

the insert statement and assigns the value to a variable, storing its value for later use.

These exact same methods can be used against UPDATE and DELETE statements also.

In order to surface these values back to Data Factory, a simple select of the variable

values at the end of the procedure will suffice:

SELECT

 @InsertCount AS InsertCount

Full implementation of the methods used in Listing 7-4 can be seen as part of the

Code Generation pattern in Chapter 8, “Scripting & Automation”. Once the Lookup

activity has completed, the InsertCount output can be retrieved from the output using

the following snippet:

@activity('Exec SQL Stored Proc').output.firstRow.InsertCount

The “firstRow” element is used to avoid the use of an array in the activity output.

Chapter 7 Logging, Auditing, and Resilience

196

While knowing row counts are useful, it doesn’t cover all bases, as rows themselves

can massively vary in size, and so 1000 small rows could in fact store less data than

5 massive rows. This is why it is also useful to audit data sizes, as these give a truer

impression of the load on your platform. Similar to row counts, Data Factory has some

useful copy activity outputs that can be fetched and logged very simply. The following

snippets should be considered when logging data size:

dataRead: @activity('Copy Data').output.dataRead

dataWritten: @activity('Copy Data').output.dataWritten

throughput: @activity('Copy Data').output.throughput

The “dataRead” and “dataWritten” values will provide either the data read from

source or written into the sink as an integer in bytes. The throughput value details the

kilobytes per second for the data transfer operation.

By logging row count information and file sizes against each incoming dataset, you

can begin to analyze the load on your system by file type. Once you have a base level of

data, you could compare the new, incoming values to a rolling average to quickly catch

any datasets that arrive outside of the normal boundaries. This could help you avoid

processing bloated files that contain additional data that is not required or empty files

that could fail validation steps.

�Auditing Processing Times

Row counts and data sizes are useful when plotting the storage used within your system;

however, they only offer half of the story. When coupled with processing times, you can

build a fuller picture of the capability of your platform.

Again, Data Factory offers some valuable data as part of the standard output from

the copy activity, and so when using Data Factory to physically move the data, this audit

information is easily gathered. The key values that are returned from the copy activity are

listed here:

•	 copyDuration: The total number of seconds the copy activity

executed for.

•	 throughput: The number of kilobytes per second at which Data

Factory copied the data.

•	 queueingDuration: The number of seconds before the integration

runtime (IR) began running the copy. Large value here on a self-

hosted IR can indicate the need to scale according to your workload.

Chapter 7 Logging, Auditing, and Resilience

197

•	 preCopyScriptDuration: The number of elapsed seconds between

the start of processing by the IR and the completion of the pre-copy

script.

•	 timeToFirstByte: The number of seconds between the completion

of the pre-copy script and the retrieval of the first byte of data. Long

durations here indicate poor-performing SQL or under-powered

servers. This value is for non-file-based sources only.

•	 transferDuration: The number of elapsed between the first byte and

the last byte.

The copyDuration and throughput can be gathered in the same way as the

preceding row counts; however, the later four values are actually contained within a

detailedDurations object which itself is contained within an executionDetails array.

Therefore, some additions to the preceding snippets are required so that the values can

be recovered. An example for queueingDuration is as follows:

queueingDuration: @activity(

'Copy Data').output

.executionDetails[0]

.detailedDuratons

.queueingDuration

Note that while these values are available, the schema may change and null checks

should be used when fetching these values from Data Factory.

Once data is stowed inside the database, you can use logging stored procedures to

mark the start and end of group of tasks. If needed, this could be very granular such that

you log the start and end time either side of each activity. Alternatively, you could simply

log the start and end of the entire pipeline, giving a total figure for the process including

any overhead processes. Finally, you could use SQL inside of the stored procedure to

derive the required duration information and report it back to Data Factory so that it can

be used in a log entry. Listing 7-5 shows how that could be achieved.

Listing 7-5.  Code to report on the start time and end time of processes with SQL

DECLARE @StartTime DATETIME = GETUTCDATE()

DECLARE @EndTime DATETIME

DECLARE @Duration INT

Chapter 7 Logging, Auditing, and Resilience

198

INSERT INTO dim.Product

SELECT

 ProductName

 ,ProductCategory

FROM clean.Product

SET @EndTime = GETUTCDATE()

SET @Duration = DATEDIFF(Second, @EndTime, @StartTime)

SELECT

 @StartTime AS StartTime,

 @EndTime AS EndTime

 @Duration AS Duration

These outputted values, which must be called using a Lookup activity, can be

retrieved as per the following snippet:

@activity('Exec SQL Stored Proc').output.firstRow.Duration

�Storing High Watermarks

Storing high watermarks allows developers and support staff to track incoming data

using a simple mechanism. Additionally, a high watermark can be used to resolve

dependency constraints that may be placed on the system. A watermark can be

implemented using either a sequential ID column, something that is very common in

transactional systems, or a date column such as record creation date. In some cases, a

source system may use a globally unique identifier (GUID) which is great for ensuring

uniqueness but is not sequential, and therefore it is not possible to identify the latest of

records using it.

A high watermark should be maintained at the entity level so that is can be used as

a point of comparison between source entities that may form part of a target entity. In

order to obtain the watermark value on each load, a simple MAX function should be

applied to the selected column, or columns, as the data is loaded using a SQL stored

procedure. This MAX value can then be passed out of the stored procedure using

a mechanism similar to the one described in Listing 7-3 and logged in the auditing

database using Data Factory.

Chapter 7 Logging, Auditing, and Resilience

199

A key value of this watermark is its ability to indicate change. For example, if there

are two source datasets that produce a single target dataset, a simple comparison can be

made between the two source watermarks and the target high watermark to work out if

the data has changed in source and therefore needs refreshing in the target table.

By engaging one or more of these logging mechanisms, you should be able to build

up a repository of telemetry and volumetric data which can be helpful when planning for

new datasets or monitoring the current scale and state of the services that make up the

platform. Be sure to consider what metrics are important to you and whoever supports

to solution however, as excessive logging can be problematic and can even obscure the

data that is giving you the real insight.

�Incorporating Resilience into the Data Movement
Process
Logging information about steps that have happened within a data processing pipeline

is useful when looking retrospectively; however, to become resilient, there needs to be

a native ability to handle problems that might occur. Additionally, being able to alert

certain members of a team when something has gone wrong also drives toward a more

resilient platform.

�Basic Resiliency
As with audit information, there is a base level of data that should be captured and

then there are numerous ways in which that can be extended to offer specific insight

into an area that may be of particular interest. The first step toward resiliency is to

incorporate some basic defensive checks, allowing the platform to detect problems

before they become problematic. The second is then being able to act on those problems

autonomously, whether that be by alerting a person or redirect the logical flow so that

downstream issues do not occur.

Chapter 7 Logging, Auditing, and Resilience

200

�Using Metadata for Troubleshooting

Throughout several previous chapters I have mentioned metadata and how it can be

used for a number of different purposes, well here is another. By using metadata to tell

the platform about what inbound data should look like, you can check to ensure that

that image aligns with reality, and if not, steps are taken to ensure the data does no harm

downstream.

The sooner these defensive checks can be performed, the better, and so Data Factory

is an ideal place to conduct such activities. Given its ability to read and copy files at

scale, it can also be used to profile such files and detect if there any differences to what is

expected.

Primarily these checks are conducted using the Get Metadata activity which, when

pointed to a particular dataset, can return a variety of attributes about the data. For a

basic level of checking, the primary attributes to obtain are listed as follows:

•	 itemName: This can be used to fetch name of a file or folder. You

could then compare this value to some metadata to ensure the file

name has the correct date or other attributes within it.

•	 Size: By retrieving the size of a file before copy, you could pre-

emptively scale a set of resources or delay loading until a less busy

period of the day.

•	 childItems: This attribute can confirm that a folder contains files or

other folders, thereby indicating some processing needs to occur.

Where this check to come back empty, you can pause processing or

alert a user of an upload failure.

•	 columnCount: By fetching the number of columns to be copied, you

can easily detect if additional columns have arrived; be aware that

this does not check column order.

See Figure 7-9 for an example of how the Get Metadata activity can be configured

to retrieve these values and feed them into a downstream stored proc. By using a stored

procedure, you can easily develop logical checks in SQL, using metadata, which can then

pass instructions back to Azure Data Factory (ADF).

Chapter 7 Logging, Auditing, and Resilience

201

Listing 7-6 shows the code for such a checking stored procedure.

Listing 7-6.  Code to check the metadata of the given file

CREATE PROC Audit.CheckFileMetadata

(

 @EntityId INT,

 @ColumnCount INT,

 @Filename VARCHAR(100)

)

AS

BEGIN

Figure 7-9.  Configuration of Data Factory to pass metadata values into
subsequent activities from the Get Metadata activity

Chapter 7 Logging, Auditing, and Resilience

202

 -- Check the filename

 IF NOT EXISTS (

 SELECT

 EntityId

 FROM

 Metadata.Entity

 WHERE

 @Filename LIKE '%' + FileIdentifier + '%'

 AND EntityId = @EntityId

)

 BEGIN

 RAISERROR('The filename did not match the specified identifier' ,16,1)

 END

 -- Check the column count

 IF NOT EXISTS (

 SELECT

 EntityId

 FROM

 Metadata.EntityColumn

 WHERE

 COUNT(EntityColumnId) = @ColumnCount

 AND EntityId = @EntityId

)

 BEGIN

 �DECLARE @ErrorMessage VARCHAR(100) = 'The column count ' +

@ColumnCount + ' does not match the specified column count'

 RAISERROR(@ErrorMessage ,16,1)

 END

 Further procedure logic...

END

Chapter 7 Logging, Auditing, and Resilience

203

�Creating Alerts Using Azure Data Factory Alert Rules

There will be occasions when you need a specific event, such as the result of a metadata

check or a connection failure, to trigger an alert immediately. Initially, you may decide

that the majority of platform issues should raise alerts as this will help uncover issues

and bugs more efficiently. At present, Data Factory does not have a “Send Mail” task, as

was available when using SSIS, and so any custom email alerts will be delivered using

an alternative method. However, what Azure Data Factory does support is the use of the

Azure native alerting service which uses Azure Monitor to detect instances where certain

metrics, such as number of failed activities, exceed a threshold. At these times, alerts are

fired to members of an action group, detailing which metric was exceeded and when.

To configure a Data Factory alert rule, you can follow these steps:

	 1.	 Open Data Factory and navigate to the monitor UI using the red

icon on the left-hand menu. Choose “Alerts & metrics.”

	 2.	 Click New alert rule as shown in Figure 7-10.

Figure 7-10.  Creating a new alert rule in ADF

	 3.	 Name the alert appropriately and choose an appropriate severity.

Click “Add criteria” to begin nominating the events that will raise

an alert event. There are many options to choose from here;

however, the most useful to begin with is likely “Failed activity

runs metrics.” See the example in Figure 7-11.

Chapter 7 Logging, Auditing, and Resilience

204

	 4.	 Choose “Continue.” Here you can select certain dimensions

that will filter failure events, meaning that you can set specific

thresholds for each activity, activity type, failure type, or pipeline

name. This allows the logging to be highly flexible and granular.

	 5.	 Set conditional logic to determine what constitutes an alert

event by specifying the condition, the time aggregation, and the

threshold count.

	 6.	 Specify the period over which to evaluate failures by setting the

period and the frequency. Refer to Figure 7-12 for an example.

Figure 7-11.  Image showing the metrics available for flagging alerts

Chapter 7 Logging, Auditing, and Resilience

205

Tip U se the chart at the top of the configuration pane to see the history of the
selected metric over a range of time values.

Figure 7-12.  An image showing the configuration of the alert

Chapter 7 Logging, Auditing, and Resilience

206

	 7.	 Choose “Add criteria” to create the alert event. Further criteria can

also be added if required.

	 8.	 Choose “Add notification.” The notifications are submitted using

Azure action groups, and so if you have existing action groups,

these can be supplied here. Otherwise you can create new ones.

	 9.	 To create a new action group, supply an action group name and

short name as per the example shown in Figure 7-13.

Figure 7-13.  Creating the action group

	 10.	 Choose “Add notification” and give the action a name. Now

you can select the notification options that you want to add

to the group. These can be either Email, SMS, Azure app push

notification, or Voice.

	 11.	 Supply at least one “Email” and any others you feel appropriate as

per the example shown in Figure 7-14.

Chapter 7 Logging, Auditing, and Resilience

207

Figure 7-14.  Creating a notification for the action group

	 12.	 Choose “Add notification” and then “Add action group.” Finally,

ensure “Enable rule upon creation” is set to on and choose

“Create alert rule.”

	 13.	 You can now test the rule in your Data Factory pipeline and view

the alert messages produced.

Chapter 7 Logging, Auditing, and Resilience

208

�Creating Custom Alerts from Azure Data Factory

The Azure Data Factory native alerting is useful for a quick and easy implementation;

however, you may find that they are slightly limiting due to the information they provide

and the way in which they are displayed. Given the nature of data integration platforms,

you may want to customize the alerts so they show more detailed error information,

assisting support teams with debugging, or to be more visually pleasing in case they

are being delivered directly to end users. A useful technology choice for this kind of

extension to Data Factory is Azure Logic Apps. Logic Apps allow you to implement many

different logical outcomes to a given failure code and can be invoked using a REST API

call from Data Factory. You can follow these steps to create a logic app that will alert

users with an email and is called from Data Factory:

	 1.	 Open the Azure Portal and navigate to the desired resource group.

Click “Add” in the top left corner and search for “Logic App.”

	 2.	 Ensure all the settings are correct including the Resource group,

Subscription, and Region. Supply a sensible name as shown in

Figure 7-15.

Figure 7-15.  Creating a logic app in the North Europe region

Chapter 7 Logging, Auditing, and Resilience

209

Figure 7-16.  Highlighting the correct template to begin your Logic App

	 3.	 Click “Review + create” and click “Create” to complete the step.

Once the deployment is finished, choose “Go to resource.”

	 4.	 From the designer page that opens up, choose the “When a HTTP

request is received” option shown in Figure 7-16.

	 5.	 Now in the Logic Apps Designer, add the following JSON schema

into the “Request Body JSON Schema” input box:

{

 "type": "object",

 "properties": {

 "AlertMessage": {

 "type": "string"

Chapter 7 Logging, Auditing, and Resilience

210

 }

 }

}

This is also shown in Figure 7-17.

Note T his schema will accept a simple JSON object with one value,
“AlertMessage.” You can add more values in here to provide more flexibility.

Figure 7-17.  Configuring the “When a HTTP request is received” trigger

	 6.	 Click “New step” and search “Send email.” Scroll through the list until

you see the Office 365 Outlook option and choose “Send an email

(V2)” as shown in Figure 7-18. You will notice many other providers

are on offer here if you already subscribe to a mailing service.

Chapter 7 Logging, Auditing, and Resilience

211

Figure 7-18.  Choosing the “Send an email (V2)” activity

Chapter 7 Logging, Auditing, and Resilience

212

	 7.	 You will be prompted to sign in to the outlook service. Enter

the required details and you will eventually be returned to the

configuration view for the activity. Figure 7-19 shows a recipient

in the “To” field and a subject in the “Subject” field. As you click

the Body field, a “Dynamic Content” box will appear offering you

the “AlertMessage” parameter that is parsed from the input JSON

object. Click this parameter to populate the Body with its value.

Figure 7-19.  Adding a parameter value in the Body of the email

Note T his technique can be used to parameterize any aspect of this activity and
pass it in from the caller, for example, Azure Data Factory.

Tip  You can add other parameters such as CCs, Attachments, and importance
here also.

Your Logic App is now complete. Click Save and then copy the “HTTP POST URL”

from the “When a HTTP request is received” trigger. Move back to Data Factory to create

the activity that will call the Logic App.

	 1.	 Navigate to Azure Data Factory and create a pipeline. Add a single

Web activity that can be selected from the General folder.

Chapter 7 Logging, Auditing, and Resilience

213

Figure 7-20.  Configure a Data Factory Web activity to call an alerting Logic App

	 2.	 Figure 7-20 shows how to configure the Web activity. Firstly paste the

URL copied from the Logic App into the “URL” field of the activity. Set

the method to POST and set the Body to the following JSON object:

{

 "AlertMessage": "Data Factory Failed!"

}

Chapter 7 Logging, Auditing, and Resilience

214

This pattern can then be used anywhere in your Data Factory pipelines and hooked

onto the “On Failure” constraint.

�Extending Resiliency
Implementing a basic level of resiliency will give you the confidence to run and manage

your platform day to day. However, there will be scenarios that this basic level of

checking will not cater for. For some solutions, these scenarios may not even occur;

however, for those that do, having the logging and resiliency patterns available can

resolve numerous issues.

�Utilizing Data Factory Fault Tolerance

Data Factory has built in fault tolerance which is supported when using the copy activity

in a nonbinary copy mode. The goal of fault tolerance is to detect rows that either fail

data type validation between the source and sink, do not contain the correct number of

columns for the sink, or violate primary key constraints applied to the sink table. From

the settings tab, one of the following settings can be chosen:

•	 Abort activity on first incompatible row: This is the default setting

and will ensure that the copy activity will fail as soon as a single row is

deemed incompatible.

•	 Skip incompatible rows: Choosing this setting allows incompatible

rows to be skipped over by Data Factory and not written to the sink.

•	 Skip and log incompatible rows: This setting skips the bad rows but

also logs their values into an Azure Storage account.

Copy activities that permit skipping of rows will detail the number of rows that were

skipped in their activity output and also provide the redirect path for logged skipped

rows if so configured. All logged rows get stored as CSV files with the original data

enhanced with two additional columns, listing the error code and the error message so

that debugging can be conducted.

Chapter 7 Logging, Auditing, and Resilience

215

�Checking File Structure Using Data Factory

As part of a basic resiliency setup, you may count incoming columns and compare that

number to the number of columns stored in metadata; however, this will not tell you if

columns change position or are swapped for different columns. In order to get this level

of detail, you should call upon the structure attribute from the Get Metadata activity. By

specifying the structure attribute as per the basic attribute listed previously, Data Factory

will return a more complex array of column objects that contain column names and data

types. An example of this structure is shown here:

{

 "structure": [

 {

 "name": "Column One",

 "type": "Int64"

 },

 {

 "name": "Column Two",

 "type": "String"

 }

]

}

Given this object from Data Factory, you could easily generate what should be a

matching object from your control database using SQL and then compare the two strings

to determine a match. In order to generate the preceding object from your SQL tables

that store your data contract, you can use the query shown in Listing 7-7.

Listing 7-7.  SQL code used to generate JSON objects for use in Azure Data Factory

SELECT

 ColumnName AS 'name',

 DataType AS 'type'

FROM

 Metadata.EntityColumn

FOR JSON PATH, ROOT('structure')

If this check were to fail, then you could send off an alert and halt the file loading

process without causing any downstream issues.

Chapter 7 Logging, Auditing, and Resilience

216

�Creating Alerts from Skipped Rows

When working with large files, often the approach leans toward skipping and/or logging

bad data rows than failing the entire file out of principle. This is because consistency

can be achieved eventually, and it is often more important to get the majority of the data

into the system than depriving the warehouse of data. However, there may be a point

at which it is no longer acceptable to load rows as the failures are too numerous. For

example, if a file with 1,000,000 rows has 10 rows that are incompatible, it is clearly better

to process the 900,990 rows into the warehouse and worry about the 10 later. However,

if 100,000 rows were incompatible, perhaps you want to fail the file as there is clearly a

more significant issue.

Data Factory’s copy activity can produce a skipped row count and a copied row

count which can be used to determine if the ratio between these two numbers exceeds a

given threshold. For this to be available, skipping rows must be turned on using the fault

tolerance settings in Data Factory copy activity. The following snippet can be placed in

the expression for an IF activity to calculate the ratio between the two numbers:

@greaterOrEquals(div(activity('Copy File').output.rowsSkipped,

activity('Copy File').output.rowsCopied), 0.5)

This expression will derive a true or false depending on whether 50% or more of

the file is skipped during the copy. This approach means that the loading process can

have a degree of intelligence about it when processing large files. However, it does not

understand the types of failure, just that the row was incompatible.

�Monitoring the Data Movement Process
The auditing and alerting methods mentioned already are useful tools, enabling instant

notification in case of failures or anomalies. Being able to react quickly to these scenarios

can drastically reduce the time it takes to resolve any damage caused to your data

warehouse. These systems can be greatly complemented however with a less instant,

steadier paced monitoring method that allows developers to peek at the platforms health

and performance through easy-to-understand dashboards and reports. Often these then

form the basis of regular canned reports that go out to management to give detail of data

volumes, failure percentages, and average durations. As time goes on and the maturity of

your platform increases, these reports can begin to highlight numerous other data points

such as platform running costs, data quality scores, and even report usage.

Chapter 7 Logging, Auditing, and Resilience

217

Ultimately the richness of these reports comes down to what is logged into your

Audit schema, and clearly a base level of logging will only enable a base level of

reporting. Think carefully about the platform elements that need to be reported on when

designing the Audit schema.

The most basic method of platform monitoring is a set of views that sit on top of

your Audit schema tables. Views such as this provide an easily customizable approach to

monitoring that can be flexible to your developing requirements. See Listing 7-8 for an

example view definition.

Listing 7-8.  A definition of the SQL view to report on the data movement process

CREATE VIEW [Audit].[ExecutionReport] AS

SELECT

 child.ParentLoadId AS [Parent Load Id]

 ,child.LoadId AS [Load Id]

 ,child.PipelineName AS [Pipeline Name]

 ,CASE child.PipelineStatusTypeId

 WHEN 1 THEN 'In Progress'

 WHEN 2 THEN 'Successful'

 WHEN 3 THEN 'Failed'

 END AS [Pipeline Status]

 ,SourceSystemName AS [Source System]

 ,EntityName AS [Entity]

 ,parent.PipelineName AS [Parent Pipeline]

 ,child.PipelineName AS [Pipeline]

 ,child.StartTime AS [Start Time]

 ,child.EndTime AS [End Time]

 ,child.Duration AS [Duration]

 ,rt.ValidRows AS [Valid Rows]

 ,rt.BadRows AS [Bad Rows]

FROM

 Audit.PipelineLoad AS child

 LEFT OUTER JOIN Audit.PipelineLoad AS parent

 ON child.ParentLoadId = parent.LoadId

 INNER JOIN Audit.RowCountLog AS rt

 ON rt.LoadId = child.LoadId

Chapter 7 Logging, Auditing, and Resilience

218

 INNER JOIN Metadata.Entity AS e

 ON e.EntityId = rt.EntityId

 INNER JOIN Metadata.SourceSystem AS s

 ON s.SourceSystemId = e.SourceSystemId

Eventually views such as this will become relied upon, and so in order to make

consumption easier, some form of data visualization is usually required. The tool itself

is nonspecific; so long as it can connect to your control database and be developed and

accessed by the relevant people, then the tool is the correct choice, although I generally

choose either Power BI or excel.

Chapter 7 Logging, Auditing, and Resilience

219
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_8

CHAPTER 8

Using Scripting
and Automation
A common attribute of many developers is the desire to do things quickly, consistently,

and once only. To address this desire, scripting and automation are often used as they

provide a hyper consistent method to complete regularly occurring tasks. This chapter

aims to walk through three of my most used scripts in the hope that they can also be

useful to readers of this book. All the scripts featured in this chapter are written in

PowerShell and operate or automate key pieces of a modern data warehouse, the SQL

engine, Data Factory, and data lake.

�The Power of PowerShell
PowerShell is the go-to scripting language for system administrators and power users

looking to rapidly automate common tasks across their enterprise. As an open source

language built on .Net, the command-based shell and integrated scripting environment

provide an intuitive way to write scripts that can easily be extended as per the needs

of the developer. Developers looking to craft their own PowerShell scripts will find the

language rich with useful functionality complimented by lots of documentation online

and the ability to integrate their scripts with many Azure services. In honesty, this

chapter does very little to expose the true power of PowerShell; however, entire books

are written for that purpose and I strongly recommend Don Jones and Jeffrey Hicks’

Learn Windows PowerShell in a Month of Lunches if the reader wants to enhance their

PowerShell skills.

https://doi.org/10.1007/978-1-4842-5823-1_8#ESM

220

�Commonly Used Scripts
The following sections of this chapter describe in detail the scripts and patterns that I

use very often when developing data warehouse solutions in Azure. All of these can and

should be further developed to meet any specific needs, but my hope is that these scripts

guide the way for what can be achieved with a low level of effort when using PowerShell.

�Code Generation
Code generation is an accelerator that allows warehouse projects to get off the ground

quickly. Often one of the most time-consuming tasks when starting a data warehouse

project is fetching the data in order to begin development against it, and so the goal of

code generation is to use a pattern that works for all scenarios and replicate this quickly

as many times as needed. There are three elements that are required to facilitate a code

generation approach. These are

•	 Data contracts: SQL tables and procedures that hold the entity-

specific metadata

•	 SQL templates: Predefined SQL procedures and tables that will have

placeholders for text replacement

•	 The PowerShell script: A PowerShell script that unions the other two

elements to create numerous implementations of a pattern within

seconds

Data contracts play a major role here as it is the contracts that supply the specific

configurations that make each implementation of the generic pattern work for each

data source.

To begin working with this script, the metadata database needs to contain the

following objects:

•	 Metadata.Entity: The main table that stores a row for each dataset,

otherwise known as an Entity.

•	 Metadata.EntityColumn: This table is logically aligned to Metadata.

Entity; however, it stores a row for each column of the related entities.

•	 Metadata.RuleDefinition: This table stores a row for each rule

definition. A rule can be any valid SQL code.

Chapter 8 Using Scripting and Automation

221

•	 Metadata.ColumnRule: This table is a bridge between RuleDefinition

and EntityColumn as columns can have many rules and rules can be

applied to many columns.

•	 Metadata.ObtainEntityMetadata: This stored procedure pulls

information from each of the preceding tables and presents it to the

PowerShell script in a uniform way.

These tables and procs are discussed in more detail in Chapter 6, “The Role of the

Data Contract,” and Figure 6-1 shows how the tables relate to each other. The full set

of DDLs for the metadata scheme can be obtained from this link: https://github.

com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control%20

Database/Scripts/CreateDatabase.sql

The next objects that are required are the templates. The code generation templates

are pre-written SQL scripts or table definitions that have placeholders for various items

produced by the PowerShell code. For example, a template may have a generic statement

such as

SELECT

 <ENTITY-COLUMNS>

FROM

 <ENTITY-TABLE>

In this case, the <ENTITY_NAME> and <ENTITY-TABLE> values would be generated

by the PowerShell script and replaced in the template to produce valid and properly

configured SQL script. When adopting a code generation approach, it is important to

review these templates to ensure the required patterns and processes are implemented

properly but that any specific components are supplied by the PowerShell code.

Generally, this will mean that the earlier stages of the data processing are code

generated, whereas the more volatile and business-oriented transformations are written

manually until such time as they can be scripted. The templates supplied using the

following link illustrate how ingestion and cleaning processes can be scripted for code

generation: https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/

tree/master/SQL/Control%20Database/Templates

The final piece of the code generation setup is the PowerShell script that unions the

other two elements. The script itself is nearly 200 lines of PowerShell and so too long to

paste directly in this chapter; however, the script is well commented to aid understanding

and I will now describe the code as blocks, instead of individual lines.

Chapter 8 Using Scripting and Automation

https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control Database/Scripts/CreateDatabase.sql
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control Database/Scripts/CreateDatabase.sql
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/blob/master/SQL/Control Database/Scripts/CreateDatabase.sql
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/tree/master/SQL/Control Database/Templates
https://github.com/MattTheHow/Modern-Data-Warehouse-In-Azure/tree/master/SQL/Control Database/Templates

222

From lines 0 to 41, the script is configured so that it connects to the correct SQL

database and executes the Metadata.ObtainEntityMetadata stored procedure. The

script then assigns the output of that stored proc to PowerShell variables for use later

in the script.

Lines 44–159 do the bulk of the code generation work. Initially there is a check to see

if the entity requires SCD type 2 logic and if so sets up a variable that contains a string

that can be used to create HASH values. SCD changes are detected using HASH values as

this avoids the need to check each and every column.

From line 78, the script enters a series of ForEach loops which perform various

actions at different levels. First is the iteration over each entity; this ensures that the

code is specific for each entity and generates and replaces each placeholder before

moving onto the next entity. Within this outer loop is a ForEach loop over each column

that belongs to the given entity. This allows specific column lists to be created, some

with full-type and nullability definitions for tables and others with just column names

for simple SELECT statements. Additionally, an isMapped attribute is used to allow a

simple method to trim columns from source datasets that are not required for further

transformations. A further ForEach loop is then used to process each rule that is applied

to each column. This level of operation allows each rule to be nested so that a single SQL

statement is created from potentially numerous separate rules. In particular, this means

that rules can be written to be granular and not duplicated to cover off specific column

needs. If a rule definition needs to change, then it only needs to change in a single place

in order to be updated in all instances of that particular rule.

From lines 162 to 182, the PowerShell script performs replace operations for each

placeholder in the template. Each placeholder has a corresponding variable value

generated by the PowerShell script for that specific entity.

Finally, the lines 185 to the end simply name each output file and save it into the

output folder specified in the variables at the start or the script.

�Invoke Data Factory Pipeline
The ability to invoke and monitor a data factory pipeline from PowerShell can come

in handy when performing specific tasks. Remember that Data Factory has its own

scheduler and event handling capabilities and so rarely is this method used in

production. However, the following scenarios do highlight why this script can be

useful:

Chapter 8 Using Scripting and Automation

223

	 1.	 Scripting a process that copies data from one data lake into another.

	 2.	 Fetching data for an environment that is created using PowerShell.

	 3.	 Sequentially invoking long running processes that require

different configurations each time. I have often used this approach

when needing to populate large tables overnight and, instead of

configuring many versions of the same ADF pipeline, would rather

script this using PowerShell.

The code for invoking a Data Factory pipeline is very simple. This is because ADF is

native to Azure and therefore the PowerShell support is very strong. The code shown in

Listing 8-1 shows the most basic way of invoking a Data Factory pipeline.

Note I n order to access any Azure service, you must log in interactively via the
PowerShell terminal with Connect-AzAccount.

Listing 8-1.  PowerShell code used to invoke an Azure Data Factory pipeline

$resourceGroupName = "moderndw"

$dataFactoryName = "mdwa-datafactory"

$pipelineName = "Copy Sales Data - Lookup"

$invokeParams = @{

 resourceGroup = $resourceGroupName

 dataFactoryName = $dataFactoryName

 PipelineName = $pipelineName

}

$runId = Invoke-AzDataFactoryV2Pipeline @invokeParams

Write-Host "Run ID: $runId"

The preceding scripts can be broken down into three parts. The first three lines

assign resource-specific values to variables that will be used throughout the script.

The next five lines create an object that contains all the variables we want to pass

into our invoke function. This technique is known as PowerShell splatting and can be

investigated further here: https://docs.microsoft.com/en-us/powershell/module/

microsoft.powershell.core/about/about_splatting?view=powershell-7

Chapter 8 Using Scripting and Automation

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting?view=powershell-7

224

The final two lines invoke the Data Factory pipeline as specified in the parameters

and assign the returned Run Id to the variable, “$runId,” so that it could be used later

in the script if needed. Of course, this script could be extended in numerous ways

as alluded to in the list contained in the section title “Invoke Data Factory Pipeline”,

however the next obvious requirement is the ability to then monitor the pipeline also

using PowerShell (required when creating scenarios similar to number 3 in the list).

Tip P ipelines invoked by PowerShell are still shown in the monitor view of ADF
alongside every other executed pipeline.

By adding the code from Listing 8-2, the script will then continually check in on the

pipeline every 30 seconds until a completion status is reached.

Listing 8-2.  PowerShell code used to monitor an Azure Data Factory Pipeline

run using a specific Run Id

while($True) {

 $pipelineRun = Get-AzDataFactoryV2PipelineRun -DataFactoryName

$dataFactoryName -PipelineRunId $runId -ResourceGroupName

$resourceGroupName

 if($pipelineRun) {

 if($pipelineRun.Status -ne 'InProgress') {

 Write-Host "Pipeline run finished. Status: $($pipelineRun.Status)"

 break

 }

 Write-Host "Pipeline is running"

 }

 Start-Sleep -Seconds 30

}

While these scripts show some of the Az-DataFactory cmdlets (the name of

PowerShell functions), there are a great deal more that can display things such as

•	 Activity-specific outputs and status/error messages

•	 Static objects such as datasets and pipelines

•	 Integration runtime metrics and credentials.

Chapter 8 Using Scripting and Automation

225

�Recurse Data Lake Structures
This script is very useful when reviewing an existing data lake that you need to become

more familiar with or as a way of scripting functionality that can check if certain folders

have been created by an ETL process. Essentially the script is made up of a PowerShell

function that can be called recursively, thereby by continually working through a folder

hierarchy flushing out all folder names as it goes. The function definition is shown in

Listing 8-3.

Listing 8-3.  PowerShell code that allows developers to recurse data lake

strucutures to determine entire folder hierarchies

Function Recurse-DataLakePath

{

 param

 (

 [Parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string] $startPath,

 [Parameter(Mandatory=$false)]

 [ValidateNotNullOrEmpty()]

 [int] $level = 0

)

 if($level -eq 0)

 {

 Write-Host $startPath

 }

 $level++

 $adlParams = @{

 FileSystem = "datalake"

 Path = $startPath

 Context = $ctx

 }

Chapter 8 Using Scripting and Automation

226

 �Get-AzDataLakeGen2ChildItem -FileSystem "datalake" -Path $startPath

-Context $ctx |

 ForEach-Object {

 if($_.IsDirectory)

 {

 �Write-Host "$(" " * $level * 2)|- $($_.Path -replace $startPath,

'' -replace '/', '')"

 Recurse-DataLakePath -startPath $_.Path -level $level

 }

 }

}

$ctx = New-AzStorageContext -ConnectionString <your connection string goes here>

Recurse-DataLakePath -startPath "RAW/"

The first eight lines define the parameters for the function. These are the input

path from where we want to start our search and the level at which the function

has recursed to. This parameter should not be configured by the user and is used

for internal purposes. The next important part of the function begins at “Get-

AzDataLakeGen2ChildItem” and this is where the actual query is run against the data

lake. This cmdlet will return each child item of the directory specified in the input path

and write its name out into the output window. Note the filter on the “IsDirectory”

attribute which ensures the function only records folders and not files; however, the

function could easily be adapted to list out files within each directory.

Once the function has logged the children of the current path, it passes each child

path into itself, creating a recursive process that continually navigates the hierarchy until

every folder has been explored.

The final part of the script, outside of the function, simply defines a storage context

which is required in order to connect to a storage account and then call the function for

the first time supplying the starting path. If this function is called with a start path of “/”,

then the function will traverse the entire lake; however, any path could be supplied, and

the function will only look in folders below that path in the hierarchy.

Chapter 8 Using Scripting and Automation

227

The output of this script over a simple data lake is shown here:

 RAW/

 |- MarketingSystem

 |- Campaign

 |- Recipients

 |- Responses

 |- Customer

 |- Opportunity

 |- SalesSystem

Chapter 8 Using Scripting and Automation

229
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1_9

CHAPTER 9

Beyond the Modern
Data Warehouse
In days gone by, a data warehouse stood as a slow-moving, often large, unwieldly

part of a wider decision support system. While tools and technologies that feed to or

read from the data warehouse may develop, the complexity of such an artifact and

the investment in its development mean that the warehouse would rarely benefit

from such upgrades. Throughout this book, I have explained and demonstrated

the highlights of building a modern data warehouse in Azure – one which can be

developed rapidly and be highly flexible to source system requirements, one which

can move and develop with the times and not cause sleepless nights worrying over the

SQL version going out of support, one which can ingest in batch-, stream-, or event-

based modes offering ultimate speed and time to insight. The focus of this final chapter

is now to look at what sits beyond the modern data warehouse. There is a wealth of

BI products in the market that provide a range of capabilities and visualizations to

the end user, and it can be very difficult to choose between them without a thorough

review. This chapter is not a thorough review of BI products but instead give examples

of downstream options for warehouse data. Initially this chapter will look at Power BI,

as that is the de facto visualization tool for any data but will also examine some other

Microsoft products for data as it leaves the data warehouse such as Azure Analysis

Services and Azure Cosmos DB.

For each technology, we will examine a use case and flesh this out into a walk-

through example.

https://doi.org/10.1007/978-1-4842-5823-1_9#ESM

230

�Microsoft Power BI
Microsoft Power BI (Power BI) is the flagship data visualization and BI product from

Microsoft that burst onto the market in 2014. In its early days, it boasted some excellent

visualization capabilities but has now extended that to include ETL tooling, interactive

functionality, and a host of built-in connectors, making Power BI a leading product in

the marketplace. At its heart, Power BI uses the same analytical engine that is used for

Analysis Services, optimizing analytical queries over tabular data using in-memory

processing, although this is coupled with a rich set of visualization capabilities that

allows developers to easily experiment with chart types.

�Working with Power BI
Power BI provides a first-class visualization platform for data and offers enterprise

grade capabilities for slicing and dicing all kinds of information. Wherever users

require regular, pre-built reports, Power BI should be the delivery platform for those

reports. With the tools available through Power BI, both IT-led reports can be built and

self-service capabilities can be realized, meaning users can be in charge of their own

reporting. This can be dangerous if done wrong but liberating if implemented correctly.

Power BI is made up of several key components:

•	 Power BI desktop: The primary development tool for Power BI files

that is free to use for all report developers.

•	 Power BI report builder: The report builder used for creating

paginated reports as opposed to dashboards.

•	 Power BI service: The web-based portal where dashboards and

reports are published to. This is accessible to users with Power BI Pro

licenses and extends to mobile devices such as phones and tablets.

All reports should be developed using Power BI desktop or report builder and then

published up to the service for wider consumption. The service supports the concept of

workspaces allowing users to collaborate on reports and dashboards.

The data for Power BI can be derived from a widespread of sources and mashed

together to form consolidated datasets. This could mean blending public data with

internal data from a data warehouse or analyzing multiple Excel sheets alongside files

in a data lake. Additionally, Power BI can be connected to Azure Analysis Services in a

Chapter 9 Beyond the Modern Data Warehouse

231

method known as live connection, which allows the Power BI front end to push queries

back to the Analysis Service engine, meaning that data does not have to undergo a

lengthy import operation.

�Building a Power BI Report
Building a Power BI report is simple and intuitive and getting started is simple. This

walk-through will explain how to connect Power BI desktop to your data warehouse,

whether that be in Azure SQL Database or Azure Synapse Analytics.

	 1.	 Download and open Power BI; this link is regularly updated

with the latest version of Power BI desktop: https://powerbi.

microsoft.com/en-us/blog/category/uncategorized/

	 2.	 From the splash screen shown in Figure 9-1, choose “Get data.”

	 3.	 From the “Get data” menu, choose “Azure” and then the

appropriate SQL engine from the list. For this walk-through,

I have chosen Azure SQL Database. Click “Connect” as shown

in Figure 9-2.

Figure 9-1.  The Power BI Desktop splash screen

Chapter 9 Beyond the Modern Data Warehouse

https://powerbi.microsoft.com/en-us/blog/category/uncategorized/
https://powerbi.microsoft.com/en-us/blog/category/uncategorized/

232

	 4.	 Add the server information and specify the database name if

needed. At this point, you can specify the connection mode,

whether that be Import mode, where data is imported into Power

BI, and any updates require a refresh operation, or DirectQuery,

where data remains in the source database and the Power BI

engine queries the source directly. For much larger datasets, it

is recommended to use DirectQuery, but for this walk-through,

Import mode will be best. Configure each option and click “OK.”

See Figure 9-3 for an example.

Figure 9-2.  The Power BI Desktop “Get Data” menu

Chapter 9 Beyond the Modern Data Warehouse

233

	 5.	 Enter your SQL login details and click “Connect.” This will prompt

the data preview dialog as per Figure 9-4. Choose the tables you

want to load and click “Load.”

Figure 9-3.  Supplying the Azure SQL Server and database details to Power BI
Desktop

Chapter 9 Beyond the Modern Data Warehouse

234

	 6.	 Once the data finishes loading, you will be returned to the main

report designer. Click the Model view and preview the data model

that has been imported into Power BI. As per Figure 9-5, you

should notice that Power BI has included relationships

automatically.

Figure 9-4.  The data preview pane in Power BI Desktop

Chapter 9 Beyond the Modern Data Warehouse

235

If required, you can build new relationships between tables here,

and in some cases, such as when in live connection mode to

Analysis Services, it is necessary to build them in Power BI as they

are not imported.

	 7.	 Open the Data view shown in Figure 9-6 so you can preview

the actual columns and rows contained in the model. Here you

can create new columns, measures, and hierarchies as per the

requirements of your reports.

Figure 9-5.  The Power BI model view, showing automatic relationships

Chapter 9 Beyond the Modern Data Warehouse

236

	 8.	 Navigating back to the main designer, you can begin building

charts, graphs, cards, tables, and other visualisations until you

are satisfied with the result. To create a basic bar graph, select

the “Clustered column chart” visual from the “visualizations”

pane and drag it onto the design surface. Prior to adding data, the

report should resemble the image shown in Figure 9-7.

Figure 9-6.  The Power BI Desktop data view showing rows and columns in
the dataset

Chapter 9 Beyond the Modern Data Warehouse

237

	 9.	 Now drag the “Sales Amount” column from the

“FactInternetSales” table onto the chart to see the total sales

amount as a bar. Then, drag the “EnglishOccupation” column

from the DimCustomer table onto the graph to act as a slicer.

Figure 9-8 shows the result.

Figure 9-7.  The basic design pane in Power BI Desktop

Chapter 9 Beyond the Modern Data Warehouse

238

�Publish Report to Power BI Service
In order to publish a report to the service, you will need a work or school account.

Assuming this is the case, then you can proceed.

	 1.	 Click “Publish” in the ribbon bar. Figure 9-9 highlights the location

of the button.

Figure 9-9.  Close-up of the “Publish” button in Power BI Desktop

Figure 9-8.  A basic column chart in Power BI Desktop

Chapter 9 Beyond the Modern Data Warehouse

239

	 2.	 As shown in Figure 9-10, you will be prompted to sign in with your

work or school account and then choose a workspace to publish

the report to.

	 3.	 Once the Publish has completed successfully, you will be offered

a link to the report as it is in the service. Click this to check out

the report. Figure 9-11 shows the report displayed in the Power

BI service.

Figure 9-10.  The workspace selection pane in Power BI Desktop

Chapter 9 Beyond the Modern Data Warehouse

240

�Azure Analysis Services
Azure Analysis Services (AAS) is simply a PaaS implementation of the on-premises

product that came as part of the SQL Server Data Tools pack. The nice part of this

implementation is that the development experience is exactly the same as before. All

models, measures, calculated columns, and security are created in Visual Studio, and

the vertiPaq (www.sqlbi.com/tools/vertipaq-analyzer/) engine that makes Analysis

Services so powerful is unchanged in the Azure implementation. The difference is

that you deploy the model to an Azure server instead of an on-premises server. Of

course, using a PaaS-based platform means that additional benefits can be derived

as well. First and foremost, AAS can support scale-out replicas, meaning that client

queries can be distributed across these replicas at times of peak usage. Additionally,

processing activities can be separated from the query pool so that the act of processing

an AAS model does not disrupt the execution of incoming queries. It’s important to

note here that only the initial synchronization is automatic, allowing for new replicas

to be hydrated from the primary node at the point of creation. From this point on, the

synchronizations are invoked manually (or by an orchestration tool – read Data Factory)

Figure 9-11.  A published report in the Power BI service

Chapter 9 Beyond the Modern Data Warehouse

http://www.sqlbi.com/tools/vertipaq-analyzer/

241

using the REST API, a PowerShell cmdlet, or the Analysis Services management aspect of

SQL Server Management Studio (SSMS). A further PaaS benefit is that the instance can

be paused when not in use, providing better cost optimization. Bear in mind that queries

will not be answered while the instance is paused.

�The Basics of Azure Analysis Services
For those not familiar with Analysis Services, there are two types of calculation

engine that can be used in an on-premises deployment; however, if you are to deploy

the Analysis Service to Azure, you would need to build a tabular model and not a

multidimensional cube. The differences between the two types are minimal to an end

user but can have important differences for developers. While multidimensional cubes

will still be around for a while, my view is that tabular models are the way forward and

should be used as a matter of default.

Azure Analysis Services provides an ability to scale the model to meet demands

of processing and querying. To begin with, you must determine service tier which can

be either Developer, Basic or Standard. Developer is a cheap tier that provides all the

functionality of the Standard tier only with some limitations. This allows developers

to evaluate the service before investing in a standard tier service. The Basic tier is best

for smaller tabular models that have limited data processing needs and can get by with

lower concurrency allowances. The Standard tier is for full production workloads that

have scalable concurrency needs and complex data refresh requirements. This tier

ranges from an S0, which has a 10 GB model storage limit, all the way to an S9, which has

a 400 GB model storage limit. As a general rule, data stored in Analysis Services models

benefit from roughly 10x compression meaning the largest dataset available could be

around 4 TB. The details of this compression are covered later in this chapter.

�Analysis Services as a Semantic Layer
Often it is asked why Analysis Services is required at all, when the data warehouse is

designed specifically for the job of performing analytic queries. The answer is that the

data warehouse is a storage layer, whereas Analysis Services is a semantic layer. This

layer of semantic abstraction allows for much more flexibility when joining the worlds of

a BI developer and an end user. It means that column names can be made friendly with

spaces and capitalization, unwanted values can be hidden but not removed, hierarchies

Chapter 9 Beyond the Modern Data Warehouse

242

can be shaped based on custom logic, and role-based access control (RBAC) can be

implemented at a very granular level. Without this semantic layer, it would be very

difficult to meet the needs of the end user without a huge amount of complexity on the

part of the developer.

�Analysis Services Security Model
The security for Analysis Services is based around roles which can be associated with

individual users or entire Active Directory groups, meaning access to models can be

controlled by a centralized IT function and not solely by the BI team.

The primary security mechanism in AAS is a role, which can have model level

assigned permissions, row filters, and object level controls to give a very fine-grained

level of access to users. The permissions that can be assigned to a role are

•	 None: Members of this role have no access to the model.

•	 Read: The model can be read by the users of this role but not

processed.

•	 Read and process: This permission allows users to both read the

model and also process new data into the model from SSMS or the

Azure Portal.

•	 Process: Members of this role cannot read the model but can

process it.

•	 Administrator: The level of permission allows users full access to do

anything with the model. The model owner is an administrator by

default.

Row filters provide the ability to filter the entire model when users of the role view

data. A good example is filtering by region, assuming a region code is applied to the

fact table, this could be used to ensure European analysts were confined to see data

that corresponds only to their region. Also, within roles developers can specify object

level permissions which control whether a user can see a specific table or column. The

following figures show how these two aspects of roles are configured.

Often there is a temptation to use perspectives to implement security; however,

these are not designed for this purpose. Perspectives are built to allow role-based users

Chapter 9 Beyond the Modern Data Warehouse

243

the ability to see a subset of a larger model (a perspective), purely to avoid excessive

numbers of objects being displayed in the model viewer.

Even more fine-grained security can be implemented using dynamic, row-based

security. This method involves creating filters in DAX, the functional language used in

Analysis Services Tabular projects, that uses the USERNAME() function to look up the user

against a table which stores the access permissions of the user. In the following example,

the user ACL/MIH has access to region 3 in the “User Security.” When this user signs into

the model, this filter is then passed through the territory dimension onto the fact table,

thereby only revealing data from the fact table that is associated to that region. This

traversal is demonstrated in Figure 9-12.

�The Vertipaq Engine
The vertiPaq engine is the proprietary calculation engine that underpins all versions of

tabular Analysis Services and also Power BI. The power of this engine is that it stores all

data in memory and therefore makes running large calculations very efficient. The trade-

off is that large amounts of data require large amounts of memory, and so a key aspect of

the vertiPaq engine is its ability to compress data. There are a number of algorithms that

are used; they are listed as follows:

	 1.	 Value encoding: This algorithm applies a mathematical operation

to numeric data with the goal of reducing the number if bits

required to store each value. The reverse operation is then carried

out when the data is read by a query. Figure 9-13 shows this more

clearly.

Figure 9-12.  An example relationship to implement dynamic security within the
Analysis Services model

Chapter 9 Beyond the Modern Data Warehouse

244

	 2.	 Dictionary encoding: Because mathematical functions won’t work

on text values, dictionary encoding is used to transpose a set of

words into an indexed dictionary. By storing the dictionary in the

model and replacing the text value with its dictionary id, a great deal

of compression is achieved. This effect is highlighted in Figure 9-14.

	 3.	 Run length encoding (RLE): The goal of this algorithm is to remove

the amount of redundant data in the model. Often in tables of data,

the same value is repeated row after row and RLE reduces this by

storing the value and the number of rows it runs for in a separate

Figure 9-13.  An image explaining the implementation of Value encoding

Figure 9-14.  An image explaining the implementation of Dictionary encoding

Chapter 9 Beyond the Modern Data Warehouse

245

dictionary which can then be interrupted at query time. The original

column and its corresponding dictionary are shown in Figure 9-15.

RLE can also be used in conjunction with Value and Dictionary

encoding, compounding the amount of compression available for

each individual column.

The next few walk-throughs will help you get started using Analysis Services by

creating the project in Visual Studio, deploying the model to Azure and processing new

data into the deployed model.

�Creating an Analysis Services Project
This walk-through requires you have Visual Studio 2019 with Azure Analysis Services

Projects installed. The Analysis Services Project add-in can be downloaded from

here: https://marketplace.visualstudio.com/items?itemName=ProBITools.

MicrosoftAnalysisServicesModelingProjects

	 1.	 Open Visual Studio and click “Tools” and then “Options.” Scroll

through the options to find “Analysis Services Tabular” and

expand that node.

	 2.	 In the “New project settings” submenu, set the compatibility level

to “SQL Server 2019/Azure Analysis Services (1500)” and tick “Ask

default project settings….” Older version can be used; however,

they will not have the richest set of features.

Figure 9-15.  An image explaining the implementation of Run Length encoding

Chapter 9 Beyond the Modern Data Warehouse

https://marketplace.visualstudio.com/items?itemName=ProBITools.MicrosoftAnalysisServicesModelingProjects
https://marketplace.visualstudio.com/items?itemName=ProBITools.MicrosoftAnalysisServicesModelingProjects

246

	 3.	 Select “Workspace Database” and check “Integrated workspace.”

Also tick “Ask new project settings…”

Chapter 9 Beyond the Modern Data Warehouse

247

	 4.	 Click “File,” “New,” and then “Project,” and type “Analysis Services

Tabular” into the search box. Give the project a name and click

“OK.” All settings should then be correct because of the previous

steps, but now you can change them if needed.

Note A zure Analysis Services only supports tabular projects, not
multidimensional.

	 5.	 From the solution explorer, open the Model.bim file; you should

enter the “Tabular Model Explorer” view.

	 6.	 Open the “Extensions” menu and choose “Model” and then

choose “Import from Data Source.” Select “Azure” and then “Azure

SQL database” and choose “Connect.”

	 7.	 Provide the required details – Server and Database name

(use the adventure works one that was deployed using the

script). Click “OK.”

Chapter 9 Beyond the Modern Data Warehouse

248

	 8.	 On the following screen, provide your SQL username and

password, then select all the listed tables except for those

regarding firewall rules.

Chapter 9 Beyond the Modern Data Warehouse

249

At this point, you should note the similarities here between

the Analysis Service “Get Data” wizard and the Power BI “Get

Data” wizard. The reason for this similarity is that they are

fundamentally built on the same Power Query engine, meaning

the experience is largely the same.

	 9.	 Choose “Load,” and once the import is complete, you should see

data in the main Visual Studio window with the tables listed as

tabs across the bottom.

�Create Analysis Objects
You now have an Analysis Services project where you can build measures, calculated

columns, hierarchies, roles, perspectives, and others. The next walk-through shows how

to build some of these analytical objects.

�Create a Calculated Column

	 1.	 Open Visual Studio and access the Model.bim file in data

view mode.

	 2.	 From the tabs across the bottom of the data table, choose

DimCustomer. Between “LastName” and “NameStyle,” right-click

and choose “Insert Column.”

Chapter 9 Beyond the Modern Data Warehouse

250

	 3.	 When the new column appears, double-click its header to rename

it to “FullName.” Now in the formula bar, add the following:

=DimCustomer[FirstName] & " " & DimCustomer[LastName]

	 4.	 Complete the calculated column by pressing Enter.

�Create a Measure

	 1.	 With the Model in data mode, navigate to the

FactInternetSales table.

	 2.	 Locate the “SalesAmount” column and click the first cell of the

measure grid underneath that column. In that cell, type the

following:

Sum Of Sales:= SUM('FactInternetSales'[SalesAmount])

	 3.	 Press Enter to complete the measure. Open the properties dialog

box by pressing F4. Locate the “Display Folder” property and type

“Customer Analysis.”

	 4.	 In the next column across, “TaxAmt,” click the first cell of the

measure grid beneath that column and open the “Auto sum”

menu . From the drop-down, choose “Average” to create an

automatic average for the “TaxAmt” column. Open the properties

dialog box by pressing F4. Locate the “Display Folder” property

and type “Customer Analysis.”

Chapter 9 Beyond the Modern Data Warehouse

251

	 5.	 To test the preceding objects, click the “Analyze in Excel” button to

open the model as a pivot table in Excel.

Chapter 9 Beyond the Modern Data Warehouse

252

	 6.	 Once Excel has opened, in the pivot table, open the

“FactInternetSales” measure set and then the “Customer Analysis”

display folder. From here, drag “Sum Of Sales” into the values box.

You should see a large value appear in the pivot table view.

Chapter 9 Beyond the Modern Data Warehouse

253

	 7.	 Expand the “DimCustomer” table and locate the “FullName”

calculated column created earlier. Drag this into the “Rows” box to

validate your measure and your column can interact.

�Create a KPI

	 1.	 Back in Visual Studio, select the “Sum Of Sales” measure created

previously and then click the “KPI” button.

Chapter 9 Beyond the Modern Data Warehouse

254

	 2.	 In the KPI dialog box, check “Absolute value” and type 10000000.

Set the sliders so that green is 10m and above, amber is 9m and

above, and red for everything less than 9m.

Chapter 9 Beyond the Modern Data Warehouse

255

	 3.	 Once the KPI is done, click “OK” and then analyze the model in

Excel again.

	 4.	 Drag the “Sum Of Sales” measure into the values box to display

the total sales across all dimensions. Expand the “KPI’s” node

recursively until you locate “Values” (Sum Of Sales,” “Goal,” and

“Status”). Drag each of those into the values box.

	 5.	 Now locate the “DimSalesTerritory” table and drag the

“SalesTerritoryGroup” column into the Rows box. You should now

see the KPI values split by Europe, North America, and Pacific.

Chapter 9 Beyond the Modern Data Warehouse

256

�Create a Hierarchy

	 1.	 Go back into Visual Studio and open the model in Diagram

view. Locate the DimSalesTerritory table and right-click the

“SalesTerritoryGroup” column. From the context menu, choose

“Create Hierarchy” and name it “Sales Territory.”

Chapter 9 Beyond the Modern Data Warehouse

257

	 2.	 Now drag the “SalesTerritoryCountry” and “SalesTerritoryRegion”

columns onto the hierarchy parent (SalesTerritoryGroup). Once

done, right-click each column and rename to match the following

image.

	 3.	 Save the model and analyze in Excel. Once Excel opens, expand

the “DimSalesTerritory” table and note that all fields are now

grouped under “More Fields.” The hierarchy is also named and

kept at top level.

	 4.	 Drag the “Sales Territory” hierarchy into the “Row” box. In the

pivot table is each level of the hierarchy which can be expanded as

required.

Chapter 9 Beyond the Modern Data Warehouse

258

�Create a Perspective

	 1.	 Go back into Visual Studio and open the model in Data view. Click

the “Perspectives” button . Click “New Perspective” and give

the perspective a name. Select a subset of tables, columns, and

measures to add into the Perspective.

Chapter 9 Beyond the Modern Data Warehouse

259

	 2.	 Click “OK” and analyze the model in Excel. When prompted,

choose your new perspective from the drop-down menu.

	 3.	 Once Excel opens, you will see that the list of tables is now

reduced to only those listed in the perspective.

Chapter 9 Beyond the Modern Data Warehouse

260

�Creating Roles (RBAC)

	 1.	 In Visual Studio, open the Model.bim file in data view and open

the Roles dialog box . Here you can create and manage all roles

for the Analysis Services model.

	 2.	 Click “New.” Give the role a name and set the “Permissions” value

to “Read.”

	 3.	 In the “Row Filters” box, locate the “FactInternetSales” row and

enter the following DAX expression:

=YEAR(FactInternetSales[OrderDate]) = 2011

	 4.	 Move over to the “Tables and Columns” tab and tick every box

excluding “FactInternetSales” and “DimSalesTerritory.”

Note A tick here EXCLUDES that table from the role.

	 5.	 Test the role is working by analyzing the model in Excel and

choosing the Role that you created (similar to how you would

choose a perspective). The following image should be similar to

what you can see:

Complexity can be layered within numerous different roles for different levels

of access

Chapter 9 Beyond the Modern Data Warehouse

261

�Deploy Analysis Services to Azure

	 1.	 Navigate back to the Azure portal and create an Azure Analysis

Services instance. Supply a name, configure the Resource Group

and Location, and choose “D1” for the Pricing tier. Ensure the

Administrator is correct and leave the storage key expiration as

“Never.” Click “Create.”

	 2.	 Once the resource is deployed, click “Go to resource” to validate

the deployment completed successfully.

	 3.	 From the newly deployed AAS server, open the “Overview” tab

and locate the “Server name” property. Copy it to the clipboard.

	 4.	 Go back into Visual Studio and open the “Solution Explorer” view.

Right-click the tabular project and choose “Properties.”

	 5.	 Set the “Server” to the one copied to your clipboard and ensure

the “Database” name is correct/descriptive. Click “OK.”

Note Y ou can rename the model here; otherwise it will be named “Model.”

Chapter 9 Beyond the Modern Data Warehouse

262

	 6.	 Right-click the tabular project again and choose “Deploy.” This

will prompt SSDT to build the project, and provided it builds

successfully, deploy it to your Azure Analysis Services server.

	 7.	 Validate that the model deployed successfully firstly by connecting

via SSMS. Open SSMS and click “Connect.” Choose “Analysis

Services” from the drop-down menu.

	 8.	 Pop back into Azure and fetch the Management Server Name from

the overview blade.

	 9.	 Use this property in the “Server name” property of the connection

dialog and click “Connect.” You may need to use MFA to

connect here.

	 10.	 Once the connection is complete, review the tables, connections,

and roles that can be managed using SSMS.

	 11.	 Open Excel and choose the Data tab. Click “Get data,” “From

Database,” and then “From Analysis Services.” Use the “Server

name” from the portal and supply your windows account.

Chapter 9 Beyond the Modern Data Warehouse

263

	 12.	 Once the connection is made, you will be offered to choose either

the full model or a specific perspective. Choose the full model and

click “Next.”

	 13.	 You can change the connection name if you want to reuse. Once

done, click “Finish” and “OK” on the subsequent dialog. You

should then see a pivot table appear, exactly like the one seen

using “Analyze in Excel.”

	 14.	 Once finished with testing/development, be sure to pause the

Analysis Services server to avoid any unwanted costs.

�Processing an Azure Analysis Services Model
Once an Analysis Services model has been developed, it will contain not only data

but also analysis objects such as calculations (or measures), calculated columns, and

hierarchies. Obviously, the data contained in the model does not stand still and so these

objects regularly need to be refreshed and recalculated to ensure they are accurate.

Azure Analysis Services tabular models are easily refreshed using common protocols

such as REST or PowerShell cmdlets.

A processing job can be carried out in a number of ways and at a variety of levels; the

options are listed as follows:

	 1.	 Process default: This option at a model level processes any

unprocessed tables and calculates all columns and hierarchies. At

a partition or table level, the same steps are carried out but only

for the objects in the partition or table.

	 2.	 Process full: This option will do a full process of all the objects in

the model, partition, or table depending on the processing option,

as well as calculating columns and hierarchies.

	 3.	 Process data: This option simply processes data into the model,

partition, or table; however, it does not recalculate any columns or

hierarchies.

	 4.	 Process clear: This final option clears data from a model,

partition, or table.

Chapter 9 Beyond the Modern Data Warehouse

264

In order to invoke any of these actions at any of the potential levels in an automated

way that can be orchestrated along with the other ETL elements, a Data Factory pipeline

can be deployed that uses Web Requests to interface with the Analysis Services server.

The steps to build such a pipeline are described as follows.

The first job is to create a service principal that will be used to authenticate the

process request:

	 1.	 Open Azure AD and locate the “App Registrations” blade.

Click “New Registration” and supply a name, for example,

“ASProcessor.”

	 2.	 Open “API Permissions” and click “Add permission.” Switch to the

“APIs my organization uses” and type “Azure Analysis Services” in

the search box. Click this API and click “Add permissions.”

	 3.	 Open the “Certificates & Secrets” blade and create a new client

secret with the name “Primary Key.” Be sure to copy that secret

into a text doc for later use.

	 4.	 Navigate back to the “Overview” tab and open “Endpoints.” Locate

the “OAuth 2.0 token endpoint (v1)” and copy it to a notepad.

With the service principal created, it now needs to be added to the server as an

admin so that it is authenticated to perform the request:

	 1.	 Open SQL Server Management Services and connect to the

Analysis Services instance.

	 2.	 Right-click the server node and choose “Properties” and then

“Security.” Click “Add” to reveal the security dialog box.

	 3.	 In the “Manual entry” box, type “app:” followed by the service

principal client id and the tenant id joined by an “@” sign. An

example is shown here:

app: <service principal client id>@<tenant id>

Now that the authentication is in order, the Data Factory pipeline can be built:

	 1.	 In ADF, create a new pipeline named “Process AS Database.” Add

two web activities to the pipeline and join them together with the

“On Success” predicate.

Chapter 9 Beyond the Modern Data Warehouse

265

	 2.	 On the first activity, set the URL to the endpoint copied earlier.

Set the method to “POST” and add a content_type header of

“application/x-www-form-urlencoded.” Name the activity

“Fetch Access Token.”

	 3.	 In the body, add the following:

grant_type=client_credentials&client_id=<your app id>

&client_secret=<your client secret>&resource=https%3A%2F%

2Fnortheurope.asazure.windows.net

Note T he preceding code snippet works only for an Analysis Services instance in
the North Europe region; you can change the region as required.

Be sure to replace the values with your new SPN details.

Chapter 9 Beyond the Modern Data Warehouse

266

	 4.	 On the second web activity, set the URL to

https://northeurope.asazure.windows.net/servers/<Your server

name>/models/<Your model name (with spaces replaced with "%20")

	 5.	 Create a content-type header with "application/json"

as the value

	 6.	 Create an “Authorization” header and choose to “Add dynamic

content…” for the value. In the dynamic content box, paste the

following:

@concat('Bearer ', activity('Fetch Access Token').output.

access_token)

	 7.	 Set the body to the following:

{

 "Type": "Full",

 "CommitMode": "default",

 "MaxParallelism": 10,

 "RetryCount": 2

}

Chapter 9 Beyond the Modern Data Warehouse

267

	 8.	 Now debug your pipeline to kick off the refresh operation.

	 9.	 Validate the debug run finishes and review the outputs of each

activity.

	 10.	 To validate the refresh has completed, connect to your AAS

database using SSMS and right-click the database node

and choose “Refresh.” Once the refresh is complete, choose

“Properties” and note the date of the “Last Data Refresh”

property – it should be today.

�Azure Cosmos DB
The previous two examples explore analytical routes for data moving on from the data

warehouse; however, a final route to explore is less about analytics and more about

further integration. This example will dig into Azure Cosmos DB and look at how

analytical data can be obtained from the warehouse and integrated into a website’s back-

end database. This integration can allow a degree of analytical intelligence to be exposed

via the website without placing any unprecedented load on the data warehouse, as this is

absorbed by Cosmos DB.

�The Cosmos DB Architecture
Cosmos DB is a NOSQL (Not only SQL) database that provides the ability to store JSON

documents in a globally distributed, highly resilient environment that offers unrivaled

service level agreements and extremely low latency times, therefore making it an ideal

platform for web development. Cosmos DB also boasts a multi-model capability,

meaning it can be treated as a SQL-like document database, a table storage database,

or a graph database built using Apache Gremlin. Figure 9-16 shows how a Cosmos DB

account is structured to provide this multi-model capability by implementing the notion

of a container that stores JSON items that can fulfil different purposes depending on

the model type chosen. Figure 9-17 explains how each container is broken down into

resource partitions based on contextual partition keys.

Chapter 9 Beyond the Modern Data Warehouse

268

�Horizontal Partitioning

The data stored with a container is horizontally partitioned using a customer provided

partition key and managed by resource partitions. As the container is scaled up by a user,

the system internally manages resource partitions to deliver on the throughput required

by the scale.

Figure 9-16.  A diagram explaining the layers of a Cosmos DB account

Figure 9-17.  A diagram showing how documents are organized into resource
partitions based on a user specified partition key

Chapter 9 Beyond the Modern Data Warehouse

269

In addition to the horizontal partitioning explained previously, which always

happens within a region, there is also the ability to replicate the data globally, into

other Azure regions as specified through either the portal or an API request. This

also enables multi-master capabilities whereby data can be written from multiple

regions and read from all others within seconds. It is this global distribution of data

that allows Cosmos DB to provide such low latency times to application users in

any part of the world. Figure 9-18 shows how the preceding diagram is extended to

partition globally.

�Resource Units

As with DTUs and cDWUs, Cosmos DB uses Resource Units (RUs) as the handy metric

that abstracts the complexity of the internal IOPs, memory, and CPU consumption so

that developers can manage a single slider instead of several. RUs can be provisioned at

two levels, either the container or the database, and the same metric is used regardless of

the container model type. The number of RUs provisioned to a container is often referred

to as throughput, and the throughput is spread evenly across each physical partition

of the container, assuming a good partition key is chosen and resource partition skew

is low. Container level RU assignment is recommended when consistent throughput

Figure 9-18.  This image shows how locally replicated resource partitions are
further replicated globally, across Azure regions

Chapter 9 Beyond the Modern Data Warehouse

270

is required; otherwise database level RU assignment can be used and this spreads

the throughput across each container, therefore not making the performance of each

container consistent.

When thinking about Resource Units, there are some things to consider:

	 1.	 As documents in the database increase in size, the number of RUs

required to read the document will increase as well. One RU is

equivalent to reading 1Kb of data from the database.

	 2.	 As items are written, by default they are indexed. If a document

has many items, then this will require a large number of RUs to

complete; however, this default behavior can be changed so that

some attributes are not indexed automatically.

	 3.	 More complex queries will incur more RU usage, so think carefully

about the partitioning and modeling of the database to reduce the

strain on the database.

�Consistency

Consistency refers to the state of the data within the system and is a particular concern

when data is distributed across the globe. Often there are two extremes. Strong

consistency ensures data in all regions reconciles although this incurs greater latency

when performing reads. Alternatively, eventual consistency means that data is much

more available but make programs more difficult to write as data does not reconcile all

the time.

Azure Cosmos DB offers more than two extremes and instead proffers a spectrum of

consistency options, with several levels between strong and eventual consistency. The

full spectrum of consistency options are listed as follows:

	 1.	 Strong: This level guarantees all reads from the database return

the most recently committed version of a record. No uncommitted

or partially written data will be returned to a client.

	 2.	 Bounded staleness: This level allows developers to create a

boundary of either record versions (updates) or time. Global

consistency is guaranteed outside of this boundary for all

regions except where writes are accepted; in these cases, strong

consistency guarantees are applied.

Chapter 9 Beyond the Modern Data Warehouse

271

	 3.	 Session: Reads within a single client session have the ability to

read your own writes; however, there is not a guarantee that the

read is based on the latest record version. That said, the reads

are supplied in order, meaning the data read is approaching

consistency.

	 4.	 Consistent prefix: Reads that are made show some set of all the

previous record versions with no gaps. This level guarantees that

reads will not see out-of-order writes.

	 5.	 Eventual: There is no ordering guarantee for reads and so

consistency is eventually achieved by the lack of incoming writes.

Now that Azure Cosmos DB is better understood, the steps here can be followed to

copy some warehouse records into Cosmos DB so they could be presented to website

users, regardless of their position on Earth.

�Write Data to Azure Cosmos DB

	 1.	 To begin with, you will need to create an Azure Cosmos DB

account using the Azure portal. You will simply need to provide a

name, resource group, and a region. Once the account is created,

you should open the “Data Explorer” blade and create a database

and container.

DATABASE CREATION IMAGE…

	 2.	 Navigate to Azure Data Factory and create a new linked service to

connect to the Cosmos DB account.

Chapter 9 Beyond the Modern Data Warehouse

272

	 3.	 Create a new dataset that uses this linked service.

Chapter 9 Beyond the Modern Data Warehouse

273

	 4.	 Now that you have the connection, a simple copy activity can be

used to move the records from a SQL warehouse into the JSON-

based Cosmos DB.

The following query is used here to create a sum of sales and count of orders record

for each customer in the fact table.

SELECT TOP 10

 CustomerKey,

 SUM(SalesAmount) AS TotalSalesAmount,

 COUNT(*) AS OrderCount

FROM

 [dbo].[FactInternetSales]

GROUP BY CustomerKey

Chapter 9 Beyond the Modern Data Warehouse

274

Set the sink option to be the newly created Cosmos DB dataset.

	 5.	 Debug the pipeline and validate it completes successfully. Once

done, navigate back to Cosmos DB and refresh the list of items.

You should now see ten records in the database, each with a sum

of sales and order count attribute in a semi-structured JSON

format.

These records could then be integrated with a front-end website to

provide analytical enrichment to existing customer records.

Chapter 9 Beyond the Modern Data Warehouse

275
© Matt How 2020
M. How, The Modern Data Warehouse in Azure, https://doi.org/10.1007/978-1-4842-5823-1

Index

A
Analytical objects creation

calculated column, 249
hierarchy creation, 256–258
KPI button creation, 253–256
measurement, 250–253
perspectives, 258–259
roles (RBAC), 260

Auditing process
control database, 194
copy activities, 196–197
data volumes, 193–196
operational process, 192
processing times, 196–198
requirements, 193
storing high

watermarks, 198–199
Azure Analysis Services (AAS)

analytical objects (see Analytical object
creation)

calculating engine types, 241
deployment, 261–263
implementation, 240
PaaS benefit, 241
processing model (see Processing

model)
project link

extensions menu, 247
firewall rules, 248
required details, 247

search options, 245–246
steps, 245
tables list, 249
workspace database, 246

security model, 242–243
semantic abstraction, 241
standard tier, 241
vertiPaq engine, 243–245

Azure Data Factory (ADF)
alert messages

action group creation, 206
email, 208
HTTP request option, 209
JSON schema, 209–210
logic app creation, 208
mailing service, 210–211
parameter value, 212
web activities, 213–214

alert rule creation
configuration pane, 204–210
metrics activities, 203–204
new rule creation, 203
notification, 206–207

data integration, 45–46
Azure Data Lake Gen 1 (ADL Gen1), 136
Azure Data Lake Gen 2 (ADL Gen2)

data lake technologies, 137
directory resource, 146
key principles, 146–147
manage access dialog, 148

https://doi.org/10.1007/978-1-4842-5823-1#ESM

276

B
Batch ingestion tools

Azure synapse analytics, 111–116
CETAS statement, 116–117
data warehousing project, 108
ETL solution, 109–110
investigate issues, 110
risks/opportunities, 109
tools, 111
troubleshooting, 110

Blob storage/Azure storage, 136

C
Cleaning directory, 151

Azure Data Factory, 155
database, 152–154
data lake, 154–155
data storage, 139–140

Clean layer, 107
Column mapping pattern, see Dynamic

column mapping
Compute Data Warehouse Units

(cDWUs), 20
Cosmos DB architecture

layers, 267–268
horizontal partitioning

consistency options, 270–271
data explorer, 271–274
dataset creation, 272
linked service, 271
preceding diagram, 269
resource partitions, 268
resource units (RUs), 269–270
semi-structured JSON

format, 274
SQL warehouse data, 273

NOSQL (Not only SQL), 267
Create External Table As Select (CETAS)

statement, 116–117

D
Databricks job cluster, 56
Data contracts

definition, 164
design/integration considerations,

165–169
entity diagram, 164–165
integration, 170
scripting code generation, 220
SQL table implementation, 164

Data factory
dataset, 54–55, 72–74
debugging activities, 78
integration runtime, 49
invoke monitor script, 222–224
linked services, 47–49, 65–72
managed service identity (MSI), 62
monitoring portal, 78–79
parameters-driven (see Parameters-

driven pipelines)
pattern (see Pattern processing)
pipelines/activities, 55, 74–77
security, 62
self-hosted integration runtime, 50
solution structure, 63
SSIS integration runtime, 50–51
templates, 63
triggers, 52–53
V2 resource, 64

Data integration projects, 163
Data Lake

attributes, 143
benefits, 134

Index

277

definition, 133
functional perspective, 135–137
enterprise implementation, 143–157
modern enterprise, 134–135
planning structure, 138–143
polyglot architectures, 157–161
research/experimentation

capabilities, 133
technologies, 134–137
WAREHOUSE directories, 142–143

Data Management Views (DMVs), 18
Data movement process

auditing process, 192–199
incorporating resilience, 199–216
logging, 181, 182
monitoring method, 216–218

Decoupled processing
cleaning process, 120
data warehouse scenario, 119
layers (loading data), 119–120
optional/mandatory files, 122
simplistic resolution process, 121
warehouse table, 121

Data streaming, see Stream ingestion
Data warehouse

cloud revolution, 1
database backups/lakes, 2
key tools, 4
modern data warehouse, 229
multi-region support, 3
naming convention, 7
on-premises tool, 1
resource group/tagging, 3–4
security standpoint, 4
terms/definition, 6–7

Deployment options (SQL database)
elastic pools, 39
features, 38

managed instance, 38–39
SQL DB/synapse analytics, 38
V-Core tiers, 39–40

Designing data contracts
consistency, 166
generation process, 166–169
modification, 170
storing, 169–170
validation, 168

Dictionary encoding, 244
Dynamic column mapping, 99–102

E, F, G
Error handling, 96
Event ingestion

Azure Synapse Analytics, 125
decoupled (see decoupled processing)
event-based ingestion, 118
event processing, 125–127
listening data, 123
risks/opportunities, 118
single file batches, 117
SQL database, 125

Extract, transform and load (ETL/ELT)
patterns

ADF V2, 46
anti-window, 110
ingestion mode, 105–106
mapping data flow process, 90
solution structure (ADF), 63
window, 109–110, 118

H
Hadoop distributed file system (HDFS), 48
HASH distribution, 15–17
HDInsight cluster, 56

INDEX

278

Hyperscale databases
accelerated disaster recovery, 37
application intent parameter, 36
architecture, 36–37
cheap storage/flexible resources, 35
features, 35

I, J, K
Ingestion modes

approach, 132
architecture, 108
batch (see Batch ingestion tools)
data streaming, 126–129
event ingestion, 117–125
lambda architecture approach,

129–131
layers, 105–108

Integration (data contract)
code generation

Azure SQL database, 178
key parameters, 177
ObtainEntityMetadata stored

procedure, 177
PowerShell script, 175
process of, 175
SQL database, 176
templates, 178

entity metadata, 174–175
fetching metadata, 170
harmonizing schema evolution,

179–180
JSON source code, 172
orchestration metadata, 171–172
requirements, 170
utilizing orchestration

metadata, 173–174

Integration engine
activities, 55

bucketed up, 56
configuration properties, 57–58
external compute, 56–57
looping/conditional logic, 58–60
output constraints, 61
web activities, 60

ADF, 45–46
data factory (see Data factory)

Integration runtime (IR), 49
Internal activities, 57–58
Invocation methods, 85–86
Iteration/conditional activities, 58–60
Iterative parent-child pattern, 98–100

L
Lambda architecture approach

blending streams/batches, 130
cohesive/contextualized view, 129
definition, 129
serving layer, 130–131

Linear pattern, 96
Linked service connection

access policies, 66–67
author/monitor button, 67
connection, 71
data lake storage Gen2 option, 70
key vault secret, 65, 71
resource, 69
security, 65
UI/points, 68

Linked services, 47–49
Logging process

aggregating data, 190–192
alerting metadata, 183

INDEX

279

definition, 182
events

JSON data storage, 188
approaches, 187
parent-child processes, 185
pipelines, 184
platform track, 184
processing hierarchy, 187
structures, 185
table code, 188
table recreation, 185
tabular data, 189

extended capabilities, 189
requirements, 182
storage, 182–183

M, N
Machine learning resource, 56
Managed service identity (MSI), 49, 62
Mapping data flows

advantages, 87
categories, 87
data types, 94
ETL steps, 90
inputs/outputs, 88
manipulation, 87–95
mapping tab, 91–94
pipeline, 89
projection tab, 90–91
row modification, 88
schema modification, 88
sink source, 92
source options tab, 90
transformation step, 93
trim function, 93

Massively parallel processing (MPP), 6,
11–12, 153

MERGE statement, 167
Metadata, see Integration (data contract)
Monitoring method, 216–218

O
Online analytical processing (OLAP)

systems, 30
Online transactional processing (OLTP)

systems, 30

P, Q
Parallel execution, 98
Parameters-driven pipelines

configuration, 80
control database, 84–85
definition, 79
invocation approach, 86–87
lookup activities, 82–83
mapping data flows, 87–95
steps, 80–81
stored procedure, 83

Parent-child pattern, 96–97
Parquet/Optimized Row Columnar

(ORC), 54
Pattern processing

boxed activities, 98
column mapping, 99–102
definition, 95
iterative parent-child pattern, 98–100
linear pattern, 96
parent-child pattern, 96–97
partitioning option, 103–105

Pipelines
configuration, 76
copy data activity, 75
debugging activities, 78

INDEX

280

ellipsis menu, 75
input parameters, 79
mapping data flows, 89–97
monitoring portal, 78–79
sink dataset, 77
source dataset properties, 76

PolyBase technology
components, 26
credential creation, 26
CTAS syntax, 28–29
external data source, 26
external table, 27
file format, 27
value/percentage, 28

Polyglot architectures
characteristics, 157–160
data cleaning/preparation, 160
lake processing, 161
SQL preference, 158
Synapse Analytics/Azure Data Lake

Gen 2, 159
Power BI (Microsoft Power BI)

data visualization, 230
key components, 230–231
reports

columns, measures/
hierarchies, 235–236

connect menu, 231–232
data warehouse, 231
navigation panel, 236–237
output window, 237–238
relationships, 234–235
server information, 232–233
splash screen, 231
tables details, 233

service process, 238–240
working process, 230

PowerShell scripts, 219
Processing model

authorization process, 266
data factory pipeline, 264
options, 263
process request, 264
service principal creation, 264
SPN details, 265
web activities, 266

R
Raw directory

data lake implementation, 149
data storage, 138–139
file formats, 151
key benefit, 149
partitioning, 149–151
sink dataset directory, 150

Raw layer, 106–107
Recovery point objective (RPO), 42
Recovery time objective (RTO), 42
Recurse data lake structures, 225–227
Replicated distribution, 18–19
Resilience

alert data factory rules (see Azure Data
Factory (ADF))

data factory, 214–216
defensive checks, 199
troubleshooting (metadata), 200–202

Resource management
classes, 20
data factory pipeline, 23
dynamic classes, 22
pause/resume warehouse, 23–26
service objective, 20
static classes, 21

ROUND ROBIN distribution, 14–15
Run length encoding (RLE), 244

Pipelines (cont.)

INDEX

281

S
Scripting language

code generation
approach, 220
data contracts, 220–221
elements, 220
ForEach loops, 222
output folder, 222
PowerShell code, 221
tables/procs details, 221

invoke/monitor, 222–224
PowerShell, 219
recurse structures, 225–227

Security configuration (Data Lake)
ADL Gen2, 146–148
default permissions, 145
key information, 144
parent folders, 145
permission setup, 144

Self-Hosted Integration
Runtime (SHIR), 50

Semantic layer, 241
Source controlled option (data factory), 63
SQL storage engine

database (SQL DB)
adaptive join, 34
adaptive query processing, 33
artificial intelligence, 32
automatic tuning, 33
batch mode memory grant

feedback, 34
benefits, 30
cloud-based OLTP engine, 30
concurrency, 20deployment

options, 29, 38–40
hyperscale, 35–37
interleaved execution, 34
trickle-fed data warehouses, 31

four Vs (volume, variety, value/
velocity), 9

synapse analytics (see Synapse
analytics)

SSIS Integration Runtime (IR), 51
Static resource class, 21
Stored procedure, 56
Store linked services, 48
Stream ingestion

benefit of, 126
event-based/batch-based

processing, 125
implementation

analytics jobs, 127
Azure Event Hubs, 127–128
blob storage, 128–129
SQL database, 129

risks/opportunities, 126–127
Symmetric multi-processing (SMP), 12
Synapse analytics

batch ingestion
CTAS pattern, 112–113
DDL statement, 116
external table, 112
file structure, 115
PolyBase engine, 111
warehouse fact table, 113

distributions
columns, 17
compute nodes, 13
HASH distribution, 15–17
MPP vs. SMP, 12
REPLICATED distribution, 18–19
right column, 18
ROUND ROBIN approach, 14–15
SMP single storage point, 12
storage nodes, 13

event ingestion, 125

INDEX

282

PolyBase, 26–29
resources (see Resource management)
SQL database, 41–43
workload management/importance,

25–26

T, U
Transformed directory

data storage, 141–142
ELT approach, 156
ingestion architecture, 107–108

key points, 157
warehouse, 155

Triggers, 52–53

V
Value encoding, 243
V-Core tiers, 39–40
VertiPaq engine, 243–245

W, X, Y, Z
Windows Azure Storage Blob (WASB), 136

Synapse analytics (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Rise of the Modern Data Warehouse
	Getting Started
	Multi-region Support
	Resource Groups and Tagging
	Azure Security
	Tools of the Trade
	Glossary of Terms
	Naming Conventions

	Chapter 2: The SQL Engine
	The Four Vs
	Azure Synapse Analytics
	Understanding Distributions
	The First Problem
	ROUND ROBIN Distribution
	HASH Distribution
	The Distribution Column
	How to Check if You Have the Right Column
	REPLICATED Distribution

	Resource Management
	Resource Classes
	Static Resource Classes
	Dynamic Resource Classes
	Pausing and Resuming the Warehouse

	Workload Management
	PolyBase

	Azure SQL Database
	The Cloud-Based OLTP Engine
	The Benefits of Azure SQL Database
	Improved Concurrency
	Trickle-Fed Data Warehouses
	Managing Slowly Changing Dimensions
	Intelligent Query Processing and Tuning
	Automatic Tuning
	Adaptive Query Processing
	Batch Mode Memory Grant Feedback
	Adaptive Joins
	Interleaved Execution

	Hyperscale
	The Hyperscale Architecture
	Accelerated Disaster Recovery

	Azure SQL Deployment Options
	Azure SQL Database Managed Instances
	Azure SQL Database Elastic Pools
	Azure SQL Database V-Core Tiers

	Azure Synapse Analytics vs. Azure SQL Database
	The Right Type of Data
	The Size of the Data
	The Frequency of the Data
	The Availability of the Data
	The Integration of Data

	Chapter 3: The Integration Engine
	Introduction to Azure Data Factory
	The Data Factory Building Blocks
	Linked Services
	Integration Runtimes
	Self-Hosted Integration Runtime
	Azure SSIS Integration Runtime
	Triggers
	Datasets
	Pipelines and Activities

	Activity Types
	External Compute Activities
	Internal Activities
	Iteration and Conditional Activities
	Web Activities
	Output Constraints

	Implementing Azure Data Factory
	Security in Azure Data Factory
	Using the Managed Service Identity
	Source Control of Azure Data Factory
	Templates
	Solution Structure

	Getting Started with Azure Data Factory
	Create Linked Services
	Creating Datasets
	Creating Pipelines
	Debugging Your Pipelines
	Monitoring Your Pipelines

	Parameter-Driven Pipelines
	Getting Started with Parameters
	Using the Lookup Activity
	Getting Started with the Lookup Activity

	Additional Azure Data Factory Elements
	Additional Invocation Methods
	Mapping Data Flows
	Multiple Inputs and Outputs
	Schema Modifier
	Row Modifier

	Execute Mapping Data Flows

	Azure Data Factory Processing Patterns
	Linear Pipelines
	Parent-Child Processing
	Iterative Parent-Child Processing
	Dynamic Column Mappings
	Partitioning Datasets

	Chapter 4: The Ingestion Architecture
	Layers of Curation
	The Raw Layer
	The Clean Layer
	The Transformed Layer

	Understanding Ingestion Architecture
	Batch Ingestion
	The Risks and Opportunities of Batch Ingestion
	The ETL Window
	The ETL Anti-window
	Failure Investigation and Troubleshooting
	The Batch Ingestion Tools
	Batch Ingestion for Azure Synapse Analytics
	Create External Table As Select (CETAS)

	Event Ingestion
	The Risks and Opportunities of Event-Based Ingestion
	Implementing Event Ingestion
	Decoupled Processing
	Listening for Events
	Queuing Events
	Event Ingestion for Azure Synapse Analytics
	Event Ingestion for Azure SQL Database

	Stream Ingestion
	The Risks and Opportunities of Stream Ingestion
	Implementing Stream Ingestion
	Stream Ingestion with Azure Event Hub’s and Stream Analytics Jobs
	Stream Ingestion for Azure Blob Storage
	Stream Ingestion for Azure SQL Database

	The Lambda Architecture
	Blending Streams and Batches
	The Serving Layer

	Assessing the Approach

	Chapter 5: The Role of the Data Lake
	The Modern Enterprise and Its Data Lake
	Azure Data Lake Technology
	Azure Data Lake Gen 1
	Azure Blob Storage
	Azure Data Lake Gen 2

	Planning the Enterprise Data Lake
	Storing Raw Data
	Storing Cleaned Data
	Storing Transformed Data
	Facilitating Experimentation

	Implementing the Enterprise Data Lake
	Security Configuration in Azure Data Lake
	Applying Security in Azure Data Lake Gen 2

	Implementing a Raw Directory
	Partitioning
	Choosing a File Format

	Implementing a Clean Directory
	Cleaning Within a Database
	Cleaning Within a Data Lake
	Cleaning Within Azure Data Factory

	Implementing a Transformed Directory

	Example Polyglot Architectures
	Example One
	Example Two
	Example Three
	Example Four

	Chapter 6: The Role of the Data Contract
	What Is a Data Contract?
	Working with Data Contracts
	Designing Data Contracts
	Generating Data Contracts
	Validating Data Contacts
	Storing Data Contracts
	Modifying Data Contracts

	Integrating Data Contracts
	Fetching Metadata
	Fetching Orchestration Metadata
	Utilizing Orchestration Metadata
	Fetching Entity Metadata
	Utilizing Entity Metadata
	Code Generation
	Getting Started with Code Generation
	Harmonizing Schema Evolution

	Chapter 7: Logging, Auditing, and Resilience
	Logging the Data Movement Process
	Basic Logging Requirements
	Where to Store Your Logs
	Events to Be Logged

	Extended Logging Capabilities
	Aggregating Your Logs

	Auditing the Data Movement Process
	Basic Auditing Requirements
	Auditing Data Volumes
	Auditing Processing Times
	Storing High Watermarks

	Incorporating Resilience into the Data Movement Process
	Basic Resiliency
	Using Metadata for Troubleshooting
	Creating Alerts Using Azure Data Factory Alert Rules
	Creating Custom Alerts from Azure Data Factory

	Extending Resiliency
	Utilizing Data Factory Fault Tolerance
	Checking File Structure Using Data Factory
	Creating Alerts from Skipped Rows

	Monitoring the Data Movement Process

	Chapter 8: Using Scripting and Automation
	The Power of PowerShell
	Commonly Used Scripts
	Code Generation
	Invoke Data Factory Pipeline
	Recurse Data Lake Structures

	Chapter 9: Beyond the Modern Data Warehouse
	Microsoft Power BI
	Working with Power BI
	Building a Power BI Report
	Publish Report to Power BI Service

	Azure Analysis Services
	The Basics of Azure Analysis Services
	Analysis Services as a Semantic Layer
	Analysis Services Security Model
	The Vertipaq Engine
	Creating an Analysis Services Project
	Create Analysis Objects
	Create a Calculated Column
	Create a Measure
	Create a KPI
	Create a Hierarchy
	Create a Perspective
	Creating Roles (RBAC)

	Deploy Analysis Services to Azure
	Processing an Azure Analysis Services Model

	Azure Cosmos DB
	The Cosmos DB Architecture
	Horizontal Partitioning
	Resource Units
	Consistency
	Write Data to Azure Cosmos DB

	Index

