
SYSTEM ADMINISTR ATION

Ansible: Up and Running

ISBN: 978-1-491-91532-5

US $39.99 CAN $45.99

“	Fantastic	intro	to	
Ansible,	but	also	great	
for	current	Ansible	
users.	I	thought	I	knew	
everything	about	
Ansible,	but	still	learned	
plenty	of	new	things	from	
Lorin's	book.”

—Matt Jaynes
author of Taste Test: Puppet vs Chef

vs SaltStack vs Ansible

Twitter: @oreillymedia
facebook.com/oreilly

Among the many configuration management tools available, Ansible has
some distinct advantages—it’s minimal in nature, you don’t need to install
anything on your nodes, and it has an easy learning curve. This practical
guide shows you how to be productive with this tool quickly, whether
you’re a developer deploying code to production or a system administrator
looking for a better automation solution.

Author Lorin Hochstein shows you how to write playbooks (Ansible’s
configuration management scripts), manage remote servers, and explore
the tool’s real power: built-in declarative modules. You’ll discover that
Ansible has the functionality you need and the simplicity you desire.

 ■ Understand how Ansible differs from other configuration
management systems

 ■ Use the YAML file format to write your own playbooks

 ■ Learn Ansible’s support for variables and facts

 ■ Work with a complete example to deploy a non-trivial application

 ■ Use roles to simplify and reuse playbooks

 ■ Make playbooks run faster with SSH multiplexing, pipelining,
and parallelism

 ■ Deploy applications to Amazon EC2 and other cloud platforms

 ■ Use Ansible to create Docker images and deploy Docker
containers

Lorin Hochstein is a Senior Software Engineer at SendGrid Labs, where he
works on developing and deploying new products. He also served as Lead
Architect for Cloud Services at Nimbis Services, and was a Computer Scientist
at the University of California’s Information Sciences Institute. He has a PhD in
Computer Science from the University of Maryland.

A
nsible: U

p &
 R

unning
H

ochstein

Lorin Hochstein

 Ansible
Up & Running
AUTOMATING CONFIGUR ATION MANAGEMENT
AND DEPLOYMENT THE EASY WAY

SYSTEM ADMINISTR ATION

Ansible: Up and Running

ISBN: 978-1-491-91532-5

US $39.99 CAN $45.99

“	Fantastic	intro	to	
Ansible,	but	also	great	
for	current	Ansible	
users.	I	thought	I	knew	
everything	about	
Ansible,	but	still	learned	
plenty	of	new	things	from	
Lorin's	book.”

—Matt Jaynes
author of Taste Test: Puppet vs Chef

vs SaltStack vs Ansible

Twitter: @oreillymedia
facebook.com/oreilly

Among the many configuration management tools available, Ansible has
some distinct advantages—it’s minimal in nature, you don’t need to install
anything on your nodes, and it has an easy learning curve. This practical
guide shows you how to be productive with this tool quickly, whether
you’re a developer deploying code to production or a system administrator
looking for a better automation solution.

Author Lorin Hochstein shows you how to write playbooks (Ansible’s
configuration management scripts), manage remote servers, and explore
the tool’s real power: built-in declarative modules. You’ll discover that
Ansible has the functionality you need and the simplicity you desire.

 ■ Understand how Ansible differs from other configuration
management systems

 ■ Use the YAML file format to write your own playbooks

 ■ Learn Ansible’s support for variables and facts

 ■ Work with a complete example to deploy a non-trivial application

 ■ Use roles to simplify and reuse playbooks

 ■ Make playbooks run faster with SSH multiplexing, pipelining,
and parallelism

 ■ Deploy applications to Amazon EC2 and other cloud platforms

 ■ Use Ansible to create Docker images and deploy Docker
containers

Lorin Hochstein is a Senior Software Engineer at SendGrid Labs, where he
works on developing and deploying new products. He also served as Lead
Architect for Cloud Services at Nimbis Services, and was a Computer Scientist
at the University of California’s Information Sciences Institute. He has a PhD in
Computer Science from the University of Maryland.

A
nsible: U

p &
 R

unning
H

ochstein

Lorin Hochstein

 Ansible
Up & Running
AUTOMATING CONFIGUR ATION MANAGEMENT
AND DEPLOYMENT THE EASY WAY

Lorin Hochstein

Ansible: Up and Running

978-1-491-91532-5

[LSI]

Ansible: Up and Running
by Lorin Hochstein

Copyright © 2015 Lorin Hochstein. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Melanie Yarbrough
Copyeditor: Carla Thornton
Proofreader: Marta Justak

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Ellie Volkhausen
Illustrator: Rebecca Demarest

May 2015: First Edition

Revision History for the First Edition
2015-04-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915325 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Ansible: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491915325

Table of Contents

Foreword. xi

Preface. xiii

1. Introduction. 1
A Note About Versions 2
Ansible: What Is It Good For? 2
How Ansible Works 3
What’s So Great About Ansible? 5

Easy-to-Read Syntax 5
Nothing to Install on the Remote Hosts 5
Push-Based 5
Ansible Scales Down 6
Built-in Modules 6
Very Thin Layer of Abstraction 7

Is Ansible Too Simple? 8
What Do I Need to Know? 9
What Isn’t Covered 10
Installing Ansible 10
Setting Up a Server for Testing 11

Using Vagrant to Set Up a Test Server 12
Telling Ansible About Your Test Server 15
Simplifying with the ansible.cfg File 16

Moving Forward 20

2. Playbooks: A Beginning. 21
Some Preliminaries 21
A Very Simple Playbook 22

iii

Specifying an nginx Config File 24
Creating a Custom Homepage 25
Creating a Webservers Group 25

Running the Playbook 26
Playbooks Are YAML 28

Start of File 28
Comments 28
Strings 28
Booleans 29
Lists 29
Dictionaries 30
Line Folding 30

Anatomy of a Playbook 31
Plays 32
Tasks 33
Modules 34
Putting It All Together 35

Did Anything Change? Tracking Host State 36
Getting Fancier: TLS Support 36

Generating TLS certificate 38
Variables 38
Generating the Nginx Configuration Template 40
Handlers 41
Running the Playbook 43

3. Inventory: Describing Your Servers. 45
The Inventory File 45
Preliminaries: Multiple Vagrant Machines 46
Behavioral Inventory Parameters 49

ansible_connection 49
ansible_shell_type 50
ansible_python_interpreter 50
ansible_*_interpreter 50
Changing Behavioral Parameter Defaults 50

Groups and Groups and Groups 51
Example: Deploying a Django App 52
Aliases and Ports 54
Groups of Groups 55
Numbered Hosts (Pets versus Cattle) 55

Hosts and Group Variables: Inside the Inventory 56
Host and Group Variables: In Their Own Files 57
Dynamic Inventory 59

iv | Table of Contents

The Interface for a Dynamic Inventory Script 60
Writing a Dynamic Inventory Script 61
Pre-Existing Inventory Scripts 65

Breaking Out the Inventory into Multiple Files 65
Adding Entries at Runtime with add_host and group_by 65

add_host 65
group_by 67

4. Variables and Facts. 69
Defining Variables in Playbooks 69
Viewing the Values of Variables 70
Registering Variables 70
Facts 74

Viewing All Facts Associated with a Server 75
Viewing a Subset of Facts 75
Any Module Can Return Facts 76
Local Facts 77

Using set_fact to Define a New Variable 78
Built-in Variables 79

hostvars 79
inventory_hostname 80
Groups 80

Setting Variables on the Command Line 81
Precedence 82

5. Introducing Mezzanine: Our Test Application. 83
Why Deploying to Production Is Complicated 83

PostgreSQL: The Database 86
Gunicorn: The Application Server 87
Nginx: The Web Server 87
Supervisor: The Process Manager 88

6. Deploying Mezzanine with Ansible. 89
Listing Tasks in a Playbook 89
Organization of Deployed Files 90
Variables and Secret Variables 90
Using Iteration (with_items) to Install Multiple Packages 92
Adding the Sudo Clause to a Task 94
Updating the Apt Cache 94
Checking Out the Project Using Git 96
Installing Mezzanine and Other Packages into a virtualenv 97
Complex Arguments in Tasks: A Brief Digression 99

Table of Contents | v

Creating the Database and Database User 102
Generating the local_settings.py File from a Template 103
Running django-manage Commands 106
Running Custom Python Scripts in the Context of the Application 107

Setting Service Configuration Files 110
Enabling the Nginx Configuration 113
Installing TLS Certificates 113
Installing Twitter Cron Job 114
The Full Playbook 115
Running the Playbook Against a Vagrant Machine 118
Deploying Mezzanine on Multiple Machines 119

7. Complex Playbooks. 121
Running a Task on the Control Machine 121
Running a Task on a Machine Other Than the Host 122
Manually Gathering Facts 122
Running on One Host at a Time 123
Running Only Once 124
Dealing with Badly Behaved Commands: changed_when and failed_when 125
Retrieving the IP Address from the Host 128
Encrypting Sensitive Data with Vault 129
Patterns for Specifying Hosts 131
Limiting Which Hosts Run 132
Filters 132

The Default Filter 133
Filters for Registered Variables 133
Filters That Apply to File Paths 134
Writing Your Own Filter 134

Lookups 136
file 137
pipe 138
env 138
password 138
template 139
csvfile 139
dnstxt 140
redis_kv 141
etcd 142
Writing Your Own Lookup Plug-in 143

More Complicated Loops 143
with_lines 144
with_fileglob 144

vi | Table of Contents

with_dict 145
Looping Constructs as Lookup Plug-ins 146

8. Roles: Scaling Up Your Playbooks. 147
Basic Structure of a Role 147
Example: Database and Mezzanine Roles 148
Using Roles in Your Playbooks 148
Pre-Tasks and Post-Tasks 150
A “Database” Role for Deploying the Database 150
A “Mezzanine” Role for Deploying Mezzanine 153
Creating Role Files and Directories with ansible-galaxy 157
Dependent Roles 158
Ansible Galaxy 159

Web Interface 159
Command-Line Interface 159
Contributing Your Own Role 160

9. Making Ansible Go Even Faster. 161
SSH Multiplexing and ControlPersist 161

Manually Enabling SSH Multiplexing 162
SSH Multiplexing Options in Ansible 163

Pipelining 165
Enabling Pipelining 165
Configuring Hosts for Pipelining 165

Fact Caching 167
JSON File Fact-Caching Backend 168
Redis Fact Caching Backend 169
Memcached Fact Caching Backend 170

Parallelism 170
Accelerated Mode 171
Fireball Mode 171

10. Custom Modules. 173
Example: Checking That We Can Reach a Remote Server 173
Using the Script Module Instead of Writing Your Own 174
can_reach as a Module 174
Where to Put Custom Modules 175
How Ansible Invokes Modules 175

Generate a Standalone Python Script with the Arguments (Python Only) 175
Copy the Module to the Host 175
Create an Arguments File on the Host (Non-Python Only) 175
Invoke the Module 176

Table of Contents | vii

Expected Outputs 176
Output Variables Ansible Expects 177

Implementing Modules in Python 178
Parsing Arguments 179
Accessing Parameters 180
Importing the AnsibleModule Helper Class 180
Argument Options 181
AnsibleModule Initializer Parameters 184
Returning Success or Failure 187
Invoking External Commands 188
Check Mode (Dry Run) 189

Documenting Your Module 190
Debugging Your Module 191
Implementing the Module in Bash 192
Specifying an Alternaive Location for Bash 193
Example Modules 194

11. Vagrant. 195
Convenient Vagrant Configuration Options 195

Port Forwarding and Private IP Addresses 196
Enabling Agent Forwarding 197

The Ansible Provisioner 197
When the Provisioner Runs 198
Inventory Generated by Vagrant 198
Provisioning in Parallel 199
Specifying Groups 200

12. Amazon EC2. 203
Terminology 205

Instance 205
Amazon Machine Image 205
Tags 205

Specifying Credentials 206
Environment Variables 206
Configuration Files 207

Prerequisite: Boto Python Library 207
Dynamic Inventory 208

Inventory Caching 210
Other Configuration Options 210
Auto-Generated Groups 210

Defining Dynamic Groups with Tags 211
Applying Tags to Existing Resources 212

viii | Table of Contents

www.allitebooks.com

Nicer Group Names 213
EC2 Virtual Private Cloud (VPC) and EC2 Classic 213
Configuring ansible.cfg for Use with ec2 214
Launching New Instances 215
EC2 Key Pairs 216

Creating a New Key 216
Upload an Existing Key 218

Security Groups 218
Permitted IP Addresses 219
Security Group Ports 220

Getting the Latest AMI 220
Adding a New Instance to a Group 221
Waiting for the Server to Come Up 224
Creating Instances the Idempotent Way 225
Putting It All Together 226
Specifying a Virtual Private Cloud 228

Dynamic Inventory and VPC 231
Building AMIs 232

With the ec2_ami Module 232
With Packer 232

Other Modules 236

13. Docker. 237
The Case for Pairing Docker with Ansible 238
Docker Application Life Cycle 239
Dockerizing Our Mezzanine Application 240
Creating Docker Images with Ansible 242

Mezzanine 242
The Other Container Images 247

Postgres 247
Memcached 247
Nginx 248
Certs 249
Building the Images 250

Deploying the Dockerized Application 251
Starting the Database Container 251
Retrieving the Database Container IP Address and Mapped Port 252
Waiting for the Database to Start Up 256

Initializing the Database 257
Starting the Memcached Container 258
Starting the Mezzanine Container 258
Starting the Certificate Container 259

Table of Contents | ix

http://www.allitebooks.org

www.allitebooks.com

Starting the Nginx Container 259
The Entire Playbook 260

14. Debugging Ansible Playbooks. 263
Debugging SSH Issues 263
The Debug Module 265
The Assert Module 265
Checking Your Playbook Before Execution 267

Syntax Check 267
List Hosts 267
List Tasks 268
Check Mode 268
Diff (Show File Changes) 269

Limiting Which Tasks Run 269
Step 269
Start-at-Task 270
Tags 270

Onward 271

A. SSH. 273

B. Default Settings. 283

C. Using IAM Roles for EC2 Credentials. 289

Glossary. 293

Bibliography. 297

Index. 299

x | Table of Contents

http://www.allitebooks.org

www.allitebooks.com

Foreword

Ansible started as a simple side project in February of 2012, and its rapid growth has
been a pleasant surprise. It is now the work product of about a thousand people (and
the ideas of many more than that), and it is widely deployed in almost every country.
It’s not unusual in a computer meet-up to find a handful (at least) of people who use
it.

Ansible is perhaps exciting because it really isn’t. Ansible doesn’t really attempt to
break new ground, but rather to distill a lot of existing ideas that other smart folks
had already figured out and make them a bit more accessible.

Ansible sought a middle ground between somewhat computer-sciencey IT automa‐
tion approaches (themselves a reaction to tedious large commercial suites) and hack-
and-slash scripting that just got things done. Also, how can we replace a
configuration management system, a deployment project, an orchestration project,
and our library of arbitrary but important shell scripts with a single system? That was
the idea.

Could we remove major architectural components from the IT automation stack?
Eliminating management demons and relying instead on OpenSSH meant the system
could start managing a computer fleet immediately, without having to set up anything
on the managed machines. Further, the system was apt to be more reliable and secure.

I had noticed that in trying to automate systems previously, things that should be
simple were often hard, and that writing automation content could often create a
time-sucking force that kept me from things I wanted to spend more time doing. And
I didn’t want the system to take months to become an expert with, either.

In particular, I personally enjoy writing new software, but piloting automation sys‐
tems, a bit less. In short, I wanted to make automation quicker and leave me more
time for the things I cared about. Ansible was not something you were meant to use
all day long, but to get in, get out, and get back to doing the things you cared about.

I hope you will like Ansible for many of the same reasons.

xi

http://www.allitebooks.org

www.allitebooks.com

Although I spent a large amount of time making sure Ansible’s docs were compre‐
hensive, there’s always a strong advantage to seeing material presented in a variety of
ways, and often in seeing actual practice applied alongside the reference material.

In Ansible: Up And Running, Lorin presents Ansible in a very idiomatic way, in
exactly the right order in which you might wish to explore it. Lorin has been around
Ansible since almost the very beginning, and I’m very grateful for his contributions
and input.

I’m also immensely thankful for everyone who has been a part of this project to date,
and everyone who will be in the future.

Enjoy the book, and enjoy managing your computer fleet! And remember to install
cowsay!

— Michael DeHaan
Creator of Ansible (software), former CTO of Ansible, Inc. (company)

April 2015

xii | Foreword

http://www.allitebooks.org

www.allitebooks.com

Preface

Why I Wrote This Book
When I was writing my first web application, using Django, the popular Python-
based framework, I remember the sense of accomplishment when the app was finally
working on my desktop. I would run django manage.py runserver, point my browser
to http://localhost:8000, and there was my web application in all its glory.

Then I discovered there were all of these…things I had to do, just to get the darned
app to run on the Linux server. In addition to installing Django and my app onto the
server, I had to install Apache and the mod_python module so that Apache could run
Django apps. Then I had to figure out the right Apache configuration file incantation
so that it would run my application and serve up the static assets properly.

None of it was hard, it was just a pain to get all of those details right. I didn’t want to
muck about with configuration files, I just wanted my app to run. Once I got it work‐
ing, everything was fine…until, several months later, I had to do it again, on a differ‐
ent server, at which point I had to start the process all over again.

Eventually, I discovered that this process was Doing It Wrong. The right way to do
this sort of thing has a name, and that name is configuration management. The great
thing about using configuration management is that it’s a way to capture knowledge
that always stays up-to-date. No more hunting for the right doc page or searching
through your old notes.

Recently, a colleague at work was interested in trying out Ansible for deploying a new
project, and he asked me for a reference on how to apply the Ansible concepts in
practice, beyond what was available in the official docs. I didn’t know what else to rec‐
ommend, so I decided to write something to fill the gap—and here it is. Alas, this
book comes too late for him, but I hope you’ll find it useful.

xiii

http://localhost:8000
http://www.allitebooks.org

www.allitebooks.com

Who Should Read This Book
This book is for anyone who needs to deal with Linux or Unix-like servers. If you’ve
ever used the terms systems administration, operations, deployment, configuration
management, or (sigh) DevOps, then you should find some value here.

Although I have managed my share of Linux servers, my background is in software
engineering. This means that the examples in this book tend toward the deployment
end of the spectrum, although I’m in agreement with Andrew Clay Shafer ([webops])
that the distinction between deployment and configuration is unresolved.

Navigating This Book
I’m not a big fan of book outlines: Chapter 1 covers so and so, Chapter 2 covers such
and such, that sort of thing. I strongly suspect that nobody ever reads them (I never
do), and the table of contents is much easier to scan.

This book is written to be read start to finish, with later chapters building on the ear‐
lier ones. It’s written largely in a tutorial style, so you should be able to follow along
on your own machine. Most of the examples are focused on web applications.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

xiv | Preface

http://www.allitebooks.org

www.allitebooks.com

This icon indicates a warning or caution.

Online Resources
Code samples from this book are available at this book’s GitHub page. There is ample
official Ansible documentation available for reference.

I maintain a few Ansible quick reference pages on GitHub as well.

The Ansible code is on GitHub, split across three repositories:

• Main repo
• Core modules
• Extra modules

Bookmark the Ansible module index; you’ll be referring to it constantly as you use
Ansible. Ansible Galaxy is a repository of Ansible roles contributed by the commu‐
nity. The Ansible Project Google Group is the place to go if you have any questions
about Ansible.

If you’re interested in contributing to Ansible development, check out the Ansible
Development Google Group.

For real-time help with Ansible, there’s an active #ansible IRC channel on irc.free‐
node.net.

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/lorin/ansiblebook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Ansible: Up and Running by Lorin
Hochstein (O’Reilly). Copyright 2015 Lorin Hochstein, 978-1-491-91532-5.”

Preface | xv

http://github.com/lorin/ansiblebook
http://docs.ansible.com
https://github.com/lorin/ansible-quickref
https://github.com/ansible/ansible
https://github.com/ansible/ansible-modules-core
https://github.com/ansible/ansible-modules-extras
http://bit.ly/1Dt75tg
https://galaxy.ansible.com
http://bit.ly/1Dt79ZT
http://bit.ly/1Dt79ZT
http://bit.ly/1Dt79ZT
https://github.com/lorin/ansiblebook
http://www.allitebooks.org

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/ansible-up-and-running.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xvi | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/ansible-up-and-running
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to Jan-Piet Mens, Matt Jaynes, and John Jarvis for reviewing drafts of the
book and providing feedback. Thanks to Isaac Saldana and Mike Rowan at SendGrid
for being so supportive of this endeavor. Thanks to Michael DeHaan for creating
Ansible and shepherding the community that sprang up around it, as well as for pro‐
viding feedback on the book, including an explanation of why he chose to use the
name “Ansible.” Thanks to my editor, Brian Anderson, for his endless patience in
working with me.

Thanks to Mom and Dad for their unfailing support; my brother Eric, the actual
writer in the family; and my two sons, Benjamin and Julian. Finally, thanks to my
wife, Stacy, for everything.

Preface | xvii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1 OK, nobody ever really delivered software like that.
2 Check out The Practice of Cloud System Administration and Designing Data-Intensive Applications for excellent

books on building and maintaining these types of distributed systems.

CHAPTER 1

Introduction

It’s an interesting time to be working in the IT industry. We don’t deliver software to
our customers by installing a program on a single machine and calling it a day.1

Instead, we are all slowly turning into system engineers.

We now deploy software applications by stringing together services that run on a dis‐
tributed set of computing resources and communicate over different networking pro‐
tocols. A typical application can include web servers, application servers, memory-
based caching systems, task queues, message queues, SQL databases, NoSQL
datastores, and load balancers.

We also need to make sure we have the appropriate redundancies in place, so that
when failures happen (and they will), our software systems will handle these failures
gracefully. Then there are the secondary services that we also need to deploy and
maintain, such as logging, monitoring, and analytics, as well as third-party services
we need to interact with, such as infrastructure-as-a-service endpoints for managing
virtual machine instances.2

You can wire up these services by hand: spinning up the servers you need, SSHing to
each one, installing packages, editing config files, and so forth, but it’s a pain. It’s
time-consuming, error-prone, and just plain dull to do this kind of work manually,
especially around the third or fourth time. And for more complex tasks, like standing
up an OpenStack cloud inside your application, doing it by hand is madness. There’s
a better way.

1

If you’re reading this, you’re probably already sold on the idea of configuration man‐
agement and considering adopting Ansible as your configuration management tool.
Whether you’re a developer deploying your code to production, or you’re a systems
administrator looking for a better way to automate, I think you’ll find Ansible to be
an excellent solution to your problem.

A Note About Versions
All of the example code in this book was tested against version 1.8.4 of Ansible, which
was the most recent release as of this writing. As backward compatibility is a major
goal of the Ansible project, these examples should work unmodified in future ver‐
sions of Ansible.

What’s with the Name “Ansible”?
It’s a science fiction reference. An ansible is a fictional communication device that can
transfer information faster than the speed of light. The author Ursula K. Le Guin
invented the concept in her book Rocannon’s World, and other sci-fi authors have
since borrowed the idea from Le Guin.

More specifically, Michael DeHaan took the name Ansible from the book Ender’s
Game by Orson Scott Card. In that book, the ansible was used to control a large num‐
ber of remote ships at once, over vast distances. Think of it as a metaphor for control‐
ling remote servers.

Ansible: What Is It Good For?
Ansible is often described as a configuration management tool, and is typically men‐
tioned in the same breath as Chef, Puppet, and Salt. When we talk about configura‐
tion management, we are typically talking about writing some kind of state
description for our servers, and then using a tool to enforce that the servers are,
indeed, in that state: the right packages are installed, configuration files contain the
expected values and have the expected permissions, the right services are running,
and so on. Like other configuration management tools, Ansible exposes a domain-
specific language (DSL) that you use to describe the state of your servers.

These tools also can be used for doing deployment as well. When people talk about
deployment, they are usually referring to the process of taking software that was writ‐
ten in-house, generating binaries or static assets (if necessary), copying the required
files to the server(s), and then starting up the services. Capistrano and Fabric are two
examples of open-source deployment tools. Ansible is a great tool for doing deploy‐
ment as well as configuration management. Using a single tool for both configuration

2 | Chapter 1: Introduction

management and deployment makes life simpler for the folks responsible for opera‐
tions.

Some people talk about the need for orchestration of deployment. This is where multi‐
ple remote servers are involved, and things have to happen in a specific order. For
example, you need to bring up the database before bringing up the web servers, or
you need to take web servers out of the load balancer one at a time in order to
upgrade them without downtime. Ansible’s good at this as well, and is designed from
the ground up for performing actions on multiple servers. Ansible has a refreshingly
simple model for controlling the order that actions happen in.

Finally, you’ll hear people talk about provisioning new servers. In the context of public
clouds such as Amazon EC2, this refers to spinning up a new virtual machine
instance. Ansible’s got you covered here, with a number of modules for talking to
clouds, including EC2, Azure, Digital Ocean, Google Compute Engine, Linode, and
Rackspace, as well as any clouds that support the OpenStack APIs.

Confusingly, the Vagrant tool, which we’ll discuss later in this chap‐
ter, uses the term “provisioner” to refer to a tool that does the con‐
figuration management. So, Vagrant refers to Ansible as a kind of
provisioner, where I think of Vagrant as a provisioner, since
Vagrant is responsible for starting up virtual machines.

How Ansible Works
Figure 1-1 shows a sample use case of Ansible in action. A user we’ll call Stacy is
using Ansible to configure three Ubuntu-based web servers to run nginx. She has
written an Ansible script called webservers.yml. In Ansible, a script is called a play‐
book. A playbook describes which hosts (what Ansible calls remote servers) to config‐
ure, and an ordered list of tasks to perform on those hosts. In this example, the hosts
are web1, web2, and web3, and the tasks are things such as:

• Install nginx
• Generate an nginx configuration file
• Copy over the security certificate
• Start the nginx service

In the next chapter, we’ll discuss what’s actually in this playbook. Stacy executes the
playbook using the ansible-playbook command. In the example, the playbook is
named webservers.yml, and is executed by typing:

$ ansible-playbook webservers.yml

How Ansible Works | 3

Ansible will make SSH connections in parallel to web1, web2, and web3. It will exe‐
cute the first task on the list on all three hosts simultaneously. In this example, the
first task is installing the nginx apt package (since Ubuntu uses the apt package man‐
ager), so the task in the playbook would look something like this:

- name: install nginx
 apt: name=nginx

Ansible will:

1. Generate a Python script that installs the nginx package.
2. Copy the script to web1, web2, and web3.
3. Execute the script on web1, web2, web3.
4. Wait for the script to complete execution on all hosts.

Ansible will then move to the next task in the list, and go through these same four
steps. It’s important to note that:

• Ansible runs each task in parallel across all hosts.
• Ansible waits until all hosts have completed a task before moving to the next task.
• Ansible runs the tasks in the order that you specify them.

Figure 1-1. Running an Ansible playbook to configure three web servers

4 | Chapter 1: Introduction

What’s So Great About Ansible?
There are several open source configuration management tools out there to choose
from. Here are some of the things that drew me to Ansible in particular.

Easy-to-Read Syntax
Recall that Ansible configuration management scripts are called playbooks. Ansible’s
playbook syntax is built on top of YAML, which is a data format language that was
designed to be easy for humans to read and write. In a way, YAML is to JSON what
Markdown is to HTML.

I like to think of Ansible playbooks as executable documentation. It’s like the
README file that describes the commands you had to type out to deploy your soft‐
ware, except that the instructions will never go out-of-date because they are also the
code that gets executed directly.

Nothing to Install on the Remote Hosts
To manage a server with Ansible, the server needs to have SSH and Python 2.5 or
later installed, or Python 2.4 with the Python simplejson library installed. There’s no
need to preinstall an agent or any other software on the host.

The control machine (the one that you use to control remote machines) needs to have
Python 2.6 or later installed.

Some modules might require Python 2.5 or later, and some might
have additional prerequisites. Check the documentation for each
module to see whether it has specific requirements.

Push-Based
Some configuration management systems that use agents, such as Chef and Puppet,
are “pull-based” by default. Agents installed on the servers periodically check in with
a central service and pull down configuration information from the service. Making
configuration management changes to servers goes something like this:

1. You: make a change to a configuration management script.
2. You: push the change up to a configuration management central service.
3. Agent on server: wakes up after periodic timer fires.
4. Agent on server: connects to configuration management central service.
5. Agent on server: downloads new configuration management scripts.

What’s So Great About Ansible? | 5

6. Agent on server: executes configuration management scripts locally which
change server state.

In contrast, Ansible is “push-based” by default. Making a change looks like this:

1. You: make a change to a playbook.
2. You: run the new playbook.
3. Ansible: connects to servers and executes modules, which changes server state.

As soon as you run the ansible-playbook command, Ansible connects to the remote
server and does its thing.

The push-based approach has a significant advantage: you control when the changes
happen to the servers. You don’t need to wait around for a timer to expire. Advocates
of the pull-based approach claim that pull is superior for scaling to large numbers of
servers and for dealing with new servers that can come online anytime. However, as
we’ll discuss later in the book, Ansible has been used successfully in production with
thousands of nodes, and has excellent support for environments where servers are
dynamically added and removed.

If you really prefer using a pull-based model, Ansible has official support for pull
mode, using a tool it ships with called ansible-pull. I don’t cover pull mode in this
book, but you can read more about it in the official documentation.

Ansible Scales Down
Yes, Ansible can be used to manage hundreds or even thousands of nodes. But what
got me hooked is how it scales down. Using Ansible to configure a single node is easy;
you simply write a single playbook. Ansible obeys Alan Kay’s maxim: “Simple things
should be simple, complex things should be possible.”

Built-in Modules
You can use Ansible to execute arbitrary shell commands on your remote servers, but
Ansible’s real power comes from the collection of modules it ships with. You use
modules to perform tasks such as installing a package, restarting a service, or copying
a configuration file.

As we’ll see later, Ansible modules are declarative; you use them to describe the state
you want the server to be in. For example, you would invoke the user module like this
to ensure there was an account named “deploy” in the “web” group:

user: name=deploy group=web

Modules are also idempotent. If the “deploy” user doesn’t exist, then Ansible will cre‐
ate it. If it does exist, then Ansible won’t do anything. Idempotence is a nice property

6 | Chapter 1: Introduction

http://docs.ansible.com/playbooks_intro.html#ansible-pull

because it means that it’s safe to run an Ansible playbook multiple times against a
server. This is a big improvement over the homegrown shell script approach, where
running the shell script a second time might have a different (and likely unintended)
effect.

What About Convergence?
Books on configuration management often mention the concept of convergence. Con‐
vergence in configuration management is most closely associated with Mark Burgess
and the CFEngine configuration management system he authored.

If a configuration management system is convergent, then the system may run multi‐
ple times to put a server into its desired state, with each run bringing the server closer
to that state.

This idea of convergence doesn’t really apply to Ansible, as Ansible doesn’t have a
notion of running multiple times to configure servers. Instead, Ansible modules are
implemented in such a way that running an Ansible playbook a single time should
put each server into the desired state.

If you’re interested in what Ansible’s author thinks of the idea of convergence, see
Michael DeHaan’s post in the Ansible Project newsgroup, entitled, “Idempotence,
convergence, and other silly fancy words we use too often.”

Very Thin Layer of Abstraction
Some configuration management tools provide a layer of abstraction so that you can
use the same configuration management scripts to manage servers running different
operating systems. For example, instead of having to deal with a specific package
manager like yum or apt, the configuration management tool exposes a “package”
abstraction that you use instead.

Ansible isn’t like that. You have to use the apt module to install packages on apt-based
systems and the yum module to install packages on yum-based systems.

Although this might sound like a disadvantage, in practice, I’ve found that it makes
Ansible easier to work with. Ansible doesn’t require that I learn a new set of abstrac‐
tions that hide the differences between operating systems. This makes Ansible’s sur‐
face area smaller; there’s less you need to know before you can start writing
playbooks.

If you really want to, you can write your Ansible playbooks to take different actions,
depending on the operating system of the remote server. But I try to avoid that when
I can, and instead I focus on writing playbooks that are designed to run on a specific
operating system, such as Ubuntu.

What’s So Great About Ansible? | 7

http://bit.ly/1InGh1A

The primary unit of reuse in the Ansible community is the module. Because the
scope of a module is small and can be operating-system specific, it’s straightforward
to implement well-defined, shareable modules. The Ansible project is very open to
accepting modules contributed by the community. I know because I’ve contributed a
few.

Ansible playbooks aren’t really intended to be reused across different contexts. In
Chapter 8, we’ll discuss roles, which is a way of collecting playbooks together so they
are more reusable, as well as Ansible Galaxy, which is an online repository of these
roles.

In practice, though, every organization sets up its servers a little bit differently, and
you’re best off writing playbooks for your organization rather than trying to reuse
generic playbooks. I believe the primary value of looking at other people’s playbooks
is for examples to see how things are done.

What Is Ansible, Inc.’s Relationship to Ansible?
The name Ansible refers to both the software and the company that runs the open
source project. Michael DeHaan, the creator of Ansible the software, is the former
CTO of Ansible the company. To avoid confusion, I’ll refer to the software as Ansible
and to the company as Ansible, Inc.

Ansible, Inc. sells training and consulting services for Ansible, as well as a proprietary
web-based management tool called Ansible Tower.

Is Ansible Too Simple?
When I was working on this book, my editor mentioned to me that “some folks who
use the XYZ configuration management tool call Ansible a for-loop over SSH scripts.”
If you’re considering switching over from another config management tool, you
might be concerned at this point about whether Ansible is powerful enough to meet
your needs.

As you’ll soon learn, Ansible provides a lot more functionality than shell scripts. As I
mentioned, Ansible’s modules provide idempotence, and Ansible has excellent sup‐
port for templating, as well as defining variables at different scopes. Anybody who
thinks Ansible is equivalent to working with shell scripts has never had to maintain a
non-trivial program written in shell. I’ll always choose Ansible over shell scripts for
config management tasks if given a choice.

8 | Chapter 1: Introduction

3 For example, see “Using Ansible at Scale to Manage a Public Cloud” by Jesse Keating, formerly of Rackspace.

And if you’re worried about the scalability of SSH? As we’ll discuss in Chapter 9,
Ansible uses SSH multiplexing to optimize performance, and there are folks out there
who are managing thousands of nodes with Ansible.3

I’m not familiar enough with the other tools to describe their dif‐
ferences in detail. If you’re looking for a head-to-head comparison
of config management tools, check out Taste Test: Puppet, Chef,
Salt, Ansible by Matt Jaynes. As it happens, Matt prefers Ansible.

What Do I Need to Know?
To be productive with Ansible, you need to be familiar with basic Linux system
administration tasks. Ansible makes it easy to automate your tasks, but it’s not the
kind of tool that “automagically” does things that you otherwise wouldn’t know how
to do.

For this book, I assumed my readers would be familiar with at least one Linux distri‐
bution (e.g., Ubuntu, RHEL/CentOS, SUSE), and that they would know how to:

• Connect to a remote machine using SSH
• Interact with the bash command-line shell (pipes and redirection)
• Install packages
• Use the sudo command
• Check and set file permissions
• Start and stop services
• Set environment variables
• Write scripts (any language)

If these concepts are all familiar to you, then you’re good to go with Ansible.

I won’t assume you have knowledge of any particular programming language. For
instance, you don’t need to know Python to use Ansible unless you want to write your
own module.

Ansible uses the YAML file format and uses the Jinja2 templating languages, so you’ll
need to learn some YAML and Jinja2 to use Ansible, but both technologies are easy to
pick up.

What Do I Need to Know? | 9

http://www.slideshare.net/JesseKeating/ansiblefest-rax

What Isn’t Covered
This book isn’t an exhaustive treatment of Ansible. It’s designed to get you productive
in Ansible as quickly as possible and describe how to perform certain tasks that aren’t
obvious from glancing over the official documentation.

I don’t cover the official Ansible modules in detail. There are over 200 of these, and
the official Ansible reference documentation on the modules is quite good.

I only cover the basic features of the templating engine that Ansible uses, Jinja2, pri‐
marily because I find that I generally only need to use the basic features of Jinja2
when I use Ansible. If you need to use more advanced Jinja2 features in your tem‐
plates, I recommend you check out the official Jinja2 documentation.

I don’t go into detail about some features of Ansible that are mainly useful when you
are running Ansible on an older version of Linux. This includes features such as the
paramiko SSH client and accelerated mode. For these issues, I mention them in pass‐
ing and put links to the official documentation.

In version 1.7, Ansible added support for managing Windows servers. I don’t cover
the Windows support in this book because I don’t have experience managing Win‐
dows servers with Ansible, and because I think this is still a niche use. A proper treat‐
ment of using Ansible with Windows hosts probably deserves its own book.

I don’t discuss Ansible Tower, which is a commercial web-based tool for managing
Ansible, developed by Ansible, Inc. This book focuses on Ansible itself, which is fully
open source, including all of the modules.

Finally, there are several features of Ansible I don’t cover simply to keep the book a
manageable length. These features include pull mode, logging, connecting to hosts
using protocols other than SSH, and prompting the user for passwords or input. I
encourage you to check out the official docs to find out more about these features.

Installing Ansible
If you’re running on a Linux machine, all of the major Linux distributions package
Ansible these days, so you should be able to install it using your native package man‐
ager, although this might be an older version of Ansible. If you’re running on Mac OS
X, I recommend you use the excellent Homebrew package manager to install Ansible.

If all else fails, you can install it using pip, Python’s package manager. You can install it
as root by running:

$ sudo pip install ansible

10 | Chapter 1: Introduction

http://jinja.pocoo.org/docs/dev/

If you don’t want to install Ansible as root, you can safely install it into a Python vir‐
tualenv. If you’re not familiar with virtualenvs, you can use a newer tool called pipsi
that will automatically install Ansible into a virtualenv for you:

$ wget https://raw.githubusercontent.com/mitsuhiko/pipsi/master/get-pipsi.py
$ python get-pipsi.py
$ pipsi install ansible

If you go the pipsi route, you’ll need to update your PATH environment variable to
include ~/.local/bin. Some Ansible plug-ins and modules might require additional
Python libraries. If you’ve installed with pipsi, and you wanted to install docker-py
(needed by the Ansible Docker modules) and boto (needed by the Ansible EC2 mod‐
ules), you’d do it like this:

$ cd ~/.local/venvs/ansible
$ source bin/activate
$ pip install docker-py boto

If you’re feeling adventurous and want to use the bleeding-edge version of Ansible,
you can grab the development branch from GitHub:

$ git clone https://github.com/ansible/ansible.git --recursive

If you’re running Ansible from the development branch, you’ll need to run these
commands each time to set up your environment variables, including your PATH
variable so that your shell knows where the ansible and ansible-playbooks programs
are.

$ cd ./ansible
$ source ./hacking/env-setup

For more details on installation see:

• Official Ansible install docs
• Pip
• Virtualenv
• Pipsi

Setting Up a Server for Testing
You’ll need to have SSH access and root privileges on a Linux server to follow along
with the examples in this book. Fortunately, these days it’s easy to get low-cost access
to a Linux virtual machine through a public cloud service such as Amazon EC2, Goo‐

Setting Up a Server for Testing | 11

http://docs.ansible.com/intro_installation.html
http://pip.readthedocs.org/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/mitsuhiko/pipsi

4 Yes, Azure supports Linux servers.
5 Vagrant uses the terms machine to refer to a virtual machine and box to refer to a virtual machine image.

gle Compute Engine, Microsoft Azure,4 Digital Ocean, Rackspace, SoftLayer, HP
Public Cloud, Linode…you get the idea.

Using Vagrant to Set Up a Test Server
If you’d prefer not to spend the money on a public cloud, I recommend you install
Vagrant on your machine. Vagrant is an excellent open source tool for managing vir‐
tual machines. You can use Vagrant to boot a Linux virtual machine inside of your
laptop, and we can use that as a test server.

Vagrant has built-in support for provisioning virtual machines with Ansible, but we’ll
talk about that in detail in Chapter 11. For now, we’ll just manage a Vagrant virtual
machine as if it were a regular Linux server.

Vagrant needs the VirtualBox virtualizer to be installed on your machine. Download
VirtualBox and then download Vagrant.

I recommend you create a directory for your Ansible playbooks and related files. In
the following example, I’ve named mine playbooks.

Run the following commands to create a Vagrant configuration file (Vagrantfile) for
an Ubuntu 14.04 (Trusty Tahr) 64-bit virtual machine image,5 and boot it.

$ mkdir playbooks
$ cd playbooks
$ vagrant init ubuntu/trusty64
$ vagrant up

The first time you do vagrant up, it will download the virtual
machine image file, which might take a while depending on your
Internet connection.

If all goes well, the output should look like this:

A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'ubuntu/trusty64' could not be found. Attempting to
find and install...
 default: Box Provider: virtualbox

12 | Chapter 1: Introduction

http://www.virtualbox.org
http://www.vagrantup.com

 default: Box Version: >= 0
==> default: Loading metadata for box 'ubuntu/trusty64'
 default: URL: https://vagrantcloud.com/ubuntu/trusty64
==> default: Adding box 'ubuntu/trusty64' (v14.04) for provider: virtualbox
 default: Downloading: https://vagrantcloud.com/ubuntu/trusty64/version/1/
 provider/virtualbox.box
==> default: Successfully added box 'ubuntu/trusty64' (v14.04) for 'virtualbox'!
==> default: Importing base box 'ubuntu/trusty64'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box 'ubuntu/trusty64' is up to date...
==> default: Setting the name of the VM: playbooks_default_1423013257297_44645
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 22 => 2222 (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection timeout. Retrying...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Mounting shared folders...
 default: /vagrant => /Users/lorinhochstein/dev/ansiblebook/ch01/playbooks

You should be able to SSH into your new Ubuntu 14.04 virtual machine by running:

$ vagrant ssh

If this works, you should see a login screen like this:

Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-35-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Sun Aug 31 04:07:21 UTC 2014

 System load: 0.0 Processes: 73
 Usage of /: 2.7% of 39.34GB Users logged in: 0
 Memory usage: 25% IP address for eth0: 10.0.2.15
 Swap usage: 0%

 Graph this data and manage this system at:
 https://landscape.canonical.com/

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

Setting Up a Server for Testing | 13

Last login: Sun Aug 31 04:07:21 2014 from 10.0.2.2

Type exit to quit the SSH session.

This approach lets us interact with the shell, but Ansible needs to connect to the vir‐
tual machine using the regular SSH client, not the vagrant ssh command.

Tell Vagrant to output the SSH connection details by typing:

$ vagrant ssh-config

On my machine, the output looks like this:

Host default
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorinhochstein/dev/ansiblebook/ch01/playbooks/.vagrant/
 machines/default/virtualbox/private_key
 IdentitiesOnly yes
 LogLevel FATAL

The important lines are:

 HostName 127.0.0.1
 User vagrant
 Port 2222
 IdentityFile /Users/lorinhochstein/dev/ansiblebook/ch01/playbooks/.vagrant/
 machines/default/virtualbox/private_key

Vagrant 1.7 changed how it handled private SSH keys. Starting with
1.7, Vagrant generates a new private key for each machine. Earlier
versions used the same key, which was in the default location of
~/.vagrant.d/insecure_private_key. The examples in this book use
Vagrant 1.7.

In your case, every field should likely be the same except for the path of the Identity‐
File.

Confirm that you can start an SSH session from the command line using this infor‐
mation. In my case, the SSH command is:

$ ssh vagrant@127.0.0.1 -p 2222 -i /Users/lorinhochstein/dev/ansiblebook/ch01/
playbooks/.vagrant/machines/default/virtualbox/private_key

You should see the Ubuntu login screen. Type exit to quit the SSH session.

14 | Chapter 1: Introduction

Telling Ansible About Your Test Server
Ansible can manage only the servers it explicitly knows about. You provide Ansible
with information about servers by specifying them in an inventory file.

Each server needs a name that Ansible will use to identify it. You can use the host‐
name of the server, or you can give it an alias and pass some additional arguments to
tell Ansible how to connect to it. We’ll give our Vagrant server the alias of test
server.

Create a file called hosts in the playbooks directory. This file will serve as the inventory
file. If you’re using a Vagrant machine as your test server, your hosts file should look
like Example 1-1. I’ve broken the file contents up across multiple lines so that it fits
on the page, but it should be all on one line in your file, without any backslashes.

Example 1-1. playbooks/hosts

testserver ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222 \
 ansible_ssh_user=vagrant \
 ansible_ssh_private_key_file=.vagrant/machines/default/virtualbox/private_key

Here we see one of the drawbacks of using Vagrant. We have to explicitly pass in extra
arguments to tell Ansible how to connect. In most cases, we won’t need this extra
data.

Later on in this chapter, we’ll see how we can use the ansible.cfg file to avoid having to
be so verbose in the inventory file. In later chapters, we’ll see how to use Ansible vari‐
ables to similar effect.

If you have an Ubuntu machine on Amazon EC2 with a hostname like
ec2-203-0-113-120.compute-1.amazonaws.com, then your inventory file will look
something like (all on one line):

testserver ansible_ssh_host=ec2-203-0-113-120.compute-1.amazonaws.com \
 ansible_ssh_user=ubuntu ansible_ssh_private_key_file=/path/to/keyfile.pem

Ansible supports the ssh-agent program, so you don’t need to
explicitly specify SSH key files in your inventory files. See “SSH
Agent” on page 273 for more details if you haven’t used ssh-agent
before.

We’ll use the ansible command-line tool to verify that we can use Ansible to connect
to the server. You won’t use the ansible command very often; it’s mostly used for ad
hoc, one-off things.

Setting Up a Server for Testing | 15

Let’s tell Ansible to connect to the server named testserver described in the inven‐
tory file named hosts and invoke the ping module:

$ ansible testserver -i hosts -m ping

If your local SSH client has host key verification enabled, you might see something
that looks like this the first time Ansible tries to connect to the server:

The authenticity of host '[127.0.0.1]:2222 ([127.0.0.1]:2222)' \
can't be established.
RSA key fingerprint is e8:0d:7d:ef:57:07:81:98:40:31:19:53:a8:d0:76:21.
Are you sure you want to continue connecting (yes/no)?

You can just type yes.

If it succeeded, output will look like this:

testserver | success >> {
 "changed": false,
 "ping": "pong"
}

If Ansible did not succeed, add the -vvvv flag to see more details
about the error:

$ ansible testserver -i hosts -m ping -vvvv

We can see that the module succeeded. The "changed": false part of the output tells
us that executing the module did not change the state of the server. The "ping":
"pong" text is output that is specific to the ping module.

The ping module doesn’t actually do anything other than check that Ansible can start
an SSH session with the servers. It’s a useful tool for testing that Ansible can connect
to the server.

Simplifying with the ansible.cfg File
We had to type a lot of text in the inventory file to tell Ansible about our test server.
Fortunately, Ansible has a number of ways you can specify these sorts of variables so
we don’t have to put them all in one place.

Right now, we’ll use one such mechanism, the ansible.cfg file, to set some defaults so
we don’t need to type as much.

16 | Chapter 1: Introduction

Where Should I Put My ansible.cfg File?
Ansible looks for an ansible.cfg file in the following places, in this order:

1. File specified by the ANSIBLE_CONFIG environment variable
2. ./ansible.cfg (ansible.cfg in the current directory)
3. ~/.ansible.cfg (.ansible.cfg in your home directory)
4. /etc/ansible/ansible.cfg

I typically put an ansible.cfg in the current directory, alongside my playbooks. That
way, I can check it into the same version control repository my playbooks are in.

Example 1-2 shows an ansible.cfg file that specifies the location of the inventory file
(hostfile), the user to SSH (remote_user), and the SSH private key (private_key_file).
This assumes you’re using Vagrant. If you’re using your own server, you’ll need to set
the remote_user and private_key_file values accordingly.

Our example configuration also disables SSH host key checking. This is convenient
when dealing with Vagrant machines; otherwise, we need to edit our ~/.ssh/
known_hosts file every time we destroy and recreate a Vagrant machine. However,
disabling host key checking can be a security risk when connecting to other servers
over the network. If you’re not familiar with host keys, they are covered in detail in
Appendix A.

Example 1-2. ansible.cfg

[defaults]
hostfile = hosts
remote_user = vagrant
private_key_file = .vagrant/machines/default/virtualbox/private_key
host_key_checking = False

Ansible and Version Control
Ansible uses /etc/ansible/hosts as the default location for the inventory file. However, I
never use this because I like to keep my inventory files version controlled alongside
my playbooks.

Although we don’t cover the topic of version control in this book, I strongly recom‐
mend you use a version control system like Git for maintaining all of your playbooks.
If you’re a developer, you’re already familiar with version control systems. If you’re a

Setting Up a Server for Testing | 17

systems administrator and aren’t using version control yet, this is a perfect opportu‐
nity to get started.

With our default values set, we no longer need to specify the SSH user or key file in
our hosts file. Instead, it simplifies to:

testserver ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222

We can also invoke ansible without passing the -i hostname arguments, like so:

$ ansible testserver -m ping

I like to use the ansible command-line tool to run arbitrary commands on remote
machines, like parallel SSH. You can execute arbitrary commands with the command
module. When invoking this module, you also need to pass an argument to the mod‐
ule with the -a flag, which is the command to run.

For example, to check the uptime of our server, we can use:

$ ansible testserver -m command -a uptime

Output should look like this:

testserver | success | rc=0 >>
 17:14:07 up 1:16, 1 user, load average: 0.16, 0.05, 0.04

The command module is so commonly used that it’s the default module, so we can
omit it:

$ ansible testserver -a uptime

If our command contains spaces, we need to quote it so that the shell passes the entire
string as a single argument to Ansible. For example, to view the last several lines of
the /var/log/dmesg logfile:

$ ansible testserver -a "tail /var/log/dmesg"

The output from my Vagrant machine looks like this:

testserver | success | rc=0 >>
[5.170544] type=1400 audit(1409500641.335:9): apparmor="STATUS" operation=
"profile_replace" profile="unconfined" name="/usr/lib/NetworkManager/nm-dhcp-c
lient.act on" pid=888 comm="apparmor_parser"
[5.170547] type=1400 audit(1409500641.335:10): apparmor="STATUS" operation=
"profile_replace" profile="unconfined" name="/usr/lib/connman/scripts/dhclient-
script" pid=888 comm="apparmor_parser"
[5.222366] vboxvideo: Unknown symbol drm_open (err 0)
[5.222370] vboxvideo: Unknown symbol drm_poll (err 0)
[5.222372] vboxvideo: Unknown symbol drm_pci_init (err 0)
[5.222375] vboxvideo: Unknown symbol drm_ioctl (err 0)
[5.222376] vboxvideo: Unknown symbol drm_vblank_init (err 0)
[5.222378] vboxvideo: Unknown symbol drm_mmap (err 0)

18 | Chapter 1: Introduction

[5.222380] vboxvideo: Unknown symbol drm_pci_exit (err 0)
[5.222381] vboxvideo: Unknown symbol drm_release (err 0)

If we need root access, we pass in the -s flag to tell Ansible to sudo as root. For exam‐
ple, to access /var/log/syslog requires root access:

$ ansible testserver -s -a "tail /var/log/syslog"

The output looks something like this:

testserver | success | rc=0 >>
Aug 31 15:57:49 vagrant-ubuntu-trusty-64 ntpdate[1465]: /
adjust time server 91.189
94.4 offset -0.003191 sec
Aug 31 16:17:01 vagrant-ubuntu-trusty-64 CRON[1480]: (root) CMD (cd /
&& run-p
rts --report /etc/cron.hourly)
Aug 31 17:04:18 vagrant-ubuntu-trusty-64 ansible-ping: Invoked with data=None
Aug 31 17:12:33 vagrant-ubuntu-trusty-64 ansible-ping: Invoked with data=None
Aug 31 17:14:07 vagrant-ubuntu-trusty-64 ansible-command: Invoked with executable
None shell=False args=uptime removes=None creates=None chdir=None
Aug 31 17:16:01 vagrant-ubuntu-trusty-64 ansible-command: Invoked with executable
None shell=False args=tail /var/log/messages removes=None creates=None chdir=None
Aug 31 17:17:01 vagrant-ubuntu-trusty-64 CRON[2091]: (root) CMD (cd /
&& run-pa
rts --report /etc/cron.hourly)
Aug 31 17:17:09 vagrant-ubuntu-trusty-64 ansible-command: Invoked with /
executable=
N one shell=False args=tail /var/log/dmesg removes=None creates=None chdir=None
Aug 31 17:19:01 vagrant-ubuntu-trusty-64 ansible-command: Invoked with /
executable=
None shell=False args=tail /var/log/messages removes=None creates=None chdir=None
Aug 31 17:22:32 vagrant-ubuntu-trusty-64 ansible-command: Invoked with /
executable=
one shell=False args=tail /var/log/syslog removes=None creates=None chdir=None

We can see from this output that Ansible writes to the syslog as it runs.

You aren’t just restricted to the ping and command modules when using the ansible
command-line tool: you can use any module that you like. For example, you can
install nginx on Ubuntu using the follow command:

$ ansible testserver -s -m apt -a name=nginx

If installing nginx fails for you, you might need to update the pack‐
age lists. To tell Ansible to do the equivalent of apt-get update
before installing the package, change the argument from
name=nginx to "name=nginx update_cache=yes"
You can restart nginx by doing:

$ ansible testserver -s -m service -a "name=nginx \
 state=restarted"

Setting Up a Server for Testing | 19

We need the -s argument to use sudo because only root can install the nginx package
and restart services.

Moving Forward
To recap, in this introductory chapter, we’ve covered the basic concepts of Ansible at a
high level, including how it communicates with remote servers and how it differs
from other configuration management tools. We’ve also seen how to use the ansible
command-line tool to perform simple tasks on a single host.

However, using ansible to run commands against single hosts isn’t terribly interesting.
In the next chapter, we’ll cover playbooks, where the real action is.

20 | Chapter 1: Introduction

CHAPTER 2

Playbooks: A Beginning

Most of your time in Ansible will be spent writing playbooks. A playbook is the term
that Ansible uses for a configuration management script. Let’s look at an example:
installing the nginx web server and configuring it for secure communication.

If you’re following along in this chapter, you should end up with the files listed here:

• playbooks/ansible.cfg
• playbooks/hosts
• playbooks/Vagrantfile
• playbooks/web-notls.yml
• playbooks/web-tls.yml
• playbooks/files/nginx.key
• playbooks/files/nginx.crt
• playbooks/files/nginx.conf
• playbooks/templates/index.html.j2
• playbooks/templates/nginx.conf.j2

Some Preliminaries
Before we can run this playbook against our Vagrant machine, we need to expose
ports 80 and 443, so we can access them. As shown in Figure 2-1, we are going to
configure Vagrant so that requests to ports 8080 and 8443 on our local machine are
forwarded to ports 80 and 443 on the Vagrant machine. This will allow us to access

21

the web server running inside Vagrant at http://localhost:8080 and https://localhost:
8443.

Figure 2-1. Exposing ports on Vagrant machine

Modify your Vagrantfile so it looks like this:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.network "forwarded_port", guest: 80, host: 8080
 config.vm.network "forwarded_port", guest: 443, host: 8443
end

This maps port 8080 on your local machine to port 80 of the Vagrant machine, and
port 8443 on your local machine to port 443 on the Vagrant machine. Once you make
the changes, tell Vagrant to have them go into effect by running:

$ vagrant reload

You should see output that includes:

==> default: Forwarding ports...
 default: 80 => 8080 (adapter 1)
 default: 443 => 8443 (adapter 1)
 default: 22 => 2222 (adapter 1)

A Very Simple Playbook
For our first example playbook, we’ll configure a host to run an nginx web server. For
this example, we won’t configure the web server to support TLS encryption. This will
make setting up the web server simpler, but a proper website should have TLS
encryption enabled, and we’ll cover how to do that later on in this chapter.

22 | Chapter 2: Playbooks: A Beginning

http://localhost:8080
https://localhost:8443
https://localhost:8443

First, we’ll see what happens when we run the playbook in Example 2-1, and then
we’ll go over the contents of the playbook in detail.

Example 2-1. web-notls.yml

- name: Configure webserver with nginx
 hosts: webservers
 sudo: True
 tasks:
 - name: install nginx
 apt: name=nginx update_cache=yes

 - name: copy nginx config file
 copy: src=files/nginx.conf dest=/etc/nginx/sites-available/default

 - name: enable configuration
 file: >
 dest=/etc/nginx/sites-enabled/default
 src=/etc/nginx/sites-available/default
 state=link

 - name: copy index.html
 template: src=templates/index.html.j2 dest=/usr/share/nginx/html/index.html
 mode=0644

 - name: restart nginx
 service: name=nginx state=restarted

Why Do You Use “True” in One Place and “Yes” in Another?
Sharp-eyed readers might have noticed that Example 2-1 uses True in one spot in the
playbook (to enable sudo) and yes in another spot in the playbook (to update the apt
cache).

Ansible is pretty flexible on how you represent truthy and falsey values in playbooks.
Strictly speaking, module arguments (like update_cache=yes) are treated differently
from values elsewhere in playbooks (like sudo: True). Values elsewhere are handled
by the YAML parser and so use the YAML conventions of truthiness, which are:

YAML truthy
true, True, TRUE, yes, Yes, YES, on, On, ON, y, Y

YAML falsey
false, False, FALSE, no, No, NO, off, Off, OFF, n, N

Module arguments are passed as strings and use Ansible’s internal conventions, which
are:

A Very Simple Playbook | 23

1 Note that while we call this file nginx.conf, it replaces the sites-enabled/default nginx server block config file,
not the main /etc/nginx.conf config file.

module arg truthy
yes, on, 1, true

module arg falsey
no, off, 0, false

I tend to follow the examples in the official Ansible documentation. These typically
use yes and no when passing arguments to modules (since that’s consistent with the
module documentation), and True and False elsewhere in playbooks.

Specifying an nginx Config File
This playbook requires two additional files before we can run it. First, we need to
define an nginx configuration file.

Nginx ships with a configuration file that works out of the box if you just want to
serve static files. But you’ll almost always need to customize this, so we’ll overwrite
the default configuration file with our own as part of this playbook. As we’ll see later,
we’ll need to modify this configuration file to support TLS. Example 2-2 shows a
basic nginx config file. Put it in playbooks/files/nginx.conf.1

Example 2-2. files/nginx.conf

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 root /usr/share/nginx/html;
 index index.html index.htm;

 server_name localhost;

 location / {
 try_files $uri $uri/ =404;
 }
}

An Ansible convention is to keep files in a subdirectory named files
and Jinja2 templates in a subdirectory named templates. I’ll follow
this convention throughout the book.

24 | Chapter 2: Playbooks: A Beginning

Creating a Custom Homepage
Let’s add a custom homepage. We’re going to use Ansible’s template functionality so
that Ansible will generate the file from a template. Put the file shown in Example 2-3
in playbooks/templates/index.html.j2.

Example 2-3. playbooks/templates/index.html.j2

<html>
 <head>
 <title>Welcome to ansible</title>
 </head>
 <body>
 <h1>nginx, configured by Ansible</h1>
 <p>If you can see this, Ansible successfully installed nginx.</p>

 <p>{{ ansible_managed }}</p>
 </body>
</html>

This template references a special Ansible variable named ansible_managed. When
Ansible renders this template, it will replace this variable with information about
when the template file was generated. Figure 2-2 shows a screenshot of a web browser
viewing the generated HTML.

Figure 2-2. Rendered HTML

Creating a Webservers Group
Let’s create a “webservers” group in our inventory file so that we can refer to this
group in our playbook. For now, this group will contain our testserver.

Inventory files are in the .ini file format. We’ll go into this format in detail later in the
book. Edit your playbooks/hosts file to put a [webservers] line above the testserver
line, as shown in Example 2-4. This indicates that testserver is in the webservers
group.

A Very Simple Playbook | 25

Example 2-4. playbooks/hosts

[webservers]
testserver ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222

You should now be able to ping the webservers group using the ansible command-
line tool:

$ ansible webservers -m ping

The output should look like this:

testserver | success >> {
 "changed": false,
 "ping": "pong"
}

Running the Playbook
The ansible-playbook command executes playbooks. To run the playbook, do:

$ ansible-playbook web-notls.yml

Example 2-5 shows what the output should look.

Example 2-5. Output of ansible-playbook

PLAY [Configure webserver with nginx] *********************************

GATHERING FACTS ***
ok: [testserver]

TASK: [install nginx] ***
changed: [testserver]

TASK: [copy nginx config file] **
changed: [testserver]

TASK: [enable configuration] **
ok: [testserver]

TASK: [copy index.html] ***
changed: [testserver]

TASK: [restart nginx] ***
changed: [testserver]

PLAY RECAP **
testserver : ok=6 changed=4 unreachable=0 failed=0

26 | Chapter 2: Playbooks: A Beginning

2 If you encountered an error, you might want to skip to Chapter 14 for assistance on debugging.
3 Colloquially referred to as a “shebang.”

Cowsay
If you have the cowsay program installed on your local machine, then Ansible output
will look like this instead:

< PLAY [Configure webserver with nginx] >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

If you don’t want to see the cows, you can disable cowsay by setting the
ANSIBLE_NOCOWS environment variable like this:

$ export ANSIBLE_NOCOWS=1

You can also disable cowsay by adding the following to your ansible.cfg file.

[defaults]
nocows = 1

If you didn’t get any errors,2 you should be able to point your browser to http://local
host:8080 and see the custom HTML page, as shown in Figure 2-2.

If your playbook file is marked as executable and starts with a line
that looks like this:3

#!/usr/bin/env ansible-playbook

then you can execute it by invoking it directly, like this:
$./web-notls.yml

Running the Playbook | 27

http://localhost:8080
http://localhost:8080

What’s This “Gathering Facts” Business?
You might have noticed the following lines of output when Ansible first starts to run:

GATHERING FACTS **
ok: [testserver]

When Ansible starts executing a play, the first thing it does is collect information
about the server it is connecting to, including which operating system is running,
hostname, IP and MAC addresses of all interfaces, and so on.

You can then use this information later on in the playbook. For example, you might
need the IP address of the machine for populating a configuration file.

You can turn off fact gathering if you don’t need it, in order to save some time. We’ll
cover the use of facts and how to disable fact gathering in a later chapter.

Playbooks Are YAML
Ansible playbooks are written in YAML syntax. YAML is a file format similar in
intent to JSON, but generally easier for humans to read and write. Before we go over
the playbook, let’s cover the concepts of YAML that are most important for writing
playbooks.

Start of File
YAML files are supposed to start with three dashes to indicate the beginning of the
document:

However, if you forget to put those three dashes at the top of your playbook files,
Ansible won’t complain.

Comments
Comments start with a number sign and apply to the end of the line, the same as in
shell scripts, Python, and Ruby:

This is a YAML comment

Strings
In general, YAML strings don’t have to be quoted, although you can quote them if
you prefer. Even if there are spaces, you don’t need to quote them. For example, this is
a string in YAML:

28 | Chapter 2: Playbooks: A Beginning

this is a lovely sentence

The JSON equivalent is:

"this is a lovely sentence"

There are some scenarios in Ansible where you will need to quote strings. These typi‐
cally involve the use of {{ braces }} for variable substitution. We’ll get to those later.

Booleans
YAML has a native Boolean type, and provides you with a wide variety of strings that
can be interpreted as true or false, which we covered in “Why Do You Use “True” in
One Place and “Yes” in Another?” on page 23.

Personally, I always use True and False in my Ansible playbooks.

For example, this is a Boolean in YAML:

True

The JSON equivalent is:

true

Lists
YAML lists are like arrays in JSON and Ruby or lists in Python. Technically, these are
called sequences in YAML, but I call them lists here to be consistent with the official
Ansible documentation.

They are delimited with hyphens, like this:

- My Fair Lady
- Oklahoma
- The Pirates of Penzance

The JSON equivalent is:

[
 "My Fair Lady",
 "Oklahoma",
 "The Pirates of Penzance"
]

(Note again how we didn’t have to quote the strings in YAML, even though they have
spaces in them.)

YAML also supports an inline format for lists, which looks like this:

[My Fair Lady, Oklahoma, The Pirates of Penzance]

Playbooks Are YAML | 29

Dictionaries
YAML dictionaries are like objects in JSON, dictionaries in Python, or hashes in Ruby.
Technically, these are called mappings in YAML, but I call them dictionaries here to be
consistent with the official Ansible documentation.

They look like this:

address: 742 Evergreen Terrace
city: Springfield
state: North Takoma

The JSON equivalent is:

{
 "address": "742 Evergreen Terrace",
 "city": "Springfield",
 "state": "North Takoma"
}

YAML also supports an inline format for dictionaries, which looks like this:

{address: 742 Evergreen Terrace, city: Springfield, state: North Takoma}

Line Folding
When writing playbooks, you’ll often encounter situations where you’re passing
many arguments to a module. For aesthetics, you might want to break this up across
multiple lines in your file, but you want Ansible to treat the string as if it were a single
line.

You can do this with YAML using line folding with the greater than (>) character. The
YAML parser will replace line breaks with spaces. For example:

address: >
 Department of Computer Science,
 A.V. Williams Building,
 University of Maryland
city: College Park
state: Maryland

The JSON equivalent is:

{
 "address": "Department of Computer Science, A.V. Williams Building,
 University of Maryland",
 "city": "College Park",
 "state": "Maryland"
}

30 | Chapter 2: Playbooks: A Beginning

Anatomy of a Playbook
Let’s take a look at our playbook from the perspective of a YAML file. Here it is again,
in Example 2-6.

Example 2-6. web-notls.yml

- name: Configure webserver with nginx
 hosts: webservers
 sudo: True
 tasks:
 - name: install nginx
 apt: name=nginx update_cache=yes

 - name: copy nginx config file
 copy: src=files/nginx.conf dest=/etc/nginx/sites-available/default

 - name: enable configuration
 file: >
 dest=/etc/nginx/sites-enabled/default
 src=/etc/nginx/sites-available/default
 state=link

 - name: copy index.html
 template: src=templates/index.html.j2 dest=/usr/share/nginx/html/index.html
 mode=0644

 - name: restart nginx
 service: name=nginx state=restarted

In Example 2-7, we see the JSON equivalent of this file.

Example 2-7. JSON equivalent of web-notls.yml

[
 {
 "name": "Configure webserver with nginx",
 "hosts": "webservers",
 "sudo": true,
 "tasks": [
 {
 "name": "Install nginx",
 "apt": "name=nginx update_cache=yes"
 },
 {
 "name": "copy nginx config file",
 "template": "src=files/nginx.conf dest=/etc/nginx/
 sites-available/default"
 },
 {

Anatomy of a Playbook | 31

4 Actually, it’s a list that contains a single play.

 "name": "enable configuration",
 "file": "dest=/etc/nginx/sites-enabled/default src=/etc/nginx/sites-available
/default state=link"
 },
 {
 "name": "copy index.html",
 "template" : "src=templates/index.html.j2 dest=/usr/share/nginx/html/
 index.html mode=0644"
 },
 {
 "name": "restart nginx",
 "service": "name=nginx state=restarted"
 }
]
 }
]

A valid JSON file is also a valid YAML file. This is because YAML
allows strings to be quoted, considers true and false to be valid
Booleans, and has inline lists and dictionary syntaxes that are the
same as JSON arrays and objects. But don’t write your playbooks as
JSON—the whole point of YAML is that it’s easier for people to
read.

Plays
Looking at either the YAML or JSON representation, it should be clear that a play‐
book is a list of dictionaries. Specifically, a playbook is a list of plays.

Here’s the play4 from our example:

- name: Configure webserver with nginx
 hosts: webservers
 sudo: True
 tasks:
 - name: install nginx
 apt: name=nginx update_cache=yes

 - name: copy nginx config file
 copy: src=files/nginx.conf dest=/etc/nginx/sites-available/default

 - name: enable configuration
 file: >
 dest=/etc/nginx/sites-enabled/default
 src=/etc/nginx/sites-available/default
 state=link

32 | Chapter 2: Playbooks: A Beginning

 - name: copy index.html
 template: src=templates/index.html.j2
 dest=/usr/share/nginx/html/index.html mode=0644

 - name: restart nginx
 service: name=nginx state=restarted

Every play must contain:

• A set of hosts to configure
• A list of tasks to be executed on those hosts

Think of a play as the thing that connects hosts to tasks.

In addition to specifying hosts and tasks, plays also support a number of optional set‐
tings. We’ll get into those later, but three common ones are:

name

A comment that describes what the play is about. Ansible will print this out when
the play starts to run.

sudo

If true, Ansible will run every task by sudo’ing as (by default) the root user. This
is useful when managing Ubuntu servers, since by default you cannot SSH as the
root user.

vars

A list of variables and values. We’ll see this in action later in this chapter.

Tasks
Our example playbook contains one play that has five tasks. Here’s the first task of
that play:

- name: install nginx
 apt: name=nginx update_cache=yes

The name is optional, so it’s perfectly valid to write a task like this:

- apt: name=nginx update_cache=yes

Even though names are optional, I recommend you use them because they serve as
good reminders for the intent of the task. (Names will be very useful when somebody
else is trying to understand your playbook, including yourself in six months.) As
we’ve seen, Ansible will print out the name of a task when it runs. Finally, as we’ll see
in Chapter 14, you can use the --start-at-task <task name> flag to tell ansible-
playbook to start a playbook in the middle of a task, but you need to reference the
task by name.

Anatomy of a Playbook | 33

5 The modules that ship with Ansible all are written in Python, but modules can be written in any language.

Every task must contain a key with the name of a module and a value with the argu‐
ments to that module. In the preceding example, the module name is apt and the
arguments are name=nginx update_cache=yes.

These arguments tell the apt module to install the package named nginx and to
update the package cache (the equivalent of doing an apt-get update) before instal‐
ling the package.

It’s important to understand that, from the point of the view of the YAML parser used
by the Ansible frontend, the arguments are treated as a string, not as a dictionary.
This means that if you want to break up arguments into multiple lines, you need to
use the YAML folding syntax, like this:

- name: install nginx
 apt: >
 name=nginx
 update_cache=yes

Ansible also supports a task syntax that will let you specify module arguments as a
YAML dictionary, which is helpful when using modules that support complex argu‐
ments. We’ll cover that in “Complex Arguments in Tasks: A Brief Digression” on page
99.

Ansible also supports an older syntax that uses action as the key and puts the name
of the module in the value. The preceding example also can be written as:

- name: install nginx
 action: apt name=nginx update_cache=yes

Modules
Modules are scripts5 that come packaged with Ansible and perform some kind of
action on a host. Admittedly, that’s a pretty generic description, but there’s enormous
variety across Ansible modules. The modules we use in this chapter are:

apt
Installs or removes packages using the apt package manager.

copy
Copies a file from local machine to the hosts.

file
Sets the attribute of a file, symlink, or directory.

service
Starts, stops, or restarts a service.

34 | Chapter 2: Playbooks: A Beginning

template
Generates a file from a template and copies it to the hosts.

Viewing Ansible Module Documentation
Ansible ships with the ansible-doc command-line tool, which shows documentation
about modules. Think of it as man pages for Ansible modules. For example, to show
the documentation for the service module, run:

$ ansible-doc service

If you use Mac OS X, there’s a wonderful documentation viewer called Dash that has
support for Ansible. Dash indexes all of the Ansible module documentation. It’s a
commercial tool ($19.99 as of this writing), but I find it invaluable.

Recall from the first chapter that Ansible executes a task on a host by generating a
custom script based on the module name and arguments, and then copies this script
to the host and runs it.

There are over 200 modules that ship with Ansible, and this number grows with
every release. You can also find third-party Ansible modules out there, or write your
own.

Putting It All Together
To sum up, a playbook contains one or more plays. A play associates an unordered set
of hosts with an ordered list of task_. Each task is associated with exactly one module.

Figure 2-3 is an entity-relationship diagram that depicts this relationship between
playbooks, plays, hosts, tasks, and modules.

Figure 2-3. Entity-relationship diagram

Anatomy of a Playbook | 35

http://kapeli.com/dash

Did Anything Change? Tracking Host State
When you run ansible-playbook, Ansible outputs status information for each task it
executes in the play.

Looking back at Example 2-5, notice that the status for some of the tasks is changed,
and the status for some others is ok. For example, the install nginx task has status
changed, which appears as yellow on my terminal.

TASK: [install nginx] ***
changed: [testserver]

The enable configuration, on the other hand, has status ok, which appears as green
on my terminal:

TASK: [enable configuration] **
ok: [testserver]

Any Ansible task that runs has the potential to change the state of the host in some
way. Ansible modules will first check to see if the state of the host needs to be
changed before taking any action. If the state of the host matches the arguments of
the module, then Ansible takes no action on the host and responds with a state of ok.

On the other hand, if there is a difference between the state of the host and the argu‐
ments to the module, then Ansible will change the state of the host and return
changed.

In the example output just shown, the install nginx task was changed, which meant
that before I ran the playbook, the nginx package had not previously been installed on
the host. The enable configuration task was unchanged, which meant that there was
already a configuration file on the server that was identical to the file I was copying
over. The reason for this is that the nginx.conf file I used in my playbook is the same
as the nginx.conf file that gets installed by the nginx package on Ubuntu.

As we’ll see later in this chapter, Ansible’s detection of state change can be used to
trigger additional actions through the use of handlers. But, even without using han‐
dlers, it is still a useful form of feedback to see whether your hosts are changing state
as the playbook runs.

Getting Fancier: TLS Support
Let’s move on to a more complex example: We’re going to modify the previous play‐
book so that our webservers support TLS. The new features here are:

• Variables
• Handlers

36 | Chapter 2: Playbooks: A Beginning

TLS versus SSL
You might be familiar with the term SSL rather than TLS in the context of secure web
servers. SSL is an older protocol that was used to secure communications between
browsers and web servers, and it has been superseded by a newer protocol named
TLS.

Although many continue to use the term SSL to refer to the current secure protocol,
in this book, I use the more accurate TLS.

Example 2-8 shows what our playbook looks like with TLS support.

Example 2-8. web-tls.yml

- name: Configure webserver with nginx and tls
 hosts: webservers
 sudo: True
 vars:
 key_file: /etc/nginx/ssl/nginx.key
 cert_file: /etc/nginx/ssl/nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost
 tasks:
 - name: Install nginx
 apt: name=nginx update_cache=yes cache_valid_time=3600

 - name: create directories for ssl certificates
 file: path=/etc/nginx/ssl state=directory

 - name: copy TLS key
 copy: src=files/nginx.key dest={{ key_file }} owner=root mode=0600
 notify: restart nginx

 - name: copy TLS certificate
 copy: src=files/nginx.crt dest={{ cert_file }}
 notify: restart nginx

 - name: copy nginx config file
 template: src=templates/nginx.conf.j2 dest={{ conf_file }}
 notify: restart nginx

 - name: enable configuration
 file: dest=/etc/nginx/sites-enabled/default src={{ conf_file }} state=link
 notify: restart nginx

 - name: copy index.html
 template: src=templates/index.html.j2 dest=/usr/share/nginx/html/index.html
 mode=0644

Getting Fancier: TLS Support | 37

 handlers:
 - name: restart nginx
 service: name=nginx state=restarted

Generating TLS certificate
We need to manually generate a TLS certificate. In a production environment, you’d
purchase your TLS certificate from a certificate authority. We’ll use a self-signed cer‐
tificate, since we can generate those for free.

Create a files subdirectory of your playbooks directory, and then generate the TLS cer‐
tificate and key:

$ mkdir files
$ openssl req -x509 -nodes -days 3650 -newkey rsa:2048 \
 -subj /CN=localhost \
 -keyout files/nginx.key -out files/nginx.crt

It should generate the files nginx.key and nginx.crt in the files directory. The certificate
has an expiration date of 10 years (3,650 days) from the day you created it.

Variables
The play in our playbook now has a section called vars:

vars:
 key_file: /etc/nginx/ssl/nginx.key
 cert_file: /etc/nginx/ssl/nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

This section defines four variables and assigns a value to each variable.

In our example, each value is a string (e.g., /etc/nginx/ssl/nginx.key), but any
valid YAML can be used as the value of a variable. You can use lists and dictionaries
in addition to strings and Booleans.

Variables can be used in tasks, as well as in template files. You reference variables
using the {{ braces }} notation. Ansible will replace these braces with the value of
the variable.

Consider this task in the playbook:

- name: copy TLS key
 copy: src=files/nginx.key dest={{ key_file }} owner=root mode=0600

Ansible will substitute {{ key_file }} with /etc/nginx/ssl/nginx.key when it
executes this task.

38 | Chapter 2: Playbooks: A Beginning

When Quoting Is Necessary
If you reference a variable right after specifying the module, the YAML parser will
misinterpret the variable reference as the beginning of an in-line dictionary. Consider
the following example:

- name: perform some task
 command: {{ myapp }} -a foo

Ansible will try to parse the first part of {{ myapp }} -a foo as a dictionary instead
of a string, and will return an error. In this case, you must quote the arguments:

- name: perform some task
 command: "{{ myapp }} -a foo"

A similar problem arises if your argument contains a colon. For example:

- name: show a debug message
 debug: msg="The debug module will print a message: neat, eh?"

The colon in the msg argument trips up the YAML parser. To get around this, you
need to quote the entire argument string.

Unfortunately, just quoting the argument string won’t resolve the problem, either.

- name: show a debug message
 debug: "msg=The debug module will print a message: neat, eh?"

This will make the YAML parser happy, but the output isn’t what you expect:

TASK: [show a debug message] **
ok: [localhost] => {
 "msg": "The"
}

The debug module’s msg argument requires a quoted string to capture the spaces. In
this particular case, we need to quote both the whole argument string and the msg
argument. Ansible supports alternating single and double quotes, so you can do this:

- name: show a debug message
 debug: "msg='The debug module will print a message: neat, eh?'"

This yields the expected output:

TASK: [show a debug message] **
ok: [localhost] => {
 "msg": "The debug module will print a message: neat, eh?"
}

Ansible is pretty good at generating meaningful error messages if you forget to put
quotes in the right places and end up with invalid YAML.

Getting Fancier: TLS Support | 39

Generating the Nginx Configuration Template
If you’ve done web programming, you’ve likely used a template system to generate
HTML. In case you haven’t, a template is just a text file that has some special syntax
for specifying variables that should be replaced by values. If you’ve ever received an
automated email from a company, they’re probably using an email template as shown
in Example 2-9.

Example 2-9. An email template

Dear {{ name }},

You have {{ num_comments }} new comments on your blog: {{ blog_name }}.

Ansible’s use case isn’t HTML pages or emails—it’s configuration files. You don’t want
to hand-edit configuration files if you can avoid it. This is especially true if you have
to reuse the same bits of configuration data (say, the IP address of your queue server
or your database credentials) across multiple configuration files. It’s much better to
take the info that’s specific to your deployment, record it in one location, and then
generate all of the files that need this information from templates.

Ansible uses the Jinja2 template engine to implement templating. If you’ve ever used a
templating library such as Mustache, ERB, or the Django template system, Jinja2 will
feel very familiar.

Nginx’s configuration file needs information about where to find the TLS key and
certificate. We’re going to use Ansible’s templating functionality to define this config‐
uration file so that we can avoid hard-coding values that might change.

In your playbooks directory, create a templates subdirectory and create the file tem‐
plates/nginx.conf.j2, as shown in Example 2-10.

Example 2-10. templates/nginx.conf.j2

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 listen 443 ssl;

 root /usr/share/nginx/html;
 index index.html index.htm;

 server_name {{ server_name }};
 ssl_certificate {{ cert_file }};
 ssl_certificate_key {{ key_file }};

 location / {

40 | Chapter 2: Playbooks: A Beginning

 try_files $uri $uri/ =404;
 }
}

We use the .j2 extension to indicate that the file is a Jinja2 template. However, you
can use a different extension if you like; Ansible doesn’t care.

In our template, we reference three variables:

server_name

The hostname of the web server (e.g., www.example.com)

cert_file

The path to the TLS certificate

key_file

The path to the TLS private key

We define these variables in the playbook.

Ansible also uses the Jinja2 template engine to evaluate variables in playbooks. Recall
that we saw the {{ conf_file }} syntax in the playbook itself.

Early versions of Ansible used a dollar sign ($) to do variable inter‐
polation in playbooks instead of the braces. You used to derefer‐
ence variable foo by writing $foo, where now you write {{ foo }}.
The dollar sign syntax has been deprecated; if you encounter it in
an example playbook you find on the Internet, then you’re looking
at older Ansible code.

You can use all of the Jinja2 features in your templates, but we won’t cover them in
detail here. Check out the Jinja2 Template Designer Documentation for more details.
You probably won’t need to use those advanced templating features, though. One
Jinja2 feature you probably will use with Ansible is filters; we’ll cover those in a later
chapter.

Handlers
Looking back at our web-tls.yml playbook, note that there are two new playbook ele‐
ments we haven’t discussed yet. There’s a handlers section that looks like this:

handlers:
- name: restart nginx
 service: name=nginx state=restarted

In addition, several of the tasks contain a notify key. For example:

Getting Fancier: TLS Support | 41

http://jinja.pocoo.org/docs/dev/templates/

6 Alternatively, we could reload the configuration file using state=reloaded instead of restarting the service.

- name: copy TLS key
 copy: src=files/nginx.key dest={{ key_file }} owner=root mode=0600
 notify: restart nginx

Handlers are one of the conditional forms that Ansible supports. A handler is similar
to a task, but it runs only if it has been notified by a task. A task will fire the notifica‐
tion if Ansible recognizes that the task has changed the state of the system.

A task notifies a handler by passing the handler’s name as the argument. In the pre‐
ceding example, the handler’s name is restart nginx. For an nginx server, we’d need
to restart it6 if any of the following happens:

• The TLS key changes
• The TLS certificate changes
• The configuration file changes
• The contents of the sites-enabled directory change

We put a notify statement on each of the tasks to ensure that Ansible restarts nginx if
any of these conditions are met.

A few things to keep in mind about handlers
Handlers only run after all of the tasks are run, and they only run once, even if they
are notified multiple times. They always run in the order that they appear in the play,
not the notification order.

The official Ansible docs mention that the only common uses for handlers are for
restarting services and for reboots. Personally, I’ve only ever used them for restarting
services. Even then, it’s a pretty small optimization, since we can always just uncondi‐
tionally restart the service at the end of the playbook instead of notifying it on
change, and restarting a service doesn’t usually take very long.

Another pitfall with handlers that I’ve encountered is that they can be troublesome
when debugging a playbook. It goes something like this:

1. I run a playbook.
2. One of my tasks with a notify on it changes state.
3. An error occurs on a subsequent task, stopping Ansible.
4. I fix the error in my playbook.
5. I run Ansible again.

42 | Chapter 2: Playbooks: A Beginning

6. None of the tasks report a state change the second time around, so Ansible
doesn’t run the handler.

Running the Playbook
As before, we use the ansible-playbook command to run the playbook.

$ ansible-playbook web-tls.yml

The output should look something like this:

PLAY [Configure webserver with nginx and tls] *********************************

GATHERING FACTS ***
ok: [testserver]

TASK: [Install nginx] ***
changed: [testserver]

TASK: [create directories for tls certificates] *******************************
changed: [testserver]

TASK: [copy TLS key] **
changed: [testserver]

TASK: [copy TLS certificate] **
changed: [testserver]

TASK: [copy nginx config file] **
changed: [testserver]

TASK: [enable configuration] **
ok: [testserver]

NOTIFIED: [restart nginx] ***
changed: [testserver]

PLAY RECAP **
testserver : ok=8 changed=6 unreachable=0 failed=0

Point your browser to https://localhost:8443 (don’t forget the “s” on https). If you’re
using Chrome, like I am, you’ll get a ghastly message that says something like, “Your
connection is not private” (see Figure 2-4).

Getting Fancier: TLS Support | 43

https://localhost:8443

Figure 2-4. Browsers like Chrome don’t trust self-signed TLS certificates

Don’t worry, though; that error is expected, as we generated a self-signed TLS certifi‐
cate, and web browsers like Chrome only trust certificates that have been issued from
a proper authority.

We covered a lot of the “what” of Ansible in this chapter, describing what Ansible will
do to your hosts. The handlers we discussed here are just one form of control flow
that Ansible supports. In a later chapter, we’ll see iteration and conditionally running
tasks based on the values of variables.

In the next chapter, we’ll talk about the “who”; in other words, how to describe the
hosts that your playbooks will run against.

44 | Chapter 2: Playbooks: A Beginning

CHAPTER 3

Inventory: Describing Your Servers

So far, we’ve been working with only one server (or host, as Ansible calls it). In reality,
you’re going to be managing multiple hosts. The collection of hosts that Ansible
knows about is called the inventory.

The Inventory File
The default way to describe your hosts in Ansible is to list them in text files, called
inventory files. A very simple inventory file might just contain a list of hostnames, as
shown in Example 3-1.

Example 3-1. A very simple inventory file

ontario.example.com
newhampshire.example.com
maryland.example.com
virginia.example.com
newyork.example.com
quebec.example.com
rhodeisland.example.com

Ansible uses your local SSH client by default, which means that it
will understand any aliases that you set up in your SSH config file.
This does not hold true if you configure Ansible to use the Para‐
miko connection plug-in instead of the default SSH plug-in.

There is one host that Ansible automatically adds to the inventory by default: local‐
host. Ansible understands that localhost refers to your local machine, so it will inter‐
act with it directly rather than connecting by SSH.

45

Although Ansible adds the localhost to your inventory automati‐
cally, you have to have at least one other host in your inventory file;
otherwise, ansible-playbook will terminate with the error:

ERROR: provided hosts list is empty

In the case where you have no other hosts in your inventory file,
you can explicitly add an entry for localhost like this:

localhost ansible_connection=local

Preliminaries: Multiple Vagrant Machines
To talk about inventory, we need to interact with multiple hosts. Let’s configure
Vagrant to bring up three hosts. We’ll unimaginatively call them vagrant1, vagrant2,
and vagrant3.

Before you modify your existing Vagrantfile, make sure you destroy your existing vir‐
tual machine by running:

$ vagrant destroy --force

If you don’t include the --force option, Vagrant will prompt you to confirm that you
want to destroy the virtual machine.

Next, edit your Vagrantfile so it looks like Example 3-2.

Example 3-2. Vagrantfile with three servers

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Use the same key for each machine
 config.ssh.insert_key = false

 config.vm.define "vagrant1" do |vagrant1|
 vagrant1.vm.box = "ubuntu/trusty64"
 vagrant1.vm.network "forwarded_port", guest: 80, host: 8080
 vagrant1.vm.network "forwarded_port", guest: 443, host: 8443
 end
 config.vm.define "vagrant2" do |vagrant2|
 vagrant2.vm.box = "ubuntu/trusty64"
 vagrant2.vm.network "forwarded_port", guest: 80, host: 8081
 vagrant2.vm.network "forwarded_port", guest: 443, host: 8444
 end
 config.vm.define "vagrant3" do |vagrant3|
 vagrant3.vm.box = "ubuntu/trusty64"
 vagrant3.vm.network "forwarded_port", guest: 80, host: 8082
 vagrant3.vm.network "forwarded_port", guest: 443, host: 8445
 end
end

46 | Chapter 3: Inventory: Describing Your Servers

Vagrant 1.7+ defaults to using a different SSH key for each host. Example 3-2 con‐
tains the line to revert to the earlier behavior of using the same SSH key for each host:

config.ssh.insert_key = false

Using the same key on each host simplifies our Ansible setup because we can specify
a single SSH key in the ansible.cfg file. You’ll need to edit the host_key_checking value
in your ansible.cfg. Your file should look like Example 3-3.

Example 3-3. ansible.cfg

[defaults]
hostfile = inventory
remote_user = vagrant
private_key_file = ~/.vagrant.d/insecure_private_key
host_key_checking = False

For now, we’ll assume each of these servers can potentially be a web server, so
Example 3-2 maps ports 80 and 443 inside each Vagrant machine to a port on the
local machine.

You should be able to bring up the virtual machines by running:

$ vagrant up

If all went well, the output should look something like this:

Bringing machine 'vagrant1' up with 'virtualbox' provider...
Bringing machine 'vagrant2' up with 'virtualbox' provider...
Bringing machine 'vagrant3' up with 'virtualbox' provider...
...
 vagrant3: 80 => 8082 (adapter 1)
 vagrant3: 443 => 8445 (adapter 1)
 vagrant3: 22 => 2201 (adapter 1)
==> vagrant3: Booting VM...
==> vagrant3: Waiting for machine to boot. This may take a few minutes...
 vagrant3: SSH address: 127.0.0.1:2201
 vagrant3: SSH username: vagrant
 vagrant3: SSH auth method: private key
 vagrant3: Warning: Connection timeout. Retrying...
==> vagrant3: Machine booted and ready!
==> vagrant3: Checking for guest additions in VM...
==> vagrant3: Mounting shared folders...
 vagrant3: /vagrant => /Users/lorinhochstein/dev/oreilly-ansible/playbooks

Let’s create an inventory file that contains these three machines.

First, we need to know what ports on the local machine map to the SSH port (22)
inside of each VM. Recall we can get that information by running:

$ vagrant ssh-config

The output should look something like this:

Preliminaries: Multiple Vagrant Machines | 47

Host vagrant1
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorinhochstein/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Host vagrant2
 HostName 127.0.0.1
 User vagrant
 Port 2200
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorinhochstein/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Host vagrant3
 HostName 127.0.0.1
 User vagrant
 Port 2201
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorinhochstein/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

We can see that vagrant1 uses port 2222, vagrant2 uses port 2200, and vagrant3
uses port 2201.

Modify your hosts file so it looks like this:

vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201

Now, make sure that you can access these machines. For example, to get information
about the network interface for vagrant2, run:

$ ansible vagrant2 -a "ip addr show dev eth0"

On my machine, the output looks like this:

vagrant2 | success | rc=0 >>
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
group default qlen 1000
 link/ether 08:00:27:fe:1e:4d brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0

48 | Chapter 3: Inventory: Describing Your Servers

 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fefe:1e4d/64 scope link
 valid_lft forever preferred_lft forever

Behavioral Inventory Parameters
To describe our Vagrant machines in the Ansible inventory file, we had to explicitly
specify the hostname (127.0.0.1) and port (2222, 2200, or 2201) that Ansible’s SSH cli‐
ent should connect to.

Ansible calls these variables behavioral inventory parameters, and there are several of
them you can use when you need to override the Ansible defaults for a host (see
Table 3-1).

Table 3-1. Behavioral inventory parameters

Name Default Description

ansible_ssh_host name of host Hostname or IP address to SSH to

ansible_ssh_port 22 Port to SSH to

ansible_ssh_user root User to SSH as

ansible_ssh_pass none Password to use for SSH authentication

ansible_connection smart How Ansible will connect to host (see below)

ansible_ssh_private_key_file none SSH private key to use for SSH authentication

ansible_shell_type sh Shell to use for commands (see below)

ansible_python_interpreter /usr/bin/python Python interpreter on host (see below)

ansible_*_interpreter none Like ansible_python_interpreter for other languages (see below)

For some of these options, the meaning is obvious from the name, but others require
additional explanation.

ansible_connection
Ansible supports multiple transports, which are mechanisms that Ansible uses to con‐
nect to the host. The default transport, smart, will check to see if the locally installed
SSH client supports a feature called ControlPersist. If the SSH client supports Control‐
Persist, Ansible will use the local SSH client. If the SSH client doesn’t support

Behavioral Inventory Parameters | 49

ControlPersist, then the smart transport will fall back to using a Python-based SSH
client library called paramiko.

ansible_shell_type
Ansible works by making SSH connections to remote machines and then invoking
scripts. By default, Ansible assumes that the remote shell is the Bourne shell located
at /bin/sh, and will generate the appropriate command-line parameters that work
with Bourne shell.

Ansible also accepts csh, fish, and (on Windows) powershell as valid values for this
parameter. I’ve never encountered a need for changing the shell type.

ansible_python_interpreter
Because the modules that ship with Ansible are implemented in Python 2, Ansible
needs to know the location of the Python interpreter on the remote machine. You
might need to change this if your remote host does not have a Python 2 interpreter
at /usr/bin/python. For example, if you are managing hosts that run Arch Linux, you
will need to change this to /usr/bin/python2, because Arch Linux installs Python 3
at /usr/bin/python, and Ansible modules are not (yet) compatible with Python 3.

ansible_*_interpreter
If you are using a custom module that is not written in Python, you can use this
parameter to specify the location of the interpreter (e.g., /usr/bin/ruby). We’ll cover
this in Chapter 10.

Changing Behavioral Parameter Defaults
You can override some of the behavioral parameter default values in the [defaults]
section of the ansible.cfg file (Table 3-2). Recall that we used this previously to change
the default SSH user.

Table 3-2. Defaults that can be overridden in ansible.cfg

Behavioral inventory parameter ansible.cfg option

ansible_ssh_port remote_port

ansible_ssh_user remote_user

ansible_ssh_private_key_file private_key_file

ansible_shell_type executable (see the following paragraph)

50 | Chapter 3: Inventory: Describing Your Servers

The ansible.cfg executable config option is not exactly the same as the ansi
ble_shell_type behavioral inventory parameter. Instead, the executable specifies the
full path of the shell to use on the remote machine (e.g., /usr/local/bin/fish). Ansible
will look at the name of the base name of this path (in the case of /usr/local/bin/fish,
the basename is fish) and use that as the default value for ansible_shell_type.

Groups and Groups and Groups
When performing configuration tasks, we typically want to perform actions on
groups of hosts, rather than on an individual host.

Ansible automatically defines a group called all (or *), which includes all of the hosts
in the inventory. For example, we can check if the clocks on the machines are roughly
synchronized by running:

$ ansible all -a "date"

or

$ ansible '*' -a "date"

The output on my system looks like this:

vagrant3 | success | rc=0 >>
Sun Sep 7 02:56:46 UTC 2014

vagrant2 | success | rc=0 >>
Sun Sep 7 03:03:46 UTC 2014

vagrant1 | success | rc=0 >>
Sun Sep 7 02:56:47 UTC 2014

We can define our own groups in the inventory file. Ansible uses the .ini file format
for inventory files. In the .ini format, configuration values are grouped together into
sections.

Here’s how we would specify that our vagrant hosts are in a group called vagrant,
along with the other example hosts we mentioned at the beginning of the chapter:

ontario.example.com
newhampshire.example.com
maryland.example.com
virginia.example.com
newyork.example.com
quebec.example.com
rhodeisland.example.com

[vagrant]
vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201

Groups and Groups and Groups | 51

We could have also listed the vagrant hosts at the top, and then also in a group, like
this:

maryland.example.com
newhampshire.example.com
newyork.example.com
ontario.example.com
quebec.example.com
rhodeisland.example.com
vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201
virginia.example.com

[vagrant]
vagrant1
vagrant2
vagrant3

Example: Deploying a Django App
Imagine you’re responsible for deploying a Django-based web application that pro‐
cesses long-running jobs. The app needs to support the following services:

• The actual Django web app itself, run by a Gunicorn HTTP server.
• An nginx web server, which will sit in front of Gunicorn and serve static assets.
• A Celery task queue that will execute long-running jobs on behalf of the web app.
• A RabbitMQ message queue that serves as the backend for Celery.
• A Postgres database that serves as the persistent store.

In later chapters, we will work through a detailed example of
deploying this kind of Django-based application, although our
example won’t use Celery or RabbitMQ.

We need to deploy this application into different types of environments: production
(the real thing), staging (for testing on hosts that our team has shared access to), and
vagrant (for local testing).

When we deploy to production, we want the entire system to respond quickly and be
reliable, so we:

• Run the web application on multiple hosts for better performance and put a load
balancer in front of them.

52 | Chapter 3: Inventory: Describing Your Servers

• Run task queue servers on multiple hosts for better performance.
• Put Gunicorn, Celery, RabbitMQ, and Postgres all on separate servers.
• Use two Postgres hosts, a primary and a replica.

Assuming we have one load balancer, three web servers, three task queues, one Rab‐
bitMQ server, and two database servers, that’s 10 hosts we need to deal with.

For our staging environment, imagine that we want to use fewer hosts than we do in
production in order to save costs, especially since the staging environment is going to
see a lot less activity than production. Let’s say we decide to use only two hosts for
staging; we’ll put the web server and task queue on one staging host, and RabbitMQ
and Postgres on the other.

For our local vagrant environment, we decide to use three servers: one for the web
app, one for a task queue, and one that will contain RabbitMQ and Postgres.

Example 3-4 shows a possible inventory file that groups our servers by environment
(production, staging, vagrant) and by function (web server, task queue, etc.).

Example 3-4. Inventory file for deploying a Django app

[production]
delaware.example.com
georgia.example.com
maryland.example.com
newhampshire.example.com
newjersey.example.com
newyork.example.com
northcarolina.example.com
pennsylvania.example.com
rhodeisland.example.com
virginia.example.com

[staging]
ontario.example.com
quebec.example.com

[vagrant]
vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201

[lb]
delaware.example.com

[web]
georgia.example.com
newhampshire.example.com
newjersey.example.com

Groups and Groups and Groups | 53

ontario.example.com
vagrant1

[task]
newyork.example.com
northcarolina.example.com
maryland.example.com
ontario.example.com
vagrant2

[rabbitmq]
pennsylvania.example.com
quebec.example.com
vagrant3

[db]
rhodeisland.example.com
virginia.example.com
quebec.example.com
vagrant3

We could have first listed all of the servers at the top of the inventory file, without
specifying a group, but that isn’t necessary, and that would’ve made this file even
longer.

Note that we only needed to specify the behavioral inventory parameters for the
Vagrant instances once.

Aliases and Ports
We described our Vagrant hosts like this:

[vagrant]
vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201

The names vagrant1, vagrant2, and vagrant3 here are aliases. They are not the real
hostnames, but instead are useful names for referring to these hosts.

Ansible supports doing <hostname>:<port> syntax when specifying hosts, so we
could replace the line that contains vagrant1 with 127.0.0.1:2222.

However, we can’t actually run what you see in Example 3-5.

Example 3-5. This doesn’t work

[vagrant]
127.0.0.1:2222
127.0.0.1:2200
127.0.0.1:2201

54 | Chapter 3: Inventory: Describing Your Servers

1 This term has been popularized by Randy Bias of Cloudscaling.

The reason is that Ansible’s inventory can associate only a single host with 127.0.0.1,
so the vagrant group would contain only one host instead of three.

Groups of Groups
Ansible also allows you to define groups that are made up of other groups. For exam‐
ple, both the web servers and the task queue servers will need to have Django and its
dependencies. We might find it useful to define a “django” group that contains both of
these two groups. You would add this to the inventory file:

[django:children]
web
task

Note that the syntax changes when you are specifying a group of groups, as opposed
to a group of hosts. That’s so Ansible knows to interpret web and task as groups and
not as hosts.

Numbered Hosts (Pets versus Cattle)
The inventory file shown in Example 3-4 looks complex. In reality, it describes only
15 different hosts, which doesn’t sound like a large number in this cloudy scale-out
world. However, even dealing with 15 hosts in the inventory file can be cumbersome
because each host has a completely different hostname.

Bill Baker of Microsoft came up with the distinction between treating servers as pets
versus treating them like cattle.1 We give pets distinctive names, and we treat and care
for them as individuals. On the other hand, when we discuss cattle, we refer to them
by identification number.

The cattle approach is much more scalable, and Ansible supports it well by support‐
ing numeric patterns. For example, if your 20 servers were named web1.example.com,
web2.example.com, and so on, then you could specify them in the inventory file like
this:

[web]
web[1:20].example.com

If you prefer to have a leading zero (e.g., web01.example.com), then specify a leading
zero in the range, like this:

[web]
web[01:20].example.com

Groups and Groups and Groups | 55

http://bit.ly/1P3nHB2

Ansible also supports using alphabetic characters to specify ranges. If you wanted to
use the convention web-a.example.com, web-b.example.com, and so on, for your 20
servers, then you could do this:

[web]
web-[a-t].example.com

Hosts and Group Variables: Inside the Inventory
Recall how we specified behavioral inventory parameters for Vagrant hosts:

vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201

Those parameters are variables that have special meaning to Ansible. We can also
define arbitrary variable names and associated values on hosts. For example, we could
define a variable named color and set it to a value for each server:

newhampshire.example.com color=red
maryland.example.com color=green
ontario.example.com color=blue
quebec.example.com color=purple

This variable can then be used in a playbook, just like any other variable.

Personally, I don’t often attach variables to specific hosts. On the other hand, I often
associate variables with groups.

Circling back to our Django example, the web application and task queue service
need to communicate with RabbitMQ and Postgres. We’ll assume that access to the
Postgres database is secured both at the network layer (so only the web application
and the task queue can reach the database) as well as by username and password,
where RabbitMQ is secured only by the network layer.

To set everything up, we need to do the following:

• Configure the web servers with the hostname, port, username, password of the
primary postgres server, and name of the database.

• Configure the task queues with the hostname, port, username, password of the
primary postgres server, and the name of the database.

• Configure the web servers with the hostname and port of the RabbitMQ server.
• Configure the task queues with the hostname and port of the RabbitMQ server.
• Configure the primary postgres server with the hostname, port, and username

and password of the replica postgres server (production only).

56 | Chapter 3: Inventory: Describing Your Servers

This configuration info varies by environment, so it makes sense to define these as
group variables on the production, staging, and vagrant groups.

Example 3-6 shows one way we can specify this information as group variables in the
inventory file.

Example 3-6. Specifying group variables in inventory

[all:vars]
ntp_server=ntp.ubuntu.com

[production:vars]
db_primary_host=rhodeisland.example.com
db_primary_port=5432
db_replica_host=virginia.example.com
db_name=widget_production
db_user=widgetuser
db_password=pFmMxcyD;Fc6)6
rabbitmq_host=pennsylvania.example.com
rabbitmq_port=5672

[staging:vars]
db_primary_host=quebec.example.com
db_name=widget_staging
db_user=widgetuser
db_password=L@4Ryz8cRUXedj
rabbitmq_host=quebec.example.com
rabbitmq_port=5672

[vagrant:vars]
db_primary_host=vagrant3
db_primary_port=5432
db_primary_port=5432
db_name=widget_vagrant
db_user=widgetuser
db_password=password
rabbitmq_host=vagrant3
rabbitmq_port=5672

Note how group variables are organized into sections named [<group name>:vars].

Also note how we took advantage of the all group that Ansible creates automatically
to specify variables that don’t change across hosts.

Host and Group Variables: In Their Own Files
The inventory file is a reasonable place to put host and group variables if you don’t
have too many hosts. But as your inventory gets larger, it gets more difficult to man‐
age variables this way.

Host and Group Variables: In Their Own Files | 57

Additionally, though Ansible variables can hold Booleans, strings, lists, and dictionar‐
ies, in an inventory file, you can specify only Booleans and strings.

Ansible offers a more scalable approach to keep track of host and group variables:
You can create a separate variable file for each host and each group. Ansible expects
these variable files to be in YAML format.

Ansible looks for host variable files in a directory called host_vars and group variable
files in a directory called group_vars. Ansible expects these directories to be either in
the directory that contains your playbooks or in the directory adjacent to your inven‐
tory file. In our case, those two directories are the same.

For example, if I had a directory containing my playbooks at /home/lorin/playbooks/
with an inventory file at /home/lorin/playbooks/hosts, then I would put variables for
the quebec.example.com host in the file /home/lorin/playbooks/host_vars/quebec.exam‐
ple.com, and I would put variables for the production group in the file /home/lorin/
playbooks/group_vars/production.

Example 3-7 shows what the /home/lorin/playbooks/group_vars/production file would
look like.

Example 3-7. group_vars/production

db_primary_host: rhodeisland.example.com
db_replica_host: virginia.example.com
db_name: widget_production
db_user: widgetuser
db_password: pFmMxcyD;Fc6)6
rabbitmq_host:pennsylvania.example.com

Note that we could also use YAML dictionaries to represent these values, as shown in
Example 3-8.

Example 3-8. group_vars/production, with dictionaries

db:
 user: widgetuser
 password: pFmMxcyD;Fc6)6
 name: widget_production
 primary:
 host: rhodeisland.example.com
 port: 5432
 replica:
 host: virginia.example.com
 port: 5432

rabbitmq:
 host: pennsylvania.example.com
 port: 5672

58 | Chapter 3: Inventory: Describing Your Servers

If we choose YAML dictionaries, that changes the way we access the variables:

{{ db_primary_host }}

versus:

{{ db.primary.host }}

If you want to break things out even further, Ansible will allow you to define
group_vars/production as a directory instead of a file, and let you place multiple
YAML files that contain variable definitions.

For example, we could put the database-related variables in one file and the
RabbitMQ-related variables in another file, as shown in Examples 3-9 and 3-10.

Example 3-9. group_vars/production/db

db:
 user: widgetuser
 password: pFmMxcyD;Fc6)6
 name: widget_production
 primary:
 host: rhodeisland.example.com
 port: 5432
 replica:
 host: virginia.example.com
 port: 5432

Example 3-10. group_vars/production/rabbitmq

rabbitmq:
 host: pennsylvania.example.com
 port: 6379

In general, I find it’s better to keep things simple rather than split variables out across
too many files.

Dynamic Inventory
Up until this point, we’ve been explicitly specifying all of our hosts in our hosts inven‐
tory file. However, you might have a system external to Ansible that keeps track of
your hosts. For example, if your hosts run on Amazon EC2, then EC2 tracks informa‐
tion about your hosts for you, and you can retrieve this information through EC2’s
web interface, its Query API, or through command-line tools such as awscli. Other
cloud providers have similar interfaces. Or, if you’re managing your own servers and
are using an automated provisioning system such as Cobbler or Ubuntu MAAS, then
your provisioning system is already keeping track of your servers. Or, maybe you

Dynamic Inventory | 59

have one of those fancy configuration management databases (CMDBs) where all of
this information lives.

You don’t want to manually duplicate this information in your hosts file, because
eventually that file will not jibe with your external system, which is the true source of
information about your hosts. Ansible supports a feature called dynamic inventory
that allows you to avoid this duplication.

If the inventory file is marked executable, Ansible will assume it is a dynamic inven‐
tory script and will execute the file instead of reading it.

To mark a file as executable, use the chmod +x command. For
example:

$ chmod +x dynamic.py

The Interface for a Dynamic Inventory Script
An Ansible dynamic inventory script must support two command-line flags:

• --host=<hostname> for showing host details
• --list for listing groups

Showing host details
To get the details of the individual host, Ansible will call the inventory script like this:

$./dynamic.py --host=vagrant2

The output should contain any host-specific variables, including behavioral parame‐
ters, like this:

{ "ansible_ssh_host": "127.0.0.1", "ansible_ssh_port": 2200,
 "ansible_ssh_user": "vagrant"}

The output is a single JSON object where the names are variable names, and the val‐
ues are the variable values.

Listing groups
Dynamic inventory scripts need to be able to list all of the groups, and details about
the individual hosts. For example, if our script is called dynamic.py, Ansible will call it
like this to get a list of all of the groups:

$./dynamic.py --list

The output should look something like this:

60 | Chapter 3: Inventory: Describing Your Servers

{"production": ["delaware.example.com", "georgia.example.com",
 "maryland.example.com", "newhampshire.example.com",
 "newjersey.example.com", "newyork.example.com",
 "northcarolina.example.com", "pennsylvania.example.com",
 "rhodeisland.example.com", "virginia.example.com"],
 "staging": ["ontario.example.com", "quebec.example.com"],
 "vagrant": ["vagrant1", "vagrant2", "vagrant3"],
 "lb": ["delaware.example.com"],
 "web": ["georgia.example.com", "newhampshire.example.com",
 "newjersey.example.com", "ontario.example.com", "vagrant1"]
 "task": ["newyork.example.com", "northcarolina.example.com",
 "ontario.example.com", "vagrant2"],
 "rabbitmq": ["pennsylvania.example.com", "quebec.example.com", "vagrant3"],
 "db": ["rhodeisland.example.com", "virginia.example.com", "vagrant3"]
}

The output is a single JSON object where the names are Ansible group names, and
the values are arrays of host names.

As an optimization, the --list command can contain the values of the host variables
for all of the hosts, which saves Ansible the trouble of making a separate --host invo‐
cation to retrieve the variables for the individual hosts.

To take advantage of this optimization, the --list command should return a key
named _meta that contains the variables for each host, in this form:

"_meta" :
 { "hostvars" :
 "vagrant1" : { "ansible_ssh_host": "127.0.0.1", "ansible_ssh_port": 2222,
 "ansible_ssh_user": "vagrant"},
 "vagrant2": { "ansible_ssh_host": "127.0.0.1", "ansible_ssh_port": 2200,
 "ansible_ssh_user": "vagrant"},
 ...
}

Writing a Dynamic Inventory Script
One of the handy features of Vagrant is that you can see which machines are cur‐
rently running using the vagrant status command. Assuming we had a Vagrant file
that looked like Example 3-2, if we ran vagrant status, the output would look like
Example 3-11.

Example 3-11. Output of vagrant status

$ vagrant status
Current machine states:

vagrant1 running (virtualbox)
vagrant2 running (virtualbox)
vagrant3 running (virtualbox)

Dynamic Inventory | 61

2 Yes, there’s a Vagrant dynamic inventory script included with Ansible already, but it’s helpful to go through
the exercise.

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

Because Vagrant already keeps track of machines for us, there’s no need for us to
write a list of the Vagrant machines in an Ansible inventory file. Instead, we can write
a dynamic inventory script that queries Vagrant about which machines are currently
running.

Once we’ve set up a dynamic inventory script for Vagrant, even if we alter our
Vagrantfile to run different numbers of Vagrant machines, we won’t need to edit an
Ansible inventory file.

Let’s work through an example of creating a dynamic inventory script that retrieves
the details about hosts from Vagrant.2

Our dynamic inventory script is going to need to invoke the vagrant status com‐
mand. The output shown in Example 3-11 is designed for humans to read, rather
than for machines to parse. We can get a list of running hosts in a format that is easier
to parse with the --machine-readable flag, like so:

$ vagrant status --machine-readable

The output looks like this:

1410577818,vagrant1,provider-name,virtualbox
1410577818,vagrant1,state,running
1410577818,vagrant1,state-human-short,running
1410577818,vagrant1,state-human-long,The VM is running. To stop this VM%!(VAGRANT
_COMMA) you can run `vagrant halt` to\nshut it down forcefully%!(VAGRANT_COMMA)
or you can run `vagrant suspend` to simply\nsuspend the virtual machine. In
either case%!(VAGRANT_COMMA to restart it again%!(VAGRANT_COMMA)\nsimply run
`vagrant up`.
1410577818,vagrant2,provider-name,virtualbox
1410577818,vagrant2,state,running
1410577818,vagrant2,state-human-short,running
1410577818,vagrant2,state-human-long,The VM is running. To stop this VM%!(VAGRANT
_COMMA) you can run `vagrant halt` to\nshut it down forcefully%!(VAGRANT_COMMA)
or you can run `vagrant suspend` to simply\nsuspend the virtual machine. In
either case%!(VAGRANT_COMMA) to restart it again%!(VAGRANT_COMMA)\nsimply run
`vagrant up`.
1410577818,vagrant3,provider-name,virtualbox
1410577818,vagrant3,state,running
1410577818,vagrant3,state-human-short,running
1410577818,vagrant3,state-human-long,The VM is running. To stop this VM%!(VAGRANT
_COMMA) you can run `vagrant halt` to\nshut it down forcefully%!(VAGRANT_COMMA)

62 | Chapter 3: Inventory: Describing Your Servers

or you can run `vagrant suspend` to simply\nsuspend the virtual machine. In
either case%!(VAGRANT_COMMA) to restart it again%!(VAGRANT_COMMA)\nsimply
run `vagrant up`.

To get details about a particular Vagrant machine, say, vagrant2, we would run:

$ vagrant ssh-config vagrant2

The output looks like:

Host vagrant2
 HostName 127.0.0.1
 User vagrant
 Port 2200
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorinhochstein/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Our dynamic inventory script will need to call these commands, parse the outputs,
and output the appropriate json. We can use the Paramiko library to parse the output
of vagrant ssh-config. Here’s an interactive Python session that shows how to use
the Paramiko library to do this:

>>> import subprocess
>>> import paramiko
>>> cmd = "vagrant ssh-config vagrant2"
>>> p = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
>>> config = paramiko.SSHConfig()
>>> config.parse(p.stdout)
>>> config.lookup("vagrant2")
{'identityfile': ['/Users/lorinhochstein/.vagrant.d/insecure_private_key'],
 'loglevel': 'FATAL', 'hostname': '127.0.0.1', 'passwordauthentication': 'no',
 'identitiesonly': 'yes', 'userknownhostsfile': '/dev/null', 'user': 'vagrant',
 'stricthostkeychecking': 'no', 'port': '2200'}

You will need to install the Python Paramiko library in order to use
this script. You can do this with pip by running:

$ sudo pip install paramiko

Example 3-12 shows our complete vagrant.py script.

Example 3-12. vagrant.py

#!/usr/bin/env python
Adapted from Mark Mandel's implementation
https://github.com/ansible/ansible/blob/devel/plugins/inventory/vagrant.py
License: GNU General Public License, Version 3 <http://www.gnu.org/licenses/>

Dynamic Inventory | 63

import argparse
import json
import paramiko
import subprocess
import sys

def parse_args():
 parser = argparse.ArgumentParser(description="Vagrant inventory script")
 group = parser.add_mutually_exclusive_group(required=True)
 group.add_argument('--list', action='store_true')
 group.add_argument('--host')
 return parser.parse_args()

def list_running_hosts():
 cmd = "vagrant status --machine-readable"
 status = subprocess.check_output(cmd.split()).rstrip()
 hosts = []
 for line in status.split('\n'):
 (_, host, key, value) = line.split(',')
 if key == 'state' and value == 'running':
 hosts.append(host)
 return hosts

def get_host_details(host):
 cmd = "vagrant ssh-config {}".format(host)
 p = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
 config = paramiko.SSHConfig()
 config.parse(p.stdout)
 c = config.lookup(host)
 return {'ansible_ssh_host': c['hostname'],
 'ansible_ssh_port': c['port'],
 'ansible_ssh_user': c['user'],
 'ansible_ssh_private_key_file': c['identityfile'][0]}

def main():
 args = parse_args()
 if args.list:
 hosts = list_running_hosts()
 json.dump({'vagrant': hosts}, sys.stdout)
 else:
 details = get_host_details(args.host)
 json.dump(details, sys.stdout)

if __name__ == '__main__':
 main()

64 | Chapter 3: Inventory: Describing Your Servers

Pre-Existing Inventory Scripts
Ansible ships with several dynamic inventory scripts that you can use. I can never fig‐
ure out where my package manager installs these files, so I just grab the ones I need
directly off GitHub. You can grab these by going to the Ansible GitHub repo and
browsing to the plugins/inventory directory.

Many of these inventory scripts have an accompanying configuration file. In Chap‐
ter 12, we’ll discuss the Amazon EC2 inventory script in more detail.

Breaking Out the Inventory into Multiple Files
If you want to have both a regular inventory file and a dynamic inventory script (or,
really, any combination of static and dynamic inventory files), just put them all in the
same directory and configure Ansible to use that directory as the inventory. You can
do this either via the hostfile parameter in ansible.cfg or by using the -i flag on the
command line. Ansible will process all of the files and merge the results into a single
inventory.

For example, our directory structure could look like this: inventory/hosts and inven‐
tory/vagrant.py.

Our ansible.cfg file would contain these lines:

[defaults]
hostfile = inventory

Adding Entries at Runtime with add_host and group_by
Ansible will let you add hosts and groups to the inventory during the execution of a
playbook.

add_host
The add_host module adds a host to the inventory. This module is useful if you’re
using Ansible to provision new virtual machine instances inside of an infrastructure-
as-a-service cloud.

Breaking Out the Inventory into Multiple Files | 65

https://github.com/ansible/ansible

Why Do I Need add_host if I’m Using Dynamic Inventory?
Even if you’re using dynamic inventory scripts, the add_host module is useful for sce‐
narios where you start up new virtual machine instances and configure those instan‐
ces in the same playbook.

If a new host comes online while a playbook is executing, the dynamic inventory
script will not pick up this new host. This is because the dynamic inventory script is
executed at the beginning of the playbook, so if any new hosts are added while the
playbook is executing, Ansible won’t see them.

We’ll cover a cloud computing example that uses the add_host module in Chapter 12.

Invoking the module looks like this:

add_host name=hostname groups=web,staging myvar=myval

Specifying the list of groups and additional variables is optional.

Here’s the add_host command in action, bringing up a new vagrant machine and
then configuring the machine:

- name: Provision a vagrant machine
 hosts: localhost
 vars:
 box: trusty64
 tasks:
 - name: create a Vagrantfile
 command: vagrant init {{ box }} creates=Vagrantfile

 - name: Bring up a vagrant server
 command: vagrant up

 - name: add the Vagrant hosts to the inventory
 add_host: >
 name=vagrant
 ansible_ssh_host=127.0.0.1
 ansible_ssh_port=2222
 ansible_ssh_user=vagrant
 ansible_ssh_private_key_file=/Users/lorinhochstein/.vagrant.d/
 insecure_private_key

- name: Do something to the vagrant machine
 hosts: vagrant
 sudo: yes
 tasks:
 # The list of tasks would go here
 - ...

66 | Chapter 3: Inventory: Describing Your Servers

3 We cover facts in more detail in Chapter 4.

The add_host module adds the host only for the duration of the
execution of the playbook. It does not modify your inventory file.

When I do provisioning inside of my playbooks, I like to split it up into two plays.
The first play runs against localhost and provisions the hosts, and the second play
configures the hosts.

Note that we made use of the creates=Vagrantfile parameter in this task:

- name: create a Vagrantfile
 command: vagrant init {{ box }} creates=Vagrantfile

This tells Ansible that if the Vagrantfile file is present, the host is already in the cor‐
rect state, and there is no need to run the command again. It’s a way of achieving
idempotence in a playbook that invokes the command module, by ensuring that the
(potentially non-idempotent) command is run only once.

group_by
Ansible also allows you to create new groups during execution of a playbook, using
the group_by module. This lets you create a group based on the value of a variable
that has been set on each host, which Ansible refers to as a fact.3

If Ansible fact gathering is enabled, then Ansible will associate a set of variables with
a host. For example, the ansible_machine variable will be i386 for 32-bit x86 machines
and x86_64 for 64-bit x86 machines. If Ansible is interacting with a mix of such
hosts, we can create i386 and x86_64 groups with the task.

Or, if we want to group our hosts by Linux distribution (e.g., Ubuntu, CentOS), we
can use the ansible_distribution fact.

- name: create groups based on Linux distribution
 group_by: key={{ ansible_distribution }}

In Example 3-13, we use group_by to create separate groups for our Ubuntu hosts
and our CentOS hosts, and then we use the apt module to install packages onto
Ubuntu and the yum module to install packages into CentOS.

Example 3-13. Creating ad-hoc groups based on Linux distribution

- name: group hosts by distribution
 hosts: myhosts
 gather_facts: True

Adding Entries at Runtime with add_host and group_by | 67

 tasks:
 - name: create groups based on distro
 group_by: key={{ ansible_distribution }}

- name: do something to Ubuntu hosts
 hosts: Ubuntu
 tasks:
 - name: install htop
 apt: name=htop
 # ...

- name: do something else to CentOS hosts
 hosts: CentOS
 tasks:
 - name: install htop
 yum: name=htop
 # ...

Although using group_by is one way to achieve conditional behavior in Ansible, I’ve
never found much use for it. In Chapter 6, we’ll see an example of how to use the
when task parameter to take different actions based on variables.

That about does it for Ansible’s inventory. In the next chapter, we’ll cover how to use
variables. See Chapter 9 for more details about ControlPersist, also known as SSH
multiplexing.

68 | Chapter 3: Inventory: Describing Your Servers

CHAPTER 4

Variables and Facts

Ansible is not a full-fledged programming language, but it does have several pro‐
gramming language features, and one of the most important of these is variable sub‐
stitution. In this chapter, we’ll cover Ansible’s support for variables in more detail,
including a certain type of variable that Ansible calls a fact.

Defining Variables in Playbooks
The simplest way to define variables is to put a vars section in your playbook with
the names and values of variables. Recall from Example 2-8 that we used this
approach to define several configuration-related variables, like this:

vars:
 key_file: /etc/nginx/ssl/nginx.key
 cert_file: /etc/nginx/ssl/nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

Ansible also allows you to put variables into one or more files, using a section called
vars_files. Let’s say we wanted to take the preceding example and put the variables
in a file named nginx.yml instead of putting them right in the playbook. We would
replace the vars section with a vars_files that looks like this:

vars_files:
 - nginx.yml

The nginx.yml file would look like Example 4-1.

Example 4-1. nginx.yml

key_file: /etc/nginx/ssl/nginx.key
cert_file: /etc/nginx/ssl/nginx.crt

69

conf_file: /etc/nginx/sites-available/default
server_name: localhost

We’ll see an example of vars_files in action in Chapter 6 when we use it to separate
out the variables that contain sensitive information.

As we discussed in Chapter 3, Ansible also let you define variables associated with
hosts or groups in the inventory file or in separate files that live alongside the inven‐
tory file.

Viewing the Values of Variables
For debugging, it’s often handy to be able to view the output of a variable. We saw in
Chapter 2 how we could use the debug module to print out an arbitrary message. We
can also use it to output the value of the variable. It works like this:

- debug: var=myvarname

We’ll be using this form of the debug module several times in this chapter.

Registering Variables
Often, you’ll find that you need to set the value of a variable based on the result of a
task. To do so, we create a registered variable using the register clause when invok‐
ing a module. Example 4-2 shows how we would capture the output of the whoami
command to a variable named login.

Example 4-2. Capturing the output of a command to a variable

- name: capture output of whoami command
 command: whoami
 register: login

In order to use the login variable later, we need to know what type of value to expect.
The value of a variable set using the register clause is always a dictionary, but the spe‐
cific keys of the dictionary are different, depending on the module that was invoked.

Unfortunately, the official Ansible module documentation doesn’t contain informa‐
tion about what the return values look like for each module. The module docs do
often contain examples that use the register clause, which can be helpful. I’ve found
the simplest way to find out what a module returns is to register a variable and then
output that variable with the debug module:

Let’s say we run the playbook shown in Example 4-3.

70 | Chapter 4: Variables and Facts

Example 4-3. whoami.yml

- name: show return value of command module
 hosts: server1
 tasks:
 - name: capture output of id command
 command: id -un
 register: login
 - debug: var=login

The output of the debug module would look like this:

TASK: [debug var=login] ***
ok: [server1] => {
 "login": {
 "changed": true,
 "cmd": [
 "id",
 "-un"
],
 "delta": "0:00:00.002180",
 "end": "2015-01-11 15:57:19.193699",
 "invocation": {
 "module_args": "id -un",
 "module_name": "command"
 },
 "rc": 0,
 "start": "2015-01-11 15:57:19.191519",
 "stderr": "",
 "stdout": "vagrant",
 "stdout_lines": [
 "vagrant"
],
 "warnings": []
 }
}

The changed key is present in the return value of all Ansible modules, and Ansi‐
ble uses it to determine whether a state change has occurred. For the command
and shell module, this will always be set to true unless overridden with the
changed_when clause, which we cover in Chapter 7.

The cmd key contains the invoked command as a list of strings.

The rc key contains the return code. If it is non-zero, Ansible will assume the
task failed to execute.

The stderr key contains any text written to standard error, as a single string.

Registering Variables | 71

The stdout key contains any text written to standard out, as a single string.

The stdout_lines key contains any text written to split by newline. It is a list,
where each element of the list is a line of output.

If you’re using the register clause with the command module, you’ll likely want access
to the stdout key, as shown in Example 4-4.

Example 4-4. Using the output of a command in a task

- name: capture output of id command
 command: id -un
 register: login
- debug: msg="Logged in as user {{ login.stdout }}"

Sometimes it’s useful to do something with the output of a failed task. However, if the
task fails, then Ansible will stop executing tasks for the failed host. We can use the
ignore_errors clause, as shown in Example 4-5, so Ansible does not stop on the
error.

Example 4-5. Ignoring when a module returns an error

- name: Run myprog
 command: /opt/myprog
 register: result
 ignore_errors: True
- debug: var=result

The shell module has the same output structure as the command module, but other
modules contain different keys. Example 4-6 shows the output of the apt module
when installing a package that wasn’t present before.

Example 4-6. Output of apt module when installing a new package

ok: [server1] => {
 "result": {
 "changed": true,
 "invocation": {
 "module_args": "name=nginx",
 "module_name": "apt"
 },
 "stderr": "",
 "stdout": "Reading package lists...\nBuilding dependency tree...",
 "stdout_lines": [
 "Reading package lists...",
 "Building dependency tree...",
 "Reading state information...",
 "Preparing to unpack .../nginx-common_1.4.6-1ubuntu3.1_all.deb ...",

72 | Chapter 4: Variables and Facts

 ...
 "Setting up nginx-core (1.4.6-1ubuntu3.1) ...",
 "Setting up nginx (1.4.6-1ubuntu3.1) ...",
 "Processing triggers for libc-bin (2.19-0ubuntu6.3) ..."
]
 }
}

Accessing Dictionary Keys in a Variable
If a variable contains a dictionary, then you can access the keys of the dictionary using
either a dot (.) or a subscript ([]). Example 4-4 had a variable reference that used the
dot notation:

{{ login.stdout }}

We could have used subscript notation instead:

{{ login['stdout'] }}

This rule applies to multiple dereferences, so all of the following are equivalent:

ansible_eth1['ipv4']['address']
ansible_eth1['ipv4'].address
ansible_eth1.ipv4['address']
ansible_eth1.ipv4.address

I generally prefer the dot notation, unless the key is a string that contains a character
that’s not allowed as a variable name, such as a dot, space, or hyphen.

Ansible uses Jinja2 to implement variable dereferencing, so for more details on this
topic, see the Jinja2 documentation on variables.

Example 4-7 shows the output of the apt module when the package was already
present on the host.

Example 4-7. Output of apt module when package already present

ok: [server1] => {
 "result": {
 "changed": false,
 "invocation": {
 "module_args": "name=nginx",
 "module_name": "apt"
 }
 }
}

Note that the stdout, stderr, and stdout_lines keys were present only in the output
when the package was not previously installed.

Registering Variables | 73

http://jinja.pocoo.org/docs/dev/templates/#variables

If your playbooks use registered variables, make sure you know the
content of that variable, both for cases where the module changes
the host’s state and for when the module doesn’t change the host’s
state. Otherwise, your playbook might fail when it tries to access a
key in a registered variable that doesn’t exist.

Facts
As we’ve already seen, when Ansible runs a playbook, before the first task runs, this
happens:

GATHERING FACTS **
ok: [servername]

When Ansible gathers facts, it connects to the host and queries the host for all kinds
of details about the host: CPU architecture, operating system, IP addresses, memory
info, disk info, and more. This information is stored in variables that are called facts,
and they behave just like any other variable does.

Here’s a simple playbook that will print out the operating system of each server:

- name: print out operating system
 hosts: all
 gather_facts: True
 tasks:
 - debug: var=ansible_distribution

Here’s what the output looks like for servers running Ubuntu and CentOS.

PLAY [print out operating system] ***

GATHERING FACTS ***
ok: [server1]
ok: [server2]

TASK: [debug var=ansible_distribution] **
ok: [server1] => {
 "ansible_distribution": "Ubuntu"
}
ok: [server2] => {
 "ansible_distribution": "CentOS"
}

PLAY RECAP **
server1 : ok=2 changed=0 unreachable=0 failed=0
server2 : ok=2 changed=0 unreachable=0 failed=0

You can consult the official Ansible documentation for a list of some of the available
facts. I maintain a more comprehensive list of facts on GitHub.

74 | Chapter 4: Variables and Facts

http://bit.ly/1G9pVfx
http://bit.ly/1G9pX7a

1 A glob is what shells use to match file patterns (e.g., *.txt).

Viewing All Facts Associated with a Server
Ansible implements fact collecting through the use of a special module called the
setup module. You don’t need to call this module in your playbooks because Ansible
does that automatically when it gathers facts. However, if you invoke it manually with
the ansible command-line tool, like this:

$ ansible server1 -m setup

Then Ansible will output all of the facts, as shown in Example 4-8.

Example 4-8. Output of setup module

server1 | success >> {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "10.0.2.15",
 "192.168.4.10"
],
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fefe:1e4d",
 "fe80::a00:27ff:fe67:bbf3"
],
(many more facts)

Note how the returned value is a dictionary whose key is ansible_facts and whose
value is a dictionary that contains the name and value of the actual facts.

Viewing a Subset of Facts
Because Ansible collects many facts, the setup module supports a filter parameter
that lets you filter by fact name by specifying a glob.1 For example:

$ ansible web -m setup -a 'filter=ansible_eth*'

The output would look like this:

web | success >> {
 "ansible_facts": {
 "ansible_eth0": {
 "active": true,
 "device": "eth0",
 "ipv4": {
 "address": "10.0.2.15",
 "netmask": "255.255.255.0",
 "network": "10.0.2.0"
 },

Facts | 75

 "ipv6": [
 {
 "address": "fe80::a00:27ff:fefe:1e4d",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "08:00:27:fe:1e:4d",
 "module": "e1000",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
 },
 "ansible_eth1": {
 "active": true,
 "device": "eth1",
 "ipv4": {
 "address": "192.168.33.10",
 "netmask": "255.255.255.0",
 "network": "192.168.33.0"
 },
 "ipv6": [
 {
 "address": "fe80::a00:27ff:fe23:ae8e",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "08:00:27:23:ae:8e",
 "module": "e1000",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
 }
 },
 "changed": false
}

Any Module Can Return Facts
If you look closely at Example 4-8, you’ll see that the output is a dictionary whose key
is ansible_facts. The use of ansible_facts in the return value is an Ansible idiom.
If a module returns a dictionary that contains ansible_facts as a key, then Ansible
will create variable names in the environment with those values and associate them
with the active host.

For modules that return facts, there’s no need to register variables, since Ansible cre‐
ates these variables for you automatically. For example, the following tasks would use

76 | Chapter 4: Variables and Facts

2 We’ll cover Amazon EC2 in more detail in Chapter 12.

the ec2_facts module to retrieve Amazon EC22 facts about a server and then print
out the instance id.

- name: get ec2 facts
 ec2_facts:

- debug: var=ansible_ec2_instance_id

The output would look like this.

TASK: [debug var=ansible_ec2_instance_id] *************************************
ok: [myserver] => {
 "ansible_ec2_instance_id": "i-a3a2f866"
}

Note how we did not need to use the register keyword when invoking ec2_facts,
since the returned values are facts. There are several modules that ship with Ansible
that return facts. We’ll see another one of them, the docker module, in Chapter 13.

Local Facts
Ansible also provides an additional mechanism for associating facts with a host. You
can place one or more files on the host machine in the /etc/ansible/facts.d directory.
Ansible will recognize the file if it’s:

• In .ini format
• In JSON format
• An executable that takes no arguments and outputs JSON on standard out

These facts are available as keys of a special variable named ansible_local.

For instance, Example 4-9 shows a fact file in .ini format.

Example 4-9. /etc/ansible/facts.d/example.fact

[book]
title=Ansible: Up and Running
author=Lorin Hochstein
publisher=O'Reilly Media

If we copy this file to /etc/ansible/facts.d/example.fact on the remote host, we can
access the contents of the ansible_local variable in a playbook:

- name: print ansible_local
 debug: var=ansible_local

Facts | 77

- name: print book title
 debug: msg="The title of the book is {{ ansible_local.example.book.title }}"

The output of these tasks looks like this:

TASK: [print ansible_local] ***
ok: [server1] => {
 "ansible_local": {
 "example": {
 "book": {
 "author": "Lorin Hochstein",
 "publisher": "O'Reilly Media",
 "title": "Ansible: Up and Running"
 }
 }
 }
}

TASK: [print book title] **
ok: [server1] => {
 "msg": "The title of the book is Ansible: Up and Running"
}

Note the structure of value in the ansible_local variable. Because the fact file is
named example.fact, the ansible_local variable is a dictionary that contains a key
named “example.”

Using set_fact to Define a New Variable
Ansible also allows you to set a fact (effectively the same as defining a new variable)
in a task using the set_fact module. I often like to use set_fact immediately after
register to make it simpler to refer to a variable. Example 4-10 demonstrates how to
use set_fact so that a variable can be referred to as snap instead of
snap_result.stdout.

Example 4-10. Using set_fact to simplify variable reference

- name: get snapshot id
 shell: >
 aws ec2 describe-snapshots --filters
 Name=tag:Name,Values=my-snapshot
 | jq --raw-output ".Snapshots[].SnapshotId"
 register: snap_result

- set_fact: snap={{ snap_result.stdout }}

- name: delete old snapshot
 command: aws ec2 delete-snapshot --snapshot-id "{{ snap }}"

78 | Chapter 4: Variables and Facts

Built-in Variables
Ansible defines several variables that are always available in a playbook, shown in
Table 4-1.

Table 4-1. Built-in variables

Parameter Description

hostvars A dict whose keys are Ansible host names and values are dicts that map variable names to values

inventory_hostname Name of the current host as known by Ansible

group_names A list of all groups that the current host is a member of

groups A dict whose keys are Ansible group names and values are a list of hostnames that are members of the
group. Includes all and ungrouped groups: {"all": […], "web": […], "ungrou
ped": […]}

play_hosts A list of inventory hostnames that are active in the current play

ansible_version A dict with Ansible version info: {"full": 1.8.2", "major": 1, "minor": 8,
"revision": 2, "string": "1.8.2"}

The hostvars, inventory_hostname, and groups variables merit some additional dis‐
cussion.

hostvars
In Ansible, variables are scoped by host. It only makes sense to talk about the value of
a variable relative to a given host.

The idea that variables are relative to a given host might sound confusing, since Ansi‐
ble allows you to define variables on a group of hosts. For example, if you define a
variable in the vars section of a play, you are defining the variable for the set of hosts
in the play. But what Ansible is really doing is creating a copy of that variable for each
host in the group.

Sometimes, a task that’s running on one host needs the value of a variable defined on
another host. Consider the scenario where you need to create a configuration file on
web servers that contains the IP address of the eth1 interface of the database server,
and you don’t know in advance what this IP address is. This IP address is available as
the ansible_eth1.ipv4.address fact for the database server.

The solution is to use the hostvars variable. This is a dictionary that contains all of
the variables defined on all of the hosts, keyed by the hostname as known to Ansible.

Built-in Variables | 79

3 See Chapter 9 for information about fact caching.

If Ansible has not yet gathered facts on a host, then you will not be able to access its
facts using the hostvars variable, unless fact caching is enabled.3

Continuing our example, if our database server is db.example.com, then we could put
the following in a configuration template:

{{ hostvars['db.example.com'].ansible_eth1.ipv4.address }}

This would evaluate to the ansible_eth1.ipv4.address fact associated with the host
named db.example.com.

inventory_hostname
The inventory_hostname is the hostname of the current host, as known by Ansible. If
you have defined an alias for a host, then this is the alias name. For example, if your
inventory contains a line like this:

server1 ansible_ssh_host=192.168.4.10

then the inventory_hostname would be server1.

You can output all of the variables associated with the current host with the help of
the hostvars and inventory_hostname variables:

- debug: var=hostvars[inventory_hostname]

Groups
The groups variable can be useful when you need to access variables for a group of
hosts. Let’s say we are configuring a load balancing host, and our configuration file
needs the IP addresses of all of the servers in our web group. Our configuration file
would contain a fragment that looks like this:

backend web-backend
{% for host in groups.web %}
 server {{ host.inventory_hostname }} {{ host.ansible_default_ipv4.address }}:80
{% endfor %}

The generated file would look like this:

backend web-backend
 server georgia.example.com 203.0.113.15:80
 server newhampshire.example.com 203.0.113.25:80
 server newjersey.example.com 203.0.113.38:80

80 | Chapter 4: Variables and Facts

Setting Variables on the Command Line
Variables set by passing -e var=value to ansible-playbook have the highest prece‐
dence, which means you can use this to override variables that are already defined.
Example 4-11 shows how to set the variable named token to the value 12345.

Example 4-11. Setting a variable from the command-line

$ ansible-playbook example.yml -e token=12345

Use the ansible-playbook -e var=value method when you want to want to use a
playbook like you would a shell script that takes a command-line argument. The -e
flag effectively allows you to pass variables as arguments.

Example 4-12 shows a very simple playbook that outputs a message specified by a
variable.

Example 4-12. greet.yml

- name: pass a message on the command line
 hosts: localhost
 vars:
 greeting: "you didn't specify a message"
 tasks:
 - name: output a message
 debug: msg="{{ greeting }}"

If we invoke it like this:

$ ansible-playbook greet.yml -e greeting=hiya

Then the output looks like this:

PLAY [pass a message on the command line] *************************************

TASK: [output a message] **
ok: [localhost] => {
 "msg": "hiya"
}

PLAY RECAP **
localhost : ok=1 changed=0 unreachable=0 failed=0

If you want to put a space in the variable, you’ll need two use quotes like this:

$ ansible-playbook greet.yml -e 'greeting="hi there"'

You’ve got to put single quotes around the entire 'greeting="hi there"' so that the
shell interprets that as a single argument to pass to Ansible, and you’ve got to put

Setting Variables on the Command Line | 81

4 We’ll discuss roles in Chapter 8.

double quotes around "hi there" so that Ansible treats that message as a single
string.

Ansible also allows you to pass a file containing the variables instead of passing them
directly on the command line by passing @filename.yml as the argument to -e, for
example, if we had a file that looked like Example 4-13.

Example 4-13. greetvars.yml

greeting: hiya

Then we can pass this file to the command line like this:

$ ansible-playbook greet.yml -e @greetvars.yml

Precedence
We’ve covered several different ways of defining variables, and it can happen that you
define the same variable multiple times for a host, using different values. Avoid this
when you can, but if you can’t, then keep in mind Ansible’s precedence rules. When
the same variable is defined in multiple ways, the precedence rules determine which
value wins.

The basic rules of precedence are:

1. (Highest) ansible-playbook -e var=value
2. Everything else not mentioned in this list
3. On a host or group, either defined in inventory file or YAML file
4. Facts
5. In defaults/main.yml of a role.4

In this chapter, we covered the different ways you can define and access variables and
facts. In the next chapter, we’ll focus on a realistic example of deploying an applica‐
tion.

82 | Chapter 4: Variables and Facts

1 This will install the Python packages into a virtualenv. We’ll cover virtualenvs in “Installing Mezzanine and
Other Packages into a virtualenv” on page 97.

CHAPTER 5

Introducing Mezzanine:
Our Test Application

In Chapter 2, we covered the basics of writing playbooks. But real life is always mess‐
ier than introductory chapters of programming books, so we’re going to work
through a complete example of deploying a non-trivial application.

Our example application is an open source content management system (CMS) called
Mezzanine, which is similar in spirit to WordPress. Mezzanine is built on top of
Django, the free Python-based framework for writing web applications.

Why Deploying to Production Is Complicated
Let’s take a little detour and talk about the differences between running software in
development mode on your laptop versus running the software in production.

Mezzanine is a great example of an application that is much easier to run in develop‐
ment mode than it is to deploy. Example 5-1 shows all you need to do to get Mezza‐
nine running on your laptop.1

Example 5-1. Running Mezzanine in development mode

$ virtualenv venv
$ source venv/bin/activate
$ pip install mezzanine
$ mezzanine-project myproject
$ cd myproject

83

http://mezzanine.jupo.org

$ python manage.py createdb
$ python manage.py runserver

You’ll be prompted to answer several questions. I answered “yes” to each yes/no ques‐
tion, and accepted the default answer whenever one was available. This was what my
interaction looked like:

You just installed Django's auth system, which means you don't have any
superusers defined.
Would you like to create one now? (yes/no): yes
Username (leave blank to use 'lorinhochstein'):
Email address: lorin@ansiblebook.com
Password:
Password (again):
Superuser created successfully.

A site record is required.
Please enter the domain and optional port in the format 'domain:port'.
For example 'localhost:8000' or 'www.example.com'.
Hit enter to use the default (127.0.0.1:8000):

Creating default site record: 127.0.0.1:8000 ...

Installed 2 object(s) from 1 fixture(s)

Would you like to install some initial demo pages?
Eg: About us, Contact form, Gallery. (yes/no): yes

You should eventually see output on the terminal that looks like this:

 d^^^^^^^^^b
 .d'' ``b.
 .p' `q.
 .d' `b.
 .d' `b. * Mezzanine 3.1.10
 :: :: * Django 1.6.8
 :: M E Z Z A N I N E :: * Python 2.7.6
 :: :: * SQLite 3.8.5
 `p. .q' * Darwin 14.0.0
 `p. .q'
 `b. .d'
 `q.. ..p'
 ^q........p^
 ''''

Validating models...

0 errors found
December 01, 2014 - 02:54:40
Django version 1.6.8, using settings 'mezzanine-example.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

84 | Chapter 5: Introducing Mezzanine: Our Test Application

If you point your browser to http://127.0.0.1:8000/, you should see a web page that
looks like Figure 5-1.

Figure 5-1. Mezzanine after a fresh install

Deploying this application to production is another matter. When you run the
mezzanine-project command, Mezzanine will generate a Fabric deployment script
at myproject/fabfile.py that you can use to deploy your project to a production server.
(Fabric is a Python-based tool that helps automate running tasks via ssh.) The script
is over 500 lines long, and that’s not counting the included configuration files that are
also involved in deployment. Why is deploying to production so much more com‐
plex? I’m glad you asked.

When run in development, Mezzanine provides the following simplifications (see
Figure 5-2):

• The system uses SQLite as the back-end database, and will create the database file
if it doesn’t exist.

• The development HTTP server serves up both the static content (images, .css
files, JavaScript) as well as the dynamically generated HTML.

Why Deploying to Production Is Complicated | 85

http://127.0.0.1:8000/
http://www.fabfile.org

• The development HTTP server uses the (insecure) http protocol, not (secure)
HTTPS.

• The development HTTP server process runs in the foreground, taking over your
terminal window.

• The hostname for the HTTP server is always 127.0.0.1 (localhost).

Figure 5-2. Django app in development mode

Now, let’s look at what happens when you deploy to production.

PostgreSQL: The Database
SQLite is a serverless database. In production, we want to run a server-based data‐
base, because those have better support for multiple, concurrent requests, and server-
based databases allow us to run multiple HTTP servers for load balancing. This
means we need to deploy a database management system such as MySQL or Post‐
greSQL (aka simply “Postgres”). Setting up one of these database servers requires
more work. We need to:

1. Install the database software.
2. Ensure the database service is running.
3. Create the database inside the database management system.
4. Create a database user who has the appropriate permissions for the database

system.
5. Configure our Mezzanine application with the database user credentials and con‐

nection information.

86 | Chapter 5: Introducing Mezzanine: Our Test Application

2 The WSGI protocol is documented in Python Enhancement Proposal (PEP) 3333.
3 Gunicorn 0.17 added support for TLS encryption. Before that you had to use a separate application such as

nginx to handle the encryption.

Gunicorn: The Application Server
Because Mezzanine is a Django-based application, you can run Mezzanine using
Django’s HTTP server, referred as the development server in the Django documenta‐
tion. Here’s what the Django 1.7 docs have to say about the development server.

[D]on’t use this server in anything resembling a production environment. It’s intended
only for use while developing. (We’re in the business of making Web frameworks, not
Web servers.)

Django implements the standard Web Server Gateway Interface (WSGI),2 so any
Python HTTP server that supports WSGI is suitable for running a Django application
such as Mezzanine. We’ll use Gunicorn, one of the most popular HTTP WSGI
servers, which is what the Mezzanine deploy script uses.

Nginx: The Web Server
Gunicorn will execute our Django application, just like the development server does.
However, Gunicorn won’t serve any of the static assets associated with the application.
Static assets are files such as images, .css files, and JavaScript files. They are called
static because they never change, in contrast with the dynamically generated web
pages that Gunicorn serves up.

Although Gunicorn can handle TLS encryption, it’s common to configure nginx to
handle the encryption.3

We’re going to use nginx as our web server for serving static assets and for handling
the TLS encryption, as shown in Figure 5-3. We need to configure nginx as a reverse
proxy for Gunicorn. If the request is for a static asset, such as a css file, then nginx will
serve that file directly from the local file system. Otherwise, nginx will proxy the
request to Gunicorn, by making an http request against the Gunicorn service that is
running on the local machine. Nginx uses the URL to determine whether to serve a
local file or proxy the request to Gunicorn. Note that requests to nginx will be
(encrypted) HTTPS, and all requests that nginx proxies to Gunicorn will be (unen‐
crypted) HTTP.

Why Deploying to Production Is Complicated | 87

https://www.python.org/dev/peps/pep-3333
http://bit.ly/1G9AbV0

Figure 5-3. Nginx as a reverse proxy

Supervisor: The Process Manager
When we run in development mode, we run the application server in the foreground
of our terminal. If we were to close our terminal, the program would terminate. For a
server application, we need it to run as a background process so it doesn’t terminate,
even if we close the terminal session we used to start the process.

The colloquial terms for such a process are daemon or service. We need to run Guni‐
corn as a daemon, and we’d like to be able to easily stop it and restart it. There are a
number of service managers that can do this job. We’re going to use Supervisor,
because that’s what the Mezzanine deployment scripts use.

At this point, you should have a sense of the steps involved in deploying a web appli‐
cation to production. We’ll go over how to implement this deployment with Ansible
in Chapter 6.

88 | Chapter 5: Introducing Mezzanine: Our Test Application

1 My wife, Stacy, is notorious for doing this.
2 You can find the Fabric scripts that ship with Mezzanine on GitHub.

CHAPTER 6

Deploying Mezzanine with Ansible

It’s time to write an Ansible playbook to deploy Mezzanine to a server. We’ll go
through it step by step, but if you’re the type of person that starts off by reading the
last page of a book to see how it ends,1 you can find the full playbook at the end of
this chapter as Example 6-27. It’s also available on GitHub. Check out the README
before trying to run it directly.

I’ve tried to hew as closely as possible to the original Fabric scripts that Mezzanine
author Stephen McDonald wrote.2

Listing Tasks in a Playbook
Before we dive into the guts of our playbook, let’s get a high-level view. The ansible-
playbook command-line tool supports a flag called --list-tasks. This flag will print
out the names of all of the tasks in a playbook. It’s a handy way to summarize what a
playbook is going to do. Here’s how you use it:

$ ansible-playbook --list-tasks mezzanine.yml

Example 6-1 shows the output for the mezzanine.yml playbook in Example 6-27.

Example 6-1. List of tasks in Mezzanine playbook

playbook: mezzanine.yml

 play #1 (Deploy mezzanine on vagrant):
 install apt packages

89

http://bit.ly/19P0T73
http://bit.ly/19P0OAj
http://bit.ly/1Onko4u

 check out the repository on the host
 install required python packages
 install requirements.txt
 create a user
 create the database
 generate the settings file
 sync the database, apply migrations, collect static content
 set the site id
 set the admin password
 set the gunicorn config file
 set the supervisor config file
 set the nginx config file
 enable the nginx config file
 remove the default nginx config file
 ensure config path exists
 create tls certificates
 install poll twitter cron job

Organization of Deployed Files
As we discussed earlier, Mezzanine is built atop Django. In Django, a web app is
called a project. We get to choose what to name our project, and I’ve chosen to name
it mezzanine-example.

Our playbook deploys into a Vagrant machine, and will deploy the files into the home
directory of the Vagrant user’s account.

/home/vagrant/mezzanine-example is the top-level directory we’ll deploy into. It also
serves as the virtualenv directory, which means that we’re going to install all of the
Python packages into that directory.

home/vagrant/mezzanine-example/project will contain the source code that will be
cloned from a source code repository on GitHub.

Variables and Secret Variables
As you can see from Example 6-2, this playbook defines quite a few variables.

Example 6-2. Defining the variables

 vars:
 user: "{{ ansible_ssh_user }}"
 proj_name: mezzanine-example
 venv_home: "{{ ansible_env.HOME }}"
 venv_path: "{{ venv_home }}/{{ proj_name }}"
 proj_dirname: project
 proj_path: "{{ venv_path }}/{{ proj_dirname }}"
 reqs_path: requirements.txt
 manage: "{{ python }} {{ proj_path }}/manage.py"

90 | Chapter 6: Deploying Mezzanine with Ansible

 live_hostname: 192.168.33.10.xip.io
 domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io
 repo_url: git@github.com:lorin/mezzanine-example.git
 gunicorn_port: 8000
 locale: en_US.UTF-8
 # Variables below don't appear in Mezzanine's fabfile.py
 # but I've added them for convenience
 conf_path: /etc/nginx/conf
 tls_enabled: True
 python: "{{ venv_path }}/bin/python"
 database_name: "{{ proj_name }}"
 database_user: "{{ proj_name }}"
 database_host: localhost
 database_port: 5432
 gunicorn_proc_name: mezzanine
 vars_files:
 - secrets.yml

I’ve tried for the most part to use the same variable names that the Mezzanine Fabric
script uses. I’ve also added some extra variables to make things a little clearer. For
example, the Fabric scripts directly use proj_name as the database name and database
username. I prefer to define intermediate variables named database_name and data
base_user and define these in terms of proj_name.

A couple of things to note here. First of all, note how we can define one variable in
terms of another. For example, we define venv_path in terms of venv_home and
proj_name.

Also, note how we can reference Ansible facts in these variables. For example,
venv_home is defined in terms of the ansible_env fact that is collected from each
host.

Finally, note how we have specified some of our variables in a separate file, called
secrets.yml, by doing this:

 vars_files:
 - secrets.yml

This file contains credentials such as passwords and tokens that need to remain pri‐
vate. Note that my repository on GitHub does not actually contain this file. Instead, it
contains a file called secrets.yml.example that looks like this:

db_pass: e79c9761d0b54698a83ff3f93769e309
admin_pass: 46041386be534591ad24902bf72071B
secret_key: b495a05c396843b6b47ac944a72c92ed
nevercache_key: b5d87bb4e17c483093296fa321056bdc
You need to create a Twitter application at https://dev.twitter.com
in order to get the credentials required for Mezzanine's
twitter integration.

Variables and Secret Variables | 91

#
See http://mezzanine.jupo.org/docs/twitter-integration.html
for details on Twitter integration
twitter_access_token_key: 80b557a3a8d14cb7a2b91d60398fb8ce
twitter_access_token_secret: 1974cf8419114bdd9d4ea3db7a210d90
twitter_consumer_key: 1f1c627530b34bb58701ac81ac3fad51
twitter_consumer_secret: 36515c2b60ee4ffb9d33d972a7ec350a

To use this repo, you need to copy secrets.yml.example to secrets.yml and edit it so that
it contains the credentials specific to your site. Also note that secrets.yml is included
in the .gitignore file in the Git repository to prevent someone from accidentally com‐
mitting these credentials.

It’s best to avoid committing unencrypted credentials into your version control repos‐
itory because of the security risks involved. This is just one possible strategy for
maintaining secret credentials. We also could have passed them as environment vari‐
ables. Another option, which we will describe in Chapter 7, is to commit an encryp‐
ted version of the secrets.yml file using Ansible’s vault functionality.

Using Iteration (with_items) to Install Multiple Packages
We’re going to need to install two different types of packages for our Mezzanine
deployment. We need to install some system-level packages, and because we’re going
to deploy on Ubuntu, we’re going to use apt as our package manager for the system
packages. We also need to install some Python packages, and we’ll use pip for the
Python packages.

System-level packages are generally easier to deal with than Python packages, because
system-level packages are designed specifically to work with the operating system.
However, the system package repositories often don’t have the newest versions of the
Python libraries we need, so we turn to the Python packages to install those. It’s a
trade-off between stability versus running the latest and greatest.

Example 6-3 shows the task we’ll use to install the system packages.

Example 6-3. Installing system packages

- name: install apt packages
 apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
 sudo: True
 with_items:
 - git
 - libjpeg-dev
 - libpq-dev
 - memcached
 - nginx
 - postgresql
 - python-dev

92 | Chapter 6: Deploying Mezzanine with Ansible

 - python-pip
 - python-psycopg2
 - python-setuptools
 - python-virtualenv
 - supervisor

There’s a lot to unpack here. Because we’re installing multiple packages, we use Ansi‐
ble’s iteration functionality, the with_items clause. We could have installed the pack‐
ages one at a time, like this:

- name: install git
 apt: pkg=git

- name: install libjpeg-dev
 apt: pkg=libjpeg-dev
...

However, it’s much simpler to write and read if we group all of the packages together
in a list. When we invoke the apt module, we pass it {{ item }}. This is a place‐
holder variable that will be populated by each of the elements in the list of the
with_items clause.

Ansible always uses item as the name of the loop iteration variable.

In addition, in the case of the apt module, it’s more efficient to install multiple pack‐
ages using the with_items clause. That’s because Ansible will pass the entire list of
packages to the apt module, and the module will invoke the apt program only once,
passing it the entire list of packages to be installed. Some modules, like apt, have been
designed to handle lists intelligently like this. If a module doesn’t have native support
for lists, then Ansible will simply invoke the module multiple times, once for each
element of the list.

You can tell that the apt module is intelligent enough to handle multiple packages at
once, because the output looks like this:

TASK: [install apt packages] **
ok: [web] => (item=git,libjpeg-dev,libpq-dev,memcached,nginx,postgresql,
python-dev,python-pip,python-psycopg2,python-setuptools,python-virtualenv,
supervisor)

On the other hand, the pip module does not handle lists intelligently, so Ansible must
invoke it once for each element of the list, and the output looks like this:

TASK: [install other python packages] ***
ok: [web] => (item=gunicorn)

Using Iteration (with_items) to Install Multiple Packages | 93

ok: [web] => (item=setproctitle)
ok: [web] => (item=south)
ok: [web] => (item=psycopg2)
ok: [web] => (item=django-compressor)
ok: [web] => (item=python-memcached)

Adding the Sudo Clause to a Task
In the playbook examples of Chapter 2, we wanted the whole playbook to run as root,
so we added the sudo: True clause to the play.

When we deploy Mezzanine, most of the tasks will be run as the user who is SSHing
to the host, rather than root. Therefore, we don’t want to run as sudo the entire play,
just select tasks.

We can accomplish this by adding sudo: True to the tasks that do need to run as
root, such as Example 6-3.

Updating the Apt Cache
All of the example commands in this subsection are run on the
(Ubuntu) remote host, not the control machine.

Ubuntu maintains a cache with the names of all of the Apt packages that are available
in the Ubuntu package archive. Let’s say you try to install the package named libssl-
dev. We can use the apt-cache program to query the local cache to see what version
it knows about:

$ apt-cache policy libssl-dev

The output is shown in Example 6-4.

Example 6-4. apt cache output

libssl-dev:
 Installed: (none)
 Candidate: 1.0.1f-1ubuntu2.5
 Version table:
 1.0.1f-1ubuntu2.5 0
 500 http://archive.ubuntu.com/ubuntu/ trusty-updates/main amd64 Packages
 500 http://security.ubuntu.com/ubuntu/ trusty-security/main amd64
Packages
 1.0.1f-1ubuntu2 0
 500 http://archive.ubuntu.com/ubuntu/ trusty/main amd64 Packages

94 | Chapter 6: Deploying Mezzanine with Ansible

As we can see, this package is not installed locally. According to the local cache, the
latest version is 1.0.1f-ubuntu2.5. We also see some information about the location of
the package archive.

In some cases, when the Ubuntu project releases a new version of a package, it
removes the old version from the package archive. If the local apt cache of an
Ubuntu server hasn’t been updated, then it will attempt to install a package that
doesn’t exist in the package archive.

To continue with our example, let’s say we were to attempt to install the libssl-dev
package:

$ apt-get install libssl-dev

If version 1.0.1f-ubuntu2.5 were no longer available in the package archive, we’d see
the following error:

Err http://archive.ubuntu.com/ubuntu/ trusty-updates/main libssl-dev amd64
1.0.1f-1ubuntu2.5
 404 Not Found [IP: 91.189.88.153 80]
Err http://security.ubuntu.com/ubuntu/ trusty-security/main libssl-dev amd64
1.0.1f-1ubuntu2.5
 404 Not Found [IP: 91.189.88.149 80]
Err http://security.ubuntu.com/ubuntu/ trusty-security/main libssl-doc all
1.0.1f-1ubuntu2.5
 404 Not Found [IP: 91.189.88.149 80]
E: Failed to fetch
http://security.ubuntu.com/ubuntu/pool/main/o/openssl/libssl-dev_1.0.1f-1ubuntu2.
5_amd64.deb
404 Not Found [IP: 91.189.88.149 80]

E: Failed to fetch
http://security.ubuntu.com/ubuntu/pool/main/o/openssl/libssl-doc_1.0.1f-1ubuntu2.
5_all.deb
404 Not Found [IP: 91.189.88.149 80]

E: Unable to fetch some archives, maybe run apt-get update or try with
--fix-missing?

On the command line, the way to bring the local apt cache up-to-date is to run apt-
get update. When using the apt Ansible module, the way to bring the local apt
cache up-to-date is to pass the update_cache=yes argument when invoking the mod‐
ule, as shown in Example 6-3.

Because updating the cache takes some additional time, and because we might be
running a playbook multiple times in quick succession in order to debug it, we can
avoid paying the cache update penalty by using the cache_valid_time argument to
the module. This instructs to update the cache only if it’s older than some threshold.
The example in Example 6-3 uses cache_valid_time=3600, which updates the cache
only if it’s older than 3,600 seconds (1 hour).

Updating the Apt Cache | 95

Checking Out the Project Using Git
Although Mezzanine can be used without writing any custom code, one of its
strengths is that it is written on top of the Django platform, and Django’s a great web
application platform if you know Python. If you just wanted a CMS, you’d likely just
use something like WordPress. But if you’re writing a custom application that incor‐
porates CMS functionality, Mezzanine is a good way to go.

As part of the deployment, you need to check out the Git repository that contains
your Django applications. In Django terminology, this repository must contain a
project. I’ve created a repository on GitHub that contains a Django project with the
expected files. That’s the project that gets deployed in this playbook.

I created these files using the mezzanine-project program that ships with Mezza‐
nine, like this:

$ mezzanine-project mezzanine-example

Note that I don’t have any custom Django applications in my repository, just the files
that are required for the project. In a real Django deployment, this repository would
contain subdirectories that contain additional Django applications.

Example 6-5 shows how we use the git module to check out a Git repository onto a
remote host.

Example 6-5. Checking out the Git repository

- name: check out the repository on the host
 git: repo={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes

I’ve made the project repository public so that readers can access it, but in general,
you’ll be checking out private Git repositories over SSH. For this reason, I’ve set the
repo_url variable to use the scheme that will clone the repository over SSH:

repo_url: git@github.com:lorin/mezzanine-example.git

If you’re following along at home, to run this playbook you must:

1. Have a GitHub account.
2. Have a public SSH key associated with your GitHub account.
3. Have an SSH agent running on your control machine with agent forwarding

enabled.

To enable agent forwarding, add the following to your ansible.cfg:

[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=60s -o ForwardAgent=yes

96 | Chapter 6: Deploying Mezzanine with Ansible

https://github.com/lorin/mezzanine-example

In addition to specifying the repository URL with the repo parameter and the desti‐
nation path of the repository as the dest parameter, we also pass an additional
parameter, accept_hostkey, which is related to host key checking. We discuss SSH
agent forwarding and host key checking in more detail in Appendix A.

Installing Mezzanine and Other Packages into a
virtualenv
As mentioned earlier in this chapter, we’re going to install some of the packages as
Python packages because we can get more recent versions of those than if we installed
the equivalent apt package.

We can install Python packages systemwide as the root user, but it’s better practice to
install these packages in an isolated environment to avoid polluting the system-level
Python packages. In Python, these types of isolated package environments are called
virtualenvs. A user can create multiple virtualenvs, and can install Python packages
into a virtualenv without needing root access.

Ansible’s pip module has support for installing packages into a virtualenv and for cre‐
ating the virtualenv if it is not available. Example 6-6 shows the two tasks that we use
to install Python packages into the virtualenv, both of which use the pip module,
although in different ways.

Example 6-6. Install Python packages

- name: install required python packages
 pip: name={{ item }} virtualenv={{ venv_path }}
 with_items:
 - gunicorn
 - setproctitle
 - south
 - psycopg2
 - django-compressor
 - python-memcached

- name: install requirements.txt
 pip: requirements={{ proj_path }}/{{ reqs_path }} virtualenv={{ venv_path }}

A common pattern in Python projects is to specify the package dependencies in a file
called requirements.txt. And, indeed, the repository in our Mezzanine example con‐
tains a requirements.txt file. It looks like Example 6-7.

Example 6-7. requirements.txt

Mezzanine==3.1.10

Installing Mezzanine and Other Packages into a virtualenv | 97

The requirements.txt file is missing several other Python packages that we need for
the deployment, so we explicitly specify these as a separate task.

Note that the Mezzanine Python package in requirements.txt is pinned to a specific
version (3.1.10), where the other packages aren’t pinned; we just grab the latest ver‐
sions of those. If we did not want to pin Mezzanine, we simply could have added
Mezzanine to the list of packages, like this:

- name: install python packages
 pip: name={{ item }} virtualenv={{ venv_path }}
 with_items:
 - mezzanine
 - gunicorn
 - setproctitle
 - south
 - psycopg2
 - django-compressor
 - python-memcached

Alternately, if we wanted to pin all of the packages, we have several options. We could
have created a requirements.txt file. This file contains information about the packages
and the dependencies. An example file looks like Example 6-8.

Example 6-8. Example requirements.txt

Django==1.6.8
Mezzanine==3.1.10
Pillow==2.6.1
South==1.0.1
argparse==1.2.1
beautifulsoup4==4.1.3
bleach==1.4
django-appconf==0.6
django-compressor==1.4
filebrowser-safe==0.3.6
future==0.9.0
grappelli-safe==0.3.13
gunicorn==19.1.1
html5lib==0.999
oauthlib==0.7.2
psycopg2==2.5.4
python-memcached==1.53
pytz==2014.10
requests==2.4.3
requests-oauthlib==0.4.2
setproctitle==1.1.8
six==1.8.0
tzlocal==1.0
wsgiref==0.1.2

98 | Chapter 6: Deploying Mezzanine with Ansible

If you have an existing virtualenv with the packages installed, you can use the pip
freeze command to print out a list of installed packages. For example, if your virtua‐
lenv is in ~/mezzanine_example, you can activate your virtualenv and print out the
packages in the virtualenv like this:

$ source ~/mezzanine_example/bin/activate
$ pip freeze > requirements.txt

Example 6-9 shows how we could have installed the packages using a requirements.txt
file if we had one.

Example 6-9. Installing from requirements.txt

- name: copy requirements.txt file
 copy: src=files/requirements.txt dest=~/requirements.txt
- name: install packages
 pip: requirements=~/requirements.txt virtualenv={{ venv_path }}

Alternatively, we could have specified both the package names and their versions in
the list, as shown in Example 6-10. We pass a list of dictionaries, and dereference the
elements with item.name and item.version.

Example 6-10. Specifying package names and version

- name: python packages
 pip: name={{ item.name }} version={{ item.version }} virtualenv={{ venv_path }}
 with_items:
 - {name: mezzanine, version: 3.1.10 }
 - {name: gunicorn, version: 19.1.1 }
 - {name: setproctitle, version: 1.1.8 }
 - {name: south, version: 1.0.1 }
 - {name: psycopg2, version: 2.5.4 }
 - {name: django-compressor, version: 1.4 }
 - {name: python-memcached, version: 1.53 }

Complex Arguments in Tasks: A Brief Digression
Up until this point in the book, every time we have invoked a module, we have passed
the argument as a string. Taking the pip example from Example 6-10, we passed the
pip module a string as an argument:

- name: install package with pip
 pip: name={{ item.name }} version={{ item.version }} virtualenv={{ venv_path }}

If we don’t like long lines in our files, we could have broken up the argument string
across multiple lines using YAML’s line folding, which we originally wrote about in
“Line Folding” on page 30:

Complex Arguments in Tasks: A Brief Digression | 99

- name: install package with pip
 pip: >
 name={{ item.name }}
 version={{ item.version }}
 virtualenv={{ venv_path }}

Ansible also provides us with another option for breaking up a module invocation
across multiple lines. Instead of passing a string, we can pass a dictionary where the
keys are the variable names. This means we could have invoked Example 6-10 like
this instead:

- name: install package with pip
 pip:
 name: "{{ item.name }}"
 version: "{{ item.version }}"
 virtualenv: "{{ venv_path }}"

The dictionary-based approach to passing arguments is also useful when invoking
modules that take complex arguments. A complex argument is an argument to a mod‐
ule that is a list or a dictionary. The ec2 module, which creates new servers on Ama‐
zon EC2 cloud, is a good example of a module that takes complex arguments.
Example 6-11 shows how to call a module that takes a list as an argument for the
group parameter, and a dictionary as an argument to the instance_tags parameter.
We’ll cover this module in more detail in Chapter 12.

Example 6-11. Calling a module with complex arguments

- name: create an ec2 instance
 ec2:
 image: ami-8caa1ce4
 instance_type: m3.medium
 key_name: mykey
 group:
 - web
 - ssh
 instance_tags:
 type: web
 env: production

You can even mix it up by passing some arguments as a string and others as a dictio‐
nary, by using the args clause to specify some of the variables as a dictionary. We
could rewrite our preceding example as:

- name: create an ec2 instance
 ec2: image=ami-8caa1ce4 instance_type=m3.medium key_name=mykey
 args:
 group:
 - web
 - ssh
 instance_tags:

100 | Chapter 6: Deploying Mezzanine with Ansible

 type: web
 env: production

If you’re using the local_action clause (we’ll cover this in more detail in Chapter 7),
then the syntax for complex args changes slightly. You need to add module: <module
name> as shown below:

- name: create an ec2 instance
 local_action:
 module: ec2
 image: ami-8caa1ce4
 instance_type: m3.medium
 key_name: mykey
 group:
 - web
 - ssh
 instance_tags:
 type: web
 env: production

You can also mix simple arguments and complex arguments when using
local_action:

- name: create an ec2 instance
 local_action: ec2 image=ami-8caa1ce4 instance_type=m3.medium key_name=mykey
 args:
 image: ami-8caa1ce4
 instance_type: m3.medium
 key_name: mykey
 group:
 - web
 - ssh
 instance_tags:
 type: web
 env: production

Ansible allows you to specify file permissions, which are used by
several modules, including file, copy, and template. If you are
specifying an octal value as a complex argument, it must either
start the value with a 0 or quote it as a string.
For example, note how the mode argument starts with a +0:

- name: copy index.html
 copy:
 src: files/index.html
 dest: /usr/share/nginx/html/index.html
 mode: "0644"

If you do not start the mode argument with a 0 or quote it as a
string, Ansible will interpret the value as a decimal number instead
of an octal, and will not set the file permissions the way you expect.
For details, see GitHub.

Complex Arguments in Tasks: A Brief Digression | 101

http://bit.ly/1GASfbl

If you want to break your arguments across multiple lines, and you aren’t passing
complex arguments, which form you choose is a matter of taste. I generally prefer
dictionaries to multiline strings, but in this book I use both forms.

Creating the Database and Database User
When Django runs in development mode, it uses the SQLite backend. This backend
will create the database file if the file does not exist.

When using a database management system like Postgres, we need to first create the
database inside of Postgres and then create the user account that owns the database.
Later on, we will configure Mezzanine with the credentials of this user.

Ansible ships with the postgresql_user and postgresql_db modules for creating
users and databases inside of Postgres. Example 6-12 shows how we invoke these
modules in our playbook.

Example 6-12. Creating the database and database user

- name: create a user
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"
 sudo: True
 sudo_user: postgres

- name: create the database
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0
 sudo: True
 sudo_user: postgres

Note the use of sudo: True and sudo_user: postgres on each of these tasks. When
you install Postgres on Ubuntu, the installation process creates a user named postgres
that has administrative privileges for the Postgres installation. Note that the root
account does not have administrative privileges in Postgres by default, so in the play‐
book, we need to sudo to the Postgres user in order to perform administrative tasks,
such as creating users and databases.

102 | Chapter 6: Deploying Mezzanine with Ansible

3 See the Postgres documentation for more details about template databases.

When we create the database, we set the encoding (UTF8) and locale categories
(LC_CTYPE, LC_COLLATE) associated with the database. Because we are setting
locale information, we use template0 as the template.3

Generating the local_settings.py File from a Template
Django expects to find project-specific settings in a file called settings.py. Mezzanine
follows the common Django idiom of breaking up these settings into two groups:

• Settings that are the same for all deployments (settings.py)
• Settings that vary by deployment (local_settings.py)

We define the settings that are the same for all deployments in the settings.py file in
our project repository. You can find that file on GitHub.

As shown in Example 6-13, the settings.py file contains a Python snippet that loads a
local_settings.py file. Django will raise an exception if the local_settings.py file does
not exist.

Example 6-13. Loading the local settings

try:
 from local_settings import *
except ImportError as e:
 if "local_settings" not in str(e):
 raise e

In addition, the .gitignore file is configured to ignore the local_settings.py file, since
developers will commonly create this file and configure it for local development.

As part of our deployment, we need to create a local_settings.py file and upload it to
the remote host. Example 6-14 shows the Jinja2 template that we use.

Example 6-14. local_settings.py.j2

from __future__ import unicode_literals

SECRET_KEY = "{{ secret_key }}"
NEVERCACHE_KEY = "{{ nevercache_key }}"
ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

DATABASES = {
 "default": {
 # Ends with "postgresql_psycopg2", "mysql", "sqlite3" or "oracle".

Generating the local_settings.py File from a Template | 103

http://bit.ly/1F5AYpN
http://bit.ly/1F5B7cY

 "ENGINE": "django.db.backends.postgresql_psycopg2",
 # DB name or path to database file if using sqlite3.
 "NAME": "{{ proj_name }}",
 # Not used with sqlite3.
 "USER": "{{ proj_name }}",
 # Not used with sqlite3.
 "PASSWORD": "{{ db_pass }}",
 # Set to empty string for localhost. Not used with sqlite3.
 "HOST": "127.0.0.1",
 # Set to empty string for default. Not used with sqlite3.
 "PORT": "",
 }
}

SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTOCOL", "https")

CACHE_MIDDLEWARE_SECONDS = 60

CACHE_MIDDLEWARE_KEY_PREFIX = "{{ proj_name }}"

CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends.memcached.MemcachedCache",
 "LOCATION": "127.0.0.1:11211",
 }
}

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Most of this template is straightforward; it uses the {{ variable }} syntax to insert
the values of variables such as secret_key, nevercache_key, proj_name, and
db_pass. The only non-trivial bit of logic is the line shown in Example 6-15:

Example 6-15. Using a for loop in a Jinja2 template

ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

If we look back at our variable definition, we have a variable called domains that’s
defined like this:

domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io

Our Mezzanine app is going to respond only to requests that are for one of the host‐
names listed in the domains variable: http://192.168.33.10.xip.io or http://www.
192.168.33.10.xip.io in our case. If a request reaches Mezzanine but the host header is
something other than those two domains, the site will return “Bad Request (400).”

We want this line in the generated file to look like this:

104 | Chapter 6: Deploying Mezzanine with Ansible

http://192.168.33.10.xip.io
http://www.192.168.33.10.xip.io
http://www.192.168.33.10.xip.io

ALLOWED_HOSTS = ["192.168.33.10.xip.io", "www.192.168.33.10.xip.io"]

We can achieve this by using a for loop, as shown in Example 6-15. Note that it
doesn’t do exactly what we want. Instead, it will have a trailing comma, like this:

ALLOWED_HOSTS = ["192.168.33.10.xip.io", "www.192.168.33.10.xip.io",]

However, Python is perfectly happy with trailing commas in lists, so we can leave it
like this.

What’s xip.io?
You might have noticed that the domains we are using look a little strange:
192.168.33.10.xip.io and www.192.168.33.10.xip.io. They are domain names, but they
have the IP address embedded within them.

When you access a website, you pretty much always point your browser to a domain
name such as http://www.ansiblebook.com, instead of an IP address like http://
54.225.155.135.

When we write our playbook to deploy Mezzanine to Vagrant, we want to configure
the application with the domain name or names that it should be accessible by.

The problem is that we don’t have a DNS record that maps to the IP address of our
Vagrant box. In this case, that’s 192.168.33.10. There’s nothing stopping us from set‐
ting up a DNS entry for this. For example, I could create a DNS entry from
mezzanine-internal.ansiblebook.com that points to 192.168.33.10.

However, if we want to create a DNS name that resolves to a particular IP address,
there’s a convenient service called xip.io, provided free of charge by Basecamp, that we
can use so that we don’t have to avoid creating our own DNS records. If
AAA.BBB.CCC.DDD is an IP address, then the DNS entry AAA.BBB.CCC.DDD.xip.io
will resolve to AAA.BBB.CCC.DDD. For example, 192.168.33.10.xip.io resolves to
192.168.33.10. In addition, www.192.168.33.10.xip.io also resolves to 192.168.33.10.

I find xip.io to be a great tool when I’m deploying web applications to private IP
addresses for testing purposes.

Alternatively, you can simply add entries to the /etc/hosts file on your local machine,
which also works when you’re offline.

Let’s examine the Jinja2 for loop syntax. To make things a little easier to read, we’ll
break it up across multiple lines, like this:

ALLOWED_HOSTS = [
{% for domain in domains %}
 "{{ domain }}",
{% endfor %}
]

Generating the local_settings.py File from a Template | 105

http://www.ansiblebook.com
http://54.225.155.135
http://54.225.155.135

The generated config file would look like this, which is still valid Python.

ALLOWED_HOSTS = [
 "192.168.33.10.xip.io",
 "www.192.168.33.10.xip.io",
]

Note that the for loop has to be terminated by an {% endfor %} statement. Also note
that the for statement and the endfor statement are surrounded by {% %} delimiters,
which are different from the {{ }} delimiters that we use for variable substitution.

All variables and facts that have been defined in a playbook are available inside of
Jinja2 templates, so we never need to explicitly pass variables to templates.

Running django-manage Commands
Django applications use a special script called manage.py that performs administra‐
tive actions for Django applications such as:

• creating database tables
• applying database migrations
• loading fixtures from files into the database
• dumping fixtures from the database to files
• copying static assets to the appropriate directory

In addition to the built-in commands that manage.py supports, Django applications
can add custom commands, and Mezzanine adds a custom command called crea
tedb that is used to initialize the database and copy the static assets to the appropriate
place. The official Fabric scripts do the equivalent of:

$ manage.py createdb --noinput --nodata

Ansible ships with a django_manage module that invokes manage.py commands. We
could invoke it like this:

- name: initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"

Unfortunately, the custom createdb command that Mezzanine adds isn’t idempotent.
If invoked a second time, it will fail like this:

TASK: [initialize the database] ***
failed: [web] => {"cmd": "python manage.py createdb --noinput --nodata", "failed"
: true, "path": "/home/vagrant/mezzanine_example/bin:/usr/local/sbin:/usr/local/b
in:/usr/sbin: /usr/bin:/sbin:/bin:/usr/games:/usr/local/games", "state": "absent"

106 | Chapter 6: Deploying Mezzanine with Ansible

http://bit.ly/1FvJwnp

, "syspath": ["", "/usr/lib/python2.7", "/usr/lib/python2.7/plat-x86_64-linux-gnu
", "/usr/lib/python2.7/lib-tk", "/usr/lib/python2.7/lib-old", "/usr/lib/python2.7
/lib-dynload", "/usr/local/lib/python2.7/dist-packages", "/usr/lib/python2.7/dist
-packages"]}
msg:
:stderr: CommandError: Database already created, you probably want the syncdb or
migrate command

Fortunately, the custom createdb command is effectively equivalent to three idempo‐
tent built-in manage.py commands:

syncdb

Create database tables for Django models that are not versioned with South, a
library that implements database migrations for Django.

migrate

Create and update database tables for Django models that are versioned with
South.

collectstatic

Copy the static assets to the appropriate directories.

By invoking these commands, we get an idempotent task:

- name: sync the database, apply migrations, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 with_items:
 - syncdb
 - migrate
 - collectstatic

Running Custom Python Scripts in the Context of the
Application
To initialize our application, we need to make two changes to our database.

1. We need to create a Site model object that contains the domain name of our site
(in our case, that’s 192.168.33.10.xip.io).

2. We need to set the administrator username and password.

While we could make these changes with raw SQL commands, typically you’d do this
by writing Python code, and that’s how the Mezzanine Fabric scripts do it, so that’s
how we’re going to do it.

Running Custom Python Scripts in the Context of the Application | 107

http://south.readthedocs.org
http://bit.ly/1FvJFaz

There are two tricky parts here. The Python scripts need to run in the context of the
virtualenv that we’ve created, and the Python environment needs to be set up prop‐
erly so that the script will import the settings.py file that’s in ~/mezzanine_example/
project.

In most cases, if I needed some custom Python code, I’d write a custom Ansible mod‐
ule. However, as far as I know, Ansible doesn’t let you execute a module in the context
of a virtualenv, so that’s out.

I used the script module instead. This will copy over a custom script and execute it.
I wrote two scripts, one to set the Site record, and the other to set the admin user‐
name and password.

You can pass command-line arguments to script modules and parse them out, but I
decided to pass the arguments as environment variables instead. I didn’t want to pass
passwords via command-line argument (those show up in the process list when you
run the ps command), and it’s easier to parse out environment variables in the scripts
than it is to parse command-line arguments.

Passing Environment Variables to Ansible Tasks

Ansible allows you to set environment variables by adding an envi
ronment clause to a task, passing it a dictionary that contains the
environment variable names and values. You can add an environ
ment clause to any task; it doesn’t have to be a script.

In order to run these scripts in the context of the virtualenv, I also needed to set the
path variable so that the first Python executable in the path would be the one inside
of the virtualenv. Example 6-16 shows how I invoked the two scripts.

Example 6-16. Using the script module to invoke custom Python code

- name: set the site id
 script: scripts/setsite.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 WEBSITE_DOMAIN: "{{ live_hostname }}"

- name: set the admin password
 script: scripts/setadmin.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

108 | Chapter 6: Deploying Mezzanine with Ansible

The scripts themselves are shown in Examples 6-17 and 6-18. I put these in a scripts
subdirectory.

Example 6-17. scripts/setsite.py

#!/usr/bin/env python
A script to set the site domain
Assumes two environment variables
#
PROJECT_DIR: the project directory (e.g., ~/projname)
WEBSITE_DOMAIN: the domain of the site (e.g., www.example.com)

import os
import sys

Add the project directory to system path
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'
from django.conf import settings
from django.contrib.sites.models import Site

domain = os.environ['WEBSITE_DOMAIN']
Site.objects.filter(id=settings.SITE_ID).update(domain=domain)
Site.objects.get_or_create(domain=domain)

Example 6-18. scripts/setadmin.py

#!/usr/bin/env python
A script to set the admin credentials
Assumes two environment variables
#
PROJECT_DIR: the project directory (e.g., ~/projname)
ADMIN_PASSWORD: admin user's password

import os
import sys

Add the project directory to system path
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

from mezzanine.utils.models import get_user_model
User = get_user_model()
u, _ = User.objects.get_or_create(username='admin')
u.is_staff = u.is_superuser = True

Running Custom Python Scripts in the Context of the Application | 109

u.set_password(os.environ['ADMIN_PASSWORD'])
u.save()

Setting Service Configuration Files
Next, we set the configuration file for Gunicorn (our application server), nginx (our
web server), and Supervisor (our process manager), as shown in Example 6-19. The
template for the Gunicorn configuration file is shown in Example 6-21.

Example 6-19. Setting configuration files

- name: set the gunicorn config file
 template: src=templates/gunicorn.conf.py.j2 dest={{ proj_path }}/gunicorn.conf.py

- name: set the supervisor config file
 template: src=templates/supervisor.conf.j2
 dest=/etc/supervisor/conf.d/mezzanine.conf
 sudo: True
 notify: restart supervisor

- name: set the nginx config file
 template: src=templates/nginx.conf.j2
 dest=/etc/nginx/sites-available/mezzanine.conf
 notify: restart nginx
 sudo: True

In all three cases, we generate the config files using templates. The Supervisor and
nginx processes are started by root (although they drop down to non-root users when
running), so we need to sudo so that we have the appropriate permissions to write
their configuration files.

If the supervisor configuration file changes, then Ansible will fire the restart super
visor handler. If the nginx configuration file changes, then Ansible will fire the
restart nginx handler, as shown in Example 6-20.

Example 6-20. Handlers

handlers:
 - name: restart supervisor
 supervisorctl: name=gunicorn_mezzanine state=restarted
 sudo: True

 - name: restart nginx
 service: name=nginx state=restarted
 sudo: True

110 | Chapter 6: Deploying Mezzanine with Ansible

Example 6-21. templates/gunicorn.conf.py.j2

from __future__ import unicode_literals
import multiprocessing

bind = "127.0.0.1:{{ gunicorn_port }}"
workers = multiprocessing.cpu_count() * 2 + 1
loglevel = "error"
proc_name = "{{ proj_name }}"

Example 6-22. templates/supervisor.conf.j2

[group: {{ proj_name }}]
programs=gunicorn_{{ proj_name }}

[program:gunicorn_{{ proj_name }}]
command={{ venv_path }}/bin/gunicorn_django -c gunicorn.conf.py -p gunicorn.pid
directory={{ proj_path }}
user={{ user }}
autostart=true
autorestart=true
redirect_stderr=true
environment=LANG="{{ locale }}",LC_ALL="{{ locale }}",LC_LANG="{{ locale }}"

The only template that has any template logic (other than variable substitution) is
Example 6-23. It has conditional logic to enable TLS if the tls_enabled variable is set
to true. You’ll see some if statements scattered about the templates that look like this:

{% if tls_enabled %}
...
{% endif %}

It also uses the join Jinja2 filter here:

 server_name {{ domains|join(", ") }};

This code snippet expects the variable domains to be a list. It will generate a string
with the elements of domains connected together, separated by commas. Recall that in
our case, the domains list is defined as:

domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io

When the template renders, the line looks like this:

server_name 192.168.33.10.xip.io, www.192.168.33.10.xip.io;

Example 6-23. templates/nginx.conf.j2

upstream {{ proj_name }} {
 server 127.0.0.1:{{ gunicorn_port }};

Running Custom Python Scripts in the Context of the Application | 111

}

server {

 listen 80;

 {% if tls_enabled %}
 listen 443 ssl;
 {% endif %}
 server_name {{ domains|join(", ") }};
 client_max_body_size 10M;
 keepalive_timeout 15;

 {% if tls_enabled %}
 ssl_certificate conf/{{ proj_name }}.crt;
 ssl_certificate_key conf/{{ proj_name }}.key;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 # ssl_ciphers entry is too long to show in this book
 # See https://github.com/lorin/ansiblebook
 # ch06/playbooks/templates/nginx.conf.j2
 ssl_prefer_server_ciphers on;
 {% endif %}

 location / {
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Protocol $scheme;
 proxy_pass http://{{ proj_name }};
 }

 location /static/ {
 root {{ proj_path }};
 access_log off;
 log_not_found off;
 }

 location /robots.txt {
 root {{ proj_path }}/static;
 access_log off;
 log_not_found off;
 }

 location /favicon.ico {
 root {{ proj_path }}/static/img;
 access_log off;
 log_not_found off;
 }
}

112 | Chapter 6: Deploying Mezzanine with Ansible

Enabling the Nginx Configuration
The convention with nginx configuration files is to put your configuration files
in /etc/nginx/sites-available and enable them by symlinking them into /etc/nginx/sites-
enabled.

The Mezzanine Fabric scripts just copy the configuration file directly into sites-
enabled, but I’m going to deviate from how Mezzanine does it because it gives me an
excuse to use the file module to create a symlink. We also need to remove the
default configuration file that the nginx package sets up in /etc/nginx/sites-enabled/
default.

Example 6-24. Enabling nginx configuration

- name: enable the nginx config file
 file:
 src: /etc/nginx/sites-available/mezzanine.conf
 dest: /etc/nginx/sites-enabled/mezzanine.conf
 state: link
 notify: restart nginx
 sudo: True

- name: remove the default nginx config file
 file: path=/etc/nginx/sites-enabled/default state=absent
 notify: restart nginx
 sudo: True

As shown in Example 6-24, we use the file module to create the symlink and to
remove the default config file. This module is useful for creating directories, sym‐
links, and empty files; deleting files, directories, and symlinks; and setting properties
such as permissions and ownership.

Installing TLS Certificates
Our playbook defines a variable named tls_enabled. If this variable is set to true,
then the playbook will install TLS certificates. In our example, we use self-signed cer‐
tificates, so the playbook will create the certificate if it doesn’t exist.

In a production deployment, you would copy an existing TLS certificate that you
obtained from a certificate authority.

Example 6-25. Installing TLS certificates

- name: ensure config path exists
 file: path={{ conf_path }} state=directory
 sudo: True
 when: tls_enabled

Enabling the Nginx Configuration | 113

- name: create tls certificates
 command: >
 openssl req -new -x509 -nodes -out {{ proj_name }}.crt
 -keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 3650
 chdir={{ conf_path }}
 creates={{ conf_path }}/{{ proj_name }}.crt
 sudo: True
 when: tls_enabled
 notify: restart nginx

Example 6-25 shows the two tasks involved in configuring for TLS certificates. We
use the file module to ensure that the directory that will house the TLS certificates
exists.

Note how both tasks contain the clause:

when: tls_enabled

If tls_enabled evaluates to false, then Ansible will skip the task.

Ansible doesn’t ship with modules for creating TLS certificates, so we need to use the
command module to invoke the openssl command in order to create the self-signed
certificate. Since the command is very long, we use YAML line folding syntax (see
“Line Folding” on page 30) so that we can break the command across multiple lines.

These two lines at the end of the command are additional parameters that are passed
to the module; they are not passed to the command line. The chdir parameter
changes directory before running the command. The creates parameter implements
idempotence: Ansible will first check to see if the file {{ conf_path }}/

{{ proj_name }}.crt exists on the host. If it already exists, then Ansible will skip
this task.

 chdir={{ conf_path }}
 creates={{ conf_path }}/{{ proj_name }}.crt

Installing Twitter Cron Job
If you run manage.py poll_twitter, then Mezzanine will retrieve tweets associated
with the configured accounts and show them on the home page.

The Fabric scripts that ship with Mezzanine keep these tweets up-to-date by installing
a cron job that runs every five minutes.

If we followed the Fabric scripts exactly, we’d copy a cron script into the /etc/cron.d
directory that had the cron job. We could use the template module to do this. How‐
ever, Ansible ships with a cron module that allows us to create or delete cron jobs,
which I find more elegant. Example 6-26 shows the task that installs the cron job.

114 | Chapter 6: Deploying Mezzanine with Ansible

Example 6-26. Installing cron job for polling twitter

- name: install poll twitter cron job
 cron: name="poll twitter" minute="*/5" user={{ user }} job="{{ manage }} poll_twitter"

If you manually SSH to the box, you can see the cron job that gets installed by doing
crontab -l to list the jobs. Here’s what it looks like for me when I deploy as the
Vagrant user:

#Ansible: poll twitter
*/5 * * * * /home/vagrant/mezzanine-example/bin/python /home/vagrant/mezzanine-
example/project/manage.py poll_twitter

Notice the comment at the first line. That’s how the Ansible module supports deleting
cron jobs by name. If you were to do:

- name: remove cron job
 cron: name="poll twitter" state=absent

The cron module would look for the comment line that matches the name and delete
the job associated with that comment.

The Full Playbook
Example 6-27 shows the complete playbook in all its glory.

Example 6-27. mezzanine.yml: the complete playbook

- name: Deploy mezzanine
 hosts: web
 vars:
 user: "{{ ansible_ssh_user }}"
 proj_name: mezzanine-example
 venv_home: "{{ ansible_env.HOME }}"
 venv_path: "{{ venv_home }}/{{ proj_name }}"
 proj_dirname: project
 proj_path: "{{ venv_path }}/{{ proj_dirname }}"
 reqs_path: requirements.txt
 manage: "{{ python }} {{ proj_path }}/manage.py"
 live_hostname: 192.168.33.10.xip.io
 domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io
 repo_url: git@github.com:lorin/mezzanine-example.git
 gunicorn_port: 8000
 locale: en_US.UTF-8
 # Variables below don't appear in Mezannine's fabfile.py
 # but I've added them for convenience
 conf_path: /etc/nginx/conf
 tls_enabled: True

The Full Playbook | 115

 python: "{{ venv_path }}/bin/python"
 database_name: "{{ proj_name }}"
 database_user: "{{ proj_name }}"
 database_host: localhost
 database_port: 5432
 gunicorn_proc_name: mezzanine
 vars_files:
 - secrets.yml
 tasks:
 - name: install apt packages
 apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
 sudo: True
 with_items:
 - git
 - libjpeg-dev
 - libpq-dev
 - memcached
 - nginx
 - postgresql
 - python-dev
 - python-pip
 - python-psycopg2
 - python-setuptools
 - python-virtualenv
 - supervisor

 - name: check out the repository on the host
 git: repo={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes

 - name: install required python packages
 pip: name={{ item }} virtualenv={{ venv_path }}
 with_items:
 - gunicorn
 - setproctitle
 - south
 - psycopg2
 - django-compressor
 - python-memcached
 - name: install requirements.txt
 pip: requirements={{ proj_path }}/{{ reqs_path }} virtualenv={{ venv_path }}

 - name: create a user
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"
 sudo: True
 sudo_user: postgres

 - name: create the database
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"

116 | Chapter 6: Deploying Mezzanine with Ansible

 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0
 sudo: True
 sudo_user: postgres

 - name: generate the settings file
 template:
 src: templates/local_settings.py.j2
 dest: "{{ proj_path }}/local_settings.py"

 - name: sync the database, apply migrations, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 with_items:
 - syncdb
 - migrate
 - collectstatic

 - name: set the site id
 script: scripts/setsite.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 WEBSITE_DOMAIN: "{{ live_hostname }}"

 - name: set the admin password
 script: scripts/setadmin.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

 - name: set the gunicorn config file
 template:
 src: templates/gunicorn.conf.py.j2
 dest: "{{ proj_path }}/gunicorn.conf.py"

 - name: set the supervisor config file
 template:
 src: templates/supervisor.conf.j2
 dest: /etc/supervisor/conf.d/mezzanine.conf
 sudo: True
 notify: restart supervisor

 - name: set the nginx config file
 template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/mezzanine.conf

The Full Playbook | 117

 notify: restart nginx
 sudo: True

 - name: enable the nginx config file
 file:
 src: /etc/nginx/sites-available/mezzanine.conf
 dest: /etc/nginx/sites-enabled/mezzanine.conf
 state: link
 notify: restart nginx
 sudo: True

 - name: remove the default nginx config file
 file: path=/etc/nginx/sites-enabled/default state=absent
 notify: restart nginx
 sudo: True

 - name: ensure config path exists
 file: path={{ conf_path }} state=directory
 sudo: True
 when: tls_enabled

 - name: create tls certificates
 command: >
 openssl req -new -x509 -nodes -out {{ proj_name }}.crt
 -keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 3650
 chdir={{ conf_path }}
 creates={{ conf_path }}/{{ proj_name }}.crt
 sudo: True
 when: tls_enabled
 notify: restart nginx

 - name: install poll twitter cron job
 cron: name="poll twitter" minute="*/5" user={{ user }}
 job="{{ manage }} poll_twitter"

 handlers:
 - name: restart supervisor
 supervisorctl: name=gunicorn_mezzanine state=restarted
 sudo: True

 - name: restart nginx
 service: name=nginx state=restarted
 sudo: True

Running the Playbook Against a Vagrant Machine
The live_hostname and domains variables in our playbook assume that the host we
are going to deploy to is accessible at 192.168.33.10. The Vagrantfile shown in
Example 6-28 will configure a Vagrant machine with that IP address.

118 | Chapter 6: Deploying Mezzanine with Ansible

Example 6-28. Vagrantfile

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.network "private_network", ip: "192.168.33.10"
end

Deploy Mezzanine into the Vagrant machine:

$ ansible-playbook mezzanine.yml

You can then reach your newly deployed Mezzanine site at any of the following URLs:

• http://192.168.33.10.xip.io
• https://192.168.33.10.xip.io
• http://www.192.168.33.10.xip.io
• https://www.192.168.33.10.xip.io

Deploying Mezzanine on Multiple Machines
In this scenario, we’ve deployed Mezzanine entirely on a single machine. However, it’s
common to deploy the database service on a separate host from the web service. In
Chapter 8, we’ll show a playbook that deploys across the database and web services on
separate hosts.

You’ve now seen what it’s like to deploy a real application with Mezzanine. In the next
chapter, we’ll cover some more advanced features of Ansible that didn’t come up in
our example.

Deploying Mezzanine on Multiple Machines | 119

http://192.168.33.10.xip.io
https://192.168.33.10.xip.io
http://www.192.168.33.10.xip.io
https://www.192.168.33.10.xip.io

CHAPTER 7

Complex Playbooks

In the last chapter, we went over a fully functional Ansible playbook for deploying the
Mezzanine CMS. That example exercised a number of common Ansible features, but
it didn’t cover all of them. This chapter touches on those additional features, which
makes it a bit of a grab bag.

Running a Task on the Control Machine
Sometimes you want to run a particular task on the control machine instead of on the
remote host. Ansible provides the local_action clause for tasks to support this.

Imagine that the server we wanted to install Mezzanine onto had just booted, so that
if we ran our playbook too soon, it would error out because the server hadn’t fully
started up yet.

We could start off our playbook by invoking the wait_for module to wait until the
SSH server was ready to accept connections before we executed the rest of the play‐
book. In this case, we want this module to execute on our laptop, not on the remote
host.

The first task of our playbook would have to start off like this:

- name: wait for ssh server to be running
 local_action: wait_for port=22 host="{{ inventory_hostname }}"
 search_regex=OpenSSH

Note how we’re referencing inventory_hostname in this task, which evaluates to the
name of the remote host, not localhost. That’s because the scope of these variables is
still the remote host, even though the task is executing locally.

121

If your play involves multiple hosts, and you use local_action, the
task will be executed multiple times, one for each host. You can
restrict this using run_once, as described in “Running on One Host
at a Time” on page 123.

Running a Task on a Machine Other Than the Host
Sometimes you want to run a task that’s associated with a host, but you want to exe‐
cute the task on a different server. You can use the delegate_to clause to run the task
on a different host.

Two common use cases are:

• Enabling host-based alerts with an alerting system such as Nagios
• Adding a host to a load balancer such as HAProxy

For example, imagine we want to enable Nagios alerts for all of the hosts in our web
group. Assume we have an entry in our inventory named nagios.example.com that is
running Nagios. Example 7-1 shows an example that uses delegate_to.

Example 7-1. Using delegate_to with Nagios

- name: enable alerts for web servers
 hosts: web
 tasks:
 - name: enable alerts
 nagios: action=enable_alerts service=web host={{ inventory_hostname }}
 delegate_to: nagios.example.com

In this example, Ansible would execute the nagios task on nagios.example.com, but
the inventory_hostname variable referenced in the play would evaluate to the web
host.

For a more detailed example that uses delegate_to, see the lamp_haproxy/roll‐
ing_update.yml example in the Ansible project’s examples GitHub repo.

Manually Gathering Facts
If it was possible that the SSH server wasn’t yet running when we started our play‐
book, we need to turn off explicit fact gathering; otherwise, Ansible will try to SSH to
the host to gather facts before running the first tasks. Since we still need access to
facts (recall that we use the ansible_env fact in our playbook), we can explicitly
invoke the setup module to get Ansible to gather our facts, as shown in Example 7-2.

122 | Chapter 7: Complex Playbooks

https://github.com/ansible/ansible-examples

Example 7-2. Waiting for ssh server to come up

- name: Deploy mezzanine
 hosts: web
 gather_facts: False
 # vars & vars_files section not shown here
 tasks:
 - name: wait for ssh server to be running
 local_action: wait_for port=22 host="{{ inventory_hostname }}"
 search_regex=OpenSSH

 - name: gather facts
 setup:
 # The rest of the tasks go here

Running on One Host at a Time
By default, Ansible runs each task in parallel across all hosts. Sometimes you want to
run your task on one host at a time. The canonical example is when upgrading appli‐
cation servers that are behind a load balancer. Typically, you take the application
server out of the load balancer, upgrade it, and put it back. But you don’t want to take
all of your application servers out of the load balancer, or your service will become
unavailable.

You can use the serial clause on a play to tell Ansible to restrict the number of hosts
that a play runs on. Example 7-3 shows an example that removes hosts one at a time
from an Amazon EC2 elastic load balancer, upgrades the system packages, and then
puts them back into the load balancer. (We cover Amazon EC2 in more detail in
Chapter 12.)

Example 7-3. Removing hosts from load balancer and upgrading packages

- name: upgrade packages on servers behind load balancer
 hosts: myhosts
 serial: 1
 tasks:

 - name: get the ec2 instance id and elastic load balancer id
 ec2_facts:

 - name: take the host out of the elastic load balancer
 local_action: ec2_elb
 args:
 instance_id: "{{ ansible_ec2_instance_id }}"
 state: absent

 - name: upgrade packages
 apt: update_cache=yes upgrade=yes

Running on One Host at a Time | 123

 - name: put the host back in the elastic load balancer
 local_action: ec2_elb
 args:
 instance_id: "{{ ansible_ec2_instance_id }}"
 state: present
 ec2_elbs: "{{ item }}"
 with_items: ec2_elbs

In our example, we passed 1 as the argument to the serial clause, telling Ansible to
run on only one host at a time. If we had passed 2, then Ansible would have run two
hosts at a time.

Normally, when a task fails, Ansible stops running tasks against the host that fails, but
continues to run against other hosts. In the load-balancing scenario, you might want
Ansible to fail the entire play before all hosts have failed a task. Otherwise, you might
end up with the situation where you have taken each host out of the load balancer,
and have it fail, leaving no hosts left inside of your load balancer.

You can use a max_fail_percentage clause along with the serial clause to specify
the maximum percentage of failed hosts before Ansible fails the entire play. For
example, assume that we specify a maximum fail percentage of 25%, as shown here:

- name: upgrade packages on servers behind load balancer
 hosts: myhosts
 serial: 1
 max_fail_percentage: 25
 tasks:
 # tasks go here

If we had four hosts behind the load balancer, and one of the hosts failed a task, then
Ansible would keep executing the play, because this would not exceed the 25%
threshold. However, if a second host failed a task, Ansible would fail the entire play,
because then 50% of the hosts would have failed a task, exceeding the 25% threshold.
If you want Ansible to fail if any of the hosts fail a task, set the max_fail_percentage
to 0.

Running Only Once
Sometimes you might want a task to run only once, even if there are multiple hosts.
For example, perhaps you have multiple application servers running behind the load
balancer, and you want to run a database migration, but you only need to run the
migration on one application server.

You can use the run_once clause to tell Ansible to run the command only once.

- name: run the database migrations
 command: /opt/run_migrations
 run_once: true

124 | Chapter 7: Complex Playbooks

Using run_once can be particularly useful when using local_action if your playbook
involves multiple hosts, and you want to run the local task only once:

- name: run the task locally, only once
 local_action: command /opt/my-custom-command
 run_once: true

Dealing with Badly Behaved Commands: changed_when
and failed_when
Recall that in Chapter 6, we avoided invoking the custom createdb manage.py com‐
mand, shown in Example 7-4, because the call wasn’t idempotent.

Example 7-4. Calling django manage.py createdb

- name: initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"

We got around this problem by invoking several django manage.py commands that
were idempotent, and that did the equivalent of createdb. But what if we didn’t have
a module that could invoke equivalent commands? The answer is to use
changed_when and failed_when clauses to change how Ansible identifies that a task
has changed state or failed.

First, we need to understand what the output of this command is the first time it’s
run, and what the output is when it’s run the second time.

Recall from Chapter 4 that to capture the output of a failed task, you add a register
clause to save the output to a variable and a failed_when: False clause so that the
execution doesn’t stop even if the module returns failure. Then add a debug task to
print out the variable, and finally a fail clause so that the playbook stops executing,
as shown in Example 7-5.

Example 7-5. Viewing the output of a task

- name: initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 failed_when: False
 register: result

- debug: var=result

Dealing with Badly Behaved Commands: changed_when and failed_when | 125

- fail:

The output of the playbook when invoked the second time is Example 7-6.

Example 7-6. Returned values when database has already been created

TASK: [debug var=result] **
ok: [default] => {
 "result": {
 "cmd": "python manage.py createdb --noinput --nodata",
 "failed": false,
 "failed_when_result": false,
 "invocation": {
 "module_args": '',
 "module_name": "django_manage"
 },
 "msg": "\n:stderr: CommandError: Database already created, you probably
want the syncdb or migrate command\n",
 "path":
"/home/vagrant/mezzanine_example/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bi
n:/sbin:/bin:/usr/games:/usr/local/games",
 "state": "absent",
 "syspath": [
 ``,
 "/usr/lib/python2.7",
 "/usr/lib/python2.7/plat-x86_64-linux-gnu",
 "/usr/lib/python2.7/lib-tk",
 "/usr/lib/python2.7/lib-old",
 "/usr/lib/python2.7/lib-dynload",
 "/usr/local/lib/python2.7/dist-packages",
 "/usr/lib/python2.7/dist-packages"
]
 }
}

This is what happens when the task has been run multiple times. To see what happens
the first time, delete the database and then have the playbook recreate it. The simplest
way to do that is to run an Ansible ad-hoc task that deletes the database:

$ ansible default --sudo --sudo-user postgres -m postgresql_db -a \
"name=mezzanine_example state=absent"

Now when I run the playbook again, the output is Example 7-7.

Example 7-7. Returned values when invoked the first time

ASK: [debug var=result] **
ok: [default] => {
 "result": {
 "app_path": "/home/vagrant/mezzanine_example/project",

126 | Chapter 7: Complex Playbooks

 "changed": false,
 "cmd": "python manage.py createdb --noinput --nodata",
 "failed": false,
 "failed_when_result": false,
 "invocation": {
 "module_args": '',
 "module_name": "django_manage"
 },
 "out": "Creating tables ...\nCreating table auth_permission\nCreating
table auth_group_permissions\nCreating table auth_group\nCreating table
auth_user_groups\nCreating table auth_user_user_permissions\nCreating table
auth_user\nCreating table django_content_type\nCreating table
django_redirect\nCreating table django_session\nCreating table
django_site\nCreating table conf_setting\nCreating table
core_sitepermission_sites\nCreating table core_sitepermission\nCreating table
generic_threadedcomment\nCreating table generic_keyword\nCreating table
generic_assignedkeyword\nCreating table generic_rating\nCreating table
blog_blogpost_related_posts\nCreating table blog_blogpost_categories\nCreating
table blog_blogpost\nCreating table blog_blogcategory\nCreating table
forms_form\nCreating table forms_field\nCreating table forms_formentry\nCreating
table forms_fieldentry\nCreating table pages_page\nCreating table
pages_richtextpage\nCreating table pages_link\nCreating table
galleries_gallery\nCreating table galleries_galleryimage\nCreating table
twitter_query\nCreating table twitter_tweet\nCreating table
south_migrationhistory\nCreating table django_admin_log\nCreating table
django_comments\nCreating table django_comment_flags\n\nCreating default site
record: vagrant-ubuntu-trusty-64 ... \n\nInstalled 2 object(s) from 1
fixture(s)\nInstalling custom SQL ...\nInstalling indexes ...\nInstalled 0
object(s) from 0 fixture(s)\n\nFaking initial migrations ...\n\n",
 "pythonpath": null,
 "settings": null,
 "virtualenv": "/home/vagrant/mezzanine_example"
 }
}

Note that changed is set to false even though it did, indeed, change the state of the
database. That’s because the django_manage module always returns changed=false
when it runs commands that the module doesn’t know about.

We can add a changed_when clause that looks for "Creating tables" in the out
return value, as shown in Example 7-8.

Example 7-8. First attempt at adding changed_when

- name: initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 register: result
 changed_when: '"Creating tables" in result.out'

Dealing with Badly Behaved Commands: changed_when and failed_when | 127

The problem with this approach is that, if we look back at Example 7-6, we see that
there is no out variable. Instead, there’s a msg variable. This means that if we executed
the playbook, we’d get the following (not terribly helpful) error the second time:

TASK: [initialize the database] **
fatal: [default] => error while evaluating conditional: "Creating tables" in
result.out

Instead, we need to ensure that Ansible evaluates result.out only if that variable is
defined. One way is to explicitly check to see if the variable is defined:

changed_when: result.out is defined and "Creating tables" not in result.out

Alternatively, we could also provide a default value for result.out if it doesn’t exist
by using the Jinja2 default filter:

changed_when: '"Creating tables" not in result.out|default("")'

Or we could simply check for failed to be false:

changed_when: not result.failed and "Creating tables" not in result.out

We also need to change the failure behavior, since we don’t want Ansible to consider
the task as failed just because createdb has been invoked already:

failed_when: result.failed and "Database already created" not in result.msg

Here the failed check serves as a guard for the existence of the msg variable. The
final idempotent task is shown in Example 7-9.

Example 7-9. Idempotent manage.py createdb

- name: initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 register: result
 changed_when: not result.failed and "Creating tables" in result.out
 failed_when: result.failed and "Database already created" not in result.msg

Retrieving the IP Address from the Host
In our playbook, several of the hostnames we use are derived from the IP address of
the web server.

live_hostname: 192.168.33.10.xip.io
domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io

128 | Chapter 7: Complex Playbooks

What if we wanted to use the same scheme but not hardcode the IP addresses into the
variables? That way, if the IP address of the web server changes, we wouldn’t have to
modify our playbook.

Ansible retrieves the IP address of each host and stores it as a fact. Each network
interface has an associated Ansible fact. For example, details about network interface
eth0 are stored in the ansible_eth0 fact, an example of which is shown in
Example 7-10.

Example 7-10. ansible_eth0 fact

"ansible_eth0": {
 "active": true,
 "device": "eth0",
 "ipv4": {
 "address": "10.0.2.15",
 "netmask": "255.255.255.0",
 "network": "10.0.2.0"
 },
 "ipv6": [
 {
 "address": "fe80::a00:27ff:fefe:1e4d",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "08:00:27:fe:1e:4d",
 "module": "e1000",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
}

Our Vagrant box has two interfaces, eth0 and eth1. The eth0 interface is a private
interface whose IP address (10.0.2.15) we cannot reach. The eth1 interface is the one
that has the IP address we’ve assigned in our Vagrantfile (192.168.33.10).

We can define our variables like this:

live_hostname: "{{ ansible_eth1.ipv4.address }}.xip.io"
domains:
 - ansible_eth1.ipv4.address.xip.io
 - www.ansible_eth1.ipv4.address.xip.io

Encrypting Sensitive Data with Vault
Our Mezzanine playbook required access to some sensitive information, such as data‐
base and administrator passwords. We dealt with this in Chapter 6 by putting all of

Encrypting Sensitive Data with Vault | 129

the sensitive information in a separate file called secrets.yml and making sure that we
didn’t check this file into our version control repository.

Ansible provides an alternative solution: instead of keeping the secrets.yml file out of
version control, we can commit an encrypted version. That way, even if our version
control repository were compromised, the attacker would not have access to the con‐
tents of the secrets.yml file unless he also had the password used for the encryption.

The ansible-vault command-line tool allows you to create and edit an encrypted
file that ansible-playbook will recognize and decrypt automatically, given the pass‐
word.

We can encrypt an existing file like this:

$ ansible-vault encrypt secrets.yml

Alternately, we can create a new encrypted secrets.yml file by doing:

$ ansible-vault create secrets.yml

You will be prompted for a password, and then ansible-vault will launch a text edi‐
tor so that you can populate the file. It launches the editor specified in the $EDITOR
environment variable. If that variable is not defined, it defaults to vim.

Example 7-11 shows an example of the contents of a file encrypted using ansible-
vault.

Example 7-11. Contents of file encrypted with ansible-vault

$ANSIBLE_VAULT;1.1;AES256
34306434353230663665633539363736353836333936383931316434343030316366653331363262
6630633366383135386266333030393634303664613662350a623837663462393031626233376232
31613735376632333231626661663766626239333738356532393162303863393033303666383530
...
62346633343464313330383832646531623338633438336465323166626335623639383363643438
64636665366538343038383031656461613665663265633066396438333165653436

You can use the vars_files section of a play to reference a file encrypted with
ansible-vault the same way you would access a regular file: we would not need to
modify Example 6-27 at all if we encrypted the secrets.yml file.

We do need to tell ansible-playbook to prompt us for the password of the encrypted
file, or it will simply error out. Do so by using the --ask-vault-pass argument:

$ ansible-playbook mezzanine.yml --ask-vault-pass

You can also store the password in a text file and tell ansible-playbook the location
of this password file using the --vault-password-file flag:

$ ansible-playbook mezzanine --vault-password-file ~/password.txt

130 | Chapter 7: Complex Playbooks

If the argument to --vault-password-file has the executable bit set, Ansible will
execute it and use the contents of standard out as the vault password. This allows
you to use a script to provide the password to Ansible.

Table 7-1 shows the available ansible-vault commands.

Table 7-1. ansible-vault commands

Command Description

ansible-vault encrypt file.yml Encrypt the plaintext file.yml file

ansible-vault decrypt file.yml Decrypt the encrypted file.yml file

ansible-vault view file.yml Print the contents of the encrypted file.yml file

ansible-vault create file.yml Create a new encrypted file.yml file

ansible-vault edit file.yml Edit an encrypted file.yml file

ansible-vault rekey file.yml Change the password on an encrypted file.yml file

Patterns for Specifying Hosts
So far, the host parameter in our plays has specified a single host or group, like this:

hosts: web

Instead of specifying a single host or group, you can specify a pattern. So far, we’ve
seen the all pattern, which lets will run a play against all known hosts:

hosts: all

You can specify a union of two groups with a colon. To specify all dev and staging
machines:

hosts: dev:staging

You can specify an intersection using colon ampersand. For example, to specify all of
the database servers in your staging environment, you might do:

hosts: staging:&database

Table 7-2 shows the patterns that Ansible supports. Note that the regular expression
pattern always starts with a tilde.

Patterns for Specifying Hosts | 131

Table 7-2. Supported patterns

Action Example usage

All hosts all

All hosts *

Union dev:staging

Intersection staging:&database

Exclusion dev:!queue

Wildcard *.example.com

Range of numbered servers web[5:10]

Regular expression ~web\d\.example\.(com

Ansible supports multiple combinations of patterns—for example:

hosts: dev:staging:&database:!queue

Limiting Which Hosts Run
Use the -l hosts or --limit hosts flag to tell Ansible to limit the hosts to run the
playbook against the specified list of hosts, as shown in Example 7-12.

Example 7-12. Limiting which hosts run

$ ansible-playbook -l hosts playbook.yml
$ ansible-playbook --limit hosts playbook.yml

You can use the pattern syntax just described to specify arbitrary combinations of
hosts. For example:

$ ansible-playbook -l 'staging:&database' playbook.yml

Filters
Filters are a feature of the Jinja2 templating engine. Since Ansible uses Jinja2 for eval‐
uating variables, as well as for templates, you can use filters inside of {{ braces }} in
your playbooks, as well as inside of your template files. Using filters resembles using
Unix pipes, where a variable is piped through a filter. Jinja2 ships with a set of built-in
filters. In addition, Ansible ships with its own filters to augment the Jinja2 filters.

132 | Chapter 7: Complex Playbooks

http://bit.ly/1FvOGzI
http://bit.ly/1FvOGzI
http://bit.ly/1FvOIrj

We’ll cover a few sample filters here, but check out the official Jinja2 and Ansible docs
for a complete list of the available filters.

The Default Filter
The default filter is a useful one. Here’s an example of this filter in action:

"HOST": "{{ database_host | default('localhost') }}",

If the variable database_host is defined, then the braces will evaluate to the value of
that variable. If the variable database_host is not defined, then the braces will evalu‐
ate to the string localhost. Some filters take arguments, and some don’t.

Filters for Registered Variables
Let’s say we want to run a task and print out its output, even if the task fails. However,
if the task did fail, we want Ansible to fail for that host after printing the output.
Example 7-13 shows how we would use the failed filter in the argument to the
failed_when clause.

Example 7-13. Using the failed filter

- name: Run myprog
 command: /opt/myprog
 register: result
 ignore_errors: True

- debug: var=result

- debug: msg="Stop running the playbook if myprog failed"
 failed_when: result|failed
more tasks here

Table 7-3 shows a list of filters you can use on registered variables to check the status.

Table 7-3. Task return value filters

Name Description

failed True if a registered value is a task that failed

changed True if a registered value is a task that changed

success True if a registered value is a task that succeeded

skipped True if a registered value is a task that was skipped

Filters | 133

1 Thanks to John Jarvis for this tip.

Filters That Apply to File Paths
Table 7-4 shows a number of filters that are useful when a variable contains the path
to a variable on the control machine’s filesystem.

Table 7-4. File path filters

basename basename of file path

dirname Directory of file path

expanduser File path with ~ replaced by home directory

realpath Canonical path of file path, resolves symbolic links

Consider this playbook fragment:

 vars:
 homepage: /usr/share/nginx/html/index.html
 tasks:
 - name: copy home page
 copy: src=files/index.html dest={{ homepage }}

Note how it references index.html twice, once in the definition of the homepage vari‐
able, and a second time to specify the path to the file on the control machine.

The basename filter will let us extract the index.html part of the filename from the full
path, allowing us to write the playbook without repeating the filename:1

 vars:
 homepage: /usr/share/nginx/html/index.html
 tasks:
 - name: copy home page
 copy: src=files/{{ homepage | basename }} dest={{ homepage }}

Writing Your Own Filter
Recall that in our Mezzanine example, we generated the local_settings.py file from a
template, where there is a line in the generated file that looks like what is shown in
Example 7-14.

Example 7-14. Line from local_settings.py generated by template

ALLOWED_HOSTS = ["www.example.com", "example.com"]

134 | Chapter 7: Complex Playbooks

We had a variable named domains that contained a list of the hostnames. We origi‐
nally used a for loop in our template to generate this line, but a filter would be an
even more elegant approach.

There is a built-in Jinja2 filter called join, that will join a list of strings with a delim‐
iter such as a column. Unfortunately, it doesn’t quite give us what we want. If we did
this in the template:

ALLOWED_HOSTS = [{{ domains|join(", ") }}]

Then we would end up with the strings unquoted in our file, as shown in
Example 7-15.

Example 7-15. Strings incorrectly unquoted

ALLOWED_HOSTS = [www.example.com, example.com]

If we had a Jinja2 filter that quoted the strings in the list, as shown in Example 7-16,
then the template would generate the output depicted in Example 7-14.

Example 7-16. Using a filter to quote the strings in the list

ALLOWED_HOSTS = [{{ domains|surround_by_quote|join(", ") }}]

Unfortunately, there’s no existing surround_by_quote filter that does what we want.
However, we can write it ourselves. (In fact, Hanfei Sun on Stack Overflow covered
this very topic.)

Ansible will look for custom filters in the filter_plugins directory, relative to the
directory where your playbooks are.

Example 7-17 shows what the filter implementation looks like.

Example 7-17. filter_plugins/surround_by_quotes.py

From http://stackoverflow.com/a/15515929/742

def surround_by_quote(a_list):
 return ['"%s"' % an_element for an_element in a_list]

class FilterModule(object):
 def filters(self):
 return {'surround_by_quote': surround_by_quote}

The surround_by_quote function defines the Jinja2 filter. The FilterModule class
defines a filters method that returns a dictionary with the name of the filter function

Filters | 135

http://stackoverflow.com/questions/15514365/

2 Don’t Repeat Yourself, a term popularized by The Pragmatic Programmer: From Journeyman to Master, which
is a fantastic book.

3 etcd is a distributed key-value store, and is maintained by the CoreOS project.

and the function itself. The FilterModule class is Ansible-specific code that makes
the Jinja2 filter available to Ansible.

You can also place filter plug-ins in the /usr/share/ansible_plugins/filter_plugins direc‐
tory, or you can specify the directory by setting the ANSIBLE_FILTER_PLUGINS envi‐
ronment variable to the directory where your plug-ins are located. These paths are
also documented in Appendix B.

Lookups
In an ideal world, all of your configuration information would be stored as Ansible
variables, in the various places that Ansible lets you define variables (e.g., the vars
section of your playbooks, files loaded by vars_files, files in the host_vars or
group_vars directory that we discussed in Chapter 3).

Alas, the world is a messy place, and sometimes a piece of configuration data you
need lives somewhere else. Maybe it’s in a text file or a .csv file, and you don’t want to
just copy the data into an Ansible variable file because now you have to maintain two
copies of the same data, and you believe in the DRY2 principle. Or maybe the data
isn’t maintained as a file at all; it’s maintained in a key-value storage service such as
etcd.3 Ansible has a feature called lookups that allows you to read in configuration data
from various sources and then use that data in your playbooks and template.

Ansible supports a collection of lookups for retrieving data from different sources, as
shown in Table 7-5.

Table 7-5. Lookups

Name Description

file Contents of a file

password Randomly generate a password

pipe Output of locally executed command

env Environment variable

template Jinja2 template after evaluation

csvfile Entry in a .csv file

136 | Chapter 7: Complex Playbooks

https://coreos.com/docs/etcd/

Name Description

dnstxt DNS TXT record

redis_kv Redis key lookup

etcd etcd key lookup

You invoke lookups by calling the lookup function with two arguments. The first is a
string with the name of the lookup, and the second is a string that contains one or
more arguments to pass to the lookup. For example, we call the file lookup like this:

lookup('file', '/path/to/file.txt')

You can invoke lookups in your playbooks in between {{ braces }}, or you can put
them in templates.

In this section, I provided only a brief overview of what lookups are available. The
Ansible documentation provide more details on how to use these lookups.

All Ansible lookup plug-ins execute on the control machine, not
the remote host.

file
Let’s say that you have a text file on your control machine that contains a public SSH
key that you want to copy to a remote server. Example 7-18 shows how you can use
the file lookup to read the contents of a file and pass that as a parameter to a mod‐
ule.

Example 7-18. Using the file lookup

- name: Add my public key as an EC2 key
 ec2_key: name=mykey key_material="{{ lookup('file', \
 '/Users/lorinhochstein/.ssh/id_rsa.pub') }}"

You can invoke lookups in templates as well. If we wanted to use the same technique
to create an authorized_keys file that contained the contents of a public key file, we
could create a Jinja2 template that invokes the lookup, as shown in Example 7-19, and
then call the template module in our playbook, as shown in Example 7-20.

Example 7-19. authorized_keys.j2

{{ lookup('file', '/Users/lorinhochstein/.ssh/id_rsa.pub') }}

Lookups | 137

http://docs.ansible.com/playbooks_lookups.html

4 If this sounds like gibberish, don’t worry about it; it’s just an example of running a command.

Example 7-20. Task to generate authorized_keys

- name: copy authorized_host file
 template: src=authorized_keys.j2 dest=/home/deploy/.ssh/authorized_keys

pipe
The pipe lookup invokes an external program on the control machine and evaluates
to the program’s output on standard out.

For example, if our playbooks are version controlled using git, and we wanted to get
the SHA-1 value of the most recent git commit,4 we could use the pipe lookup:

- name: get SHA of most recent commit
 debug: msg="{{ lookup('pipe', 'git rev-parse HEAD') }}"

The output would look something like this:

TASK: [get the sha of the current commit] *************************************
ok: [myserver] => {
 "msg": "e7748af0f040d58d61de1917980a210df419eae9"
}

env
The env lookup retrieves the value of an environment variable set on the control
machine. For example, we could use the lookup like this:

- name: get the current shell
 debug: msg="{{ lookup('env', 'SHELL') }}"

Since I use Zsh as my shell, the output looks like this when I run it:

TASK: [get the current shell] ***
ok: [myserver] => {
 "msg": "/bin/zsh"
}

password
The password lookup evaluates to a random password, and it will also write the pass‐
word to a file specified in the argument. For example, if we wanted to create a Post‐
gres user named deploy with a random password and write that password to deploy-
password.txt on the control machine, we could do:

- name: create deploy postgres user
 postgresql_user:

138 | Chapter 7: Complex Playbooks

 name: deploy
 password: "{{ lookup('password', 'deploy-password.txt') }}"

template
The template lookup lets you specify a Jinja2 template file, and then returns the
result of evaluating the template. If we had a template that looked like Example 7-21:

Example 7-21. message.j2

This host runs {{ ansible_distribution }}

And we defined a task like this:

- name: output message from template
 debug: msg="{{ lookup('template', 'message.j2') }}"

Then we’d see output that looks like this:

TASK: [output message from template] **
ok: [myserver] => {
 "msg": "This host runs Ubuntu\n"
}

csvfile
The csvfile lookup reads an entry from a .csv file. Assume we had a .csv file that
looked like Example 7-22.

Example 7-22. users.csv

username,email
lorin,lorin@ansiblebook.com
john,john@example.com
sue,sue@example.org

If we wanted to extract Sue’s email address using the csvfile lookup plug-in, we
would invoke the lookup plug-in like this:

lookup('csvfile', 'sue file=users.csv delimiter=, col=1')

The csvfile lookup is a good example of a lookup that takes multiple arguments.
Here, there are four arguments being passed to the plug-in:

Lookups | 139

• sue

• file=users.csv

• delimiter=,

• col=1

You don’t specify a name for the first argument to a lookup plug-in, but you do spec‐
ify names for the additional arguments. In the case of csvfile, the first argument is
an entry that must appear exactly once in column 0 (the first column, 0-indexed) of
the table.

The other arguments specify the name of the .csv file, the delimiter, and which col‐
umn should be returned. In our example, we want to look in the file named users.csv
and locate where the fields are delimited by commas; look up the row where the value
in the first column is sue; and return the value in the second column (column 1,
indexed by 0). This will evaluate to sue@example.org.

If the user name we wanted to look up was stored in a variable named username, we
could construct the argument string by using the + sign to concatenate the username
string with the rest of the argument string:

lookup('csvfile', username + ' file=users.csv delimiter=, col=1')

dnstxt

The dnstxt module requires that you install the dnspython Python
package on the control machine.

If you’re reading this book, you’re probably aware of what the domain name system
(DNS) does, but just in case you aren’t, DNS is the service that translates hostnames
such as ansiblebook.com to IP addresses such as 64.99.80.30.

DNS works by associating one or more records with a hostname. The most com‐
monly used types of DNS records are A records and CNAME records, which associate
a hostname with an IP address (A record) or specify that a hostname is an alias for
another hostname (CNAME record).

The DNS protocol supports another type of record that you can associate with a host‐
name, called a TXT record. A TXT record is just an arbitrary string that you can
attach to a hostname. Once you’ve associated a TXT record with a hostname, any‐
body can retrieve the text using a DNS client.

140 | Chapter 7: Complex Playbooks

mailto:sue@example.org

5 DNS service providers typically have web interfaces to let you perform DNS-related tasks such as creating
TXT records.

For example, I own the ansiblebook.com domain, so I can create TXT records associ‐
ated with any hostnames in that domain.5 I associated a TXT record with the ansible‐
book.com hostname that contains the ISBN number for this book. You can look up
the TXT record using the dig command-line tool, as shown in Example 7-23.

Example 7-23. Using the dig tool to look up a TXT record

$ dig +short ansiblebook.com TXT
"isbn=978-1491915325"

The dnstxt lookup queries the DNS server for the TXT record associated with the
host. If we created a task like this in a playbook:

- name: look up TXT record
 debug: msg="{{ lookup('dnstxt', 'ansiblebook.com') }}"

The output would look like this:

TASK: [look up TXT record] **
ok: [myserver] => {
 "msg": "isbn=978-1491915325"
}

If there are multiple TXT records associated with a host, then the module will concat‐
enate them together, and it might do this in a different order each time it is called. For
example, if there were a second TXT record on ansiblebook.com with the text:

author=lorin

Then the dnstxt lookup will randomly return one of the two:

• isbn=978-1491915325author=lorin

• author=lorinisbn=978-1491915325

redis_kv

The redis_kv module requires that you install the redis Python
package on the control machine.

Lookups | 141

Redis is a popular key-value store, commonly used as a cache, as well as a data store
for job queue services such as Sidekiq. You can use the redis_kv lookup to retrieve
the value of a key. The key must be a string, as the module does the equivalent of call‐
ing the Redis GET command.

For example, let’s say that we had a Redis server running on our control machine, and
we had set the key weather to the value sunny, by doing something like this:

$ redis-cli SET weather sunny

If we defined a task in our playbook that invoked the Redis lookup:

- name: look up value in Redis
 debug: msg="{{ lookup('redis_kv', 'redis://localhost:6379,weather') }}"

The output would look like this:

TASK: [look up value in Redis] **
ok: [myserver] => {
 "msg": "sunny"
}

The module will default to redis://localhost:6379 if the URL isn’t specified, so we could
have invoked the module like this instead (note the comma before the key):

lookup('redis_kv', ',weather')

etcd
Etcd is a distributed key-value store, commonly used for keeping configuration data
and for implementing service discovery. You can use the etcd lookup to retrieve the
value of a key.

For example, let’s say that we had an etcd server running on our control machine,
and we had set the key weather to the value cloudy by doing something like this:

$ curl -L http://127.0.0.1:4001/v2/keys/weather -XPUT -d value=cloudy

If we defined a task in our playbook that invoked the etcd plug-in:

- name: look up value in etcd
 debug: msg="{{ lookup('etcd', 'weather') }}"

The output would look like this:

TASK: [look up value in etcd] ***
ok: [localhost] => {
 "msg": "cloudy"
}

By default, the etcd lookup will look for the etcd server at http://127.0.0.1:4001, but
you can change this by setting the ANSIBLE_ETCD_URL environment variable before
invoking ansible-playbook.

142 | Chapter 7: Complex Playbooks

http://127.0.0.1:4001

Writing Your Own Lookup Plug-in
You can also write your own lookup plug-in if you need functionality not provided by
the existing plug-ins. Writing a custom lookup plug-in is out of scope for this book,
but if you’re really interested, I suggest that you take a look at the source code for the
lookup plug-ins that ship with Ansible.

Once you’ve written your lookup plug-in, place it in one of the following directories:

• The lookup_plugins directory next to your playbook
• /usr/share/ansible_plugins/lookup_plugins
• The directory specified in your ANSIBLE_LOOKUP_PLUGINS environment variable

More Complicated Loops
Up until this point, whenever we’ve written a task that iterates over a list of items,
we’ve used the with_items clause to specify a list of items. Although this is the most
common way to do loops, Ansible supports other mechanisms for doing iteration.
Table 7-6 provides a summary of the constructs that are available.

Table 7-6. Looping constructs

Name Input Looping strategy

with_items list Loop over list elements

with_lines command to execute Loop over lines in command output

with_fileglob glob Loop over filenames

with_first_found list of paths First file in input that exists

with_dict dictionary Loop over dictionary elements

with_flattened list of lists Loop over flattened list

with_indexed_items list Single iteration

with_nested list Nested loop

with_random_choice list Single iteration

with_sequence sequence of integers Loop over sequence

with_subelements list of dictionaries Nested loop

More Complicated Loops | 143

http://bit.ly/1F6jTMz

Name Input Looping strategy

with_together list of lists Loop over zipped list

with_inventory_hostnames host pattern Loop over matching hosts

The official documentation covers these quite thoroughly, so I’ll just show examples
from a few of them to give you a sense of how they work.

with_lines
The with_lines looping construct lets you run an arbitrary command on your con‐
trol machine and iterate over the output, one line at a time.

Imagine you have a file that contains a list of names, and you want to send a Slack
message for each name, something like this:

Leslie Lamport
Silvio Micali
Shafi Goldwasser
Judea Pearl

Example 7-24 shows how you can use with_lines to read a file and iterate over its
contents line by line.

Example 7-24. Using with_lines as a loop

- name: Send out a slack message
 slack:
 domain: example.slack.com
 token: "{{ slack_token }}"
 msg: "{{ item }} was in the list"
 with_lines:
 - cat files/turing.txt

with_fileglob
The with_fileglob construct is useful for iterating over a set of files on the control
machine.

Example 7-25 shows how to iterate over files that end in .pub in the /var/keys direc‐
tory, as well as a keys directory next to your playbook. It then uses the file lookup
plug-in to extract the contents of the file, which are passed to the authorized_key
module.

144 | Chapter 7: Complex Playbooks

http://bit.ly/1F6kfCP

Example 7-25. Using with_fileglob to add keys

- name: add public keys to account
 authorized_key: user=deploy key="{{ lookup('file', item) }}"
 with_fileglob:
 - /var/keys/*.pub
 - keys/*.pub

with_dict
The with_dict lets you iterate over a dictionary instead of a list. When you use this
looping construct, the item loop variable is a dictionary with two keys:

key
One of the keys in the dictionary

value
The value in the dictionary that corresponds to key

For example, if your host has an eth0 interface, then there will be an Ansible fact
named ansible_eth0, with a key named ipv4 that contains a dictionary that looks
something like this:

{
 "address": "10.0.2.15",
 "netmask": "255.255.255.0",
 "network": "10.0.2.0"
}

We could iterate over this dictionary and print out the entries one at a time by doing:

 - name: iterate over ansible_eth0
 debug: msg={{ item.key }}={{ item.value }}
 with_dict: ansible_eth0.ipv4

The output would look like this:

TASK: [iterate over ansible_eth0] ***
ok: [myserver] => (item={'key': u'netmask', 'value': u'255.255.255.0'}) => {
 "item": {
 "key": "netmask",
 "value": "255.255.255.0"
 },
 "msg": "netmask=255.255.255.0"
}
ok: [myserver] => (item={'key': u'network', 'value': u'10.0.2.0'}) => {
 "item": {
 "key": "network",
 "value": "10.0.2.0"
 },
 "msg": "network=10.0.2.0"
}

More Complicated Loops | 145

ok: [myserver] => (item={'key': u'address', 'value': u'10.0.2.15'}) => {
 "item": {
 "key": "address",
 "value": "10.0.2.15"
 },
 "msg": "address=10.0.2.15"
}

Looping Constructs as Lookup Plug-ins
Ansible implements looping constructs as lookup plug-ins. You just slap a with at the
beginning of a lookup plug-in to use it in its loop form. For example, we can rewrite
Example 7-18 using the with_file form in Example 7-26.

Example 7-26. Using the file lookup as a loop

- name: Add my public key as an EC2 key
 ec2_key: name=mykey key_material="{{ item }}"
 with_file: /Users/lorinhochstein/.ssh/id_rsa.pub

Typically, you’d only use a lookup plug-in as a looping construct if it returns a list,
which is how I was able to separate out the plug-ins into Table 7-5 (return strings)
and Table 7-6 (return lists).

We covered a lot of ground in this chapter. In the next one, we’ll discuss roles, a con‐
venient mechanism for organizing your playbooks.

146 | Chapter 7: Complex Playbooks

CHAPTER 8

Roles: Scaling Up Your Playbooks

One of the things I like about Ansible is how it scales both up and down. I’m not
referring to the number of hosts you’re managing, but rather the complexity of the
jobs you’re trying to automate.

Ansible scales down well because simple tasks are easy to implement. It scales up well
because it provides mechanisms for decomposing complex jobs into smaller pieces.

In Ansible, the role is the primary mechanism for breaking apart a playbook into
multiple files. This simplifies writing complex playbooks, and it also makes them eas‐
ier to reuse. Think of a role as something you assign to one or more hosts. For exam‐
ple, you’d assign a database role to the hosts that will act as database servers.

Basic Structure of a Role
An Ansible role has a name, such as “database.” Files associated with the database role
go in the roles/database directory, which contains the following files and directories.

roles/database/tasks/main.yml
Tasks

roles/database/files/
Holds files to be uploaded to hosts

roles/database/templates/
Holds Jinja2 template files

roles/database/handlers/main.yml
Handlers

roles/database/vars/main.yml
Variables that shouldn’t be overridden

147

roles/database/defaults/main.yml
Default variables that can be overridden

roles/database/meta/main.yml
Dependency information about a role

Each individual file is optional; if your role doesn’t have any handlers, there’s no need
to have an empty handlers/main.yml file.

Where Does Ansible Look for My Roles?
Ansible will look for roles in the roles directory alongside your . playbooks. It will also
look for systemwide roles in /etc/ansible/roles. You can customize the system-wide
location of roles by setting the roles_path setting in the defaults section of your ansi‐
ble.cfg file, as shown in Example 8-1.

Example 8-1. ansible.cfg: overriding default roles path

[defaults]
roles_path = ~/ansible_roles

You can also override this by setting the ANSIBLE_ROLES_PATH environment variable,
as described in Appendix B.

Example: Database and Mezzanine Roles
Let’s take our Mezzanine playbook and implement it with Ansible roles. We could
create a single role called “mezzanine,” but instead I’m going to break out the deploy‐
ment of the Postgres database into a separate role called “database.” This will make it
easier to eventually deploy the database on a host separate from the Mezzanine appli‐
cation.

Using Roles in Your Playbooks
Before we get into the details of how to define roles, let’s go over how to assign roles
to hosts in a playbook.

Example 8-2 shows what our playbook looks like for deploying Mezzanine onto a sin‐
gle host, once we have database and Mezzanine roles defined.

Example 8-2. mezzanine-single-host.yml

- name: deploy mezzanine on vagrant
 hosts: web
 vars_files:

148 | Chapter 8: Roles: Scaling Up Your Playbooks

 - secrets.yml

 roles:
 - role: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"

 - role: mezzanine
 live_hostname: 192.168.33.10.xip.io
 domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io

When we use roles, we have a roles section in our playbook. The roles section expects
a list of roles. In our example, our list contains two roles, database and mezzanine.

Note how we can pass in variables when invoking the roles. In our example, we pass
the database_name and database_user variables for the database role. If these vari‐
ables have already been defined in the role (either in vars/main.yml or defaults/
main.yml), then the values will be overridden with the variables that were passed in.

If you aren’t passing in variables to roles, you can simply specify the names of the
roles, like this:

roles:
 - database
 - mezzanine

With database and mezzanine roles defined, writing a playbook that deploys the web
application and database services to multiple hosts becomes much simpler.
Example 8-3 shows a playbook that deploys the database on the db host and the web
service on the web host. Note that this playbook contains two separate plays.

Example 8-3. mezzanine-across-hosts.yml

- name: deploy postgres on vagrant
 hosts: db
 vars_files:
 - secrets.yml
 roles:
 - role: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"

- name: deploy mezzanine on vagrant
 hosts: web
 vars_files:
 - secrets.yml
 roles:
 - role: mezzanine

Using Roles in Your Playbooks | 149

 database_host: "{{ hostvars.db.ansible_eth1.ipv4.address }}"
 live_hostname: 192.168.33.10.xip.io
 domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io

Pre-Tasks and Post-Tasks
Sometimes you want to run some tasks before or after you invoke your roles. Let’s say
you wanted to update the apt cache before you deployed Mezzanine, and you wanted
to send a notification to Slack channel after you deployed.

Ansible allows you to define a list of tasks that execute before the roles with a
pre_tasks section, and a list of tasks that executes after the roles with a post_tasks
section. Example 8-4 shows an example of these in action.

Example 8-4. Using pre-tasks and post-tasks

- name: deploy mezzanine on vagrant
 hosts: web
 vars_files:
 - secrets.yml
 pre_tasks:
 - name: update the apt cache
 apt: update_cache=yes
 roles:
 - role: mezzanine
 database_host: "{{ hostvars.db.ansible_eth1.ipv4.address }}"
 live_hostname: 192.168.33.10.xip.io
 domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io
 post_tasks:
 - name: notify Slack that the servers have been updated
 local_action: >
 slack
 domain=acme.slack.com
 token={{ slack_token }}
 msg="web server {{ inventory_hostname }} configured"

But enough about using roles; let’s talk about writing them.

A “Database” Role for Deploying the Database
The job of our “database” role will be to install Postgres and create the required data‐
base and database user.

Our database role involves the following files:

150 | Chapter 8: Roles: Scaling Up Your Playbooks

• roles/database/tasks/main.yml
• roles/database/defaults/main.yml
• roles/database/handlers/main.yml
• roles/database/files/pg_hba.conf
• roles/database/files/postgresql.conf

This role includes two customized Postgres configuration files.

postgresql.conf
Modifies the default listen_addresses configuration option so that Postgres will
accept connections on any network interface. The default for Postgres is to accept
connections only from localhost, which doesn’t work for us if we want our data‐
base to run on a separate host from our web application.

pg_hba.conf
Configures Postgres to authenticate connections over the network using user‐
name and password.

I don’t show these files here because they are quite large. You can
find them in the code samples on GitHub in the ch08 directory.

Example 8-5 shows the tasks involved in deploying Postgres.

Example 8-5. roles/database/tasks/main.yml

- name: install apt packages
 apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
 sudo: True
 with_items:
 - libpq-dev
 - postgresql
 - python-psycopg2

- name: copy configuration file
 copy: >
 src=postgresql.conf dest=/etc/postgresql/9.3/main/postgresql.conf
 owner=postgres group=postgres mode=0644
 sudo: True
 notify: restart postgres

- name: copy client authentication configuration file
 copy: >
 src=pg_hba.conf dest=/etc/postgresql/9.3/main/pg_hba.conf

A “Database” Role for Deploying the Database | 151

https://github.com/lorin/ansiblebook

 owner=postgres group=postgres mode=0640
 sudo: True
 notify: restart postgres

- name: create a user
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"
 sudo: True
 sudo_user: postgres

- name: create the database
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0
 sudo: True
 sudo_user: postgres

Example 8-6 shows the handlers file.

Example 8-6. roles/database/handlers/main.yml

- name: restart postgres
 service: name=postgresql state=restarted
 sudo: True

The only default variable we are going to specify is the database port, shown in
Example 8-7.

Example 8-7. roles/database/defaults/main.yml

database_port: 5432

Note that our list of tasks refers to several variables that we haven’t defined anywhere
in the role:

• database_name
• database_user
• db_pass
• locale

In Example 8-2 and Example 8-3, we pass in database_name and database_user
when we invoke the role. I’m assuming that db_pass is defined in the secrets.yml file,

152 | Chapter 8: Roles: Scaling Up Your Playbooks

which is included in the vars_files section. The locale variable is likely something
that would be the same for every host, and might be used by multiple roles or play‐
books, so I defined it in the group_vars/all file in the code samples that accompany
this book.

Why Are There Two Ways to Define Variables in Roles?
When Ansible first introduced support for roles, there was only one place to define
role variables, in vars/main.yml. Variables defined in this location have a higher
precedence than variables defined in the vars section of a play, which meant that you
couldn’t override the variable unless you explicitly passed it as an argument to the
role.

Ansible later introduced the notion of default role variables that go in defaults/
main.yml. This type of variable is defined in a role, but has a low precedence, so it will
be overridden if another variable with the same name is defined in the playbook.

If you think you might want to change the value of a variable in a role, use a default
variable. If you don’t want it to change, then use a regular variable.

A “Mezzanine” Role for Deploying Mezzanine
The job of our “mezzanine” role will be to install Mezzanine. This includes installing
nginx as the reverse proxy and supervisor as the process monitor.

Here are the files that are involved:

• roles/mezzanine/defaults/main.yml
• roles/mezzanine/handlers/main.yml
• roles/mezzanine/tasks/django.yml
• roles/mezzanine/tasks/main.yml
• roles/mezzanine/tasks/nginx.yml
• roles/mezzanine/templates/gunicorn.conf.py.j2
• roles/mezzanine/templates/local_settings.py.filters.j2
• roles/mezzanine/templates/local_settings.py.j2
• roles/mezzanine/templates/nginx.conf.j2
• roles/mezzanine/templates/supervisor.conf.j2
• roles/mezzanine/vars/main.yml

Example 8-8 shows the variables we’ve defined for this role. Note that we’ve changed
the name of the variables so that they all start with mezzanine. It’s good practice to do

A “Mezzanine” Role for Deploying Mezzanine | 153

this with role variables because Ansible doesn’t have any notion of namespace across
roles. This means that variables that are defined in other roles, or elsewhere in a play‐
book, will be accessible everywhere. This can cause some unexpected behavior if you
accidentally use the same variable name in two different roles.

Example 8-8. roles/mezzanine/vars/main.yml

vars file for mezzanine
mezzanine_user: "{{ ansible_ssh_user }}"
mezzanine_venv_home: "{{ ansible_env.HOME }}"
mezzanine_venv_path: "{{ mezzanine_venv_home }}/{{ mezzanine_proj_name }}"
mezzanine_repo_url: git@github.com:lorin/mezzanine-example.git
mezzanine_proj_dirname: project
mezzanine_proj_path: "{{ mezzanine_venv_path }}/{{ mezzanine_proj_dirname }}"
mezzanine_reqs_path: requirements.txt
mezzanine_conf_path: /etc/nginx/conf
mezzanine_python: "{{ mezzanine_venv_path }}/bin/python"
mezzanine_manage: "{{ mezzanine_python }} {{ mezzanine_proj_path }}/manage.py"
mezzanine_gunicorn_port: 8000

Example 8-9 shows the default variables defined on our mezzanine role. In this case,
we have only a single variable. When I write default variables, I’m less likely to prefix
them because I might intentionally want to override them elsewhere.

Example 8-9. roles/mezzanine/defaults/main.yml

tls_enabled: True

Because the task list is pretty long, I’ve decided to break it up across several files.
Example 8-10 shows the top-level task file for the mezzanine role. It installs the apt
packages, and then it uses include statements to invoke two other task files that are
in the same directory, shown in Examples 8-11 and 8-12.

Example 8-10. roles/mezzanine/tasks/main.yml

- name: install apt packages
 apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
 sudo: True
 with_items:
 - git
 - libjpeg-dev
 - libpq-dev
 - memcached
 - nginx
 - python-dev
 - python-pip
 - python-psycopg2
 - python-setuptools

154 | Chapter 8: Roles: Scaling Up Your Playbooks

 - python-virtualenv
 - supervisor

- include: django.yml

- include: nginx.yml

Example 8-11. roles/mezzanine/tasks/django.yml

- name: check out the repository on the host
 git:
 repo: "{{ mezzanine_repo_url }}"
 dest: "{{ mezzanine_proj_path }}"
 accept_hostkey: yes

- name: install required python packages
 pip: name={{ item }} virtualenv={{ mezzanine_venv_path }}
 with_items:
 - gunicorn
 - setproctitle
 - south
 - psycopg2
 - django-compressor
 - python-memcached

- name: install requirements.txt
 pip: >
 requirements={{ mezzanine_proj_path }}/{{ mezzanine_reqs_path }}
 virtualenv={{ mezzanine_venv_path }}

- name: generate the settings file
 template: src=local_settings.py.j2 dest={{ mezzanine_proj_path }}/local_settings.py

- name: sync the database, apply migrations, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ mezzanine_proj_path }}"
 virtualenv: "{{ mezzanine_venv_path }}"
 with_items:
 - syncdb
 - migrate
 - collectstatic

- name: set the site id
 script: scripts/setsite.py
 environment:
 PATH: "{{ mezzanine_venv_path }}/bin"
 PROJECT_DIR: "{{ mezzanine_proj_path }}"
 WEBSITE_DOMAIN: "{{ live_hostname }}"

- name: set the admin password
 script: scripts/setadmin.py

A “Mezzanine” Role for Deploying Mezzanine | 155

 environment:
 PATH: "{{ mezzanine_venv_path }}/bin"
 PROJECT_DIR: "{{ mezzanine_proj_path }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

- name: set the gunicorn config file
 template: src=gunicorn.conf.py.j2 dest={{ mezzanine_proj_path }}/gunicorn.conf.py

- name: set the supervisor config file
 template: src=supervisor.conf.j2 dest=/etc/supervisor/conf.d/mezzanine.conf
 sudo: True
 notify: restart supervisor

- name: ensure config path exists
 file: path={{ mezzanine_conf_path }} state=directory
 sudo: True
 when: tls_enabled

- name: install poll twitter cron job
 cron: >
 name="poll twitter" minute="*/5" user={{ mezzanine_user }}
 job="{{ mezzanine_manage }} poll_twitter"

Example 8-12. roles/mezzanine/tasks/nginx.yml

- name: set the nginx config file
 template: src=nginx.conf.j2 dest=/etc/nginx/sites-available/mezzanine.conf
 notify: restart nginx
 sudo: True

- name: enable the nginx config file
 file:
 src: /etc/nginx/sites-available/mezzanine.conf
 dest: /etc/nginx/sites-enabled/mezzanine.conf
 state: link
 notify: restart nginx
 sudo: True

- name: remove the default nginx config file
 file: path=/etc/nginx/sites-enabled/default state=absent
 notify: restart nginx
 sudo: True

- name: create tls certificates
 command: >
 openssl req -new -x509 -nodes -out {{ mezzanine_proj_name }}.crt
 -keyout {{ mezzanine_proj_name }}.key -subj '/CN={{ domains[0] }}' -days 3650
 chdir={{ mezzanine_conf_path }}
 creates={{ mezzanine_conf_path }}/{{ mezzanine_proj_name }}.crt
 sudo: True
 when: tls_enabled
 notify: restart nginx

156 | Chapter 8: Roles: Scaling Up Your Playbooks

There’s one important difference between tasks defined in a role and tasks defined in
a regular playbook, and that’s when using the copy or template modules.

When invoking copy in a task defined in a role, Ansible will first check the rolename/
files/ directory for the location of the file to copy. Similarly, when invoking template
in a task defined in a role, Ansible will first check the rolename/templates directory
for the location of the template to use.

This means that a task that used to look like this in a playbook:

- name: set the nginx config file
 template: src=templates/nginx.conf.j2 \
 dest=/etc/nginx/sites-available/mezzanine.conf

Now looks like this when invoked from inside the role (note the change of the src
parameter):

- name: set the nginx config file
 template: src=nginx.conf.j2 dest=/etc/nginx/sites-available/mezzanine.conf
 notify: restart nginx

Example 8-13 shows the handlers file.

Example 8-13. roles/mezzanine/handlers/main.yml

- name: restart supervisor
 supervisorctl: name=gunicorn_mezzanine state=restarted
 sudo: True

- name: restart nginx
 service: name=nginx state=restarted
 sudo: True

I won’t show the template files here, since they’re basically the same as in the previous
chapter, although some of the variable names have changed. Check out the accompa‐
nying code samples for details.

Creating Role Files and Directories with ansible-galaxy
Ansible ships with another command-line tool we haven’t talked about yet, ansible-
galaxy. Its primary purpose is to download roles that have been shared by the Ansible
community (more on that later in the chapter). But it can also be used to generate
scaffolding, an initial set of files and directories involved in a role:

$ ansible-galaxy init -p playbooks/roles web

The -p flag tells ansible-galaxy where your roles directory is. If you don’t specify it,
then the role files will be created in your current directory.

Running the command creates the following files and directories:

Creating Role Files and Directories with ansible-galaxy | 157

1 NTP stands for Network Time Protocol, used for synchronizing clocks.

• playbooks/roles/web/tasks/main.yml
• playbooks/roles/web/handlers/main.yml
• playbooks/roles/web/vars/main.yml
• playbooks/roles/web/defaults/main.yml
• playbooks/roles/web/meta/main.yml
• playbooks/roles/web/files/
• playbooks/roles/web/templates/
• playbooks/roles/web/README.md

Dependent Roles
Imagine that we had two roles, web and database, that both required an NTP1 server
to be installed on the host. We could specify the installation of the NTP server in both
the web and database roles, but that would result in duplication. We could create a
separate ntp role, but then we would have to remember that whenever we apply the
web or database role to a host, we have to apply the ntp role as well. This would avoid
the duplication, but it’s error-prone because we might forget to specify the ntp role.
What we really want is to have an ntp role that is always applied to a host whenever
we apply the web role or the database role.

Ansible supports a feature called dependent roles to deal with this scenario. When you
define a role, you can specify that it depends on one or more other roles. Ansible will
ensure that roles that are specified as dependencies are executed first.

Continuing with our example, let’s say that we created an ntp role that configures a
host to synchronize its time with an NTP server. Ansible allows us to pass parameters
to dependent roles, so let’s also assume that we can pass the NTP server as a parame‐
ter to that role.

We’d specify that the web role depends on the ntp role by creating a roles/web/meta/
main.yml file and listing it as a role, with a parameter, as shown in Example 8-14.

Example 8-14. roles/web/meta/main.yml

dependencies:
 - { role: ntp, ntp_server=ntp.ubuntu.com }

158 | Chapter 8: Roles: Scaling Up Your Playbooks

We can also specify multiple dependent roles. For example, if we had a django role for
setting up a Django web server, and we wanted to specify nginx and memcached as
dependent roles, then the role metadata file might look like Example 8-15.

Example 8-15. roles/django/meta/main.yml

dependencies:
 - { role: web }
 - { role: memcached }

For details on how Ansible evaluates the role dependencies, check out the official
Ansible documentation on role dependencies.

Ansible Galaxy
If you need to deploy an open source software system onto your hosts, chances are
somebody has already written an Ansible role to do it. Although Ansible does make it
easier to write scripts for deploying software, some systems are just plain tricky to
deploy.

Whether you want to reuse a role somebody has already written, or you just want to
see how someone else solved the problem you’re working on, Ansible Galaxy can help
you out. Ansible Galaxy is an open source repository of Ansible roles contributed by
the Ansible community. The roles themselves are stored on GitHub.

Web Interface
You can explore the available roles on the Ansible Galaxy site. Galaxy supports free‐
text searching and browsing by category or contributor.

Command-Line Interface
The ansible-galaxy command-line tool allows you to download roles from Ansible
Galaxy.

Installing a role
Let’s say I want to install the role named ntp, written by GitHub user bennojoy. This is
a role that will configure a host to synchronize its clock with an NTP server.

Install the role with the install command.

$ ansible-galaxy install -p ./roles bennojoy.ntp

The ansible-galaxy program will install roles to your systemwide location by default
(see “Where Does Ansible Look for My Roles?” on page 148), which we overrode in
the preceding example with the -p flag.

Ansible Galaxy | 159

http://bit.ly/1F6tH9a
http://bit.ly/1F6tH9a
http://galaxy.ansible.com

The output should look like this:

 downloading role 'ntp', owned by bennojoy
 no version specified, installing master
 - downloading role from https://github.com/bennojoy/ntp/archive/master.tar.gz
 - extracting bennojoy.ntp to ./roles/bennojoy.ntp
write_galaxy_install_info!
bennojoy.ntp was installed successfully

The ansible-galaxy tool will install the role files to roles/bennojoy.ntp.

Ansible will install some metadata about the installation to the ./roles/bennojoy.ntp/
meta/.galaxy_install_info file. On my machine, that file contains:

{install_date: 'Sat Oct 4 20:12:58 2014', version: master}

The bennojoy.ntp role does not have a specific version number, so
the version is simply listed as “master.” Some roles will have a spe‐
cific version number, such as 1.2.

List installed roles
You can list installed roles by doing:

$ ansible-galaxy list

Output should look like this:

 bennojoy.ntp, master

Uninstall a role

Remove a role with the remove command:

$ ansible-galaxy remove bennojoy.ntp

Contributing Your Own Role
See “How To Share Roles You’ve Written” on the Ansible Galaxy website for details on
how to contribute a role to the community. Because the roles are hosted on GitHub,
you’ll need to have a GitHub account to contribute.

At this point, you should now have an understanding of how to use roles, how to
write your own roles, and how to download roles written by others. Roles are a great
way to organize your playbooks. I use them all the time, and I highly recommend
them.

160 | Chapter 8: Roles: Scaling Up Your Playbooks

https://galaxy.ansible.com/intro

CHAPTER 9

Making Ansible Go Even Faster

In this chapter, we will discuss strategies for reducing the time it takes Ansible to exe‐
cute playbooks.

SSH Multiplexing and ControlPersist
If you’ve made it this far in the book, you know that Ansible uses SSH as its primary
transport mechanism for communicating with servers. In particular, Ansible will use
the system SSH program by default.

Because the SSH protocol runs on top of the TCP protocol, when you make a con‐
nection to a remote machine with SSH, you need to make a new TCP connection.
The client and server have to negotiate this connection before you can actually start
doing useful work. The negotiation takes a small amount of time.

When Ansible runs a playbook, it will make many SSH connections, in order to do
things such as copy over files and run commands. Each time Ansible makes a new
SSH connection to a host, it has to pay this negotiation penalty.

OpenSSH is the most common implementation of SSH and is almost certainly the
SSH client you have installed on your local machine if you are on Linux or Mac OS X.
OpenSSH supports an optimization called SSH multiplexing, which is also referred to
as ControlPersist. When you use SSH multiplexing, then multiple SSH sessions to the
same host will share the same TCP connection, so the TCP connection negotiation
only happens the first time.

When you enable multiplexing:

• The first time you try to SSH to a host, OpenSSH starts a master connection.

161

• OpenSSH creates a Unix domain socket (known as the control socket) that is asso‐
ciated with the remote host.

• The next time you try to SSH to a host, OpenSSH will use the control socket to
communicate with the host instead of making a new TCP connection.

The master connection stays open for a user-configurable amount of time, and then
the SSH client will terminate the connection. Ansible uses a default of 60 seconds.

Manually Enabling SSH Multiplexing
Ansible automatically enables SSH multiplexing, but to give you a sense of what’s
going on behind the scenes, let’s work through the steps of manually enabling SSH
multiplexing and using it to SSH to a remote machine.

Example 9-1 shows an example of an entry in the ~/.ssh/config file for myserver.exam‐
ple.com, which is configured to use SSH multiplexing.

Example 9-1. ssh/config for enabling ssh multiplexing

Host myserver.example.com
 ControlMaster auto
 ControlPath /tmp/%r@%h:%p
 ControlPersist 10m

The ControlMaster auto line enables SSH multiplexing, and it tells SSH to create the
master connection and the control socket if it does not exist yet.

The ControlPath /tmp/%r@%h:%p line tells SSH where to put the control Unix
domain socket file on the file system. %h is the target host name, %r is the remote
login username, and %p is the port. If we SSH as the Ubuntu user:

$ ssh ubuntu@myserver.example.com

Then SSH will create the control socket at /tmp/ubuntu@myserver.example.com:22 the
first time you SSH to the server.

The ControlPersist 10m line tells SSH to close the master connection if there have
been no SSH connections for 10 minutes.

You can check if a master connection is open using the -O check flag:

$ ssh -O check ubuntu@myserver.example.com

It will return output like this if the control master is running:

Master running (pid=4388)

Here’s what the control master process looks like if you do ps 4388:

162 | Chapter 9: Making Ansible Go Even Faster

1 The output format may look different depending on your shell and OS. I’m running zsh on Mac OS X.
2 One of these steps can be optimized away using pipelining, described later in this chapter.

 PID TT STAT TIME COMMAND
4388 ?? Ss 0:00.00 ssh: /tmp/ubuntu@myserver.example.com:22 [mux]

You can also terminate the master connection using the -O exit flag, like this:

$ ssh -O exit ubuntu@myserver.example.com

You can see more details about these settings on the ssh_config man page.

I tested out the speed of making an SSH connection like this:

$ time ssh ubuntu@myserver.example.com /bin/true

This will time how long it takes to indicate an SSH connection to the server and run
the /bin/true program, which simply exits with a 0 return code.

The first time I ran it, the timing part of the output looked like this:1

0.01s user 0.01s system 2% cpu 0.913 total

The time we really care about is the total time: 0.913 total. This tells us it took
0.913 seconds to execute the whole command. (Total time is also sometimes called
wall-clock time, since it’s how much time elapsed if we were measuring the time on
the clock on the wall.)

The second time, the output looked like this:

0.00s user 0.00s system 8% cpu 0.063 total

The total time went down to 0.063s, for a savings of about 0.85s for each SSH connec‐
tion after the first one. Recall that Ansible uses at least two SSH sessions to execute
each task: one session to copy the module file to the host, and another session to exe‐
cute the host.2 This means that SSH multiplexing should save you on the order of one
or two seconds for each task that runs in your playbook.

SSH Multiplexing Options in Ansible
Ansible uses the options for SSH multiplexing shown in Table 9-1.

SSH Multiplexing and ControlPersist | 163

Table 9-1. Ansible’s SSH multiplexing options

Option Value

ControlMaster auto

ControlPath $HOME/.ansible/cp/ansible-ssh-%h-%p-%r

ControlPersist 60s

I’ve never needed to change Ansible’s default ControlMaster or ControlPersist val‐
ues. However, I have needed to change the value for the ControlPath option. That’s
because the operating system sets a maximum length on the path of a Unix domain
socket, and if the ControlPath string is too long, then multiplexing won’t work.
Unfortunately, Ansible won’t tell you if the ControlPath string is too long; it will sim‐
ply run without using SSH multiplexing.

You can test it out on your control machine by manually trying to SSH using the
same ControlPath that Ansible would use:

$ CP=~/.ansible/cp/ansible-ssh-%h-%p-%r
$ ssh -o ControlMaster=auto -o ControlPersist=60s \
-o ControlPath=$CP \
ubuntu@ec2-203-0-113-12.compute-1.amazonaws.com \
/bin/true

If the ControlPath is too long, you’ll see an error that looks like Example 9-2.

Example 9-2. ControlPath too long

ControlPath
"/Users/lorinhochstein/.ansible/cp/ansible-ssh-ec2-203-0-113-12.compute-1.amazonaws.
com-22-ubuntu.KIwEKEsRzCKFABch"
too long for Unix domain socket

This is a common occurrence when connecting to Amazon EC2 instances, because
EC2 uses long hostnames.

The workaround is to configure Ansible to use a shorter ControlPath. The official
documentation recommends setting this option in your ansible.cfg file:

[ssh_connection]
control_path = %(directory)s/%%h-%%r

Ansible sets %(directory)s to $HOME/.ansible.cp, and the double percent signs (%%)
are needed to escape these characters because percent signs are special characters for
files in .ini format.

164 | Chapter 9: Making Ansible Go Even Faster

http://bit.ly/1F6y4Bn
http://bit.ly/1F6y4Bn

If you have SSH multiplexing enabled, and you change a configura‐
tion of your SSH connection, say by modifying the ssh_args con‐
figuration option, this change won’t take effect if the control socket
is still open from a previous connection.

Pipelining
Recall how Ansible executes a task:

1. It generates a Python script based on the module being invoked.
2. Then it copies the Python script to the host.
3. Finally, it executes the Python script.

Ansible supports an optimization called pipelining, where it will execute the Python
script by piping it to the SSH session instead of copying it. This saves time because it
tells Ansible to use one SSH session instead of two.

Enabling Pipelining
Pipelining is off by default because it can require some configuration on your remote
hosts, but I like to enable it because it speeds up execution. To enable it, modify your
ansible.cfg file as shown in Example 9-3.

Example 9-3. ansible.cfg Enable pipelining

[defaults]
pipelining = True

Configuring Hosts for Pipelining
For pipelining to work, you need to make sure that the requiretty is not enabled in
your /etc/sudoers file on your hosts. Otherwise, you’ll get errors that look like
Example 9-4 when you run your playbook.

Example 9-4. Error when requiretty is enabled

failed: [vagrant1] => {"failed": true, "parsed": false}
invalid output was: sudo: sorry, you must have a tty to run sudo

If sudo on your hosts is configured to read files from the /etc/sudoers.d, then the sim‐
plest way to resolve this is to add a sudoers config file that disables the requiretty
restriction for the user you use to SSH with.

Pipelining | 165

If the /etc/sudoers.d directory is present, then your hosts should support adding sudo‐
ers config files in that directory. You can use the ansible command-line tool to check
if it’s there:

$ ansible vagrant -a "file /etc/sudoers.d"

If the directory is present, the output will look like this:

vagrant1 | success | rc=0 >>
/etc/sudoers.d: directory

vagrant3 | success | rc=0 >>
/etc/sudoers.d: directory

vagrant2 | success | rc=0 >>
/etc/sudoers.d: directory

If the directory is not present, the output will look like this:

vagrant3 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d' (No such file or
directory)

vagrant2 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d' (No such file or
directory)

vagrant1 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d' (No such file or
directory)

If the directory is present, create a template file that looks like Example 9-5.

Example 9-5. templates/disable-requiretty.j2

Defaults:{{ ansible_ssh_user }} !requiretty

Then run the playbook shown in Example 9-6, replacing myhosts with your hosts.
Don’t forget to disable pipelining before you do this, or the playbook will fail with an
error.

Example 9-6. disable-requiretty.yml

- name: do not require tty for ssh-ing user
 hosts: myhosts
 sudo: True
 tasks:
 - name: Set a sudoers file to disable tty
 template: >
 src=templates/disable-requiretty.j2
 dest=/etc/sudoers.d/disable-requiretty

166 | Chapter 9: Making Ansible Go Even Faster

 owner=root group=root mode=0440
 validate="visudo -cf %s"

Note the use of validate="visudo -cf %s". See “Validating Files” on page 277 for a
discussion of why it’s a good idea to use validation when modifying sudoers files.

Fact Caching
If your play doesn’t reference any Ansible facts, you can turn off fact gathering for
that play. Recall that you can disable fact gathering with the gather_facts clause in a
play, for example:

- name: an example play that doesn't need facts
 hosts: myhosts
 gather_facts: False
 tasks:
 # tasks go here:

You can disable fact gathering by default by adding the following to your ansible.cfg
file:

[defaults]
gathering = explicit

If you write plays that do reference facts, you can use fact caching so that Ansible
gathers facts for a host only once, even if you rerun the playbook or run a different
playbook that connects to the same host.

If fact caching is enabled, Ansible will store facts in a cache the first time it connects
to hosts. For subsequent playbook runs, Ansible will look up the facts in the cache
instead of fetching them from the remote host, until the cache expires.

Example 9-7 shows the lines you must add to your ansible.cfg file to enable fact cach‐
ing. The fact_caching_timeout value is in seconds, and the example uses a 24-hour
(86,400 second) timeout.

As with all caching-based solutions, there’s always the danger of the
cached data becoming stale. Some facts, such as the CPU architec‐
ture (stored in the ansible_architecture fact), are unlikely to change
often. Others, such as the date and time reported by the machine
(stored in the ansible_date_time fact), are guaranteed to change
often.
If you decide to enable fact caching, make sure you know how
quickly the facts used in your playbook are likely to change, and set
an appropriate fact caching timeout value. If you want to clear the
fact cache before running a playbook, pass the --flush-cache flag
to ansible-playbook.

Fact Caching | 167

Example 9-7. ansible.cfg Enable fact caching

[defaults]
gathering = smart
24-hour timeout, adjust if needed
fact_caching_timeout = 86400

You must specify a fact caching implementation
fact_caching = ...

Setting the gathering configuration option to “smart” in ansible.cfg tells Ansible to
use smart gathering. This means that Ansible will only gather facts if they are not
present in the cache or if the cache has expired.

If you want to use fact caching, make sure your playbooks do not
explicitly specify gather_facts: True or gather_facts: False.
With smart gathering enabled in the configuration file, Ansible will
gather facts only if they are not present in the cache.

You must explicitly specify a fact_caching implementation in ansible.cfg, or Ansible
will not cache facts between playbook runs.

As of this writing, there are three fact-caching implementations:

• JSON files
• Redis
• Memcached

JSON File Fact-Caching Backend
With the JSON file fact-caching backend, Ansible will write the facts it gathers to files
on your control machine. If the files are present on your system, it will use those files
instead of connecting to the host and gathering facts.

To enable the JSON fact-caching backend, add the settings in Example 9-8 to your
ansible.cfg file.

Example 9-8. ansible.cfg with JSON fact caching

[defaults]
gathering = smart

24-hour timeout, adjust if needed
fact_caching_timeout = 86400

168 | Chapter 9: Making Ansible Go Even Faster

3 You may need to sudo or activate a virtualenv, depending on how you installed Ansible on your control
machine

JSON file implementation
fact_caching = jsonfile
fact_caching_connection = /tmp/ansible_fact_cache

Use the fact_caching_connection configuration option to specify a directory where
Ansible should write the JSON files that contain the facts. If the directory does not
exist, Ansible will create it.

Ansible uses the file modification time to determine whether the fact-caching time‐
out has occurred yet.

Redis Fact Caching Backend
Redis is a popular key-value data store that is often used as a cache. To enable fact
caching using the Redis backend, you need to:

1. Install Redis on your control machine.
2. Ensure the Redis service is running on the control machine.
3. Install the Python Redis package.
4. Modify ansible.cfg to enable fact caching with Redis.

Example 9-9 shows how to configure ansible.cfg to use Redis as the cache backend.

Example 9-9. ansible.cfg with Redis fact caching

[defaults]
gathering = smart

24-hour timeout, adjust if needed
fact_caching_timeout = 86400

fact_caching = redis

Ansible needs the Python Redis package on the control machine, which you can
install using pip:3

$ pip install redis

You must also install Redis and ensure that it is running on your control machine. If
you are using OS X, you can install Redis using Homebrew. If you are using Linux,
install Redis using your native package manager.

Fact Caching | 169

Memcached Fact Caching Backend
Memcached is another popular key-value data store that is often used as a cache. To
enable fact caching using the Memcached backend, you need to:

1. Install Memcached on your control machine.
2. Ensure the Memcached service is running on the control machine.
3. Install the Python Memcached Python package.
4. Modify ansible.cfg to enable fact caching with Memcached.

Example 9-10 shows how to configure ansible.cfg to use Memcached as the cache
backend.

Example 9-10. ansible.cfg with Memcached fact caching

[defaults]
gathering = smart

24-hour timeout, adjust if needed
fact_caching_timeout = 86400

fact_caching = memcached

Ansible needs the Python Memcached package on the control machine, which you
can install using pip. You might need to sudo or activate a virtualenv, depending on
how you installed Ansible on your control machine.

$ pip install python-memcached

You must also install Memcached and ensure that it is running on your control
machine. If you are using OS X, you can install Memcached using Homebrew. If you
are using Linux, install Memcached using your native package manager.

For more information on fact caching, check out the official documentation.

Parallelism
For each task, Ansible will connect to the hosts in parallel to execute the tasks. But
Ansible doesn’t necessarily connect to all of the hosts in parallel. Instead, the level of
parallelism is controlled by a parameter, which defaults to 5. You can change this
default parameter in one of two ways.

You can set the ANSIBLE_FORKS environment variable, as shown in Example 9-11.

170 | Chapter 9: Making Ansible Go Even Faster

http://bit.ly/1F6BHap

Example 9-11. Setting ANSIBLE_FORKS

$ export ANSIBLE_FORKS=20
$ ansible-playbook playbook.yml

You can modify the Ansible configuration file (ansible.cfg) by setting a forks option
in the defaults section, as shown in Example 9-12.

Example 9-12. ansible.cfg Configuring number of forks

[defaults]
forks = 20

Accelerated Mode
Ansible supports a connection mode called accelerated mode. This feature is older
than pipelining, and the official documentation recommends using pipelining instead
of accelerated mode, unless your environment prevents you from enabling pipelining.
For more details on accelerated mode, see the official documentation.

Fireball Mode
Fireball mode is a deprecated Ansible feature that was previously used to improve per‐
formance. It was replaced by accelerated mode.

You should now know how to configure SSH multiplexing, pipelining, fact caching,
and parallelism in order to get your playbooks to run more quickly. Next, we’ll dis‐
cuss writing your own Ansible modules.

Accelerated Mode | 171

http://bit.ly/1F6CWpS

CHAPTER 10

Custom Modules

Sometimes you want to perform a task that is too complex for the command or shell
modules, and there is no existing module that does what you want. In that case, you
might want to write your own module.

In the past, I’ve written custom modules to retrieve my public IP address when I’m
behind a network address translation (NAT) getaway, and to initialize the databases
in an OpenStack deployment. I’ve thought about writing a custom module for gener‐
ating self-signed TLS certificates, though I’ve never gotten around to it.

Another common use for custom modules is if you want to interact with some third-
party service over a REST API. For example, GitHub offers what it calls Releases,
which let you attach binary assets to repositories, and these are exposed via GitHub’s
API. If your deployment required you to download a binary asset attached to a pri‐
vate GitHub repository, this would be a good candidate for implementing inside of a
custom module.

Example: Checking That We Can Reach a Remote Server
Let’s say we want to check that we can connect to a remote server on a particular port.
If we can’t, we want Ansible to treat that as an error and stop running the play.

The custom module we will develop in this chapter is basically a
simpler version of the wait_for module.

173

Using the Script Module Instead of Writing Your Own
Recall in Example 6-16 how we used the script module to execute custom scripts on
remote hosts. Sometimes it’s simpler to just use the script module rather than write
a full-blown Ansible module.

I like putting these types of scripts in a scripts folder along with my playbooks. For
example, we could create a script file called playbooks/scripts/can_reach.sh that
accepts as arguments the name of a host, the port to connect to, and how long it
should try to connect before timing out.

can_reach.sh www.example.com 80 1

We can create a script as shown in Example 10-1.

Example 10-1. can_reach.sh

#!/bin/bash
host=$1
port=$2
timeout=$3

nc -z -w $timeout $host $port

We can then invoke this by doing:

- name: run my custom script
 script: scripts/can_reach.sh www.example.com 80 1

Keep in mind that your script will execute on the remote hosts, just like Ansible mod‐
ules do. Therefore, any programs your script requires must have been installed previ‐
ously on the remote hosts. For example, you can write your script in Ruby, as long as
Ruby has been installed on the remote hosts, and the first line of the script invokes
the Ruby interpreter, such as:

#!/usr/bin/ruby

can_reach as a Module
Next, let’s implement can_reach as a proper Ansible module, which we will be able to
invoke like this:

- name: check if host can reach the database server
 can_reach: host=db.example.com port=5432 timeout=1

This will check if the host can make a TCP connection to db.example.com on port
5432. It will time out after one second if it fails to make a connection.

We’ll use this example throughout the rest of this chapter.

174 | Chapter 10: Custom Modules

Where to Put Custom Modules
Ansible will look in the library directory relative to the playbook. In our example, we
put our playbooks in the playbooks directory, so we will put our custom module at
playbooks/library/can_reach.

How Ansible Invokes Modules
Before we actually implement the module, let’s go over how Ansible invokes them.
Ansible will:

1. Generate a standalone Python script with the arguments (Python modules only).
2. Copy the module to the host.
3. Create an arguments file on the host (nonPython modules only).
4. Invoke the module on the host, passing the arguments file as an argument.
5. Parse the standard output of the module.

Let’s look at each of these steps in more detail.

Generate a Standalone Python Script with the Arguments
(Python Only)
If the module is written in Python and uses the helper code that Ansible provides
(described later), then Ansible will generate a self-contained Python script that injects
helper code, as well as the module arguments.

Copy the Module to the Host
Ansible will copy the generated Python script (for Python-based modules) or the
local file playbooks/library/can_reach (for non-Python-based modules) to a tempo‐
rary directory on the remote host. If you are accessing the remote host as the ubuntu
user, Ansible will copy the file to a path that looks like the following:

/home/ubuntu/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/can_reach

Create an Arguments File on the Host (Non-Python Only)
If the module is not written in Python, Ansible will create a file on the remote host
with a name like this:

/home/ubuntu/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/arguments

If we invoke the module like this:

Where to Put Custom Modules | 175

- name: check if host can reach the database server
 can_reach: host=db.example.com port=5432 timeout=1

Then the arguments file will have the following contents:

host=db.example.com port=5432 timeout=1

We can tell Ansible to generate the arguments file for the module as JSON, by adding
the following line to playbooks/library/can_reach:

WANT_JSON

If our module is configured for JSON input, the arguments file will look like this:

{"host": "www.example.com", "port": "80", "timeout": "1"}

Invoke the Module
Ansible will call the module and pass the argument file as arguments. If it’s a Python-
based module, Ansible executes the equivalent of the following (with /path/to/
replaced by the actual path):

/path/to/can_reach

If it’s a non-Python-based module, Ansible will look at the first line of the module to
determine the interpreter and execute the equivalent of:

/path/to/interpreter /path/to/can_reach /path/to/arguments

Assuming the can_reach module is implemented as a Bash script and starts with:

#!/bin/bash

Then Ansible will do something like:

/bin/bash /path/to/can_reach /path/to/arguments

But even this isn’t strictly true. What Ansible actually does is:

/bin/sh -c 'LANG=en_US.UTF-8 LC_CTYPE=en_US.UTF-8 /bin/bash /path/to/can_reach \
/path/to/arguments; rm -rf /path/to/ >/dev/null 2>&1'

You can see the exact command that Ansible invokes by passing -vvv to ansible-
playbook.

Expected Outputs
Ansible expects modules to output JSON. For example:

{'changed': false, 'failed': true, 'msg': 'could not reach the host'}

176 | Chapter 10: Custom Modules

Prior to version 1.8, Ansible supported a shorthand output format,
also known as baby JSON, that looked like key=value. Ansible
dropped support for this format in 1.8. As we’ll see later, if you
write your modules in Python, Ansible provides some helper meth‐
ods that make it easy to generate JSON output.

Output Variables Ansible Expects
Your module can return whatever variables you like, but Ansible has special treat‐
ment for certain returned variables:

changed

All Ansible modules should return a changed variable. The changed variable is a
Boolean that indicates whether the module execution caused the host to change state.
When Ansible runs, it will show in the output whether a state change has happened.
If a task has a notify clause to notify a handler, the notification will fire only if
changed is true.

failed

If the module failed to complete, it should return failed=true. Ansible will treat this
task execution as a failure and will not run any further tasks against the host that
failed, unless the task has an ignore_errors or failed_when clause.

If the module succeeds, you can either return failed=false or you can simply leave
out the variable.

msg

Use the msg variable to add a descriptive message that describes the reason why a
module failed.

If a task fails, and the module returns a msg variable, then Ansible will output that
variable slightly differently than it does the other variables. For example, if a module
returns:

{"failed": true, "msg": "could not reach www.example.com:81"}

Then Ansible will output the following lines when executing this task:

failed: [vagrant1] => {"failed": true}
msg: could not reach www.example.com:81

Expected Outputs | 177

Implementing Modules in Python
If you implement your custom module in Python, Ansible provides the AnsibleMod
ule Python class that makes it easier to:

• Parse the inputs
• Return outputs in JSON format
• Invoke external programs

In fact, when writing a Python module, Ansible will inject the arguments directly into
the generated Python file rather than require you to parse a separate arguments file.
We’ll discuss how that works later in this chapter.

We’ll create our module in Python by creating a can_reach file. I’ll start with the
implementation and then break it down (see Example 10-2).

Example 10-2. can_reach

#!/usr/bin/python

def can_reach(module, host, port, timeout):
 nc_path = module.get_bin_path('nc', required=True)
 args = [nc_path, "-z", "-w", str(timeout),
 host, str(port)]
 (rc, stdout, stderr) = module.run_command(args)
 return rc == 0

def main():
 module = AnsibleModule(
 argument_spec=dict(
 host=dict(required=True),
 port=dict(required=True, type='int'),
 timeout=dict(required=False, type='int', default=3)
),
 supports_check_mode=True
)

 # In check mode, we take no action
 # Since this module never changes system state, we just
 # return changed=False
 if module.check_mode:
 module.exit_json(changed=False)

 host = module.params['host']
 port = module.params['port']
 timeout = module.params['timeout']

 if can_reach(module, host, port, timeout):

178 | Chapter 10: Custom Modules

 module.exit_json(changed=False)
 else:
 msg = "Could not reach %s:%s" % (host, port)
 module.fail_json(msg=msg)

from ansible.module_utils.basic import *
main()

Gets the path of an external program

Invokes an external program

Instantiates the AnsibleModule helper class

Specifies the permitted set of arguments

A required argument

An optional argument with a default value

Specify that this module supports check mode

Test to see if module is running in check mode

Exit successfully, passing a return value

Extract an argument

Exit with failure, passing an error message

“Imports” the AnsibleModule helper class

Parsing Arguments
It’s easier to understand the way AnsibleModule handles argument parsing by looking
at an example. Recall that our module is invoked like this:

- name: check if host can reach the database server
 can_reach: host=db.example.com port=5432 timeout=1

Let’s assume that the host and port parameters are required, and timeout is an
optional parameter with a default value of 3 seconds.

You instantiate an AnsibleModule object by passing it an argument_spec, which is a
dictionary where the keys are parameter names and the values are dictionaries that
contain information about the parameters.

Implementing Modules in Python | 179

 module = AnsibleModule(
 argument_spec=dict(
 ...

In our example, we declare a required argument named host. Ansible will report an
error if this argument isn’t passed to the module when we use it in a task.

 host=dict(required=True),

The variable named timeout is optional. Ansible assumes that arguments are strings
unless specified otherwise. Our timeout variable is an integer, so we specify the type
as int so that Ansible will automatically convert it into a Python number. If timeout
is not specified, then the module will assume it has a value of 3:

 timeout=dict(required=False, type='int', default=3)

The AnsibleModule constructor takes arguments other than argument_spec. In the
preceding example, we added this argument:

 supports_check_mode = True

This indicates that our module supports check mode. We’ll explain that a little later in
this chapter.

Accessing Parameters
Once you’ve declared an AnsibleModule object, you can access the values of the argu‐
ments through the params dictionary, like this:

module = AnsibleModule(...)

host = module.params["host"]
port = module.params["port"]
timeout = module.params["timeout"]

Importing the AnsibleModule Helper Class
Near the bottom of the module, you’ll see this import statement:

from ansible.module_utils.basic import *

If you’ve written Python scripts before, you’re probably used to seeing an import at
the top, rather than the bottom. However, this is really a pseudo import statement. It
looks like a traditional Python import, but behaves differently.

Import statements behave differently in modules because Ansible copies only a single
Python file to the remote host to execute it. Ansible simulates the behavior of a tradi‐
tional Python import by including the imported code directly into the generated
Python file (similar to how an #include statement works in C or C++).

180 | Chapter 10: Custom Modules

Because Ansible will replace the import statement with code, the line numbers in the
module as written will be different than the line numbers of the generated Python
file. By putting the import statement at the bottom of the file, all of the line numbers
above it are the same in the module and the generated file, which makes life much
easier when interpreting Python tracebacks that contain line numbers.

Because this import statement behaves differently from a traditional Python import,
you shouldn’t import classes explicitly, as shown in Example 10-3, even though
explicit imports traditionally are considered good form in Python:

Example 10-3. Explicit imports (don’t do this)

from ansible.module_utils.basic import AnsibleModule

If you import explicitly, you won’t be able to use the Ansible module debugging
scripts. That’s because these debugging scripts look for the specific string that
includes the * and will fail with an error if they don’t find it.

Earlier versions of Ansible used this line instead of an import state‐
ment to mark the location of where Ansible should insert the gen‐
erated helper code.

#<<INCLUDE_ANSIBLE_MODULE_COMMON>>

Argument Options
For each argument to an Ansible module, you can specify several options:

Table 10-1. Argument options

Option Description

required If True, argument is required

default Default value if argument is not required

choices A list of possible values for the argument

aliases Other names you can use as an alias for this argument

type Argument type. Allowed values: 'str', 'list', 'dict', 'bool', 'int', 'float'

required

The required option is the only option that you should always specify. If it is true,
then Ansible will return an error if the user failed to specify the argument.

Implementing Modules in Python | 181

In our can_reach module example, host and port are required, and timeout is not
required.

default

For arguments that have required=False set, you should generally specify a default
value for that option. In our example:

timeout=dict(required=False, type='int', default=3)

If the user invokes the module like this:

can_reach: host=www.example.com port=443

Then module.params["timeout"] will contain the value 3.

choices

The choices option allows you to restrict the allowed arguments to a predefined list.

Consider the distros argument in the following example:

distro=dict(required=True, choices=['ubuntu', 'centos', 'fedora'])

If the user were to pass an argument that was not in the list, for example:

distro=suse

This would cause Ansible to throw an error.

aliases

The aliases option allows you to use different names to refer to the same argument.
For example, consider the package argument in the apt module:

module = AnsibleModule(
 argument_spec=dict(
 ...
 package = dict(default=None, aliases=['pkg', 'name'], type='list'),
)
)

Since pkg and name are aliases for the package argument, these invocations are all
equivalent:

- apt: package=vim
- apt: name=vim
- apt: pkg=vim

type

The type option enables you to specify the type of an argument. By default, Ansible
assumes all arguments are strings.

182 | Chapter 10: Custom Modules

However, you can specify a type for the argument, and Ansible will convert the argu‐
ment to the desired type. The types supported are:

• str

• list

• dict

• bool

• int

• float

In our example, we specified the port argument as an int:

port=dict(required=True, type='int'),

When we access it from the params dictionary, like this:

port = module.params['port']

Then the value of the port variable will be an integer. If we had not specified the type
as int when declaring the port variable, then the module.params['port'] value
would have been a string instead of an int.

Lists are comma-delimited. For example, if you had a module named foo with a list
parameter named colors:

colors=dict(required=True, type='list')

Then you’d pass a list like this:

foo: colors=red,green,blue

For dictionaries, you can either do key=value pairs, delimited by commas, or you can
do JSON inline.

For example, if you had a module named bar, with a dict parameter named tags:

tags=dict(required=False, type='dict', default={})

Then you could pass this argument like this:

- bar: tags=env=staging,function=web

Or you could pass the argument like this:

- bar: tags={"env": "staging", "function": "web"}

The official Ansible documentation uses the term complex args to refer to lists and
dictionaries that are passed to modules as arguments. See “Complex Arguments in
Tasks: A Brief Digression” on page 99 for how to pass these types of arguments in
playbooks.

Implementing Modules in Python | 183

AnsibleModule Initializer Parameters
The AnsibleModule initializer method takes a number of arguments. The only
required argument is argument_spec.

Table 10-2. AnsibleModule initializer arguments

Parameter Default Description

argument_spec (none) Dictionary that contains information about arguments

bypass_checks False If true, don’t check any of the parameter constrains

no_log False If true, don’t log the behavior of this module

check_invalid_arguments True If true, return error if user passed an unknown argument

mutually_exclusive None List of mutually exclusive arguments

required_together None List of arguments that must appear together

required_one_of None List of arguments where at least one must be present

add_file_common_args False Supports the arguments of the file module

supports_check_mode False If true, indicates module supports check mode

argument_spec
This is a dictionary that contains the descriptions of the allowed arguments for the
module, as described in the previous section.

no_log
When Ansible executes a module on a host, the module will log output to the syslog,
which on Ubuntu is at /var/log/syslog.

The logging output looks like this:

Sep 28 02:31:47 vagrant-ubuntu-trusty-64 ansible-ping: Invoked with data=None
Sep 28 02:32:18 vagrant-ubuntu-trusty-64 ansible-apt: Invoked with dpkg_options=
force-confdef,force-confold upgrade=None force=False name=nginx package=['nginx'
] purge=False state=installed update_cache=True default_release=None install_rec
ommends=True deb=None cache_valid_time=None Sep 28 02:33:01 vagrant-ubuntu-trust
y-64 ansible-file: Invoked with src=None
original_basename=None directory_mode=None force=False remote_src=None selevel=N
one seuser=None recurse=False serole=None content=None delimiter=None state=dire
ctory diff_peek=None mode=None regexp=None owner=None group=None path=/etc/nginx
/ssl backup=None validate=None setype=None

184 | Chapter 10: Custom Modules

Sep 28 02:33:01 vagrant-ubuntu-trusty-64 ansible-copy: Invoked with src=/home/va
grant/.ansible/tmp/ansible-tmp-1411871581.19-43362494744716/source directory_mod
e=None force=True remote_src=None dest=/etc/nginx/ssl/nginx.key selevel=None seu
ser=None serole=None group=None content=NOT_LOGGING_PARAMETER setype=None origin
al_basename=nginx.key delimiter=None mode=0600 owner=root regexp=None validate=N
one backup=False
Sep 28 02:33:01 vagrant-ubuntu-trusty-64 ansible-copy: Invoked with src=/home/va
grant/.ansible/tmp/ansible-tmp-1411871581.31-95111161791436/source directory_mod
e=None force=True remote_src=None dest=/etc/nginx/ssl/nginx.crt selevel=None seu
ser=None serole=None group=None content=NOT_LOGGING_PARAMETER setype=None origin
al_basename=nginx.crt delimiter=None mode=None owner=None regexp=None validate=N
one backup=False

If a module accepts sensitive information as an argument, you might want to disable
this logging.

To configure a module so that it does not write to syslog, pass the no_log=True
parameter to the AnsibleModule initializer.

check_invalid_arguments
By default, Ansible will verify that all of the arguments that a user passed to a module
are legal arguments. You can disable this check by passing the check_invalid_argu
ments=False parameter to the AnsibleModule initializer.

mutually_exclusive

The mutually_exclusive parameter is a list of arguments that cannot be specified
during the same module invocation.

For example, the lineinfile module allows you to add a line to a file. You can use
the insertbefore argument to specify which line it should appear before, or the
insertafter argument to specify which line it should appear after, but you can’t
specify both.

Therefore, this module specifies that the two arguments are mutually exclusive, like
this:

mutually_exclusive=[['insertbefore', 'insertafter']]

required_one_of

The required_one_of parameter is a list of arguments where at least one must be
passed to the module.

For example, the pip module, which is used for installing Python packages, can take
either the name of a package or the name of a requirements file that contains a list of
packages. The module specifies that one of these arguments is required like this:

required_one_of=[['name', 'requirements']]

Implementing Modules in Python | 185

add_file_common_args
Many modules create or modify a file. A user will often want to set some attributes on
the resulting file, such as the owner, group, and file permissions.

You could invoke the file module to set these parameters, like this:

- name: download a file
 get_url: url=http://www.example.com/myfile.dat dest=/tmp/myfile.dat

- name: set the permissions
 file: path=/tmp/myfile.dat owner=ubuntu mode=0600

As a shortcut, Ansible allows you to specify that a module will accept all of the same
arguments as the file module, so you can simply set the file attributes by passing the
relevant arguments to the module that created or modified the file. For example:

- name: download a file
 get_url: url=http://www.example.com/myfile.dat dest=/tmp/myfile.dat \
 owner=ubuntu mode=0600

To specify that a module should support these arguments:

add_file_common_args=True

The AnsibleModule module provides helper methods for working with these argu‐
ments.

The load_file_common_arguments method takes the parameters dictionary as an
argument and returns a parameters dictionary that contains all of the arguments that
relate to setting file attributes.

The set_fs_attributes_if_different method takes a file parameters dictionary
and a Boolean indicating whether a host state change has occurred yet. The method
sets the file attributes as a side effect and returns true if there was a host state change
(either the initial argument was true, or it made a change to the file as part of the side
effect).

If you are using the file common arguments, do not specify the arguments explicitly.
To get access to these attributes in your code, use the helper methods to extract the
arguments and set the file attributes, like this:

module = AnsibleModule(
 argument_spec=dict(
 dest=dict(required=True),
 ...
),
 add_file_common_args=True
)

"changed" is True if module caused host to change state
changed = do_module_stuff(param)

186 | Chapter 10: Custom Modules

file_args = module.load_file_common_arguments(module.params)

changed = module.set_fs_attributes_if_different(file_args, changed)
module.exit_json(changed=changed, ...)

Ansible assumes your module has an argument named path or
dest, which contains the path to the file.

bypass_checks
Before an Ansible module executes, it first checks that all of the argument constraints
are satisfied, and returns an error if they aren’t. These include:

• No mutually exclusive arguments are present.
• Arguments marked with the required option are present.
• Arguments restricted by the choices option have the expected values.
• Arguments where a type is specified have values that are consistent with the
type.

• Arguments marked as required_together appear together.
• At least one argument in the list of required_one_of is present.

You can disable all of these checks by setting bypass_checks=True.

Returning Success or Failure
Use the exit_json method to return success. You should always return changed as an
argument, and it’s good practice to return msg with a meaningful message:

module = AnsibleModule(...)
...
module.exit_json(changed=False, msg="meaningful message goes here")

Use the fail_json method to indicate failure. You should always return a msg param‐
eter to explain to the user the reason for the failure:

module = AnsibleModule(...)
...
module.fail_json(msg="Out of disk space")

Implementing Modules in Python | 187

Invoking External Commands
The AnsibleModule class provides the run_command convenience method for calling
an external program, which wraps the native Python subprocess module. It accepts
the following arguments.

Table 10-3. run_command arguments

Argument Type Default Description

args (default) string or list of
strings

(none) The command to be executed (see the following section)

check_rc Boolean False If true, will call fail_json if command returns a non-zero value.

close_fds Boolean True Passes as close_fds argument to subprocess.Popen

executable string (path to
program)

None Passes as executable argument to subprocess.Popen

data string None Send to stdin if child process

binary_data Boolean False If false and data is present, Ansible will send a newline to stdin
after sending data

path_prefix string (list of paths) None Colon-delimited list of paths to prepend to PATH environment variable

cwd string (directory
path)

None If specified, Ansible will change to this directory before executing

use_unsafe_shell Boolean False See the following section

If args is passed as a list, as shown in Example 10-4, then Ansible will invoke subpro
cess.Popen with shell=False.

Example 10-4. Passing args as a list

module = AnsibleModule(...)
...
module.run_command(['/usr/local/bin/myprog', '-i', 'myarg'])

If args is passed as a string, as shown in Example 10-5, then the behavior depends on
the value of use_unsafe_shell. If use_unsafe_shell is false, Ansible will split args

188 | Chapter 10: Custom Modules

1 For more on the Python standard library subprocess.Popen class, see its online documentation.
2 Phew! That was a lot of checks.

 into a list and invoke subprocess.Popen with shell=False. If use_unsafe_shell is
true, Ansible will pass args as a string to subprocess.Popen with shell=True.1

Example 10-5. Passing args as a string

module = AnsibleModule(...)
...
module.run_command('/usr/local/bin/myprog -i myarg')

Check Mode (Dry Run)
Ansible supports something called “check mode,” which is enabled when passing the
-C or --check flag to ansible-playbook. It is similar to the “dry run” mode sup‐
ported by many other tools.

When Ansible runs a playbook in check mode, it will not make any changes to the
hosts when it runs. Instead, it will simply report whether each task would have
changed the host, returned successfully without making a change, or returned an
error.

Support Check Mode

Modules must be explicitly configured to support check mode. If
you’re going to write your own module, I recommend you support
check mode so that your module is a good Ansible citizen.

To tell Ansible that your module supports check mode, set supports_check_mode to
true in the AnsibleModule initializer method, as shown in Example 10-6.

Example 10-6. Telling Ansible the module supports check mode

module = AnsibleModule(
 argument_spec=dict(...),
 supports_check_mode=True)

Your module should check that check mode has been enabled by checking the value
of the `check_mode`2 attribute of the AnsibleModule object, as shown in
Example 10-7. Call the exit_json or fail_json methods as you would normally.

Implementing Modules in Python | 189

http://bit.ly/1F72tiU

Example 10-7. Checking if check mode is enabled

module = AnsibleModule(...)
...
if module.check_mode:
 # check if this module would make any changes
 would_change = would_executing_this_module_change_something()
 module.exit_json(changed=would_change)

It is up to you, the module author, to ensure that your module does not modify the
state of the host when running in check mode.

Documenting Your Module
You should document your modules according to the Ansible project standards so
that HTML documentation for your module will be correctly generated and the
ansible-doc program will display documentation for your module. Ansible uses a spe‐
cial YAML-based syntax for documenting modules.

Near the top of your module, define a string variable called DOCUMENTATION that con‐
tains the documentation, and a string variable called EXAMPLES that contains example
usage.

Example 10-8 shows an example for the documentation section for our can_reach
module.

Example 10-8. Example of module documentation

DOCUMENTATION = '''

module: can_reach
short_description: Checks server reachability
description:
 - Checks if a remote server can be reached
version_added: "1.8"
options:
 host:
 description:
 - A DNS hostname or IP address
 required: true
 port:
 description:
 - The TCP port number
 required: true
 timeout:
 description:
 - The amount of time try to connecting before giving up, in seconds
 required: false
 default: 3

190 | Chapter 10: Custom Modules

 flavor:
 description:
 - This is a made-up option to show how to specify choices.
 required: false
 choices: ["chocolate", "vanilla", "strawberry"]
 aliases: ["flavour"]
 default: chocolate
requirements: [netcat]
author: Lorin Hochstein
notes:
 - This is just an example to demonstrate how to write a module.
 - You probably want to use the native M(wait_for) module instead.
'''

EXAMPLES = '''
Check that ssh is running, with the default timeout
- can_reach: host=myhost.example.com port=22

Check if postgres is running, with a timeout
- can_reach: host=db.example.com port=5432 timeout=1
'''

Ansible supports some limited markup in the documentation. Table 10-4 shows the
markup syntax supported by the Ansible documentation tool with recommendations
about when you should use this markup:

Table 10-4. Documentation markup

Type Syntax with example When to use

URL U(http://www.example.com) URLs

Module M(apt) Module names

Italics I(port) Parameter names

Constant-width C(/bin/bash) File and option names

The existing Ansible modules are a great source of examples for documentation.

Debugging Your Module
The Ansible repository in GitHub contains a couple of scripts that allow you to
invoke your module directly on your local machine, without having to run it using
the ansible or ansible-playbook commands.

Clone the Ansible repo:

$ git clone https://github.com/ansible/ansible.git --recursive

Debugging Your Module | 191

http://www.example.com

Set up your environment variables so that you can invoke the module:

$ source ansible/hacking/env-setup

Invoke your module:

$ ansible/hacking/test-module -m /path/to/can_reach -a "host=example.com port=81"

Since example.com doesn’t have a service that listens on port 81, our module should
fail with a meaningful error message. And it does:

* including generated source, if any, saving to:
 /Users/lorinhochstein/.ansible_module_generated
* this may offset any line numbers in tracebacks/debuggers!

RAW OUTPUT
{"msg": "Could not reach example.com:81", "failed": true}

PARSED OUTPUT
{
 "failed": true,
 "msg": "Could not reach example.com:81"
}

As the output suggests, when you run this test-module, Ansible will generate a
Python script and copy it to ~/.ansible_module_generated. This is a standalone script
that you can execute directly if you like. The debug script will replace the following
line:

from ansible.module_utils.basic import *

with the contents of the file lib/ansible/module_utils/basic.py, which can be found in
the Ansible repository.

This file does not take any arguments; rather, Ansible inserts the arguments directly
into the file:

MODULE_ARGS = 'host=example.com port=91'

Implementing the Module in Bash
If you’re going to write an Ansible module, I recommend writing it in Python
because, as we saw earlier in this chapter, Ansible provides helper classes for writing
your modules in Python. However, you can write modules in other languages as well.
Perhaps you need to write in another language because your module depends on a
third-party library that’s not implemented in Python. Or maybe the module is so sim‐
ple that it’s easiest to write it in Bash. Or, maybe, you just prefer writing your scripts
in Ruby.

192 | Chapter 10: Custom Modules

In this section, we’ll work through an example of implementing the module as a Bash
script. It’s going to look quite similar to the implementation in Example 10-1. The
main difference is parsing the input arguments and generating the outputs that Ansi‐
ble expects.

I’m going to use the JSON format for input and use a tool called jq for parsing out
JSON on the command line. This means that you’ll need to install jq on the host
before invoking this module. Example 10-9 shows the complete Bash implementation
of our module.

Example 10-9. can_reach module in Bash

#!/bin/bash
WANT_JSON

Read the variables form the file
host=`jq -r .host < $1`
port=`jq -r .port < $1`
timeout=`jq -r .timeout < $1`

Check if we can reach the host
nc -z -w $timeout $host $port

Output based on success or failure
if [$? -eq 0]; then
 echo '{"changed": false}'
else
 echo "{\"failed\": true, \"msg\": \"could not reach $host:$port\"}"
fi

We added WANT_JSON in a comment to tell Ansible that we want the input to be in
JSON syntax.

Bash Modules with Shorthand Input
It’s possible to implement Bash modules using the shorthand notation for input. I
don’t recommend doing it this way, since the simplest approach involves using the
source built-in, which is a potential security risk. However, if you’re really deter‐
mined, check out the blog post, “Shell scripts as Ansible modules,” by Jan-Piet Mens.

Specifying an Alternaive Location for Bash
Note that our module assumes that Bash is located at /bin/bash. However, not all sys‐
tems will have the Bash executable in that location. You can tell Ansible to look else‐

Specifying an Alternaive Location for Bash | 193

http://stedolan.github.io/jq/
http://bit.ly/1F789tb

where for the Bash interpreter by setting the ansible_bash_interpreter variable on
hosts that install it elsewhere.

For example, let’s say you have a FreeBSD host named fileserver.example.com that has
Bash installed in /usr/local/bin/bash. You can create a host variable by creating the file
host_vars/fileserver.example.com that contains:

ansible_bash_interpreter: /usr/local/bin/bash

Then, when Ansible invokes this module on the FreeBSD host, it will use /usr/
local/bin/bash instead of /bin/bash.

Ansible determines which interpreter to use by looking for the “she-bang” (#!) and
then looking at the basename of the first element. In our example, Ansible would see
this line:

#!/bin/bash

Ansible would then look for the basename of /bin/bash, which is bash. It would then
use the ansible_bash_interpreter if the user specified one.

Because of how Ansible looks for the interpreter, if your she-bang
calls /usr/bin/env, for example:

#!/usr/bin/env bash

Ansible will mistakenly identify the interpreter as env because it
will call basename on /usr/bin/env to identify the interpreter.
The takeaway is: don’t invoke env in she-bang. Instead, explicitly
specify the location of the interpreter and override with ansi
ble_bash_interpreter (or equivalent) when needed.

Example Modules
The best way to learn how to write Ansible modules is to read the source code for the
modules that ship with Ansible. Check them out on GitHub: modules core and mod‐
ules extras.

In this chapter, we covered how to write modules in Python, as well as other lan‐
guages, and how to avoid writing your own full-blown modules using the script
module. If you do write a module, I encourage you to propose it for inclusion in the
main Ansible project.

194 | Chapter 10: Custom Modules

https://github.com/ansible/ansible-modules-core
https://github.com/ansible/ansible-modules-extras
https://github.com/ansible/ansible-modules-extras

CHAPTER 11

Vagrant

Vagrant is a great environment for testing Ansible playbooks, which is why I’ve been
using it all along in this book, and why I often use Vagrant for testing my own Ansi‐
ble playbooks.

Vagrant isn’t just for testing configuration management scripts; it was originally
designed to create repeatable development environments. If you’ve ever joined a new
software team and spent a couple of days discovering what software you had to install
on your laptop so you could run a development version of an internal product, you’ve
felt the pain that Vagrant was built to alleviate. Ansible playbooks are a great way to
specify how to configure a Vagrant machine so newcomers on your team can get up
and running on day one.

Vagrant has some built-in support for Ansible that we haven’t been taking advantage
of. In this chapter, we’ll cover Vagrant’s support for using Ansible to configure
Vagrant machines.

A full treatment of Vagrant is out of scope of this book. For more
information, check out Vagrant: Up and Running, authored by
Mitchell Hashimoto, the creator of Vagrant.

Convenient Vagrant Configuration Options
Vagrant exposes many configuration options for virtual machines, but there are two
that I find particularly useful when using Vagrant for testing: setting a specific IP
address and enabling agent forwarding.

195

Port Forwarding and Private IP Addresses
When you create a new Vagrantfile using the vagrant init command, the default
networking configuration allows you to reach the Vagrant box only via an SSH port
that is forwarded from localhost. For the first Vagrant machine that you start, that’s
port 2222, and each subsequent Vagrant machine that you bring up will forward a
different port. As a consequence, the only way to access your Vagrant machine in the
default configuration is to SSH to localhost on port 2222. Vagrant forwards this to
port 22 on the Vagrant machine.

This default configuration isn’t very useful for testing web-based applications, since
the web application will be listening on some port that we can’t access.

There are two ways around this. One way is to tell Vagrant to set up another forwar‐
ded port. For example, if your web application listens on port 80 inside of your
Vagrant machine, you can configure Vagrant to forward port 8000 on your local
machine to port 80 on the Vagrant machine. Example 11-1 shows how you’d config‐
ure port forwarding by editing the Vagrantfile.

Example 11-1. Forwarding local port 8000 to Vagrant machine port 80

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Other config options not shown

 config.vm.network :forwarded_port, host: 8000, guest: 80
end

Port forwarding works, but I find it more useful to assign the Vagrant machine its
own IP address. That way, interacting with it is more like interacting with a real
remote server: I can connect directly to port 80 on the machine’s IP rather than con‐
necting to port 8000 on localhost.

A simpler approach is to assign the machine a private IP. Example 11-2 shows how
you would assign the IP address 192.168.33.10 to the machine by editing the Vagrant
file.

Example 11-2. Assign a private IP to a Vagrant machine

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Other config options not shown

196 | Chapter 11: Vagrant

 config.vm.network "private_network", ip: "192.168.33.10"

end

If we run a web server on port 80 of our Vagrant machine, we can access it at http://
192.168.33.10.

This configuration uses a Vagrant “private network.” This means that the machine
will only be accessible from the machine that runs Vagrant. You won’t be able to con‐
nect to this IP address from another physical machine, even if it’s on the same net‐
work as the machine running Vagrant. However, different Vagrant machines can
connect to each other.

Check out the Vagrant documentation for more details on the different networking
configuration options.

Enabling Agent Forwarding
If you are checking out a remote Git repository over SSH, and you need to use agent
forwarding, then you must configure your Vagrant machine so that Vagrant enables
agent forwarding when it connects to the agent via SSH. See Example 11-3 for how to
enable this. For more on agent forwarding, see Appendix A.

Example 11-3. Enabling agent forwarding

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Other config options not shown

 config.ssh.forward_agent = true

end

The Ansible Provisioner
Vagrant has a notion of provisioners. A provisioner is an external tool that Vagrant
uses to configure a virtual machine once it has started up. In addition to Ansible,
Vagrant can also provision with shell scripts, Chef, Puppet, Salt, CFengine, and even
Docker.

Example 11-4 shows a Vagrantfile that has been configured to use Ansible as a pro‐
visioner, specifically using the playbook.yml playbook.

The Ansible Provisioner | 197

http://192.168.33.10
http://192.168.33.10

Example 11-4. Vagrantfile

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty64"

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end
end

When the Provisioner Runs
The first time you do vagrant up, Vagrant will execute the provisioner and will mark
record that the provisioner was run. If you halt the virtual machine and then start it
up, Vagrant remembers that it has already run the provisioner and will not run it a
second time.

You can force Vagrant to run the provisioner against a running virtual machine by
doing:

$ vagrant provision

You can reboot a virtual machine and run the provisioner after reboot by invoking:

$ vagrant reload --provision

Similarly, you can start up a halted virtual machine and have Vagrant run the provi‐
sioner by doing:

$ vagrant up --provision

Inventory Generated by Vagrant
When Vagrant runs, it generates an Ansible inventory file named .vagrant/provision‐
ers/ansible/inventory/vagrant_ansible_inventory. Example 11-5 shows what this file
looks like for our example:

Example 11-5. vagrant_ansible_inventory

Generated by Vagrant

default ansible_ssh_host=127.0.0.1 ansible_ssh_port=2202

Note how it uses default as the inventory hostname. When writing playbooks for the
Vagrant provisioner, specify hosts: default or hosts: all.

198 | Chapter 11: Vagrant

More interesting is the case where you have a multi-machine Vagrant environment,
where the Vagrantfile specifies multiple virtual machines. For example, see
Example 11-6.

Example 11-6. Vagrantfile (multi-machine)

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.define "vagrant1" do |vagrant1|
 vagrant1.vm.box = "ubuntu/trusty64"
 vagrant1.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end
 end
 config.vm.define "vagrant2" do |vagrant2|
 vagrant2.vm.box = "ubuntu/trusty64"
 vagrant2.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end
 end
 config.vm.define "vagrant3" do |vagrant3|
 vagrant3.vm.box = "ubuntu/trusty64"
 vagrant3.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
 end
 end
end

The generated inventory file will look like Example 11-7. Note how the Ansible
aliases (vagrant1, vagrant2, vagrant3) match the names assigned to the machines in
the Vagrantfile.

Example 11-7. vagrant_ansible_inventory (multi-machine)

Generated by Vagrant

vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201

Provisioning in Parallel
In Example 11-6, Vagrant is shown running ansible-playbook once for each virtual
machine, and it uses the --limit flag so that the provisioner only runs against a sin‐
gle virtual machine at a time.

Provisioning in Parallel | 199

Alas, running Ansible this way doesn’t take advantage of Ansible’s ability to execute
tasks in parallel across the hosts. We can work around this by configuring our
Vagrantfile to run the provisioner only when the last virtual machine is brought up,
and to tell Vagrant not to pass the --limit flag to Ansible. See Example 11-8 for the
modified playbook.

Example 11-8. Vagrantfile (multi-machine with parallel provisioning)

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Use the same key for each machine
 config.ssh.insert_key = false

 config.vm.define "vagrant1" do |vagrant1|
 vagrant1.vm.box = "ubuntu/trusty64"
 end
 config.vm.define "vagrant2" do |vagrant2|
 vagrant2.vm.box = "ubuntu/trusty64"
 end
 config.vm.define "vagrant3" do |vagrant3|
 vagrant3.vm.box = "ubuntu/trusty64"
 vagrant3.vm.provision "ansible" do |ansible|
 ansible.limit = 'all'
 ansible.playbook = "playbook.yml"
 end
 end
end

Now, when you run vagrant up the first time, it will run the Ansible provisioner only
after all three virtual machines have started up.

From Vagrant’s perspective, only the last virtual machine, vagrant3, has a provi‐
sioner, so doing vagrant provision vagrant1 or vagrant provision vagrant2 will
have no effect.

As we discussed in “Preliminaries: Multiple Vagrant Machines” on page 46, Vagrant
1.7+ defaults to using a different SSH key for each host. If we want to provision in
parallel, we need to configure the Vagrant machines so that they all use the same SSH
key, which is why Example 11-8 includes the line:

config.ssh.insert_key = false

Specifying Groups
It can be useful to assign groups to Vagrant virtual machines, especially if you are
reusing playbooks that reference existing groups. Example 11-9 shows how to assign

200 | Chapter 11: Vagrant

vagrant1 to the web group, vagrant2 to the task group, and vagrant3 to the redis
group:

Example 11-9. Vagrantfile (multi-machine with groups)

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Use the same key for each machine
 config.ssh.insert_key = false

 config.vm.define "vagrant1" do |vagrant1|
 vagrant1.vm.box = "ubuntu/trusty64"
 end
 config.vm.define "vagrant2" do |vagrant2|
 vagrant2.vm.box = "ubuntu/trusty64"
 end
 config.vm.define "vagrant3" do |vagrant3|
 vagrant3.vm.box = "ubuntu/trusty64"
 vagrant3.vm.provision "ansible" do |ansible|
 ansible.limit = 'all'
 ansible.playbook = "playbook.yml"
 ansible.groups = {
 "web" => ["vagrant1"],
 "task" => ["vagrant2"],
 "redis" => ["vagrant3"]
 }
 end
 end
end

Example 11-10 shows the resulting inventory file generated by Vagrant.

Example 11-10. vagrant_ansible_inventory (multi-machine, with groups)

Generated by Vagrant

vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200
vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201

[web]
vagrant1

[task]
vagrant2

[redis]
vagrant3

Specifying Groups | 201

This chapter was a quick—but I hope useful—overview on how to get the most out of
combining Vagrant and Ansible. Vagrant’s Ansible provisioner supports many other
options to Ansible that aren’t covered in this chapter. For more details, see the official
Vagrant documentation on the Ansible provisioner.

202 | Chapter 11: Vagrant

http://bit.ly/1F7ekxp
http://bit.ly/1F7ekxp

1 The National Institute of Standards and Technology (NIST) has a pretty good definition of cloud computing
The NIST Definition of Cloud Computing.

CHAPTER 12

Amazon EC2

Ansible has a number of features that make working with infrastructure-as-a-service
(IaaS) clouds much easier. This chapter focuses on Amazon EC2 because it’s the most
popular IaaS cloud and the one I know best. However, many of the concepts should
transfer to other clouds supported by Ansible.

The two ways Ansible supports EC2 are:

• A dynamic inventory plug-in for automatically populating your Ansible inven‐
tory instead of manually specifying your servers

• Modules that perform actions on EC2 such as creating new servers

In this chapter, we’ll discuss both the EC2 dynamic inventory plug-in, as well as the
EC2 modules.

What Is an IaaS Cloud?
You’ve probably heard so many references to “the cloud” in the technical press that
you’re suffering from buzzword overload.1 I’ll be precise about what I mean by an
infrastructure-as-a-service (IaaS) cloud.

To start, here’s a typical user interaction with an IaaS cloud:

User
I want five new servers, each one with two CPUs, 4 GB of memory, and 100 GB
of storage, running Ubuntu 14.04.

203

Service
Request received. Your request number is 432789.

User
What’s the current status of request 432789?

Service
Your servers are ready to go, at IP addresses 203.0.113.5, 203.0.113.13,
203.0.113.49, 203.0.113.124, 203.0.113.209.

User
I’m done with the servers associated with request 432789.

Service
Request received, the servers will be terminated.

An IaaS cloud is a service that enables a user to provision (create) new servers. All IaaS
clouds are self-serve, meaning that the user interacts directly with a software service
rather than, say, filing a ticket with the IT department. Most IaaS clouds offer three
different types of interfaces to allow users to interact with the system:

• Web interface
• Command-line interface
• REST API

In the case of EC2, the web interface is called the AWS Management Console, and the
command-line interface is called (unimaginatively) the AWS Command-Line Inter‐
face. The REST API is documented at Amazon.

IaaS clouds typically use virtual machines to implement the servers, although you can
build an IaaS cloud using bare metal servers (i.e., users run directly on the hardware
rather than inside of a virtual machine) or containers. The SoftLayer and Rackspace
clouds have bare metal offerings, and Amazon Elastic Compute Cloud, Google Com‐
pute Engine, and Joyent clouds offer containers.

Most IaaS clouds let you do more than than just start up and tear down servers. In
particular, they typically give you provision storage so you can attach and detach
disks to your servers. This type of storage is commonly referred to as block storage.
They also provide networking features, so you can define network topologies that
describe how your servers are interconnected, and you can define firewall rules that
restrict networking access to your servers.

Amazon EC2 is the most popular public IaaS cloud provider, but there are a number
of other IaaS clouds out there. In addition to EC2, Ansible ships with modules for
Microsoft Azure, Digital Ocean, Google Compute Engine, Linode, and Rackspace, as
well as clouds built using OpenStack and VMWare vSphere.

204 | Chapter 12: Amazon EC2

https://console.aws.amazon.com
http://aws.amazon.com/cli/
http://aws.amazon.com/cli/
http://amzn.to/1F7g6yA

2 You can add tags to entities other than instances, such as AMIs, volumes, and security groups.

Terminology
EC2 exposes many different concepts. I’ll explain these concepts as they come up in
this chapter, but there are two terms I’d like to cover up front.

Instance
EC2’s documentation uses the term instance to refer to a virtual machine, and I use
that terminology in this chapter. Keep in mind that an EC2 instance is a host from
Ansible’s perspective.

EC2 documentation interchangeably uses the terms creating instances, launching
instances, and running instances to describe the process of bringing up a new instance.
However, starting instances means something different—starting up an instance that
had previously been put in the stopped state.

Amazon Machine Image
An Amazon machine image (AMI) is a virtual machine image, which contains a file‐
system with an installed operating system on it. When you create an instance on EC2,
you choose which operating system you want your instance to run by specifying the
AMI that EC2 will use to create the instance.

Each AMI has an associated identifier string, called an AMI ID, which starts with
“ami-” and then contains eight hexadecimal characters; for example, ami-12345abc.

Tags
EC2 lets you annotate your instances2 with custom metadata that it calls tags. Tags are
just key-value pairs of strings. For example, we could annotate an instance with the
following tags:

Name=Staging database
env=staging
type=database

If you’ve ever given your EC2 instance a name in the AWS Management Console,
you’ve used tags without even knowing it. EC2 implements instance names as tags
where the key is Name and the value is whatever name you gave the instance. Other
than that, there’s nothing special about the Name tag, and you can configure the man‐
agement console to show the value of other tags in addition to the Name tag.

Terminology | 205

http://amzn.to/1Fw5S8l

Tags don’t have to be unique, so you can have 100 instances that all have the same tag.
Because Ansible’s EC2 modules make heavy use of tags, they will come up several
times in this chapter.

Specifying Credentials
When you make requests against Amazon EC2, you need to specify credentials. If
you’ve used the Amazon web console, you’ve used your username and password to
log in. However, all of the bits of Ansible that interact with EC2 talk to the EC2 API.
The API does not use username and password for credentials. Instead, it uses two
strings: an access key ID and a secret access key.

These strings typically look like this:

• Sample EC2 access key ID: AKIAIOSFODNN7EXAMPLE
• Sample EC2 secret access key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

When you are calling EC2-related modules, you can pass these strings as module
arguments. For the dynamic inventory plug-in, you can specify the credentials in the
ec2.ini file (discussed in the next section). However, both the EC2 modules and the
dynamic inventory plug-in also allow you to specify these credentials as environment
variables. You can also use something called identity and access management (IAM)
roles if your control machine is itself an Amazon EC2 instance, which is covered in
Appendix C.

Environment Variables
Although Ansible does allow you to pass credentials explicitly as arguments to mod‐
ules, it also supports setting EC2 credentials as environment variables. Example 12-1
shows how you would set these environment variables.

Example 12-1. Setting EC2 environment variables

Don't forget to replace these values with your actual credentials!
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_REGION=us-east-1

Not all of Ansible’s EC2 modules respect the AWS_REGION environ‐
ment variable, so I recommend that you always explicitly pass the
EC2 region as an argument when invoking your modules. All of
the examples in this chapter explicitly pass the region as an argu‐
ment.

206 | Chapter 12: Amazon EC2

3 Or maybe it’s ~/.bashrc? I’ve never figured out the difference between the various Bash dotfiles.

4 You might need to use sudo or activate a virtualenv to install this package, depending on how you installed
Ansible.

I recommend using environment variables because it allows you to use EC2-related
modules and inventory plug-ins without putting your credentials in any of your
Ansible-related files. I put these in a dotfile that runs when my session starts. I use
Zsh, so in my case that file is ~/.zshrc. If you’re running Bash, you might want to put it
in your ~/.profile file.3 If you’re using a shell other than Bash or Zsh, you’re probably
knowledgeable enough to know which dotfile to modify to set these environment
variables.

Once you have set these credentials in your environment variables, you can invoke
the Ansible EC2 modules on your control machine, as well as use the dynamic inven‐
tory.

Configuration Files
An alternative to using environment variables is to place your EC2 credentials in a
configuration file. As discussed in the next section, Ansible uses the Python Boto
library, so it supports Boto’s conventions for maintaining credentials in a Boto config‐
uration file. I don’t cover the format here; for more information, check out the Boto
config documentation.

Prerequisite: Boto Python Library
All of the Ansible EC2 functionality requires you to install the Python Boto library as
a Python system package on the control machine. To do so:4

$ pip install boto

If you already have instances running on EC2, you can verify that Boto is installed
properly and that your credentials are correct by interacting with the Python com‐
mand line, as shown in Example 12-2.

Example 12-2. Testing out Boto and credentials

$ python
Python 2.7.6 (default, Sep 9 2014, 15:04:36)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto.ec2
>>> conn = boto.ec2.connect_to_region("us-east-1")
>>> statuses = conn.get_all_instance_status()

Prerequisite: Boto Python Library | 207

http://bit.ly/1Fw66MM
http://bit.ly/1Fw66MM

5 And, to be honest, I have no idea where the package managers install this file.

>>> statuses
[]

Dynamic Inventory
If your servers live on EC2, you don’t want to keep a separate copy of these servers in
an Ansible inventory file, because that file is going to go stale as you spin up new
servers and tear down old ones.

It’s much simpler to track your EC2 servers by taking advantage of Ansible’s support
for dynamic inventory to pull information about hosts directly from EC2. Ansible
ships with a dynamic inventory script for EC2, although I recommend you just grab
the latest one from the Ansible GitHub repository.5

You need two files:

ec2.py
The actual inventory script

ec2.ini
The configuration file for the inventory script

Previously, we had a playbooks/hosts file, which served as our inventory. Now, we’re
going to use a playbooks/inventory directory. We’ll place ec2.py and ec2.ini into that
directory, and set ec2.py as executable. Example 12-3 shows one way to do that.

Example 12-3. Installing the EC2 dynamic inventory script

$ cd playbooks/inventory
$ wget https://raw.githubusercontent.com/ansible/ansible/devel/plugins/inventory/ec2.py
$ wget https://raw.githubusercontent.com/ansible/ansible/devel/plugins/inventory/ec2.ini
$ chmod +x ec2.py

If you are running Ansible on a Linux distribution that uses Python
3.x as the default Python (e.g., Arch Linux), then the ec2.py will not
work unmodified because it is a Python 2.x script.
Make sure your system has Python 2.x installed and then modify
the first line of ec2.py from this:

#!/usr/bin/env python

to this:
#!/usr/bin/env python2

208 | Chapter 12: Amazon EC2

http://bit.ly/1Fw6bQu
http://bit.ly/1Fw6f2y

If you’ve set up your environment variables as described in the previous section, you
should be able to confirm that the script is working by running:

$./ec2.py --list

The script should output information about your various EC2 instances. The struc‐
ture should look something like this:

{
 "_meta": {
 "hostvars": {
 "ec2-203-0-113-75.compute-1.amazonaws.com": {
 "ec2_id": "i-i2345678",
 "ec2_instance_type": "c3.large",
 ...
 }
 }
 },
 "ec2": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
 ...
],
 "us-east-1": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
 ...
],
 "us-east-1a": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
 ...
],
 "i-12345678": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
],
 "key_mysshkeyname": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
 ...
],
 "security_group_ssh": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
 ...
],
 "tag_Name_my_cool_server": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
 ...
],
 "type_c3_large": [
 "ec2-203-0-113-75.compute-1.amazonaws.com",
 ...
]
}

Dynamic Inventory | 209

Inventory Caching
When Ansible executes the EC2 dynamic inventory script, the script has to make
requests against one or more EC2 endpoints to retrieve this information. Because this
can take time, the script will cache the information the first time it is invoked by writ‐
ing to the following files:

• $HOME/.ansible/tmp/ansible-ec2.cache
• $HOME/.ansible/tmp/ansible-ec2.index

On subsequent calls, the dynamic inventory script will use the cached information
until the cache expires.

You can modify the behavior by editing the cache_max_age configuration option in
the ec2.ini configuration file. It defaults to 300 seconds (5 minutes). If you don’t want
caching at all, you can set it to 0:

[ec2]
...
cache_max_age = 0

You can also force the inventory script to refresh the cache by invoking it with the
--refresh-cache flag:

$./ec2.py --refresh-cache

If you create or destroy instances, the EC2 dynamic inventory
script will not reflect these changes unless the cache expires, or you
manually refresh the cache.

Other Configuration Options
The ec2.ini file includes a number of configuration options that control the behavior
of the dynamic inventory script. Because the file itself is well-documented with com‐
ments, I won’t cover those options in detail here.

Auto-Generated Groups
The EC2 dynamic inventory script will create the following groups:

210 | Chapter 12: Amazon EC2

Table 12-1. Generated EC2 groups

Type Example Ansible group name

Instance i-123456 i-123456

Instance type c1.medium type_c1_medium

Security group ssh security_group_ssh

Keypair foo key_foo

Region us-east-1 us-east-1

Tag env=staging tag_env_staging

Availability zone us-east-1b us-east-1b

VPC vpc-14dd1b70 vpc_id_vpc-14dd1b70

All ec2 instances N/A ec2

The only legal characters in a group name are alphanumeric, hyphen, and under‐
score. The dynamic inventory script will convert any other character into underscore.

For example, if you had an instance with a tag:

Name=My cool server!

Ansible would generate the group name tag_Name_my_cool_server_.

Defining Dynamic Groups with Tags
Recall that the dynamic inventory script automatically creates groups based on things
such as instance type, security group, keypair, and tags. EC2 tags are the most conve‐
nient way of creating Ansible groups because you can define them however you like.

For example, you could tag all of your webservers with:

type=web

Ansible will automatically create a group called tag_type_web that contains all of the
servers tagged with a name of type and a value of web.

EC2 allows you to apply multiple tags to an instance. For example, if you have sepa‐
rate staging and production environments, you can tag your production web servers
like this:

Defining Dynamic Groups with Tags | 211

env=production
type=web

Now you can refer to production machines as tag_env_production and your web‐
servers as tag_type_web. If you want to refer to your production webservers, use the
Ansible intersection syntax, like this:

hosts: tag_env_production:&tag_type_web

Applying Tags to Existing Resources
Ideally, you’d tag your EC2 instances as soon as you create them. However, if you’re
using Ansible to manage existing EC2 instances, you will likely already have a num‐
ber of instances running that you need to tag. Ansible has an ec2_tag module that
will allow you to add tags to your instances.

For example, if you wanted to tag an instance with env=prodution and type=web, you
could do it in a simple playbook as shown in Example 12-4.

Example 12-4. Adding EC2 tags to instances

- name: Add tags to existing instances
 hosts: localhost
 vars:
 web_production:
 - i-123456
 - i-234567
 web_staging:
 - i-ABCDEF
 - i-333333
 tasks:
 - name: Tag production webservers
 ec2_tag: resource={{ item }} region=us-west-1
 args:
 tags: { type: web, env: production }
 with_items: web_production

 - name: Tag staging webservers
 ec2_tag: resource={{ item }} region=us-west-1
 args:
 tags: { type: web, env: staging }
 with_items: web_staging

This example uses the inline syntax for YAML dictionaries when specifying the tags
({ type: web, env: production}) in order to make the playbook more compact,
but the regular YAML dictionary syntax would have worked as well:

 tags:
 type: web
 env: production

212 | Chapter 12: Amazon EC2

6 Amazon’s internal network is divided up into subnets, but users do not have any control over how instances
are allocated to subnets.

Nicer Group Names
Personally, I don’t like the name tag_type_web for a group. I’d prefer to just call it
web.

To do this, we need to add a new file to the playbooks/inventory directory that will
have information about groups. This is just a traditional Ansible inventory file, which
we’ll call playbooks/inventory/hosts (see Example 12-5).

Example 12-5. playbooks/inventory/hosts

[web:children]
tag_type_web

[tag_type_web]

Once you do this, you can refer to web as a group in your Ansible plays.

You must define the empty tag_type_web group in your static
inventory file, even though the dynamic inventory script also
defines this group. If you forget it, Ansible will fail with the error:

ERROR: child group is not defined: (tag_type_web)

EC2 Virtual Private Cloud (VPC) and EC2 Classic
When Amazon first launched EC2 back in 2006, all of the EC2 instances were effec‐
tively connected to the same flat network.6 Every EC2 instance had a private IP
address and a public IP address.

In 2009, Amazon introduced a new feature called Virtual Private Cloud (VPC). VPC
allows users to control how their instances are networked together, and whether they
will be publicly accessible from the Internet or isolated. Amazon uses the term “VPC”
to describe the virtual networks that users can create inside of EC2. Amazon uses the
term “EC2-VPC” to refer to instances that are launched inside of VPCs, and “EC2-
Classic” to refer to instances that are not launched inside of VPCs.

Amazon actively encourages users to use EC2-VPC. For example, some instance
types, such as t2.micro, are only available on EC2-VPC. Depending on when your
AWS account was created and which EC2 regions you’ve previously launched instan‐

EC2 Virtual Private Cloud (VPC) and EC2 Classic | 213

7 Go to Amazon for more details on VPC and whether you have access to EC2-Classic in a region.
8 It’s possible to retrieve the host key by querying EC2 for the instance console output, but I must admit that I

never bothing doing this because I’ve never gotten around to writing a proper script that parses out the host
key from the console output.

ces in, you might not have access to EC2-Classic at all. Table 12-2 describes which
accounts have access to EC2-Classic.7

Table 12-2. Do I have access to EC2-Classic?

My account was created Access to EC2-Classic

Before March 18, 2013 Yes, but only in regions you’ve used before

Between March 18, 2013, and December 4, 2013 Maybe, but only in regions you’ve used before

After December 4, 2013 No

The main difference between having support for EC2-Classic versus only having
access to EC2-VPC is what happens when you create a new EC2 instance and do not
explicitly associate a VPC ID with that instance. If your account has EC2-Classic
enabled, then the new instance is not associated with a VPC. If your account does not
have EC2-Classic enabled, then the new instance is associated with the default VPC.

Here’s one reason why you should care about the distinction: in EC2-Classic, all
instances are permitted to make outbound network connections to any host on the
Internet. In EC2-VPC, instances are not permitted to make outbound network con‐
nections by default. If a VPC instance needs to make outbound connections, it must
be associated with a security group that permits outbound connections.

For the purposes of this chapter, I’m going to assume EC2-VPC only, so I will asso‐
ciate instances with a security group that enables outbound connections.

Configuring ansible.cfg for Use with ec2
When I’m using Ansible to configure EC2 instances, I add the following lines in my
ansible.cfg:

[defaults]
remote_user = ubuntu
host_key_checking = False

I always use Ubuntu images, and on those images you are supposed to SSH as the
ubuntu user. I also turn off host key checking, since I don’t know in advance what the
host keys are for new instances.8

214 | Chapter 12: Amazon EC2

http://amzn.to/1Fw6v1D
http://amzn.to/1Fw6w5M

9 Visit Amazon for a list of the regions that it supports.
10 There’s also a handy (unofficial) website that provides a single table with all of the available EC2 instance

types.

Launching New Instances
The ec2 module allows you to launch new instances on EC2. It’s one of the most
complex Ansible modules because it supports so many arguments.

Example 12-6 shows a simple playbook for launching an Ubuntu 14.04 EC2 instance.

Example 12-6. Simple playbook for creating an EC2 instance

- name: Create an ubuntu instance on Amazon EC2
 hosts: localhost
 tasks:
 - name: start the instance
 ec2:
 image: ami-8caa1ce4
 region: us-east-1
 instance_type: m3.medium
 key_name: mykey
 group: [web, ssh, outbound]
 instance_tags: { Name: ansiblebook, type: web, env: production }

Let’s go over what these parameters mean.

The image parameter refers to the Amazon Machine Image (AMI) ID, which you
must always specify. As described earlier in the chapter, an image is basically a filesys‐
tem that contains an installed operating system. The example just used, ami-8caa1ce4,
refers to an image that has the 64-bit version of Ubuntu 14.04 installed on it.

The region parameter specifies the geographical region where the instance will be
launched.9

The instance_type parameter describes the amount of CPU cores, memory, and
storage your instance will have. EC2 doesn’t let you choose arbitrary combinations of
cores, memory, and storage. Instead, Amazon defines a collection of instance types.10

The preceding example uses the t2.medium instance type. This is a 64-bit instance
type with 1 core, 3.75 GB of RAM, and 4 GB of SSD-based storage.

Not all images are compatible with all instance types. I haven’t
actually tested whether ami-8caa1ce4 works with m3.medium.
Caveat lector!

Launching New Instances | 215

http://amzn.to/1Fw6OcE
http://www.ec2instances.info

The key_name parameter refers to an SSH key pair. Amazon uses SSH key pairs to
provide users with access to their servers. Before you start your first server, you must
either create a new SSH key pair, or upload the public key of a key pair that you have
previously created. Regardless of whether you create a new key pair or you upload an
existing one, you must give a name to your SSH key pair.

The group parameter refers to a list of security groups associated with an instance.
These groups determine what kinds of inbound and outbound network connections
are permitted.

The instance_tags parameter associates metadata with the instance in the form of
EC2 tags, which are key-value pairs. In the preceding example, we set the following
tags:

Name=ansiblebook
type=web
env=production

EC2 Key Pairs
In Example 12-6, we assumed that Amazon already knew about an SSH key pair
named mykey. Let’s see how we can use Ansible to create new key pairs.

Creating a New Key
When you create a new key pair, Amazon generates a private key and the correspond‐
ing public key; then it sends you the private key. Amazon does not keep a copy of the
private key, so you’ve got to make sure that you save it after you generate it. Here’s
how you would create a new key with Ansible:

Example 12-7. Create a new SSH key pair

- name: create a new keypair
 hosts: localhost
 tasks:
 - name: create mykey
 ec2_key: name=mykey region=us-west-1
 register: keypair

 - name: write the key to a file
 copy:
 dest: files/mykey.pem
 content: "{{ keypair.key.private_key }}"
 mode: 0600
 when: keypair.changed

216 | Chapter 12: Amazon EC2

In Example 12-7, we invoke the ec2_key to create a new key pair. We then use the
copy module with the content parameter in order to save the SSH private key to a
file.

If the module creates a new key pair, then the variable keypair that is registered will
contain a value that looks like this:

"keypair": {
 "changed": true,
 "invocation": {
 "module_args": "name=mykey",
 "module_name": "ec2_key"
 },
 "key": {
 "fingerprint": "c5:33:74:84:63:2b:01:29:6f:14:a6:1c:7b:27:65:69:61:f0:e8:b9",
 "name": "mykey",
 "private_key": "-----BEGIN RSA PRIVATE KEY-----\nMIIEowIBAAKCAQEAjAJpvhY3QGKh
...
0PkCRPl8ZHKtShKESIsG3WC\n-----END RSA PRIVATE KEY-----"
 }
 }

If the key pair already existed, then the variable keypair that is registered will contain
a value that looks like this:

"keypair": {
 "changed": false,
 "invocation": {
 "module_args": "name=mykey",
 "module_name": "ec2_key"
 },
 "key": {
 "fingerprint": "c5:33:74:84:63:2b:01:29:6f:14:a6:1c:7b:27:65:69:61:f0:e8:b9",
 "name": "mykey"
 }
}

Because the private_key value will not be present if the key already exists, we need
to add a when clause to the copy invocation to make sure that we only write a private
key file to disk if there is actually a private key file to write.

We add the line:

when: keypair.changed

to only write the file to disk if there was a change of state when ec2_key was invoked
(i.e., that a new key was created). Another way we could have done it would be to
check for the existence of the private_key value, like this:

 - name: write the key to a file
 copy:
 dest: files/mykey.pem

EC2 Key Pairs | 217

11 For more information on Jinja2 tests, see the Jinja2 documentation page on built-in tests.

 content: "{{ keypair.key.private_key }}"
 mode: 0600
 when: keypair.key.private_key is defined

We use the Jinja2 defined test11 to check if private_key is present.

Upload an Existing Key
If you already have an SSH public key, you can upload that to Amazon and associate
it with a keypair:

- name: create a keypair based on my ssh key
 hosts: localhost
 tasks:
 - name: upload public key
 ec2_key: name=mykey key_material="{{ item }}"
 with_file: ~/.ssh/id_rsa.pub

Security Groups
Example 12-6 assumed that the web, SSH, and outbound security groups already exis‐
ted. We can use the ec2_group module to ensure that these security groups have been
created before we use them.

Security groups are similar to firewall rules: you specify rules about who is allowed to
connect to the machine and how.

In Example 12-8, we specify the web group as allowing anybody on the Internet to
connect to ports 80 and 443. For the SSH group, we allow anybody on the Internet to
connect on port 22. For the outbound group, we allow outbound connections to any‐
where on the Internet. We need outbound connections enabled in order to download
packages from the Internet.

Example 12-8. Security groups

- name: web security group
 ec2_group:
 name: web
 description: allow http and https access
 rules:
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443

218 | Chapter 12: Amazon EC2

http://bit.ly/1Fw77nO

 to_port: 443
 cidr_ip: 0.0.0.0/0

- name: ssh security group
 ec2_group:
 name: ssh
 description: allow ssh access
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 0.0.0.0/0

- name: outbound group
 ec2_group:
 name: outbound
 description: allow outbound connections to the internet
 region: "{{ region }}"
 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0

If you are using EC2-Classic, you don’t need to specify the out
bound group, since EC2-Classic does not restrict outbound connec‐
tions on instances.

If you haven’t used security groups before, the parameters to the rules dictionary bear
some explanation. Table 12-3 provides a quick summary of the parameters for secu‐
rity group connection rules.

Table 12-3. Security group rule parameters

Parameter Description

proto IP protocol (tcp, udp, icmp) or “all” to allow all protocols and ports

cidr_ip Subnet of IP addresses that are allowed to connect, using CIDR notation

from_port The first port in the range of permitted ports

to_port The last port in the range of permitted ports

Permitted IP Addresses
Security groups allow you to restrict which IP addresses are permitted to connect to
an instance. You specify a subnet using classless interdomain routing (CIDR) nota‐

Security Groups | 219

12 This example happens to correspond to a special IP address range named TEST-NET-3, which is reserved for
examples. It’s the example.com of IP subnets.

13 Subnets that are /8, /16, and /24 make great examples because the math is much easier than, say, /17 or /23.
14 Astute observers might have noticed that ports 5900-5999 are commonly used by the VNC remote desktop

protocol, one of the few applications where specifying a range of ports makes sense.

tion. An example of a subnet specified with CIDR notation is 203.0.113.0/24,12 which
means that the first 24 bits of the IP address must match the first 24 bits of
203.0.113.0. People sometimes just say “/24” to refer to the size of a CIDR that ends
in /24.

A /24 is a nice value because it corresponds to the first three octets of the address,
namely 203.0.113.13 What this means is that any IP address that starts with 203.0.113
is in the subnet, meaning any IP address in the range 203.0.113.0 to 203.0.113.255.

If you specify 0.0.0.0/0, that means that any IP address is permitted to connect.

Security Group Ports
One of the things that I find confusing about EC2 security groups is the from port
and to port notation. EC2 allows you to specify a range of ports that you are allowed
to access. For example, you could indicate that you are allowing TCP connections on
any port from 5900 to 5999 by specifying:

- proto: tcp
 from_port: 5900
 to_port: 5999
 cidr_ip: 0.0.0.0/0

However, I often find the from/to notation confusing, because I almost never specify
a range of ports.14 Instead, I usually want to enable non-consecutive ports, such as 80
and 443. Therefore, in almost every case, the from_port and to_port parameters are
going to be the same.

The c2_group module has a number of other parameters, including specifying
inbound rules using security group IDs, as well as specifying outbound connection
rules. Check out the module’s documentation for more details.

Getting the Latest AMI
In Example 12-6, we explicitly specified the AMI like this:

 image: ami-8caa1ce4

220 | Chapter 12: Amazon EC2

15 Canonical is the company that runs the Ubuntu project.

However, if you want to launch the latest Ubuntu 14.04 image, you don’t want to
hardcode the AMI like this. That’s because Canonical15 frequently makes minor
updates to Ubuntu, and every time it makes a minor update, it generates a new AMI.
Just because ami-8caa1ce4 corresponds to the latest release of Ubuntu 14.04 yester‐
day doesn’t mean it will correspond to the latest release of Ubuntu 14.04 tomorrow.

Ansible ships with a nifty little module called ubuntu_ami_search (written by yours
truly) that will retrieve the AMI that corresponds to a given operating system release.
Example 12-9 shows this module in action:

Example 12-9. Retrieving the latest Ubuntu AMI

- name: Create an ubuntu instance on Amazon EC2
 hosts: localhost
 tasks:
 - name: Get the ubuntu trusty AMI
 ec2_ami_search: distro=ubuntu release=trusty region=us-west-1
 register: ubuntu_image

 - name: start the instance
 ec2:
 image: "{{ ubuntu_image.ami }}"
 instance_type: m3.medium
 key_name: mykey
 group: [web, ssh, outbound]
 instance_tags: { type: web, env: production }

Currently, the module only supports looking up Ubuntu AMIs.

Adding a New Instance to a Group
Sometimes I like to write a single playbook that launches an instance and then runs a
playbook against that instance.

Unfortunately, before you’ve run the playbook, the host doesn’t exist yet. Disabling
caching on the dynamic inventory script won’t help here, because Ansible only
invokes the dynamic inventory script at the beginning of playbook execution, which
is before the host exists.

You can add a task that uses the add_host module to add the instance to a group, as
shown in Example 12-10.

Adding a New Instance to a Group | 221

Example 12-10. Adding an instance to groups

- name: Create an ubuntu instance on Amazon EC2
 hosts: localhost
 tasks:
 - name: start the instance
 ec2:
 image: ami-8caa1ce4
 instance_type: m3.medium
 key_name: mykey
 group: [web, ssh, outbound]
 instance_tags: { type: web, env: production }
 register: ec2

 - name: add the instance to web and production groups
 add_host: hostname={{ item.public_dns_name }} groups=web,production
 with_items: ec2.instances

- name: do something to production webservers
 hosts: web:&production
 tasks:
 - ...

Return Type of the ec2 Module
The ec2 module returns a dictionary with three fields, shown in Table 12-4.

Table 12-4. Return value of ec2 module

Parameter Description

instance_ids List of instance ids

instances List of instance dicts

tagged_instances List of instance dicts

If the user passes the exact_count parameter to the ec2 module, then the module
might not create new instances, as described in “Creating Instances the Idempotent
Way” on page 225. In this case, the instance_ids and instances fields will be popu‐
lated only if the module creates new instances. However, the tagged_instances field
will contain instance dicts for all of the instances that match the tags, whether they
were just created or already existed.

An instance dict contains the fields shown in Table 12-5.

222 | Chapter 12: Amazon EC2

Table 12-5. Contents of instance dicts

Parameter Description

id Instance id

ami_launch_index Instance index within a reservation (between 0 and N-1) if N launched

private_ip Internal IP address (not routable outside of EC2)

private_dns_name Internal DNS name (not routable outside of EC2)

public_ip Public IP address

public_dns_name Public DNS name

state_code Reason code for the state change

architecture CPU architecture

image_id AMI

key_name Key pair name

placement Location where the instance was launched

kernel AKI (Amazon kernel image)

ramdisk ARI (Amazon ramdisk image)

launch_time Time instance was launched

instance_type Instance type

root_device_type Type of root device (ephemeral, EBS)

root_device_name Name of root device

state State of instance

hypervisor Hypervisor type

Adding a New Instance to a Group | 223

16 Boto is the Python library that Ansible uses to communicate with EC2.
17 The command-line tool is documented at http://aws.amazon.com/cli/.

For more details on what these fields mean, check out the Boto16 documentation for
the boto.ec2.instance.Instance class or the documentation for the output of the
run-instances command of Amazon’s command-line tool.17

Waiting for the Server to Come Up
While IaaS clouds like EC2 are remarkable feats of technology, they still require a
finite amount of time to create new instances. What this means is that you can’t run a
playbook against an EC2 instance immediately after you’ve submitted a request to
create it. Instead, you need to wait for the EC2 instance to come up.

The ec2 module supports a wait parameter. If it’s set to “yes,” then the ec2 task will
not return until the instance has transitioned to the running state:

 - name: start the instance
 ec2:
 image: ami-8caa1ce4
 instance_type: m3.medium
 key_name: mykey
 group: [web, ssh, outbound]
 instance_tags: { type: web, env: production }
 wait: yes
 register: ec2

Unfortunately, waiting for the instance to be in the running state isn’t enough to
ensure that you can actually execute a playbook against a host. You still need to wait
until the instance has advanced far enough in the boot process that the SSH server
has started and is accepting incoming connections.

The wait_for module is designed for this kind of scenario. Here’s how you would use
the ec2 and wait_for modules in concert to start an instance and then wait until the
instance is ready to receive SSH connections:

 - name: start the instance
 ec2:
 image: ami-8caa1ce4
 instance_type: m3.medium
 key_name: mykey
 group: [web, ssh, outbound]
 instance_tags: { type: web, env: production }
 wait: yes
 register: ec2

 - name: wait for ssh server to be running

224 | Chapter 12: Amazon EC2

http://aws.amazon.com/cli/
http://bit.ly/1Fw7HSO
http://amzn.to/1Fw7Jd9

 wait_for: host={{ item.public_dns_name }} port=22 search_regex=OpenSSH
 with_items: ec2.instances

This invocation of wait_for uses the search_regex argument to look for the string
OpenSSH after connecting to the host. This regex takes advantage of the fact that a
fully functioning SSH server will return a string that looks something like
Example 12-11 when an SSH client first connects.

Example 12-11. Initial response of an SSH server running on Ubuntu

SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntu1.4

We could invoke the wait_for module to just check if port 22 is listening for incom‐
ing connections. However, sometimes an SSH server has gotten far enough along in
the startup process that it is listening on port 22, but is not fully functional yet. Wait‐
ing for the initial response ensures that the wait_for module will only return when
the SSH server has fully started up.

Creating Instances the Idempotent Way
Playbooks that invoke the ec2 module are not generally idempotent. If you were to
execute Example 12-6 multiple times, then EC2 will create multiple instances.

You can write idempotent playbooks with the ec2 module by using the count_tag
and exact_count parameters.

Let’s say we want to write a playbook that starts three instances. We want this play‐
book to be idempotent, so if three instances are already running, we want the play‐
book to do nothing. Example 12-12 shows what it would look like:

Example 12-12. Idempotent instance creation

 - name: start the instance
 ec2:
 image: ami-8caa1ce4
 instance_type: m3.medium
 key_name: mykey
 group: [web, ssh, outbound]
 instance_tags: { type: web, env: production }
 exact_count: 3
 count_tag: { type: web }

The exact_count: 3 parameter tells Ansible to ensure that exactly three instances
are running that match the tags specified in count_tag. In our example, I only speci‐
fied one tag for count_tag, but it does support multiple tags.

Creating Instances the Idempotent Way | 225

When running this playbook for the first time, Ansible will check how many instan‐
ces are currently running that are tagged with type=web. Assuming there are no such
instances, Ansible will create three new instances and tag them with type=web and
env=production.

When running this playbook the next time, Ansible will check how many instances
are currently running that are tagged with type=web. It will see that there are three
instances running and will not start any new instances.

Putting It All Together
Example 12-13 shows the playbook that create three EC2 instances and configures
them as web servers. The playbook is idempotent, so you can safely run it multiple
times, and it will create new instances only if they haven’t been created yet.

Note how we use the tagged_instances return value of the ec2 module, instead of
the instances return value, for reasons described in “Return Type of the ec2 Module”
on page 222.

Example 12-13. ec2-example.yml: Complete EC2 playbook

- name: launch webservers
 hosts: localhost
 vars:
 region: us-west-1
 instance_type: t2.micro
 count: 3
 tasks:
 - name: ec2 keypair
 ec2_key: name=mykey key_material="{{ item }}" region={{ region }}
 with_file: ~/.ssh/id_rsa.pub

 - name: web security group
 ec2_group:
 name: web
 description: allow http and https access
 region: "{{ region }}"
 rules:
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0

 - name: ssh security group

226 | Chapter 12: Amazon EC2

 ec2_group:
 name: ssh
 description: allow ssh access
 region: "{{ region }}"
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 0.0.0.0/0

 - name: outbound security group
 ec2_group:
 name: outbound
 description: allow outbound connections to the internet
 region: "{{ region }}"
 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0

 - name: Get the ubuntu trusty AMI
 ec2_ami_search: distro=ubuntu release=trusty virt=hvm region={{ region }}
 register: ubuntu_image

 - name: start the instances
 ec2:
 region: "{{ region }}"
 image: "{{ ubuntu_image.ami }}"
 instance_type: "{{ instance_type }}"
 key_name: mykey
 group: [web, ssh outbound]
 instance_tags: { Name: ansiblebook, type: web, env: production }
 exact_count: "{{ count }}"
 count_tag: { type: web }
 wait: yes
 register: ec2

 - name: add the instance to web and production groups
 add_host: hostname={{ item.public_dns_name }} groups=web,production
 with_items: ec2.tagged_instances
 when: item.public_dns_name is defined

 - name: wait for ssh server to be running
 wait_for: host={{ item.public_dns_name }} port=22 search_regex=OpenSSH
 with_items: ec2.tagged_instances
 when: item.public_dns_name is defined

- name: configure webservers
 hosts: web:&production
 sudo: True
 roles:
 - web

Putting It All Together | 227

Specifying a Virtual Private Cloud
So far, we’ve been launching our instances into the default virtual private cloud
(VPC). Ansible also allows us to create new VPCs and launch instances into them.

What Is a VPC?
Think of a VPC as an isolated network. When you create a VPC, you specify an IP
address range. It must be a subset of one of the private address ranges (10.0.0.0/8,
172.16.0.0/12, or 192.168.0.0/16).

You carve up your VPC into subnets, which have IP ranges that are subsets of the IP
range of your entire VPC. In Example 12-14, the VPC has the IP range 10.0.0.0/16,
and we associate two subnets: 10.0.0.0/24 and 10.0.10/24.

When you launch an instance, you assign it to a subnet in a VPC. You can configure
your subnets so that your instances get either public or private IP addresses. EC2 also
allows you to define routing tables for routing traffic between your subnets and to
create Internet gateways for routing traffic from your subnets to the Internet.

Configuring networking is a complex topic that’s (way) outside the scope of this book.
For more info, check out Amazon’s EC2 documentation on VPC.

Example 12-14 shows how to create a VPC with two subnets.

Example 12-14. create-vpc.yml: Creating a vpc

 - name: create a vpc
 ec2_vpc:
 region: us-west-1
 internet_gateway: True
 resource_tags: { Name: "Book example", env: production }
 cidr_block: 10.0.0.0/16
 subnets:
 - cidr: 10.0.0.0/24
 resource_tags:
 env: production
 tier: web
 - cidr: 10.0.1.0/24
 resource_tags:
 env: production
 tier: db
 route_tables:
 - subnets:
 - 10.0.0.0/24
 - 10.0.1.0/24
 routes:

228 | Chapter 12: Amazon EC2

http://amzn.to/1Fw89Af

18 As of this writing, a bug in Ansible causes it to incorrectly report a state of changed each time this module is
invoked, even if it does not a create a VPC only.

 - dest: 0.0.0.0/0
 gw: igw

Creating a VPC is idempotent; Ansible uniquely identifies the VPC based on a com‐
bination of the resource_tags and the cidr_block parameters. Ansible will create a
new VPC if no existing VPC matches the resource tags and CIDR block.18

Admittedly, Example 12-14 is a simple example from a networking perspective, as
we’ve just defined two subnets that are both connected to the Internet. A more realis‐
tic example would have one subnet that’s routable to the Internet, and another subnet
that’s not routable to the Internet, and we’d have some rules for routing traffic
between the two subnets.

Example 12-15 shows a complete example of creating a VPC and launching instances
into it.

Example 12-15. ec2-vpc-example.yml: Complete EC2 playbook that specifies a VPC

- name: launch webservers into a specific vpc
 hosts: localhost
 vars:
 instance_type: t2.micro
 count: 1
 region: us-west-1
 tasks:
 - name: create a vpc
 ec2_vpc:
 region: "{{ region }}"
 internet_gateway: True
 resource_tags: { Name: book, env: production }
 cidr_block: 10.0.0.0/16
 subnets:
 - cidr: 10.0.0.0/24
 resource_tags:
 env: production
 tier: web
 - cidr: 10.0.1.0/24
 resource_tags:
 env: production
 tier: db
 route_tables:
 - subnets:
 - 10.0.0.0/24
 - 10.0.1.0/24
 routes:

Specifying a Virtual Private Cloud | 229

http://bit.ly/1Fw8eUI

 - dest: 0.0.0.0/0
 gw: igw
 register: vpc

 - set_fact: vpc_id={{ vpc.vpc_id }}

 - name: set ec2 keypair
 ec2_key: name=mykey key_material="{{ item }}"
 with_file: ~/.ssh/id_rsa.pub

 - name: web security group
 ec2_group:
 name: vpc-web
 region: "{{ region }}"
 description: allow http and https access
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0

 - name: ssh security group
 ec2_group:
 name: vpc-ssh
 region: "{{ region }}"
 description: allow ssh access
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 0.0.0.0/0

 - name: outbound security group
 ec2_group:
 name: vpc-outbound
 description: allow outbound connections to the internet
 region: "{{ region }}"
 vpc_id: "{{ vpc_id }}"
 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0

 - name: Get the ubuntu trusty AMI
 ec2_ami_search: distro=ubuntu release=trusty virt=hvm region={{ region }}
 register: ubuntu_image

230 | Chapter 12: Amazon EC2

 - name: start the instances
 ec2:
 image: "{{ ubuntu_image.ami }}"
 region: "{{ region }}"
 instance_type: "{{ instance_type }}"
 assign_public_ip: True
 key_name: mykey
 group: [vpc-web, vpc-ssh, vpc-outbound]
 instance_tags: { Name: book, type: web, env: production }
 exact_count: "{{ count }}"
 count_tag: { type: web }
 vpc_subnet_id: "{{ vpc.subnets[0].id}}"
 wait: yes
 register: ec2

 - name: add the instance to web and production groups
 add_host: hostname={{ item.public_dns_name }} groups=web,production
 with_items: ec2.tagged_instances
 when: item.public_dns_name is defined

 - name: wait for ssh server to be running
 wait_for: host={{ item.public_dns_name }} port=22 search_regex=OpenSSH
 with_items: ec2.tagged_instances
 when: item.public_dns_name is defined

- name: configure webservers
 hosts: web:&production
 sudo: True
 roles:
 - web

Unfortunately, as of this writing, the Ansible ec2 module can’t han‐
dle the case where you have security groups with the same name in
different VPCs. This means we can’t have an SSH security group
defined in multiple VPCs, because the module will try to associate
all of the SSH security groups when we launch an instance. In our
example, I’ve used different names for these security groups. I’m
hoping this will be fixed in a future version of the module.

Dynamic Inventory and VPC
Oftentimes, when using a VPC, you will place some instances inside of a private sub‐
net that is not routable from the Internet. When you do this, there is no public IP
address associated with the instance.

In this case, you might want to run Ansible from an instance inside of your VPC. The
Ansible dynamic inventory script is smart enough that it will return internal IP
addresses for VPC instances that don’t have public IP addresses.

Specifying a Virtual Private Cloud | 231

See Appendix C for details on how you can use IAM roles to run Ansible inside of a
VPC without needing to copy EC2 credentials to the instance.

Building AMIs
There are two approaches you can take to creating custom Amazon machine images
(AMIs) with Ansible. You can use the ec2_ami module, or you can use a third-party
tool called Packer that has support for Ansible.

With the ec2_ami Module
The ec2_ami module will take a running instance and snapshot it into an AMI.
Example 12-16 shows this module in action.

Example 12-16. Creating an AMI with the ec2_ami module

- name: create an AMI
 hosts: localhost
 vars:
 instance_id: i-dac5473b
 tasks:
 - name: create the AMI
 ec2_ami:
 name: web-nginx
 description: Ubuntu 14.04 with nginx installed
 instance_id: "{{ instance_id }}"
 wait: yes
 register: ami

 - name: output AMI details
 debug: var=ami

With Packer
The ec2_ami module works just fine, but you have to write some additional code to
create and terminate the instance.

There’s an open source tool called Packer that will automate the creation and termi‐
nation of an instance for you. Packer also happens to be written by Mitchell Hashi‐
moto, the creator of Vagrant.

Packer can create different types of images and works with different configuration
management tools. This chapter focuses on using Packer to create AMIs using Ansi‐
ble, but you can also use Packer to create images for other IaaS clouds, such as Google
Compute Engine, DigitalOcean, or OpenStack. It can even be used to create Vagrant
boxes and Docker containers. It also supports other configuration management tools,
such as Chef, Puppet, and Salt.

232 | Chapter 12: Amazon EC2

https://www.packer.io

To use Packer, you create a configuration file in JSON format and then use the packer
command-line tool to create the image using the configuration file.

Example 12-17 shows a sample Packer configuration file that uses Ansible to create
an AMI with our web role.

Example 12-17. web.json

{
 "builders": [
 {
 "type": "amazon-ebs",
 "region": "us-west-1",
 "source_ami": "ami-50120b15",
 "instance_type": "t2.micro",
 "ssh_username": "ubuntu",
 "ami_name": "web-nginx-{{timestamp}}",
 "tags": {
 "Name": "web-nginx"
 }
 }
],
 "provisioners": [
 {
 "type": "shell",
 "inline": [
 "sleep 30",
 "sudo apt-get update",
 "sudo apt-get install -y ansible"
]
 },
 {
 "type": "ansible-local",
 "playbook_file": "web-ami.yml",
 "role_paths": [
 "/Users/lorinhochstein/dev/ansiblebook/ch12/playbooks/roles/web"
]
 }
]
}

Use the packer build command to create the AMI:

$ packer build web.json

The output looks like this:

==> amazon-ebs: Inspecting the source AMI...
==> amazon-ebs: Creating temporary keypair: packer 546919ba-cb97-4a9e-1c21-389633
dc0779
==> amazon-ebs: Creating temporary security group for this instance...
...

Building AMIs | 233

==> amazon-ebs: Stopping the source instance...
==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating the AMI: web-nginx-1416174010
 amazon-ebs: AMI: ami-963fa8fe
==> amazon-ebs: Waiting for AMI to become ready...
==> amazon-ebs: Adding tags to AMI (ami-963fa8fe)...
 amazon-ebs: Adding tag: "Name": "web-nginx"
==> amazon-ebs: Terminating the source AWS instance...
==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...
Build 'amazon-ebs' finished.

==> Builds finished. The artifacts of successful builds are:
--> amazon-ebs: AMIs were created:

us-west-1: ami-963fa8fe

Example 12-17 has two sections: builders and provisioners. The builders section
refers to the type of image being created. In our case, we are creating an Elastic Block
Store–backed (EBS) Amazon Machine Image, so we use the amazon-ebs builder.

Packer needs to start a new instance to create an AMI, so you need to configure
Packer with all of the information you typically need when creating an instance: EC2
region, AMI, and instance type. Packer doesn’t need to be configured with a security
group because it will create a temporary security group automatically, and then delete
that security group when it is finished. Like Ansible, Packer needs to be able to SSH
to the created instance. Therefore, you need to specify the SSH username in the
Packer configuration file.

You also need to tell Packer what to name your instance, as well as any tags you want
to apply to your instance. Because AMI names must be unique, we use the {{time
stamp}} function to insert a Unix timestamp. A Unix timestamp encodes the date and
time as the number of seconds since Jan. 1, 1970, UTC. See the Packer documentation
for more information about the functions that Packer supports.

Because Packer needs to interact with EC2 to create the AMI, it needs access to your
EC2 credentials. Like Ansible, Packer can read your EC2 credentials from environ‐
ment variables, so you don’t need to specify them explicitly in the configuration file,
although you can if you prefer.

The provisioners section refers to the tools used to configure the instance before it is
captured as an image. Packer supports an Ansible local provisioner: it runs Ansible
on the instance itself. That means that Packer needs to copy over all of the necessary
Ansible playbooks and related files before it runs, and it also means that Ansible must
be installed on the instance before it executes Ansible.

Packer supports a shell provisioner that lets you run arbitrary commands on the
instance. Example 12-17 uses this provisioner to install Ansible as an Ubuntu apt

234 | Chapter 12: Amazon EC2

http://bit.ly/1Fw9hEc

package. To avoid a race situation with trying to install packages before the operating
system is fully booted up, the shell provisioner in our example is configured to wait
for 30 seconds before installing Ansible.

Example 12-18 shows the web-ami.yml playbook we use for configuring an instance.
It’s a simple playbook that applies the web role to the local machine. Because it uses
the web role, the configuration file must explicitly specify the location of the directory
that contains the web role so that Packer can copy the web role’s files to the instance.

Example 12-18. web-ami.yml

- name: configure a webserver as an ami
 hosts: localhost
 sudo: True
 roles:
 - web

Instead of selectively copying over roles, we can also tell Packer to just copy our
entire playbooks directory instead. In that case, the configuration file would look like
Example 12-19.

Example 12-19. web-pb.json copying over the entire playbooks directory

{
 "builders": [
 {
 "type": "amazon-ebs",
 "region": "us-west-1",
 "source_ami": "ami-50120b15",
 "instance_type": "t2.micro",
 "ssh_username": "ubuntu",
 "ami_name": "web-nginx-{{timestamp}}",
 "tags": {
 "Name": "web-nginx"
 }
 }
],
 "provisioners": [
 {
 "type": "shell",
 "inline": [
 "sleep 30",
 "sudo apt-get update",
 "sudo apt-get install -y ansible"
]
 },
 {
 "type": "ansible-local",
 "playbook_file": "web-ami.yml",

Building AMIs | 235

 "playbook_dir": "/Users/lorinhochstein/dev/ansiblebook/ch12/playbooks"
 }
]
}

As of this writing, Packer doesn’t support SSH agent forwarding.
Check GitHub for the current status of this issue.

Packer has a lot more functionality than we can cover here. Check out its documenta‐
tion for more details.

Other Modules
Ansible supports even more of EC2, as well as other AWS services. For example, you
can use Ansible to launch CloudFormation stacks with the cloudformation module,
put files into S3 with the s3 module, modify DNS records with the route53 module,
create autoscaling groups with the ec2_asg module, create autoscaling configuration
with the ec2_lc module, and more.

Using Ansible with EC2 is a large enough topic that you could write a whole book
about it. In fact, Yan Kurniawan is writing a book on Ansible and AWS. After digest‐
ing this chapter, you should have enough knowledge under your belt to pick up these
additional modules without difficulty.

236 | Chapter 12: Amazon EC2

http://bit.ly/1Fw9neU
https://www.packer.io/docs/
https://www.packer.io/docs/

CHAPTER 13

Docker

The Docker project has taken the IT world by storm. I can’t think of another technol‐
ogy that was so quickly embraced by the community. This chapter covers how to use
Ansible to create Docker images and deploy Docker containers.

What Is a Container?
A container is a form of virtualization. When you use virtualization to run processes
in a guest operating system, these guest processes have no visibility into the host
operating system that runs on the physical hardware. In particular, processes running
in the guest are not able to directly access physical resources, even if these guest pro‐
cesses are provided with the illusion that they have root access.

Containers are sometimes referred to as operating system virtualization to distinguish
them from hardware virtualization technologies.

In hardware virtualization, a program called the hypervisor virtualizes an entire physi‐
cal machine, including a virtualized CPU, memory, and devices such as disks and net‐
work interfaces. Because the entire machine is virtualized, hardware virtualization is
very flexible. In particular, you can run an entirely different operating system in the
guest than in the host (e.g., running a Windows Server 2012 guest inside of a RedHat
Enterprise Linux host), and you can suspend and resume a virtual machine just like
you can a physical machine. This flexibility brings with it additional overhead needed
to virtualize the hardware.

With operating system virtualization (containers), the guest processes are isolated
from the host by the operating system. The guest processes run on the same kernel as
the host. The host operating system is responsible for ensuring that the guest pro‐
cesses are fully isolated from the host. When running a Linux-based container pro‐
gram like Docker, the guest processes also must be Linux programs. However, the
overhead is much lower than that of hardware virtualization, because you are running

237

only a single operating system. In particular, processes start up much more quickly
inside containers than inside virtual machines.

Docker is more than just containers. Think of Docker as being a platform where con‐
tainers are a building block. To use an analogy, containers are to Docker what virtual
machines are to IaaS clouds. The other two major pieces that make up Docker are its
image format and the Docker API.

You can think of Docker images as similar to virtual machine images. A Docker
image contains a filesystem with an installed operating system, along with some met‐
adata. One important difference is that Docker images are layered. You create a new
Docker image by taking an existing Docker image and modifying it by adding, modi‐
fying, and deleting files. The representation for the new Docker image contains a ref‐
erence to the original Docker image, as well as the file system differences between the
original Docker image and the new Docker image. As an example, the official nginx
docker image is built as layers on top of the official Debian Wheezy image. The lay‐
ered approach means that Docker images are smaller than traditional virtual machine
images, so it’s faster to transfer Docker images over the Internet than it would be to
transfer a traditional virtual machine image. The Docker project maintains a registry
of publicly available images.

Docker also supports a remote API, which enables third-party tools to interact with
it. In particular, Ansible’s docker module uses the Docker remote API.

The Case for Pairing Docker with Ansible
Docker containers make it easier to package your application into a single image
that’s easy to deploy in different places, which is why the Docker project has
embraced the metaphor of the shipping container. Docker’s remote API simplifies the
automation of software systems that run on top of Docker.

There are two areas where Ansible simplifies working with Docker. One is in the
orchestration of Docker containers. When you deploy a “Dockerized” software app,
you’re typically creating multiple Docker containers that contain different services.
These services need to communicate with each other, so you need to connect the
appropriate containers correctly and ensure they start up in the right order. Initially,
the Docker project did not provide orchestration tools, so third-party tools emerged
to fill in the gap. Ansible was built for doing orchestration, so it’s a natural fit for
deploying your Docker-based application.

The other area is the creation of Docker images. The official way to create your own
Docker images is by writing special text files called Dockerfiles, which resemble shell
scripts. For simpler images, Dockerfiles work just fine. However, when you start to

238 | Chapter 13: Docker

http://bit.ly/1Fw9JCf
http://bit.ly/1Fw9JCf
https://registry.hub.docker.com

create more-complex images, you’ll quickly miss the power that Ansible provides.
Fortunately, you can use Ansible to create playbooks.

Docker Application Life Cycle
Here’s what the typical life cycle of a Docker-based application looks like:

1. Create Docker images on your local machine.
2. Push Docker images up from your local machine to the registry.
3. Pull Docker images down to your remote hosts from the registry.
4. Start up Docker containers on the remote hosts, passing in any configuration

information to the containers on startup.

You typically create your Docker image on your local machine, or on a continuous
integration system that supports creating Docker images, such as Jenkins or CircleCI.
Once you’ve created your image, you need to store it somewhere it will be convenient
for downloading onto your remote hosts.

Docker images typically reside in a repository called a registry. The Docker project
runs a registry called Docker Hub, which can host both public and private Docker
images, and where the Docker command-line tools have built-in support for pushing
images up to a registry and for pulling images down from a registry.

Once your Docker image is in the registry, you connect to a remote host, pull down
the container image, and then run the container. Note that if you try to run a con‐
tainer whose image isn’t on the host, Docker will automatically pull down the image
from the registry, so you do not need to explicitly issue a command to download an
image from the registry.

When you use Ansible to create the Docker images and start the containers on the
remote hosts, the application lifecycle looks like this:

1. Write Ansible playbooks for creating Docker images.
2. Run the playbooks to create Docker images on your local machine.
3. Push Docker images up from your local machine to the registry.
4. Write Ansible playbooks to pull Docker images down to remote hosts and start

up Docker containers on remote hosts, passing in configuration information.
5. Run Ansible playbooks to start up the containers.

Docker Application Life Cycle | 239

Dockerizing Our Mezzanine Application
We’ll use our Mezzanine example and deploy it inside of Docker containers. Recall
that our application involves the following services:

• Postgres database
• Mezzanine (web application)
• Memcached (in-memory cache to improve performance)
• nginx (web server)

We could deploy all of these services into the same container. However, for pedagogi‐
cal purposes, I’m going to run each service in a separate container, as shown in
Figure 13-1. Deploying each service in a separate container makes for a more com‐
plex deployment, but it allows me to demonstrate how you can do more complex
things with Docker and Ansible.

Figure 13-1. Deploying Mezzanine as Docker containers

Each box represents a Docker container that runs a service. Containers that commu‐
nicate with each other using TCP/IP are connected by solid lines. The nginx con‐
tainer is the only one that must respond to requests from the outside world. It proxies
web requests to the Mezzanine application, so it connects to the Mezzanine container.
The Mezzanine container must access the database, so it connects to the Postgres

240 | Chapter 13: Docker

container. It must also connect to the Memcached container in order to access the in-
memory cache provided by Memcached to improve performance.

The cylinders represent Docker volumes that containers export and import. For
example, the Mezzanine container exports the volume /srv/project/static, and the
nginx container imports this volume.

The nginx service must serve static content such as JavaScript, CSS, and images,
including files uploaded by Mezzanine users. (Recall that Mezzanine is a CMS that
allows users to upload files such as images.) These files are in the Mezzanine con‐
tainer, not the nginx container. To share files across these containers, we configure
the Mezzanine container to store the static file content in a volume, and we mount
the volume into the nginx container.

Containers that share volumes (in our deployment, nginx and mezzanine) must be
running on the same host, but otherwise we could deploy each container on a sepa‐
rate host. In a real deployment, we’d likely deploy Memcached on the same host as
Mezzanine, and we’d put Postgres on a separate host. In our example, I’m going to use
container linking (see “Linking Docker Containers” on page 241) to link the nginx,
Mezzanine, and Memcached containers together (hence the link annotation on the
diagram). Mezzanine will communicate with Postgres over the port exposed by the
Postgres container, in order to demonstrate both ways of connecting together con‐
tainers that run on the same host.

Linking Docker Containers
If two Docker containers are running on the same host, you can use a feature called
linking containers so that the two containers can be networked together. Linking is
unidirectional, so if container A is linked to container B, then processes in A can con‐
nect to network services running in B.

Docker will inject special environment variables into one of the containers. These
variables contain IP addresses and ports so that one container can access services in
the other container, as well as update the /etc/hosts file so that one container can
access the other by hostname. For more details, see the official Docker documenta‐
tion about container.

Finally, there’s a dashed box in the diagram labeled “certs.” This is a Docker data vol‐
ume that contains the TLS certificates. Unlike the other containers, this one is stop‐
ped; it exists only to store the certificate files.

Dockerizing Our Mezzanine Application | 241

https://docs.docker.com/userguide/dockerlinks/
https://docs.docker.com/userguide/dockerlinks/

Creating Docker Images with Ansible
In this chapter, I’m going to use the method recommended by the Ansible project for
creating images with Ansible. In a nutshell, the method is:

1. Use an official Ansible base image that has Ansible installed in it.
2. In the Dockerfile, copy the playbooks into the image.
3. Invoke Ansible from the Dockerfile.

Note that we won’t be creating all of our images with Ansible. In one case, we’ll be
able to use an existing image right off-the-shelf…er…Docker registry. In other cases,
we’ll build the Docker image with a traditional Dockerfile.

We need to create Docker images for each of the boxes depicted in Figure 13-1.

Mezzanine
Our Mezzanine container image is the most complex one, and we’ll be using Ansible
to configure it.

The official Ansible base images are hosted on the Docker registry. As of this writing,
there are two base images available:

• ansible/centos7-ansible (CentOS 7)
• ansible/ubuntu14.04-ansible (Ubuntu 14.04).

We’ll be using the Ubuntu 14.04 image. To create this image, I have a mezzanine
directory that contains the following files:

• Dockerfile
• ansible/mezzanine-container.yml
• ansible/files/gunicorn.conf.py
• ansible/files/local_settings.py
• ansible/files/scripts/setadmin.py
• ansible/files/scripts/setsite.py

There’s the Dockerfile for building the Docker image, the playbook itself (mezzanine-
container.yml), and several other files that we’re going to copy into the image.

Example 13-1 shows what the Dockerfile looks like for building the Mezzanine image.

242 | Chapter 13: Docker

https://registry.hub.docker.com/repos/ansible/

Example 13-1. Mezzanine Dockerfile

FROM ansible/ubuntu14.04-ansible:stable
MAINTAINER Lorin Hochstein <lorin@ansiblebook.com>

ADD ansible /srv/ansible
WORKDIR /srv/ansible

RUN ansible-playbook mezzanine-container.yml -c local

VOLUME /srv/project/static

WORKDIR /srv/project

EXPOSE 8000
CMD ["gunicorn_django", "-c", "gunicorn.conf.py"]

We copy the playbook and associated files into the container and then execute the
playbook. We also create a mount point for /srv/project/static, the directory that con‐
tains the static content that the nginx container will serve.

Finally, we expose port 8000 and specify gunicorn_django as the default command
for the container, which will run Mezzanine using the Gunicorn application server.
Example 13-2 shows the playbook we use to configure the container.

Example 13-2. mezzanine-container.yml

- name: Create Mezzanine container
 hosts: local
 vars:
 mezzanine_repo_url: https://github.com/lorin/mezzanine-example.git
 mezzanine_proj_path: /srv/project
 mezzanine_reqs_path: requirements.txt
 script_path: /srv/scripts
 tasks:
 - name: install apt packages
 apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
 with_items:
 - git
 - gunicorn
 - libjpeg-dev
 - libpq-dev
 - python-dev
 - python-pip
 - python-psycopg2
 - python-setuptools

 - name: check out the repository on the host
 git:
 repo: "{{ mezzanine_repo_url }}"
 dest: "{{ mezzanine_proj_path }}"

Creating Docker Images with Ansible | 243

 accept_hostkey: yes

 - name: install required python packages
 pip: name={{ item }}
 with_items:
 - south
 - psycopg2
 - django-compressor
 - python-memcached

 - name: install requirements.txt
 pip: requirements={{ mezzanine_proj_path }}/{{ mezzanine_reqs_path }}

 - name: generate the settings file
 copy: src=files/local_settings.py dest={{ mezzanine_proj_path }}/
 local_settings.py

 - name: set the gunicorn config file
 copy: src=files/gunicorn.conf.py dest={{ mezzanine_proj_path }}/gunicorn.conf.py

 - name: collect static assets into the appropriate directory
 django_manage: command=collectstatic app_path={{ mezzanine_proj_path }}
 environment:
 # We can't run collectstatic if the secret key is blank,
 # so we just pass in an arbitrary one
 SECRET_KEY: nonblanksecretkey

 - name: script directory
 file: path={{ script_path }} state=directory

 - name: copy scripts for setting site id and admin at launch time
 copy: src=files/scripts/{{ item }} dest={{ script_path }}/{{ item }} mode=0755
 with_items:
 - setadmin.py
 - setsite.py

The Example 13-2 playbook is similar to the playbook from Chapter 6, with the fol‐
lowing differences:

• We don’t install Postgres, nginx, Memcached, or Supervisor, which is discussed in
Chapter 5, into the image.

• We don’t use templates to generate local_settings.py and gunicorn.conf.py.
• We don’t run the Django syncdb or migrate commands.
• We copy setadmin.py and setsite.py scripts into the container instead of executing

them.

244 | Chapter 13: Docker

We don’t install the other services into the image because those services are imple‐
mented by separate images, except for Supervisor.

Why We Don’t Need Supervisor
Recall that our deployment of Mezzanine originally used Supervisor to manage our
application server (Gunicorn). This meant that Supervisor was responsible for start‐
ing and stopping the Gunicorn process.

In our Mezzanine Docker container, we don’t need a separate program for starting
and stopping the Gunicorn process. That’s because Docker is itself a system designed
for starting and stopping processes.

Without Docker, we would use Supervisor to start Gunicorn:

$ supervisorctl start gunicorn_mezzanine

With Docker, we start up a container containing Gunicorn, and we use Ansible to do
something like this:

$ docker run lorin/mezzanine:latest

We don’t use templates to generate local_settings.py because when we build the image,
we don’t know what the settings will be. For example, we don’t know what the data‐
base host, port, username, and password values should be. Even if we did, we don’t
want to hardcode them in the image, because we want to be able to use the same
image in our development, staging, and production environments.

What we need is a service discovery mechanism so that we can determine what all of
these settings should be when the container starts up. There are many different ways
of implementing service discovery, including using a service discovery tool such as
etcd, Consul, Apache ZooKeeper, or Eureka. We’re going to use environment vari‐
ables, since Docker lets us specify environment variables when we start containers.
Example 13-3 shows the local_settings.py file we are using for the image.

Example 13-3. local_settings.py

from __future__ import unicode_literals
import os

SECRET_KEY = os.environ.get("SECRET_KEY", "")
NEVERCACHE_KEY = os.environ.get("NEVERCACHE_KEY", "")
ALLOWED_HOSTS = os.environ.get("ALLOWED_HOSTS", "")

DATABASES = {
 "default": {
 # Ends with "postgresql_psycopg2", "mysql", "sqlite3" or "oracle".
 "ENGINE": "django.db.backends.postgresql_psycopg2",

Creating Docker Images with Ansible | 245

 # DB name or path to database file if using sqlite3.
 "NAME": os.environ.get("DATABASE_NAME", ""),
 # Not used with sqlite3.
 "USER": os.environ.get("DATABASE_USER", ""),
 # Not used with sqlite3.
 "PASSWORD": os.environ.get("DATABASE_PASSWORD", ""),
 # Set to empty string for localhost. Not used with sqlite3.
 "HOST": os.environ.get("DATABASE_HOST", ""),
 # Set to empty string for default. Not used with sqlite3.
 "PORT": os.environ.get("DATABASE_PORT", "")
 }
}

SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTOCOL", "https")

CACHE_MIDDLEWARE_SECONDS = 60

CACHE_MIDDLEWARE_KEY_PREFIX = "mezzanine"

CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends.memcached.MemcachedCache",
 "LOCATION": os.environ.get("MEMCACHED_LOCATION", "memcached:11211"),
 }
}

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

TWITTER_ACCESS_TOKEN_KEY = os.environ.get("TWITTER_ACCESS_TOKEN_KEY ", "")
TWITTER_ACCESS_TOKEN_SECRET = os.environ.get("TWITTER_ACCESS_TOKEN_SECRET ", "")
TWITTER_CONSUMER_KEY = os.environ.get("TWITTER_CONSUMER_KEY ", "")
TWITTER_CONSUMER_SECRET = os.environ.get("TWITTER_CONSUMER_SECRET ", "")
TWITTER_DEFAULT_QUERY = "from:ansiblebook"

Note how most of the settings in Example 13-3 make reference to an environment
variable by calling os.environ.get.

For most of the settings, we don’t use a meaningful default value if the environment
variable doesn’t exist. There is one exception, the location of the memcached server:

 "LOCATION": os.environ.get("MEMCACHED_LOCATION", "memcached:11211"),

I do this so that the default will handle the case where we use container linking. If I
link the Memcached container with the name memcached at runtime, then Docker
will automatically resolve the memcached hostname to the IP address of the Memc‐
ached container.

Example 13-4 shows the Gunicorn configuration file. We could probably get away
with hardcoding 8000 as the port, but instead I’ve allowed the user to override this by
defining the GUNICORN_PORT environment variable.

246 | Chapter 13: Docker

Example 13-4. gunicorn.conf.py

from __future__ import unicode_literals
import multiprocessing
import os

bind = "0.0.0.0:{}".format(os.environ.get("GUNICORN_PORT", 8000))
workers = multiprocessing.cpu_count() * 2 + 1
loglevel = "error"
proc_name = "mezzanine"

The setadmin.py and setsite.py files are unchanged from the originals in Examples
6-17 and 6-18. We copy these into the container so that we can invoke them at
deployment time. In our original playbook, we copied these files to the host at deploy
time and executed them, but Docker doesn’t yet support a simple way to copy files
into a container at runtime, so instead we just copied them into the image at build-
time.

The Other Container Images
Our Mezzanine example uses some additional Docker images that we do not use
Ansible to configure.

Postgres
We need an image that runs the Postgres service. Fortunately, the Postgres project has
an official image in the Docker registry. I’m going to use an official image, so there’s
no need for us to create our own. Specifically, I’m going to use the image that contains
Postgres version 9.4, which is named postgres:9.4.

Memcached
There’s no official Memcached image, but the Dockerfile to build one is very simple,
as shown in Example 13-5.

Example 13-5. Dockerfile for Memcached

FROM ubuntu:trusty
MAINTAINER lorin@ansiblebook.com

Based on the Digital Ocean tutorial: http://bit.ly/1qJ8CXP

Update the default application repository sources list
RUN apt-get update

Install Memcached
RUN apt-get install -y memcached

The Other Container Images | 247

https://registry.hub.docker.com/_/postgres/

Port to expose (default: 11211)
EXPOSE 11211

Default Memcached run command arguments
CMD ["-m", "128"]

Set the user to run Memcached daemon
USER daemon

Set the entrypoint to memcached binary
ENTRYPOINT memcached

Nginx
There is an official Dockerfile Nginx image that we can use. We need to use our own
configuration file for nginx so that it reverse proxies to the Mezzanine application.
The official nginx image is configured so that we could put our custom nginx.conf file
on the local filesystem of the host and mount it into the container. However, I prefer
to create a self-contained Docker image that doesn’t depend on configuration files
that are outside of the container.

We can build a new image using the official image as a base and add our custom
nginx configuration file into it. Example 13-6 shows the Dockerfile and Example 13-7
shows the custom nginx configuration file we use.

Example 13-6. Dockerfile for custom nginx Docker image

FROM nginx:1.7

RUN rm /etc/nginx/conf.d/default.conf \
 /etc/nginx/conf.d/example_ssl.conf
COPY nginx.conf /etc/nginx/conf.d/mezzanine.conf

Example 13-7. nginx.conf for nginx Docker image

upstream mezzanine {
 server mezzanine:8000;
}

server {

 listen 80;

 listen 443 ssl;

 client_max_body_size 10M;
 keepalive_timeout 15;

248 | Chapter 13: Docker

http://bit.ly/1Dfau2Z

 ssl_certificate /certs/nginx.crt;
 ssl_certificate_key /certs/nginx.key;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 ssl_ciphers (too long to show here);
 ssl_prefer_server_ciphers on;

 location / {
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Protocol $scheme;
 proxy_pass http://mezzanine;
 }

 location /static/ {
 root /srv/project;
 access_log off;
 log_not_found off;
 }

 location /robots.txt {
 root /srv/project/static;
 access_log off;
 log_not_found off;
 }

 location /favicon.ico {
 root /srv/project/static/img;
 access_log off;
 log_not_found off;
 }
}

Nginx doesn’t natively support reading in configuration from environment variables,
so we need to use a well-known path for the location of the static content (/srv/
project/static). We specify the location of the Mezzanine service as mezzanine:8000;
when we link the nginx container to the Mezzanine container; then Docker will
ensure that the mezzanine hostname resolves to the Mezzanine container’s IP address.

Certs
The certs Docker image is a file that contains the TLS certificate used by nginx. In a
real scenario, we’d use a certificate issued from a certificate authority. But for the pur‐
poses of demonstration, the Dockerfile for this image generates a self-signed certifi‐
cate for http://192.168.59.103.xip.io, as shown in Example 13-8.

The Other Container Images | 249

http://192.168.59.103.xip.io

Example 13-8. Dockerfile for certs image

FROM ubuntu:trusty
MAINTAINER lorin@ansiblebook.com

Create self-signed cert for 192.168.59.103
RUN apt-get update
RUN apt-get install -y openssl

RUN mkdir /certs

WORKDIR /certs

RUN openssl req -new -x509 -nodes -out nginx.crt \
 -keyout nginx.key -subj '/CN=192.168.59.103.xip.io' -days 3650

VOLUME /certs

Building the Images
I did not use Ansible itself to build the Docker images. Instead, I just built them on
the command line. For example, to build the Mezzanine image, I wrote:

$ cd mezzanine
$ docker build -t lorin/mezzanine .

Ansible does contain a module for building Docker images, called docker_image.
However, that module has been deprecated because building images isn’t a good fit
for a tool like Ansible. Image building is part of the build process of an application’s
lifecycle; building Docker images and pushing them up an image registry is the sort
of thing that your continuous integration system should be doing, not your configu‐
ration management system.

250 | Chapter 13: Docker

Deploying the Dockerized Application
We use the docker module for deploying the application. As of this
writing, there are several known issues with the docker module
that ships with Ansible.

• The volumes_from parameter does not work with recent ver‐
sions of Docker.

• It does not support Boot2Docker, a commonly used tool for
running Docker on OS X.

• It does not support the wait parameter that I use in some
examples in this section.

There are proposed fixes for all of these issues awaiting review in
the Ansible project. Hopefully by the time you read this, these
issues all will have been fixed. There is also a pending pull request
to support detach=no, which has the same behavior as wait=yes in
the examples here. In the meantime, I have included a custom ver‐
sion of the docker module in the code sample repository that has
fixes for these issues. The file is ch13/playbooks/library/docker.py.

Example 13-10 shows the entire playbook that orchestrates the Docker containers in
our Mezzanine deployment. The sensitive data is in a separate file, shown in
Example 13-11. You can think of this as a development setup, because all of the serv‐
ices are running on the control machine.

Note that I’m running this on Mac OS X using Boot2Docker, so the Docker contain‐
ers actually run inside of a virtual machine, rather than on localhost. This also means
that I can invoke Docker without needing it to be root. If you’re running this on
Linux, you’ll need to use sudo or run this as root for it to work.

Since this is a large playbook, let’s break it down.

Starting the Database Container
Here’s how we start the container that runs the Postgres database.

- name: start the postgres container
 docker:
 image: postgres:9.4
 name: postgres
 publish_all_ports: True
 env:
 POSTGRES_USER: "{{ database_user }}"
 POSTGRES_PASSWORD: "{{ database_password }}"

Deploying the Dockerized Application | 251

Whenever you start a Docker container, you must specify the image. If you don’t have
the postgres:9.4 image installed locally, then Docker will download it for you the
first time it runs. We specify publish_all_ports so that Docker will open up the
ports that this container is configured to expose; in this case, that’s port 5432.

The container is configured by environment variables, so we pass the username and
password that should have access to this service. The Postgres image will automati‐
cally create a database with the same name as the user.

Retrieving the Database Container IP Address and
Mapped Port
When we started up our Postgres container, we could have explicitly mapped the con‐
tainer’s database port (5432) to a known port on the host. (We’ll do this for the nginx
container.) Since we didn’t, Docker will select an arbitrary port on the host that maps
to 5432 inside of the container.

Later on in the playbook, we’re going to need to know what this port is, because we
need to wait for the Postgres service to start before we bring up Mezzanine, and we’re
going to do that by checking to see if there’s anything listening on that port.

We could configure the Mezzanine container to connect on the mapped port, but
instead I decided to have the Mezzanine container connect to port 5432 on the Post‐
gres container’s IP address, which gives me an excuse to demonstrate how to retrieve
a Docker container’s IP address.

When the Docker module starts one or more containers, it sets information about the
started container(s) as facts. This means that we don’t need to use the register clause
to capture the result of invoking this module; we just need to know the name of the
fact that contains the information we’re looking for.

The name of the fact with the information is docker_containers, which is a list of
dictionaries that contains information about the container. It’s the same output you’d
see if you used the docker inspect command. Example 13-9 shows an example of
the value of the docker_containers fact after we start a postgres container.

Example 13-9. docker_containers fact after starting postgres container

[
 {
 "AppArmorProfile": "",
 "Args": [
 "postgres"
],
 "Config": {
 "AttachStderr": false,

252 | Chapter 13: Docker

 "AttachStdin": false,
 "AttachStdout": false,
 "Cmd": [
 "postgres"
],
 "CpuShares": 0,
 "Cpuset": "",
 "Domainname": "",
 "Entrypoint": [
 "/docker-entrypoint.sh"
],
 "Env": [
 "POSTGRES_PASSWORD=password",
 "POSTGRES_USER=mezzanine",
 "PATH=/usr/lib/postgresql/9.4/bin:/usr/local/sbin:/usr/local/bin:
/usr/sbin:/usr/bin:/sbin:/bin",
 "LANG=en_US.utf8",
 "PG_MAJOR=9.4",
 "PG_VERSION=9.4.0-1.pgdg70+1",
 "PGDATA=/var/lib/postgresql/data"
],
 "ExposedPorts": {
 "5432/tcp": {}
 },
 "Hostname": "71f40ec4b58c",
 "Image": "postgres",
 "MacAddress": "",
 "Memory": 0,
 "MemorySwap": 0,
 "NetworkDisabled": false,
 "OnBuild": null,
 "OpenStdin": false,
 "PortSpecs": null,
 "StdinOnce": false,
 "Tty": false,
 "User": "",
 "Volumes": {
 "/var/lib/postgresql/data": {}
 },
 "WorkingDir": ""
 },
 "Created": "2014-12-25T22:59:15.841107151Z",
 "Driver": "aufs",
 "ExecDriver": "native-0.2",
 "HostConfig": {
 "Binds": null,
 "CapAdd": null,
 "CapDrop": null,
 "ContainerIDFile": "",
 "Devices": null,
 "Dns": null,
 "DnsSearch": null,

Retrieving the Database Container IP Address and Mapped Port | 253

 "ExtraHosts": null,
 "IpcMode": "",
 "Links": null,
 "LxcConf": null,
 "NetworkMode": "",
 "PortBindings": {
 "5432/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": ""
 }
]
 },
 "Privileged": false,
 "PublishAllPorts": false,
 "RestartPolicy": {
 "MaximumRetryCount": 0,
 "Name": ""
 },
 "SecurityOpt": null,
 "VolumesFrom": [
 "data-volume"
]
 },
 "HostnamePath": "/mnt/sda1/var/lib/docker/containers/71f40ec4b58c3176030274a
fb025fbd3eb130fe79d4a6a69de473096f335e7eb/hostname",
 "HostsPath": "/mnt/sda1/var/lib/docker/containers/71f40ec4b58c3176030274afb0
25fbd3eb130fe79d4a6a69de473096f335e7eb/hosts",
 "Id": "71f40ec4b58c3176030274afb025fbd3eb130fe79d4a6a69de473096f335e7eb",
 "Image": "b58a816df10fb20c956d39724001d4f2fabddec50e0d9099510f0eb579ec8a45",
 "MountLabel": "",
 "Name": "/high_lovelace",
 "NetworkSettings": {
 "Bridge": "docker0",
 "Gateway": "172.17.42.1",
 "IPAddress": "172.17.0.12",
 "IPPrefixLen": 16,
 "MacAddress": "02:42:ac:11:00:0c",
 "PortMapping": null,
 "Ports": {
 "5432/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 }
 },
 "Path": "/docker-entrypoint.sh",
 "ProcessLabel": "",
 "ResolvConfPath": "/mnt/sda1/var/lib/docker/containers/71f40ec4b58c3176030274
afb025fbd3eb130fe79d4a6a69de473096f335e7eb/resolv.conf",

254 | Chapter 13: Docker

 "State": {
 "Error": "",
 "ExitCode": 0,
 "FinishedAt": "0001-01-01T00:00:00Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 9625,
 "Restarting": false,
 "Running": true,
 "StartedAt": "2014-12-25T22:59:16.219732465Z"
 },
 "Volumes": {
 "/var/lib/postgresql/data": "/mnt/sda1/var/lib/docker/vfs/dir/4ccd3150c8d
74b9b0feb56df928ac915599e12c3ab573cd4738a18fe3dc6f474"
 },
 "VolumesRW": {
 "/var/lib/postgresql/data": true
 }
 }
]

If you wade through this output, you can see that the IP address and mapped port are
in the NetworkSettings part of the structure:

"NetworkSettings": {
 "Bridge": "docker0",
 "Gateway": "172.17.42.1",
 "IPAddress": "172.17.0.12",
 "IPPrefixLen": 16,
 "MacAddress": "02:42:ac:11:00:0c",
 "PortMapping": null,
 "Ports": {
 "5432/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 }
},

Here’s how we extract out the IP address (172.17.0.12) and the mapped port number
(49153) and assign them to variables using the set_fact module: [source,yaml+jinja]

- name: capture database ip address and mapped port
 set_fact:
 database_host: "{{ docker_containers[0].NetworkSettings.IPAddress }}"
 mapped_database_port: "{{ docker_containers[0].NetworkSettings.Ports[
'5432/tcp'][0].HostPort}}"

Retrieving the Database Container IP Address and Mapped Port | 255

Waiting for the Database to Start Up
The documentation for the official Postgres Docker image contains the following cav‐
eat:

If there is no database when postgres starts in a container, then postgres will create the
default database for you. While this is the expected behavior of postgres, this means
that it will not accept incoming connections during that time. This may cause issues
when using automation tools, such as fig, that start several containers simultaneously.

This is a great use case for the wait_for module, which will block playbook execution
until the service accepts TCP connection requests:

- name: wait for database to come up
 wait_for: host={{ docker_host }} port={{ mapped_database_port }}

Note the use of the docker_host variable for specifying the host running Docker.
Here’s how this variable is defined up in the vars section. I’ve added a line break for
clarity, but it should all be on one line.

docker_host: "{{ lookup('env', 'DOCKER_HOST') |
 regex_replace('^tcp://(.*):\\d+$', '\\\\1') | default('localhost', true) }}"

The issue is that the Docker host will depend on whether you’re running on Linux,
and therefore running Docker directly on your control machine, or whether you’re
running on Mac OS X, and are using Boot2Docker to run Docker inside of a virtual
machine.

If you’re running Docker locally, then docker_host should be set to localhost. If
you’re running Boot2Docker, then it should be set to the IP address of the virtual
machine.

If you’re running Boot2Docker, then you need to have an environment variable
named DOCKER_HOST defined. Here’s what mine looks like:

DOCKER_HOST=tcp://192.168.59.103:2375

I need to extract the 192.168.59.103 part of that, if DOCKER_HOST is defined. If it’s not
defined, then I want to default to localhost.

I used the env lookup plug-in to retrieve the value of the DOCKER_HOST environment
variable:

lookup('env', 'DOCKER_HOST')

To extract the IP address, I used the regex_replace filter, which is a custom Jinja2
filter defined by Ansible that allows you to do regular expression (note the number of
backslashes required):

regex_replace('^tcp://(.*):\\d+$', '\\\\1')

256 | Chapter 13: Docker

https://registry.hub.docker.com/_/postgres/

Finally, I used the standard default Jinja2 filter to set a default value of localhost for
the variable docker_host if the DOCKER_HOST environment variable wasn’t defined.
Because the env lookup returns an empty string, I needed to pass true as the second
argument to the default filter to get it to work properly. See the Jinja2 documenta‐
tion for more details:

default('localhost', true)

Initializing the Database
To initialize the database, we need to run the Django syncdb and migrate commands.
(In Django 1.7, you only need to run migrate, but Mezzanine defaults to Django 1.6).

We need to run the Mezzanine container for this, but instead of running Gunicorn,
we want to pass it the appropriate syncdb and migrate commands, as well as run the
setsite.py and setadmin.py scripts to set the site ID and the admin password.

- name: initialize database
 docker:
 image: lorin/mezzanine:latest
 command: python manage.py {{ item }} --noinput
 wait: yes
 env: "{{ mezzanine_env }}"
 with_items:
 - syncdb
 - migrate

- name: set the site id
 docker:
 image: lorin/mezzanine:latest
 command: /srv/scripts/setsite.py
 env: "{{ setsite_env.update(mezzanine_env) }}{{ setsite_env }}"
 wait: yes

- name: set the admin password
 docker:
 image: lorin/mezzanine:latest
 command: /srv/scripts/setadmin.py
 env: "{{ setadmin_env.update(mezzanine_env) }}{{ setadmin_env }}"
 wait: yes

We use the command parameter to specify the syncdb and migrate commands.

We use the wait parameter so that the module will block until the process completes.
Otherwise, we could have a race condition where the database setup has not comple‐
ted yet when we start up Mezzanine.

Note the use of the env parameter to pass environment variables with the configura‐
tion information, including how to connect to the database service. I put all of the
environment variables into a mezzanine_env variable that’s defined like this:

Waiting for the Database to Start Up | 257

http://bit.ly/1DfbzI7
http://bit.ly/1DfbzI7

mezzanine_env:
 SECRET_KEY: "{{ secret_key }}"
 NEVERCACHE_KEY: "{{ nevercache_key }}"
 ALLOWED_HOSTS: "*"
 DATABASE_NAME: "{{ database_name }}"
 DATABASE_USER: "{{ database_user }}"
 DATABASE_PASSWORD: "{{ database_password }}"
 DATABASE_HOST: "{{ database_host }}"
 DATABASE_PORT: "{{ database_port }}"
 GUNICORN_PORT: "{{ gunicorn_port }}"

When we set the site ID, we need to add the additional two environment variables,
which I defined in a setsite_env variable:

setsite_env:
 PROJECT_DIR: "{{ project_dir }}"
 WEBSITE_DOMAIN: "{{ website_domain }}"

We need to combine the mezzanine_env and setsite_env dicts into a single dict and
pass that to the env parameter.

Unfortunately, there’s no simple way to combine two dicts in Ansible, but there’s a
workaround. Jinja2 has an update method that lets you merge one dictionary into
another. The problem is that calling this doesn’t return the merged dictionary; it just
updates the state of the dictionary. Therefore, you need to call the update method,
and then you need to evaluate the variable. The resulting env parameter looks like
this:

 env: "{{ setsite_env.update(mezzanine_env) }}{{ setsite_env }}"

Starting the Memcached Container
Starting the Memcached container is straightforward. We don’t even need to pass it
environment variables since Memcached doesn’t need any configuration information.
We also don’t need to publish any ports since only the Mezzanine container will con‐
nect to it via linking.

- name: start the memcached container
 docker:
 image: lorin/memcached:latest
 name: memcached

Starting the Mezzanine Container
We link the Mezzanine container with the Memcached container and pass it configu‐
ration information via the environment.

We also run another container with the same image to run cron, since Mezzanine
uses cron to update information from Twitter:

258 | Chapter 13: Docker

- name: start the mezzanine container
 docker:
 image: lorin/mezzanine:latest
 name: mezzanine
 env: "{{ mezzanine_env }}"
 links: memcached

- name: start the mezzanine cron job
 docker:
 image: lorin/mezzanine:latest
 name: mezzanine
 env: "{{ mezzanine_env }}"
 command: cron -f

Starting the Certificate Container
We start the container that holds the TLS certificates. Recall that this container
doesn’t run a service, but we need to start it so that we can mount the volume into the
nginx container.

- name: start the cert container
 docker:
 image: lorin/certs:latest
 name: certs

Starting the Nginx Container
Finally, we start the Nginx container. This container needs to expose ports 80 and 443
to the world. It also needs to mount volumes for the static content and the TLS certif‐
icates. Finally, we link it to the Mezzanine container so that the Mezzanine hostname
will resolve to the container that runs Mezzanine:

- name: run nginx
 docker:
 image: lorin/nginx-mezzanine:latest
 ports:
 - 80:80
 - 443:443
 name: nginx
 volumes_from:
 - mezzanine
 - certs
 links: mezzanine

And that’s it! If you’re running Docker locally on your Linux machine, you should
now be able to access Mezzanine at http://localhost and https://localhost. If you’re run‐
ning Boot2Docker on OS X, you should be able to access it at the IP address of your
Boot2Docker VM, which you can get by doing:

boot2docker ip

Waiting for the Database to Start Up | 259

http://localhost
https://localhost

On my machine, it’s at http://192.168.59.103 and https://192.168.59.103, or you can
use xip.io and access it at https://192.168.59.103.xip.io.f1326.20.

The Entire Playbook
Example 13-10 shows the entire playbook, and Example 13-11 shows the contents of
the secrets.yml file.

Example 13-10. run-mezzanine.yml

#!/usr/bin/env ansible-playbook

- name: run mezzanine from containers
 hosts: localhost
 vars_files:
 - secrets.yml
 vars:
 # The postgres container uses the same name for the database
 # and the user
 database_name: mezzanine
 database_user: mezzanine
 database_port: 5432
 gunicorn_port: 8000
 docker_host: "{{ lookup('env', 'DOCKER_HOST') |
regex_replace('^tcp://(.*):\\d+$', '\\\\1') | default('localhost', true) }}"
 project_dir: /srv/project
 website_domain: "{{ docker_host }}.xip.io"
 mezzanine_env:
 SECRET_KEY: "{{ secret_key }}"
 NEVERCACHE_KEY: "{{ nevercache_key }}"
 ALLOWED_HOSTS: "*"
 DATABASE_NAME: "{{ database_name }}"
 DATABASE_USER: "{{ database_user }}"
 DATABASE_PASSWORD: "{{ database_password }}"
 DATABASE_HOST: "{{ database_host }}"
 DATABASE_PORT: "{{ database_port }}"
 GUNICORN_PORT: "{{ gunicorn_port }}"
 setadmin_env:
 PROJECT_DIR: "{{ project_dir }}"
 ADMIN_PASSWORD: "{{ admin_password }}"
 setsite_env:
 PROJECT_DIR: "{{ project_dir }}"
 WEBSITE_DOMAIN: "{{ website_domain }}"

 tasks:
 - name: start the postgres container
 docker:
 image: postgres:9.4
 name: postgres
 publish_all_ports: True

260 | Chapter 13: Docker

http://192.168.59.103
https://192.168.59.103
https://192.168.59.103.xip.io.f1326.20

 env:
 POSTGRES_USER: "{{ database_user }}"
 POSTGRES_PASSWORD: "{{ database_password }}"

 - name: capture database ip address and mapped port
 set_fact:
 database_host: "{{ docker_containers[0].NetworkSettings.IPAddress }}"
 mapped_database_port: "{{ docker_containers[0].NetworkSettings.Ports[
'5432/tcp'][0].HostPort}}"

 - name: wait for database to come up
 wait_for: host={{ docker_host }} port={{ mapped_database_port }}

 - name: initialize database
 docker:
 image: lorin/mezzanine:latest
 command: python manage.py {{ item }} --noinput
 wait: True
 env: "{{ mezzanine_env }}"
 with_items:
 - syncdb
 - migrate
 register: django

 - name: set the site id
 docker:
 image: lorin/mezzanine:latest
 command: /srv/scripts/setsite.py
 env: "{{ setsite_env.update(mezzanine_env) }}{{ setsite_env }}"
 wait: yes

 - name: set the admin password
 docker:
 image: lorin/mezzanine:latest
 command: /srv/scripts/setadmin.py
 env: "{{ setadmin_env.update(mezzanine_env) }}{{ setadmin_env }}"
 wait: yes

 - name: start the memcached container
 docker:
 image: lorin/memcached:latest
 name: memcached

 - name: start the mezzanine container
 docker:
 image: lorin/mezzanine:latest
 name: mezzanine
 env: "{{ mezzanine_env }}"
 links: memcached

 - name: start the mezzanine cron job
 docker:

The Entire Playbook | 261

 image: lorin/mezzanine:latest
 name: mezzanine
 env: "{{ mezzanine_env }}"
 command: cron -f

 - name: start the cert container
 docker:
 image: lorin/certs:latest
 name: certs

 - name: run nginx
 docker:
 image: lorin/nginx-mezzanine:latest
 ports:
 - 80:80
 - 443:443
 name: nginx
 volumes_from:
 - mezzanine
 - certs
 links: mezzanine

Example 13-11. secrets.yml

database_password: password
secret_key: randomsecretkey
nevercache_key: randomnevercachekey
admin_password: password

Because the Docker project is relatively young, much of the tooling is still in flux, and
Docker deployment patterns are still evolving. Many of these emerging tools likely
will have functionality that overlaps with Ansible when it comes to orchestrating con‐
tainers.

Even if another tool emerges to dominate the world of Docker orchestration, I still
believe Ansible will continue to be a useful tool for operators and developers.

262 | Chapter 13: Docker

CHAPTER 14

Debugging Ansible Playbooks

Let’s face it: mistakes happen. Whether it’s a bug in a playbook, or a config file on
your control machine with the wrong configuration value, eventually something’s
going to go wrong. In this last chapter, I’ll review some techniques you can use to
help track down those errors.

Debugging SSH Issues
Sometimes, Ansible fails to make a successful SSH connection with the host. When
this happens, it’s helpful to see exactly what arguments Ansible is passing to the
underlying SSH client so that you can reproduce the problem manually on the com‐
mand line.

If you invoke ansible-playbook with the -vvv argument, you can see the exact SSH
commands that Ansible invokes. This can be handy for debugging.

Example 14-1 shows some sample Ansible output for executing a module that copies
a file.

Example 14-1. Example output when verbose flags are enabled

TASK: [copy TLS key] **
<127.0.0.1> ESTABLISH CONNECTION FOR USER: vagrant
<127.0.0.1> ESTABLISH CONNECTION FOR USER: vagrant
<127.0.0.1> EXEC ['ssh', '-C', '-tt', '-q', '-o', 'ControlMaster=auto', '-o',
'ControlPersist=60s', '-o', 'ControlPath=/Users/lorinhochstein/.ansible/cp/
ansible-ssh-%h-%p-%r', '-o', 'Port=2222', '-o', u'IdentityFile="/Users/
lorinhochstein/.vagrant.d/insecure_private_key"', '-o', 'KbdInteractive
Authentication=no', '-o', 'PreferredAuthentications=gssapi-with-mic,gssapi-keyex,
hostbased,publickey', '-o', 'PasswordAuthentication=no', '-o', 'User=vagrant',
'-o', 'ConnectTimeout=10', u'127.0.0.1', u'/bin/sh -c \'sudo -k && sudo -H -S -p
"[sudo via ansible, key=ypkyixkznvqmrbmlhezlnlujtdhrcoam] password: " -u root

263

/bin/sh -c \'"\'"\'echo SUDO-SUCCESS-ypkyixkznvqmrbmlhezlnlujtdhrcoam; rc=0;
[-r "/etc/nginx/ssl/nginx.key"] || rc=2; [-f "/etc/nginx/ssl/nginx.key"] ||
rc=1; [-d "/etc/nginx/ssl/nginx.key"] && echo 3 && exit 0; (/usr/bin/md5sum
/etc/nginx/ssl/nginx.key 2>/dev/null) || (/sbin/md5sum -q /etc/nginx/ssl/nginx.key
2>/dev/null) || (/usr/bin/digest -a md5 /etc/nginx/ssl/nginx.key 2>/dev/null) ||
(/sbin/md5 -q /etc/nginx/ssl/nginx.key 2>/dev/null) || (/usr/bin/md5 -n /etc/
nginx/ssl/nginx.key 2>/dev/null) || (/bin/md5 -q /etc/nginx/ssl/nginx.key
2>/dev/null) || (/usr/bin/csum -h MD5 /etc/nginx/ssl/nginx.key 2>/dev/null) ||
(/bin/csum -h MD5 /etc/nginx/ssl/nginx.key 2>/dev/null) || (echo "${rc}
/etc/nginx/ssl/nginx.key")\'"\'"\'\'']

Sometimes you might need to use -vvvv when debugging a connection issue, in order
to see an error message that the SSH client is throwing.

For example, if the host doesn’t have SSH running, you’ll see an error that looks like
this:

testserver | FAILED => SSH encountered an unknown error. The output was:
OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011
debug1: Reading configuration data /etc/ssh_config
debug1: /etc/ssh_config line 20: Applying options for *
debug1: /etc/ssh_config line 102: Applying options for *
debug1: auto-mux: Trying existing master
debug1: Control socket "/Users/lorinhochstein/.ansible/cp/ansible-ssh-127.0.0.1-
2222-vagrant" does not exist
debug2: ssh_connect: needpriv 0
debug1: Connecting to 127.0.0.1 [127.0.0.1] port 2222.
debug2: fd 3 setting O_NONBLOCK
debug1: connect to address 127.0.0.1 port 2222: Connection refused
ssh: connect to host 127.0.0.1 port 2222: Connection refused

If you have host key verification enabled, and the host key in ~/.ssh/known_hosts
doesn’t match the host key of the server, then using -vvvv will output an error that
looks like this:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
c3:99:c2:8f:18:ef:68:fe:ca:86:a9:f5:95:9e:a7:23.
Please contact your system administrator.
Add correct host key in /Users/lorinhochstein/.ssh/known_hosts to get rid of this
message.
Offending RSA key in /Users/lorinhochstein/.ssh/known_hosts:1
RSA host key for [127.0.0.1]:2222 has changed and you have requested strict
checking.
Host key verification failed.

264 | Chapter 14: Debugging Ansible Playbooks

If that’s the case, you should delete the offending entry from your ~/.ssh/known_hosts
file.

The Debug Module
We’ve used the debug module several times in this book. It’s Ansible’s version of a
print statement. As shown in Example 14-2, you can use it to print out either the
value of a variable or an arbitrary string.

Example 14-2. The debug module in action

- debug: var=myvariable
- debug: msg="The value of myvariable is {{ var }}"

As we discussed in Chapter 4, you can print out the values of all the variables associ‐
ated with the current host by invoking:

- debug: var=hostvars[inventory_hostname]

The Assert Module
The assert module will fail with an error if a specified condition is not met. For
example, to fail the playbook if there’s no eth1 interface:

- name: assert that eth1 interface exists
 assert:
 that: ansible_eth1 is defined

When debugging a playbook, it can be helpful to insert assertions so that a failure
happens as soon as some assumption you’ve made has been violated.

If you want to check on the status of some file on the host’s file system, then it’s useful
to call the stat module first and make some assertion based on the return value of
that module:

- name: stat /opt/foo
 stat: path=/opt/foo
 register: st

- name: assert that /opt/foo is a directory
 assert:
 that: st.stat.isdir

The stat module collects information about the state of a file path. It returns a dictio‐
nary that contains a stat field with the values shown in Table 14-1.

The Debug Module | 265

Table 14-1. stat module return values

Field Description

atime Last access time of path, in Unix timestamp format

ctime Creation time of path, in Unix timestamp format

dev Numerical ID of the device that the inode resides on

exists True if path exists

gid Numerical group ID of path owner

inode Inode number

isblk True if path is block special device file

ischr True if path is character special device file

isdir True if path is a directory

isfifo True if path is a FIFO (named pipe)

isgid True if set-group-ID bit is set on file

islnk True if path is a symbolic link

isreg True if path is a regular file

issock True if path is a Unix domain socket

isuid True if set-user-ID bit is set on file

mode File mode as a string, in octal (e.g. “1777”)

mtime Last modification time of path, in Unix timestamp format

nlink Number of hard links to the file

pw_name Login name of file owner

rgrp True if group read permission enabled

roth True if other read permission enabled

rusr True if user read permission enabled

266 | Chapter 14: Debugging Ansible Playbooks

Field Description

size File size in bytes, if regular file

uid Numerical user ID of path owner

wgrp True if group write permission enabled

woth True if other write permission enabled

wusr True if user write permission enabled

xgrp True if group execute permission enabled

xoth True if other execute permission enabled

xusr True if user execute permission enabled

Checking Your Playbook Before Execution
The ansible-playbook command supports several flags that allow you to sanity
check your playbook before you execute it.

Syntax Check
The --syntax-check flag, as shown in Example 14-3, will check that your playbook’s
syntax is valid, but it will not execute it.

Example 14-3. syntax check

$ ansible-playbook --syntax-check playbook.yml

List Hosts
The --list-hosts flag, as shown in Example 14-4, will output the hosts that the play‐
book will run against, but it will not execute the playbook.

Example 14-4. list hosts

$ ansible-playbook --list-hosts playbook.yml

Checking Your Playbook Before Execution | 267

Sometimes you get the dreaded error:
ERROR: provided hosts list is empty

There must be one host explicitly specified in your inventory, or
you’ll get this error, even if your playbook only runs against the
localhost. If your inventory is initially empty (perhaps because
you’re using a dynamic inventory script and haven’t launched any
hosts yet), you can work around this by explicitly adding the fol‐
lowing line to your inventory:

localhost ansible_connection=local

List Tasks
The --list-tasks flag, shown in Example 14-5, will output the tasks that the play‐
book will run against. It will not execute the playbook.

Example 14-5. list tasks

$ ansible-playbook --list-tasks playbook.yml

Recall that we used this flag in Example 6-1 to list the tasks in our first Mezzanine
playbook.

Check Mode
The -C and --check flags will run Ansible in check mode (sometimes known as dry-
run), which tells you whether each task in the playbook would modify the host, but
does not make any actual changes to the server.

$ ansible-playbook -C playbook.yml
$ ansible-playbook --check playbook.yml

One of the challenges with using check mode is that later parts of a playbook might
only succeed if earlier parts of the playbook were actually executed. Running check
mode on Example 6-27 yields the error shown in Example 14-6 because the task
depended on an earlier task installing the Git program on the host.

Example 14-6. Check mode failing on a correct playbook

PLAY [Deploy mezzanine] ***

GATHERING FACTS ***
ok: [web]

TASK: [install apt packages] **
changed: [web] => (item=git,libjpeg-dev,libpq-dev,memcached,nginx,postgresql,py
thon-dev,python-pip,python-psycopg2,python-setuptools,python-virtualenv,supervi
sor)

268 | Chapter 14: Debugging Ansible Playbooks

TASK: [check out the repository on the host] **********************************
failed: [web] => {"failed": true}
msg: Failed to find required executable git

FATAL: all hosts have already failed -- aborting

See Chapter 10 for more details on how modules implement check mode.

Diff (Show File Changes)
The -D and -diff flags will output differences for any files that will be changed on the
remote machine. It’s a helpful option to use in conjunction with --check to show how
Ansible would change the file if it were run normally.

$ ansible-playbook -D --check playbook.yml
$ ansible-playbook --diff --check playbook.yml

If Ansible would modify any files (e.g., using modules such as copy, template, and
lineinfile), then it will show the changes in .diff format, like this:

TASK: [set the gunicorn config file] **
--- before: /home/vagrant/mezzanine-example/project/gunicorn.conf.py
+++ after: /Users/lorinhochstein/dev/ansiblebook/ch06/playbooks/templates/gunicor
n.conf.py.j2
@@ -1,7 +1,7 @@
 from __future__ import unicode_literals
 import multiprocessing

 bind = "127.0.0.1:8000"
 workers = multiprocessing.cpu_count() * 2 + 1
-loglevel = "error"
+loglevel = "warning"
 proc_name = "mezzanine-example"

Limiting Which Tasks Run
Sometimes you don’t want Ansible to run every single task in your playbook, particu‐
larly when you’re first writing and debugging the playbook. Ansible provides several
command-line options that let you control which tasks run.

Step
The --step flag, shown in Example 14-7, will have Ansible prompt you before run‐
ning each task, like this:

Perform task: install packages (y/n/c):

You can choose to execute the task (y), skip it (n), or tell Ansible to continue running
the rest of the playbook without prompting you (c).

Limiting Which Tasks Run | 269

Example 14-7. step

$ ansible-playbook --step playbook.yml

Start-at-Task
The --start-at-task taskname flag, shown in Example 14-8, tells Ansible to start
running the playbook at the specified task, instead of at the beginning. This can be
very handy if one of your tasks failed because there was a bug in one of your tasks,
and you want to re-run your playbook starting at the task you just fixed.

Example 14-8. start-at-task

$ ansible-playbook --start-at-task="install packages" playbook.yml

Tags
Ansible allows you to add one or more tags to a task or a play. For example, here’s a
play that’s tagged with foo and a task that’s tagged with bar and quux:

- hosts: myservers
 tags:
 - foo
 tasks:
 - name: install editors
 apt: name={{ item }}
 with_items:
 - vim
 - emacs
 - nano

 - name: run arbitrary command
 command: /opt/myprog
 tags:
 - bar
 - quux

Use the -t tagnames or --tags tagnames flag to tell Ansible to only run plays and
tasks that have certain tags. Use the --skip-tags tagnames flag to tell Ansible to skip
plays and tasks that have certain tags. See Example 14-9.

Example 14-9. Running or skipping tags

$ ansible-playbook -t foo,bar playbook.yml
$ ansible-playbook --tags=foo,bar playbook.yml
$ ansible-playbook --skip-tags=baz,quux playbook.yml

270 | Chapter 14: Debugging Ansible Playbooks

Onward
As this chapter ends, so does our journey together. And yet, your journey with Ansi‐
ble is just beginning. I hope that you’ll come to enjoy working with it as much as I do,
and that the next time you encounter colleagues who is in clear need of an automa‐
tion tool, you’ll show them how Ansible can make their lives easier.

Onward | 271

APPENDIX A

SSH

Because Ansible uses SSH as its transport mechanism, you’ll need to understand
some of SSH’s features to take advantage of them with Ansible.

Native SSH
By default, Ansible uses the native SSH client installed on your operating system. This
means that Ansible can take advantage of all of the typical SSH features, including
Kerberos and jump hosts. If you have a ~/.ssh/config file with custom configurations
for your SSH setup, Ansible will respect these settings.

SSH Agent
There’s a handy program called ssh-agent that simplifies working with SSH private
keys.

When ssh-agent is running on your machine, you can add private keys to it using the
ssh-add command.

$ ssh-add /path/to/keyfile.pem

The SSH_AUTH_SOCK environment variable must be set, or the ssh-
add command will not be able to communicate with ssh-agent. See
“Starting Up ssh-agent” on page 274.

You can use the -L flag with the ssh_add program to see which keys have been added
to your agent, as shown in Example A-1. This example shows that there are two keys
in the agent.

273

Example A-1. Listing the keys in the agent

$ ssh-add -L
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDWAfog5tz4W9bPVbPDlNC8HWMfhjTgKOhpSZYI+clc
 e3/pz5viqsHDQIjzSImoVzIOTV0tOIfE8qMkqEYk7igESccCy0zN9VnD6EfYVkEx1C+xqkCtZTEVuQn
 d+4qyo222EAVkHm6bAhgyoA9nt9Um9WFO0045yHZL2Do9Z7KXTS4xOqeGF5vv7SiuKcsLjORPcWcYqC
 fYdrdUdRD9dFq7zFKmpCPJqNwDQDrXbgaTOe+H6cu2f4RrJLp88WY8voB3zJ7avv68eOgah82dovSgw
 hcsZp4SycZSTy+WqZQhzLogaifvtdgdzaooxNtsm+qRvQJyHkwdoXR6nJgt /Users/lorinhochste
 in/.ssh/id_rsa
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA6NF8iallvQVp22WDkTkyrtvp9eWW6A8YVr+kz4TjGYe7
 gHzIw+niNltGEFHzD8+v1I2YJ6oXevct1YeS0o9HZyN1Q9qgCgzUFtdOKLv6IedplqoPkcmF0aYet2P
 kEDo3MlTBckFXPITAMzF8dJSIFo9D8HfdOV0IAdx4O7PtixWKn5y2hMNG0zQPyUecp4pzC6kivAIhyf
 HilFR61RGL+GPXQ2MWZWFYbAGjyiYJnAmCP3NOTd0jMZEnDkbUvxhMmBYSdETk1rRgm+R4LOzFUGaHq
 HDFIPKcF96hrucXzcWyLbIbEgE98OHlnVYCzRdK8jlqm8tehUc9c9WhQ== insecure_private_key

When you try to make a connection to a remote host, and you have ssh-agent run‐
ning, the SSH client will try to use the keys stored in ssh-agent to authenticate with
the host.

Using an SSH agent has several advantages:

• The SSH agent makes it easier to work with encrypted SSH private keys. If you
use an encrypted SSH private key, then the private key file is protected with a
password. When you use this key to make an SSH connection to a host, then you
will be prompted to type in the password. With an encrypted private key, even if
somebody got access to your private SSH key, they wouldn’t be able to use it
without the password. If you use an encrypted SSH private key, and you aren’t
using an SSH agent, then you have to type in the encryption password each time
you use the private key. If you are using an SSH agent, then you only have to type
the private key password when you add the key to the agent.

• If you are using Ansible to manage hosts that use different SSH keys, using an
SSH agent simplifies your Ansible configuration files; you don’t have to explicitly
specify the ansible_ssh_private_key_file on your hosts as we did back in
Example 1-1.

• If you need to make an SSH connection from your remote host to a different host
(e.g., cloning a private Git repository over SSH), you can take advantage of agent
forwarding so that you don’t have to copy private SSH keys over to the remote
host. We explain agent forwarding next.

Starting Up ssh-agent
How you start up the SSH agent varies depending on which operating system you’re
running.

274 | Appendix A: SSH

Mac OS X
Mac OS X comes preconfigured to run ssh-agent, so there’s nothing you need to do.

Linux
If you’re running on Linux, you’ll need to start up ssh-agent yourself and ensure its
environment variables are set correctly. If you invoke ssh-agent directly, it will output
the environment variables you’ll need to set. For example:

$ ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-YI7PBGlkOteo/agent.2547; export SSH_AUTH_SOCK;
SSH_AGENT_PID=2548; export SSH_AGENT_PID;
echo Agent pid 2548;

You can automatically export these environment variables by invoking ssh-agent like
this:

$ eval $(ssh-agent)

You’ll also want to ensure that you only have one instance of ssh-agent running at a
time. There are various helper tools on Linux, such as Keychain and Gnome Keyring,
for managing ssh-agent startup for you, or you can modify your .profile file to ensure
that ssh-agent starts up exactly once in each login shell. Configuring your account for
ssh-agent is beyond the scope of this book, so I recommend you consult your Linux
distribution’s documentation for more details on how to set this up.

Agent Forwarding
If you are cloning a Git repository over SSH, you’ll need to use an SSH private key
recognized by your Git server. I like to avoid copying private SSH keys to my hosts, in
order to limit the damage in case a host ever gets compromised.

One way to avoid copying SSH private keys around is to use the ssh-agent program
on your local machine, with agent forwarding. If you SSH from your laptop to host A,
and you have agent forwarding enabled, then agent forwarding allows you to SSH
from host A to host B using the private key that resides on your laptop.

Figure A-1 shows an example of agent forwarding in action. Let’s say you want to
check out a private repository from GitHub, using SSH. You have ssh-agent running
on your laptop, and you’ve added your private key using the ssh-add command.

SSH | 275

Figure A-1. Agent forwarding in action

If you were manually SSHing to the app server, you would call the ssh command with
the -A flag, which enables agent forwarding:

$ ssh -A myuser@myappserver.example.com

On the app server, you check out a Git repository using an SSH URL:

$ git clone git@github.com:lorin/mezzanine-example.git

Git will connect via SSH to GitHub. The GitHub SSH server will try to authenticate
against the SSH client on the app server. The app server doesn’t know your private
key. However, because you enabled agent forwarding, the SSH client on the app
server will connect back to ssh-agent running on your laptop, which will handle the
authentication.

There are a couple of issues you need to keep in mind in using agent forwarding with
Ansible.

First, you need to tell Ansible to enable agent forwarding when it connects to remote
machines, because SSH does not enable agent forwarding by default.

You can enable agent forwarding for all nodes you SSH to by adding the following
lines to your ~/.ssh/config file on your control machine:

Host *
 ForwardAgent yes

Or, if you only want to enable agent forwarding for a specific server, add this:

Host appserver.example.com
 ForwardAgent yes

276 | Appendix A: SSH

If, instead, you only want to enable agent forwarding for Ansible, then you can edit
your ansible.cfg file by adding it to the ssh_args parameter in the ssh_connection
section:

[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=60s -o ForwardAgent=yes

Here, I used the more verbose -o ForwardAgent=yes flag instead of the shorter -A
flag, but it does the same thing.

The ControlMaster and ControlPersist settings are needed for a performance opti‐
mization called SSH multiplexing. They are on by default, but if you override the
ssh_args variable, then you need to explicitly specify them or you will disable this
performance boost. We discuss SSH multiplexing in Chapter 9.

Sudo and Agent Forwarding
When you enable agent forwarding, the remote machine sets the SSH_AUTH_SOCK
environment variable, which contains a path to a UNIX-domain socket (e.g., /tmp/
ssh-FShDVu5924/agent.5924). However, if you do sudo, then the SSH_AUTH_SOCK envi‐
ronment variable won’t carry over unless you explicitly configure sudo to allow this
behavior.

To allow the SSH_AUTH_SOCK variable to carry over via sudo to the root user, we can
add the following line either to the /etc/sudoers file or (on Debian-based distributions
like Ubuntu) to its own file in the /etc/sudoers.d directory.

Defaults>root env_keep+=SSH_AUTH_SOCK

Let’s call this file 99-keep-ssh-auth-sock-env and put it in the files directory on our
local machine.

Validating Files
The copy and template modules support a validate clause. This clause lets you spec‐
ify a program to run against the file that Ansible will generate. Use %s as a placeholder
for the filename. For example:

validate: visudo -cf %s

When the validate clause is present, Ansible will copy the file to a temporary direc‐
tory first and then run the specified validation program. If the validation program
returns success (0), then Ansible will copy the file from the temporary location to the
proper destination. If the validation program returns a non-zero return code, Ansible
will return an error that looks like this:

failed: [myhost] => {"checksum": "ac32f572f0a670c3579ac2864cc3069ee8a19588",
"failed": true}

SSH | 277

msg: failed to validate: rc:1 error:

FATAL: all hosts have already failed -- aborting

Since a bad sudoers file can keep us from accessing it as root, it’s always a good idea to
validate a sudoers file using the visudo program. For a cautionary tale about invalid
sudoers files, see Ansible contributor Jan-Piet Mens’s blog post, “Don’t try this at the
office: /etc/sudoers.”.

- name: copy the sudoers file so we can do agent forwarding
 copy:
 src: files/99-keep-ssh-auth-sock-env
 dest: /etc/sudoers.d/99-keep-ssh-auth-sock-env
 owner: root group=root mode=0440
 validate: visudo -cf %s

Unfortunately, it’s not currently possible to sudo as a non-root user and use agent for‐
warding. For example, let’s say you wanted to sudo from the ubuntu user to a deploy
user. The problem is that the UNIX-domain socket pointed to be the SSH_AUTH_SOCK
is owned by the ubuntu user and won’t be readable or writeable by the deploy user.

As a workaround, you can always invoke the Git module as root and then change the
permissions with the file module, as shown in Example A-2.

Example A-2. Cloning as root and changing permissions

- name: verify the config is valid sudoers file
 local_action: command visudo -cf files/99-keep-ssh-auth-sock-env
 sudo: True

- name: copy the sudoers file so we can do agent forwarding
 copy: >
 src=files/99-keep-ssh-auth-sock-env
 dest=/etc/sudoers.d/99-keep-ssh-auth-sock-env
 owner=root group=root mode=0440
 validate='visudo -cf %s'
 sudo: True

- name: check out my private git repository
 git: repo=git@github.com:lorin/mezzanine-example.git dest={{ proj_path }}
 sudo: True

- name: set file ownership
 file: >
 path={{ proj_path }} state=directory recurse=yes
 owner={{ user }} group={{ user }}
 sudo: True

278 | Appendix A: SSH

http://bit.ly/1DfeQY7
http://bit.ly/1DfeQY7

Host Keys
Every host that runs an SSH server has an associated host key. The host key acts like a
signature that uniquely identifies the host. Host keys exist to prevent man-in-the-
middle attacks. If you’re cloning a Git repository over SSH from GitHub, you don’t
really know whether the server that claims to be github.com is really GitHub’s server,
or is an impostor that used DNS spoofing to pretend to be github.com. Host keys
allow you to check that the server that claims to be github.com really is github.com.
This means that you need to have the host key (a copy of what the signature should
look like) before you try to connect to the host.

Ansible will check the host key by default, although you can disable this behavior in
ansible.cfg, like this:

[defaults]
host_key_checking = False

Host key checking also comes into play with the git module. Recall in Chapter 6 how
the git module took an accept_hostkey parameter:

- name: check out the repository on the host
 git: repo={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes

The git module can hang when cloning a Git repository using the SSH protocol if
host key checking is enabled on the host and the Git server’s SSH host key is not
known to the host.

The simplest approach is to use the accept_hostkey parameter to tell Git to automat‐
ically accept the host key if it isn’t known, which is the approach we use in
Example 6-5.

Many people simply accept the host key and don’t worry about these types of man-in-
the-middle attacks. That’s what we did in our playbook, by specifying accept_host
key=yes as an argument when invoking the git module. However, if you are more
security conscious and don’t want to automatically accept the host key, then you can
manually retrieve and verify GitHub’s host key, and then add it to the system-
wide /etc/ssh/known_hosts file or, for a specific user, to the user’s ~/.ssh/known_hosts
file.

To manually verify GitHub’s SSH host key, you’ll need to get the SSH host key finger‐
print from the Git server using some kind of out-of-band channel. If you’re using
GitHub as your Git server, you can look up its SSH key fingerprint on the GitHub
website.

As of this writing, GitHub’s RSA fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:
56:4d:eb:df:a6:48, but don’t take my word for it—go check the website.

SSH | 279

http://bit.ly/1DffcxK

Next, you need to retrieve the full SSH host key. You can use the ssh-keyscan program
to retrieve the host key associated with the host with hostname github.com. I like to
put files that Ansible will deal with in the files directory, so let’s do that:

$ mkdir files
$ ssh-keyscan github.com > files/known_hosts

The output looks like this:

github.com ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccK
rpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQ
NnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+
weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2Sm
Vi/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==

For the more paranoid, the ssh-keyscan command supports an -H flag so that the
hostname won’t show up in the known_hosts file. Even if somebody gets access to
your known hosts file, they can’t tell what the hostnames are. When using this flag,
the output looks like this:

|1|BI+Z8H3hzbcmTWna9R4orrwrNrg=|wCxJf50pTQ83JFzyXG4aNLxEmzc= ssh-rsa AAAAB3NzaC1y
c2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEI
cKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7Vf
DESU84KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVa
l72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi/w4yCE6gbODqnT
Wlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==

You then need to verify that the host key in the files/known_hosts file matches the fin‐
gerprint you found on GitHub. You can check with the ssh-keygen program:

$ ssh-keygen -lf files/known_hosts

The output should match the RSA fingerprint advertised on the website, like this:

2048 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48 github.com (RSA)

Now that you are confident that you have the correct host key for your Git server, you
can use the copy module to copy it to /etc/ssh/known_hosts.

- name: copy system-wide known hosts
 copy: src=files/known_hosts dest=/etc/ssh/known_hosts owner=root group=root
 mode=0644

Alternatively, you can copy it to a specific user’s ~/.ssh/known_hosts. Example A-3
shows how to copy the known hosts file from the control machine to the remote
hosts.

Example A-3. Adding known host

- name: ensure the ~/.ssh directory exists
 file: path=~/.ssh state=directory

280 | Appendix A: SSH

- name: copy known hosts file
 copy: src=files/known_hosts dest=~/.ssh/known_hosts mode=0600

A Bad Host Key Can Cause Problems, Even with Key Checking Disabled
If you have disabled host key checking in Ansible by setting host_key_checking to
false in your ansible.cfg file, and the host key for the host that Ansible is trying to con‐
nect to does not match the key entry in your ~/.ssh/known_hosts file, then agent for‐
warding won’t work. Trying to clone a Git repository will then result in an error that
looks like this:

TASK: [check out the repository on the host] ********************************
failed: [web] => {"cmd": "/usr/bin/git ls-remote git@github.com:lorin/
mezzanine- example.git -h refs/heads/HEAD", "failed": true, "rc": 128}
stderr: Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

msg: Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

FATAL: all hosts have already failed -- aborting

This can happen if you’re using Vagrant, and you destroy a Vagrant machine and then
create a new one, because the host key changes every time you create a new Vagrant
machine. You can check if agent forwarding is working by doing this:

$ ansible web -a "ssh-add -l"

If it’s working, you’ll see output like:

web | success | rc=0 >>
2048 e5:ec:48:d3:ec:5e:67:b0:22:32:6e:ab:dd:91:f9:cf /Users/lorinhochstein/
.ssh/id_rsa (RSA)

If it’s not working, you’ll see output like:

web | FAILED | rc=2 >>
Could not open a connection to your authentication agent.

If this happens to you, then delete the appropriate entry from your ~/.ssh/
known_hosts file.

Note that because of SSH multiplexing, Ansible maintains an open SSH connection to
the host for 60 seconds, and you need to wait for this connection to expire, or you
won’t see the effect of modifying the known_hosts file.

SSH | 281

Clearly, there’s a lot more work involved in verifying an SSH host key than blindly
accepting it. As is often the case, there’s a trade-off between security and convenience.

282 | Appendix A: SSH

APPENDIX B

Default Settings

Ansible defines a number of settings. You can override the default values of these set‐
tings in the Ansible configuration file or as an environment variable.

The configuration file is broken up into the following sections:

• defaults
• ssh_connection
• paramiko
• accelerate

Table B-1. Defaults section

Config name Environment variable Default value

hostfile ANSIBLE_HOSTS /etc/ansible/hosts

library ANSIBLE_LIBRARY (none)

roles_path ANSIBLE_ROLES_PATH /etc/ansible/roles

remote_tmp ANSIBLE_REMOTE_TEMP $HOME/.ansible/tmp

module_name (none) command

pattern (none) *

forks ANSIBLE_FORKS 5

module_args ANSIBLE_MODULE_ARGS (empty string)

283

Config name Environment variable Default value

module_lang ANSIBLE_MODULE_LANG en_US.UTF-8

timeout ANSIBLE_TIMEOUT 10

poll_interval ANSIBLE_POLL_INTERVAL 15

remote_user ANSIBLE_REMOTE_USER current user

ask_pass ANSIBLE_ASK_PASS false

private_key_file ANSIBLE_PRIVATE_KEY_FILE (none)

sudo_user ANSIBLE_SUDO_USER root

ask_sudo_pass ANSIBLE_ASK_SUDO_PASS false

remote_port ANSIBLE_REMOTE_PORT (none)

ask_vault_pass ANSIBLE_ASK_VAULT_PASS false

vault_password_file ANSIBLE_VAULT_PASSWORD_FILE (none)

ansible_managed (none) Ansible managed: {file} modified on %Y-%m-%d %H:
%M:%S by {uid} on {host}

syslog_facility ANSIBLE_SYSLOG_FACILITY LOG_USER

keep_remote_files ANSIBLE_KEEP_REMOTE_FILES true

sudo ANSIBLE_SUDO false

sudo_exe ANSIBLE_SUDO_EXE sudo

sudo_flags ANSIBLE_SUDO_FLAGS -H

hash_behaviour ANSIBLE_HASH_BEHAVIOUR replace

jinja2_extensions ANSIBLE_JINJA2_EXTENSIONS (none)

su_exe ANSIBLE_SU_EXE su

su ANSIBLE_SU false

su_flag ANSIBLE_SU_FLAGS (empty string)

284 | Appendix B: Default Settings

Config name Environment variable Default value

su_user ANSIBLE_SU_USER root

ask_su_pass ANSIBLE_ASK_SU_PASS false

gathering ANSIBLE_GATHERING implicit

action_plugins ANSIBLE_ACTION_PLUGINS /usr/share/ansible_plugins/action_plugins

cache_plugins ANSIBLE_CACHE_PLUGINS /usr/share/ansible_plugins/cache_plugins

callback_plugins ANSIBLE_CALLBACK_PLUGINS /usr/share/ansible_plugins/callback_plugins

connection_plugins ANSIBLE_CONNECTION_PLUGINS /usr/share/ansible_plugins/connection_plugins

lookup_plugins ANSIBLE_LOOKUP_PLUGINS /usr/share/ansible_plugins/lookup_plugins

vars_plugins ANSIBLE_VARS_PLUGINS /usr/share/ansible_plugins/vars_plugins

filter_plugins ANSIBLE_FILTER_PLUGINS /usr/share/ansible_plugins/filter_plugins

log_path ANSIBLE_LOG_PATH (empty string)

fact_caching ANSIBLE_CACHE_PLUGIN memory

fact_caching_connection ANSIBLE_CACHE_PLUGIN_CONNECTION (none)

fact_caching_prefix ANSIBLE_CACHE_PLUGIN_PREFIX ansible_facts

fact_caching_timeout ANSIBLE_CACHE_PLUGIN_TIMEOUT 86400 (seconds)

force_color ANSIBLE_FORCE_COLOR (none)

nocolor ANSIBLE_NOCOLOR (none)

nocows ANSIBLE_NOCOWS (none)

display_skipped_hosts DISPLAY_SKIPPED_HOSTS true

error_on_undefined_vars ANSIBLE_ERROR_ON_UNDEFINED_VARS true

host_key_checking ANSIBLE_HOST_KEY_CHECKING true

system_warnings ANSIBLE_SYSTEM_WARNINGS true

deprecation_warnings ANSIBLE_DEPRECATION_WARNINGS true

Default Settings | 285

Config name Environment variable Default value

callable_whitelist ANSIBLE_CALLABLE_WHITELIST (empty list)

command_warnings ANSIBLE_COMMAND_WARNINGS false

bin_ansible_callbacks ANSIBLE_LOAD_CALLBACK_PLUGINS false

If you installed Ansible using a package manager, then default
paths for the plug-ins might be different than those listed here,
since the downstream package manager might have modified the
default locations of Ansible-related files from what is specified in
the upstream Ansible project.

Table B-2. ssh_connection section

Config name Environment variable Default value

ssh_args ANSIBLE_SSH_ARGS -o ControlMaster=auto -o ControlPersist=60s -o
ControlPath="$ANSIBLE_SSH_CONTROL_PATH”

control_path ANSIBLE_SSH_CONTROL_PATH %(directory)s/ansible-ssh-%%h-%%p-%%r

pipelining ANSIBLE_SSH_PIPELINING false

scp_if_ssh ANSIBLE_SCP_IF_SSH false

Ansible substitutes the %(directory)s variable in the _control_path config file to
$HOME/.ansible/cp.

Table B-3. paramiko section

Config name Environment variable Default value

record_host_keys ANSIBLE_PARAMIKO_RECORD_HOST_KEYS true

pty ANSIBLE_PARAMIKO_PTY true

286 | Appendix B: Default Settings

Table B-4. accelerate section

Config name Environment variable Default value

accelerate_keys_dir ACCELERATE_KEYS_DIR \~/.fireball.keys

accelerate_keys_dir_perms ACCELERATE_KEYS_DIR_PERMS 700

accelerate_keys_file_perms ACCELERATE_KEYS_FILE_PERMS 600

accelerate_multi_key ACCELERATE_MULTI_KEY false

Default Settings | 287

APPENDIX C

Using IAM Roles for EC2 Credentials

If you’re going to run Ansible inside of a VPC, you can take advantage of Amazon’s
Identity and Access Management (IAM) roles so that you do not even need to set
environment variables to pass your EC2 credentials to the instance.

Amazon’s IAM roles let you define users and groups and control what those users and
groups are permitted to do with EC2 (e.g., get information about your running
instances, create instances, create images). You can also assign IAM roles to running
instances, so you can effectively say: “This instance is allowed to start other instan‐
ces.”

When you make requests against EC2 using a client program that supports IAM
roles, and an instance is granted permissions by an IAM role, the client will fetch the
credentials from the EC2 instance metadata service and use those to make requests
against the EC2 service end point.

You can create an IAM role through the Amazon Web Services (AWS) management
console, or at the command line using the AWS Command Line Interface tool, or
AWS CLI.

AWS Management Console
Here’s how you would use the AWS management console to create an IAM role that
has “Power User Access,” meaning that it is permitted to do pretty much anything
with AWS except to modify IAM users and groups.

1. Log in to the AWS management console.
2. Click on “Identity & Access Management.”
3. Click on “Roles” at the left.

289

http://amzn.to/1Cu0fTl
http://aws.amazon.com/cli/
https://console.aws.amazon.com

4. Click the “Create New Role” button.
5. Give your role a name. I like to use “ansible” as the name for the role for my

instance that will run Ansible.
6. Under “AWS Service Roles,” select “Amazon EC2.”
7. Select “Power User Access.” The web interface should then show you a policy

name and a policy document, and give you an opportunity to edit them if you
like. The default policy name will look something like PowerUserAccess-
ansible-201411182152, and the policy document is a JSON string that should look
like Example C-1.

8. Click “Next Step.”
9. Click “Create Role.”

Example C-1. IAM power user policy document

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "NotAction": "iam:*",
 "Resource": "*"
 }
]
}

When you create a role through the web interface, AWS also automatically creates an
instance profile with the same name as the role (e.g., “ansible”), and associates the role
with the instance profile name. When you create an instance with the ec2 module, if
you pass the instance profile name as the instance_profile_name parameter, then
the created instance will have the permissions of that role.

Command-Line
You can also create the role and the instance profile using the AWS CLI tool, but it’s a
bit more work. You need to:

1. Create a role, specifying the trust policy. The trust policy describes the entities
that can assume the role and the access conditions for the role.

2. Create a policy that describes what the role is permitted to do. In our case, we
want to create the equivalent of the power user, where the role can perform any
AWS-related action except manipulate IAM roles and groups.

3. Create an instance profile.

290 | Appendix C: Using IAM Roles for EC2 Credentials

4. Associate the role with the instance profile.

You’ll need to create two IAM policy files first, which are in JSON format. The trust
policy is shown in Example C-2. This is the same trust policy that AWS automatically
generates when you create the role via the web interface.

The role policy that describes what the role is allowed to do is shown in Example C-3.

Example C-2. trust-policy.json

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Example C-3. power-user.json

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "NotAction": "iam:*",
 "Resource": "*"
 }
]
}

Example C-4 shows how you’d create an instance profile on the command line, once
you’ve created the files shown in Examples C-2 and C-3.

Example C-4. Creating an instance profile at the command line

Make sure that trust-policy.json and power-user.json are in the
current directory, or change the file:// arguments to include the
complete path

$ aws iam create-role --role-name ansible --assume-role-policy-document \
 file://trust-policy.json
$ aws iam put-role-policy --role-name ansible --policy-name \
 PowerUserAccess-ansible-20141118 --policy-document file://power-user.json

Using IAM Roles for EC2 Credentials | 291

$ aws iam create-instance-profile --instance-profile-name ansible
$ aws iam add-role-to-instance-profile --instance-profile-name ansible \
 --role-name ansible

As you can see, it’s much simpler to do this via the web interface, but if you want to
automate this, then you can use the command line instead. Check out the AWS Iden‐
tity and Access Management User Guide for more details on IAM.

Once you’ve created the instance profile, you can then launch an EC2 instance with
that instance profile. You can do this with the ec2 module using the instance_pro
file_name parameter:

- name: launch an instance with iam role
 ec2:
 instance_profile_name: ansible
 # Other parameters not shown

If you SSH into this instance, you can query the EC2 metadata service to confirm that
this instance is associated with the Ansible profile. The output should look something
like this:

$ curl http://169.254.169.254/latest/meta-data/iam/info
{
 "Code" : "Success",
 "LastUpdated" : "2014-11-17T02:44:03Z",
 "InstanceProfileArn" : "arn:aws:iam::549704298184:instance-profile/ansible",
 "InstanceProfileId" : "AIPAINM7F44YGDNIBHPYC"
}

You can also directly inspect the credentials, although it’s not something you need to
do. The Boto library will automatically retrieve these credentials when the Ansible
ec2 modules or dynamic inventory script executes:

$ curl http://169.254.169.254/latest/meta-data/iam/security-credentials/ansible
{
 "Code" : "Success",
 "LastUpdated" : "2015-02-09T21:45:20Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "ASIAIYXCUETJPY42AC2Q",
 "SecretAccessKey" : "ORp9gldiymIKH9+rFtWEx8BjGRteNTQSRnLnlmWq",
 "Token" : "AQoDYXdzEGca4AMPC5W69pvtENpXjw79oH9...",
 "Expiration" : "2015-02-10T04:10:36Z"
}

These credentials are temporary, and Amazon will rotate them automatically for you.

You can now use this instance as your control machine, without needing to specify
your credentials via environment variables. The Ansible ec2 modules will automati‐
cally retrieve the credentials from the metadata service.

292 | Appendix C: Using IAM Roles for EC2 Credentials

http://docs.aws.amazon.com/IAM/latest/UserGuide
http://docs.aws.amazon.com/IAM/latest/UserGuide

Glossary

Alias
When the name of a host in the inventory
is different from the actual hostname of
the host.

AMI
Amazon Machine Image, a virtual
machine image in the Amazon Elastic
Compute Cloud, also known as EC2.

Ansible, Inc.
The company that manages the Ansible
project.

Ansible Galaxy
A repository of Ansible roles contributed
by the community.

Ansible Tower
A proprietary web-based dashboard and
REST interface for controlling Ansible,
sold by Ansible, Inc.

Check mode
An optional mode when running a play‐
book. When check mode is enabled, and
when Ansible executes a playbook, it will
not make any changes to remote hosts.
Instead, it will simply report whether each
task would have changed the state of the
host. Sometimes referred to as “dry run”
mode.

CIDR
Classless Inter-Domain Routing, a nota‐
tion for specifying a range of IP addresses,

used when defining Amazon EC2 security
groups.

Configuration management
A process for ensuring that servers are in
the proper state for doing their job.

By state, we mean things like the configu‐
ration files for server applications have the
correct values, the proper files are present,
the correct services are running, the
expected user accounts are present, per‐
missions are set correctly, and so on.

Convergence
A property of configuration management
systems where the system will execute
multiple times against a server in order to
get the server to reach the desired state,
with each execution bringing the server
closer to the desired state. Convergence is
most closely associated with the CFEngine
configuration management system. Con‐
vergence doesn’t really apply to Ansible,
which puts servers into desired states after
a single execution.

Complex arguments
Arguments passed to modules that are of
type list or dictionary.

Container
A form of server virtualization where the
virtualization is implemented at the oper‐
ating system level, so that the virtual
machine instance shares the same kernel

293

https://galaxy.ansible.com

as the host. Docker is the most well-
known container technology.

Control machine
The computer that you run Ansible on
that is used to control the remote hosts.

Control socket
A Unix domain socket that SSH clients
will use to connect to a remote host when
SSH multiplexing is enabled.

ControlPersist
A synonym for SSH multiplexing.

Declarative
A type of programming language where
the programmer describes the desired
output, not the procedure for how to
compute the output. Ansible’s playbooks
are declarative. SQL is another example of
a declarative language. Contrast with pro‐
cedural languages, such as Java and
Python.

Deployment
The process of bringing software up onto
a live system.

DevOps
IT buzzword that gained popularity in the
mid-2010s.

Dry run
See Check mode.

DSL
Domain-specific language. In systems that
use DSLs, the user interacts with the sys‐
tems by writing text files in the domain-
specific language and then runs those files
through the system. DSLs are not as pow‐
erful as general-purpose programming
language, but (if designed well) they are
easier to read and write than general-
purpose programming language. Ansible
exposes a DSL that uses YAML syntax.

Dynamic inventory
Source that provides Ansible with infor‐
mation about hosts and groups at play‐
book execution time.

EBS
Elastic block store. On Amazon EC2, an
EBS refers to a persistent disk that can be
attached to instances.

Fact
A variable that contains information
about a specific host.

Facter
A tool used by Puppet to retrieve infor‐
mation about a host. Ansible will invoke
Facter when gathering facts about a host,
if Facter is installed.

Glob
A glob is a pattern used by Unix shells to
match against filenames. For example,
*.txt is a glob that would match all files
that end in .txt.

Group
A named collection of hosts.

Handler
Similar to a task, except that handlers only
execute in response to a task that is con‐
figured to notify the handler on change of
state.

Host
A remote server managed by Ansible.

IAM
Identity and Access Management, a fea‐
ture of Amazon’s Elastic Compute Cloud
that allows you to manage user and group
permissions.

Idempotent
An action is idempotent if executing the
action multiple times has the same effect
as executing it once.

Instance
A virtual machine. The term is commonly
used to refer to a virtual machine running
inside an infrastructure-as-a-service
cloud, such as Amazon’s Elastic Cloud
Compute (EC2).

Inventory
The list of hosts and groups

Control machine

294 | Glossary

Lookups
Code that executes on the control
machine to obtain some configuration
data needed by Ansible while a playbook
is running.

Module
Modules are Ansible scripts that perform
one specific task. Examples include creat‐
ing a user account, installing a package, or
starting a service. Most Ansible modules
are idempotent.

Ohai
A tool used by Chef to retrieve informa‐
tion about a host. Ansible will invoke
Ohai when gathering facts about a host, if
Ohai is installed.

Orchestration
Performing a series of tasks in a well-
specified order on a collection of servers.
Orchestration is often needed for per‐
forming deployments.

Pattern
Ansible syntax for describing which hosts
to run a play against.

Play
Associates a set of hosts with a list of tasks
to perform on that host.

Playbook
An Ansible script. It specifies a list of
plays and a collection of hosts to execute
the plays against.

Registered variable
A variable created by using the register
clause in a task.

Role
An Ansible mechanism for bundling
together a collection of tasks, handlers,
files, templates, and variables.

For example, an nginx role might contain
tasks for installing the nginx package,
generating the nginx configuration file,
copying TLS certificate files, and starting
the nginx service.

SSH multiplexing
A feature of the OpenSSH SSH client that
can reduce the time it takes to make an
SSH connection when making multiple
SSH connections to the same machine.
Ansible uses SSH multiplexing by default
to improve performance.

Task
The unit of work in an Ansible play. A
task specifies a module and its arguments,
as well as an optional name and some
additional optional parameters.

TLS
Transport Layer Security, a protocol used
to secure communications between web
servers and browsers. TLS superseded an
earlier protocol called Secure Sockets Layer
(SSL). Many people refer to TLS incor‐
rectly as SSL.

Transport
The protocol and implementation Ansible
uses to connect to the remote host. The
default transport is SSH.

Vault
A mechanism used by Ansible for
encrypting sensitive data on disk. Typi‐
cally used to safely store secret data in a
version control system.

Vagrant
A tool for managing virtual machines,
intended for use by developers to create
reproducible development environments.

Virtualenv
A mechanism for installing Python pack‐
ages into an environment that can be acti‐
vated and deactivated. Enables a user to
install Python packages without root
access and without polluting the global
Python package library on the machine.

VPC
Virtual private cloud. A term used by
Amazon EC2 to describe an isolated net‐
work you can create for your EC2 instan‐
ces.

VPC

Glossary | 295

Bibliography

• [ansible-aws] Kurniawan, Yan. Ansible for AWS. Leanpub, 2015 (forthcoming).
• [cloudsysadmin] Limoncelli, Thomas A.; Hogan, Christina J.; Chalup, Strata R.

The Practice of Cloud System Administration: Designing and Operating Large Dis‐
tributed Systems. Addison-Wesley Professional, 2014.

• [dataintensive] Kleppmann, Martin. Designing Data-Intensive Applications.
O’Reilly Media, 2015.

• [nist] Mell, Peter; Grance, Timothy. The NIST Definition of Cloud Computing.
NIST Special Publication 800-145, 2011.

• [openssh] OpenSSH/Cookbook/Multiplexing, Wikibooks, http://bit.ly/1bpeV0y,
October 28, 2014.

• [pragprog] Hunt, Andrew; Thomas, David. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley, 1999.

• [tastetest] Jaynes, Matt. Taste Test: Puppet, Chef, Salt, Ansible. Publisher, 2014.
• [vagrant] Hashimoto, Mitchell. Vagrant: Up and Running. O’Reilly Media, 2013.
• [webops] Shafer, Andrew Clay. Agile Infrastructure in Web Operations: Keeping

the Data on Time. O’Reilly Media, 2010.

297

http://bit.ly/1bpeV0y

Index

A
A records, 140
abstraction, layers of, 7
accelerate configurations, 286
accelerated mode, 10, 171
accelerate_keys_dir configuration, 286
accelerate_keys_dir_perms configuration, 286
accelerate_keys_file_perms configuration, 286
accelerate_multi_key configuration, 286
action_plugins configuration, 283
add_file_common_args, 184, 186
add_host, 65
agent forwarding

for Vagrant, 197
SSH, 275-278
Sudo and, 277

aliases option, 182
aliases, host, 54
Amazon machine image (AMI), 205

building, 232-236
building with ec2_ami module, 232
building with Packer, 232-236
getting latest, 220

ami_launch_index, 222
Ansible

advantages of, 5-8
default settings, 283-286
installation, 10
naming, 2
prerequisites for, 9
setting up server for testing, 11-20
simple use case with, 3
simplicity/power of, 8
uses of, 2

Ansible Galaxy, 8, 159
Ansible Tower, 10
Ansible, Inc., 8
ansible-galaxy, 157
ansible-pull, 6
ansible-vault commands, 130
ansible-vault create, 131
ansible-vault decrypt, 131
ansible-vault edit, 131
ansible-vault encrypt, 131
ansible-vault rekey, 131
ansible-vault view, 131
ansible.cfg, 16-20, 214
AnsibleModule helper class, importing, 180
AnsibleModule initializer method, 184-189

arguments for, 184-187
check mode (dry run), 189
invoking external commands, 188
returning success or failure, 187

ansible_*_interpreter, 49, 50
ansible_connection, 49
ansible_managed configuration, 283
ansible_managed variable, 25
ansible_python_interpreter, 50
ansible_python_interpreter parameter, 49
ansible_shell_type, 50
ansible_shell_type parameter, 49
ansible_ssh_host parameter, 49
ansible_ssh_pass parameter, 49
ansible_ssh_port parameter, 49
ansible_ssh_private_key_file parameter, 49
ansible_ssh_user parameter, 49
ansible_version variable, 79
application server (Gunicorn), 87

299

application servers, 1
Apt cache, updating, 94
apt module, 34, 92
args run_command argument, 188
arguments

complex, in tasks, 99-102
options, for custom modules, 181-183
parsing, for custom modules, 179

arguments file, custom modules, 175
argument_spec, 184
argument_spec initializer argument, 184
ask_pass configuration, 283
ask_sudo_pass configuration, 283
ask_su_pass configuration, 283
ask_vault_pass configuration, 283
assert module, 265
atime return value, 265
auto-generated groups, EC2, 210
availability zone groups, 210
AWS CLI (command line) tool, 290-292
AWS management console, 289
awscli, 59
Azure, 3, 11

B
Baker, Bill, 55
bare metal servers, 204
basename filter, 134
Bash

implementing custom modules in, 192
specifying alternative location for, 193

behavioral inventory parameters, 49-51
ansible_*_interpreter, 49
ansible_connection, 49
ansible_python_interpreter, 49
ansible_shell_type, 49
ansible_ssh_host, 49
ansible_ssh_pass, 49
ansible_ssh_port, 49
ansible_ssh_private_key_file, 49
ansible_ssh_user, 49

Bias, Randy, 55
binary_data run_command argument, 188
bin_ansible_callbacks configuration, 283
Book2Docker, 251
booleans, YAML syntax, 29
Boto (Python library), 207
Brugess, Mark, 7
builders, 234

bypass_checks, 184, 187

C
cache_plugins configuration, 283
caching, EC2 inventory, 210
callable_whitelist configuration, 283
callback_plugins configuration, 283
can_reach, 174
Capistrano, 2
Card, Orson Scott, 2
cattle (numbered hosts), 55
Celery task, 52
certificate container, Docker, 259
certs (Docker image), 249
cert_file variable, 41
CFEngine configuration management system, 7
changed (variable), 177
changed_when, 125-128
chdir parameter, 114
check mode, for debugging, 268
check mode/dry run (AnsibleModule initializer

method), 189
check_invalid_arguments, 185
check_rc run_command argument, 188
Chef, 2
choices (option), 182
Chrome, 44
cidr_ip parameter, 219
close_fds run_command argument, 188
Cloudscaling, 55
CNAME records, 140
Cobbler, 59
collectstatic command, 107
command line, setting variables on, 81
command module, 18, 19, 72, 114, 173
command-line tool, 19, 75
command_warnings configuration, 283
comments, YAML syntax, 28
complex args, 183
complex playbooks, 121-146

changed_when and failed_when clauses,
125-128

encrypting data with vault, 129-131
filters, 132-143
limiting which hosts run, 132
lookups, 136-143
looping constructs as lookup plug-ins, 146
manual fact gathering, 122
more complicated loops for, 143-146

300 | Index

patterns for specifying hosts, 131
retrieving IP address from host, 128
running task on control machine, 121
running task on machine other than host,

122
running task only once, 124
running tasks on one host at a time, 123

configuration files, for EC2 credentials, 207
configuration management, 2, 5
configuration management databases

(CMDBs), 59
connection_plugins configuration, 283
constant-width documentation markup, 191
container linking, 241
container(s)

about, 237
Docker images, 247-250
linking, in Docker, 241
Mezzanine container image in Docker,

242-247
control machine, running tasks on, 121
ControlMaster, 163
ControlPath, 163
ControlPersist, 49, 161-164, 163
control_path connection, 286
convention, 24
convergence, 7, 7
copy module, 34, 277
cowsay program, 27
creating instances, 205
credentials, EC2, 206
csh, 50
csvfile lookup, 139
ctime return value, 265
custom homepage, 25
custom modules, 173-194

accessing parameters, 180
AnsibleModule initializer parameters,

184-189
argument options, 181-183
arguments files for, 175
can_reach as, 174
debugging, 191
documenting, 190
expected outputs, 176
for checking that remote server is reachable,

173
implementing in Bash, 192
implementing in Python, 178-190

importing the AnsibleModule helper class,
180

invoking, 175
learning to write from existing Ansible

module source code, 194
output variables expected by Ansible, 177
parsing arguments, 179
proper directory for, 175
Python script, 175
using script modules, 174

cwd run_command argument, 188

D
daemon, 88
data run_command argument, 188
database

creating in Mezzanine, 102
PostgreSQL, 86
role for deploying, 150-153
roles, 148-153

datastores, 1
debug module, 39, 70, 265
debugging

Ansible playbooks, 263-270
assert module, 265
check mode for, 268
checking playbook before execution,

267-269
custom modules, 191
debug module, 265
diff (show file changes) for, 269
limiting which tasks run, 269
list hosts for, 267
list tasks for, 268
SSH issues, 263
start-at-task taskname flag for, 270
step flag for, 269
syntax check for, 267
tags for, 270

declarative modules, 6
default argument options, 181
default filters, 133
default settings, Ansible, 283-286
default value (module option), 182
defaults, changing, 50
DeHaan, Michael, 2, 7
delegate_to module, 122
dependent roles, 158
deployment, 2

Index | 301

deprecation_warnings configuration, 283
dev return value, 265
development mode, production mode vs.,

83-88
dict instance, 222
dictionary keys, 73
dictionary(-ies), YAML syntax, 30
diff (show file changes), 269
Digital Ocean, 3, 11, 204
display_skipped_hosts configuration, 283
Django, 40

development mode, 102
inventory with, 52-54
Mezzanine and, 87, 106
production, 52
staging environment, 53
vagrant environment, 53

django-manage commands, 106
DNS record, 140
dnstxt lookup, 140
Docker, 237

application life cycle, 239
building non-Ansible images, 250
container images other than Ansible,

247-250
deploying applications in, 251
deploying Mezzanine in, 240-241
image creation with Ansible, 242-247
initializing database, 257
linking containers in, 241
Mezzanine container image in, 242-247
playbook example, 260
reasons for pairing with Ansible, 238
retrieving database container IP address and

mapped port, 252-255
starting certificate container, 259
starting Mezzanine container, 258
starting the database container, 251
starting the Memcached container, 258
waiting for database to start up, 256-262

Docker Hub, 239
docker_host variable, 256
documentation

for modules, 35
of custom modules, 190

domain name system (DNS), 140
dry run/check mode (AnsibleModule initializer

method), 189
dynamic inventory, 59-63, 60

add_host with, 66
and VPC, 231
auto-generated groups, EC2, 210
defining EC2 dynamic groups with tags,

211-213
EC2 and, 208-211
interface for script, 60
inventory caching, 210
per-existing scripts, 65
writing a script, 61-63

E
EC2, 3, 11, 59, 100, 203-236

adding new instance to group, 221
building AMIs, 232-236
Classic, 213
configuration files for credentials, 207
configuring ansible.cfg for use with, 214
defining dynamic groups with tags, 211-213
dynamic inventory, 208-211
dynamic inventory and VPC, 231
environment variables for credentials, 206
getting latest AMI, 220
IAM roles with AWS CLI tool, 290-292
IAM roles with AWS management console,

289
idempotent playbooks for, 225-226
inventory caching, 210
key pairs, 216
launching new instances, 215
permitted IP addresses, 219
Python Boto library for, 207
return type of ec2 module, 222
security group ports, 220
security groups, 218
specifying a VPC, 228-232
specifying credentials in, 206
terminology, 205
using IAM roles for credentials, 289-292
various modules for, 236
Virtual Private Cloud, 213
waiting for server to come up, 224

ec2 module, 222
EC2-Classic, 213
EC2-VPC (Virtual Private Cloud), 213
ec2_ami module, 232
enable configuration, 36
encryption

with vault, 129-131

302 | Index

Enders Game (book), 2
env lookup, 138
environment clause, 108
environment variables

for EC2 credentials, 206
setting with environment clause, 108

ERB, 40
error_on_undefined_vars configuration, 283
etcd lookup, 142
exact_count parameter, 222
executable config option, 51
executable documentation, 5
executable run_command argument, 188
execution time, reducing, 161-171

accelerated mode, 171
fact caching, 167-170
Fireball mode, 171
parallelism, 170
pipelining, 165
SSH multiplexing and ControlPersist,

161-164
execution, checking playbook before, 267-269
exists return value, 265

F
Fabric, 2, 85, 113, 114
fact caching, 167-170

JSON file backend, 168
Memcached backend, 170
Redis backend, 169

fact gathering, 28, 28
and fact caching, 167-170
manual, 122

fact(s), 74-78
local, 77
returned by modules, 76
using set_fact to define new variable, 78
viewing all associated with a server, 75
viewing subsets, 75

fact_caching configuration, 283
fact_caching_connection configuration, 283
fact_caching_prefix configuration, 283
fact_caching_timeout configuration, 283
failed=true (variable), 177
failed_when, 125-128
file lookup, 137
file module, 34
file paths, filters for, 134
file, start of (YAML syntax), 28

filter parameter, 75
FilterModule class, 135
filters

basename, 134
changed, 133
default, 133
failed, 133
file path, 134
for file paths, 134
for registered variables, 133
in complex playbooks, 132-136
skipped, 133
success, 133
writing your own, 134-136

filter_plugsins configuration, 283
Fireball mode, 171
fish, 50
force_color configuration, 283
forks configuration, 283
from_port parameter, 219

G
gathering configuration, 283
GATHERING FACTS, 28
gid return value, 265
Git

and SSH agent forwarding, 275-278
for checking out Mezzanine project, 96

git module, 279
GitHub, 65
Google Compute Engine, 3, 11, 204, 204
group parameter, 216
group variable files, 58
group variables

in own files, 57
inside of inventory, 56

group(s)
adding new EC2 instance to, 221
assigning to Vagrant virtual machines,

200-202
inventory with, 51-56
made up of other groups, 55
numbered hosts, 55

groups variable, 79, 80
group_by, 67
group_names variable, 79
group_vars directory, 58
Gunicorn, 52, 87, 110, 245, 257

Index | 303

H
handlers, 36, 41-43

notifying, 42
pitfalls, 42

HAProxy, 122
hardware virtualization, 237
hash_behaviour configuration, 283
homepage, custom, 25
host keys, 279-282, 281
host state, tracking, 36
host variable files, 58
host(s), 45

assigning roles to, 148-153
configuring for pipelining, 165
in own files, 57
inside of inventory, 56
limiting which ones run, 132
patterns for specifying, 131
retrieving IP address from, 128

hostfile configuration, 283
hostvars, 79
host_key_checking, 281, 283
host_vars directory, 58
HP Public Cloud, 11
hypervisor, 222

I
IAM (Identity and Access Management) roles

using for EC2 credentials, 289-292
with AWS CLI tool, 290-292
with AWS management console, 289

idempotent commands
collectstatic, 107
migrate, 107
syncdb, 107

idempotent modules, 6
idempotent playbooks, EC2, 225-226
image parameter, 215
images, Docker, 242-247
image_id, 222
infrastructure-as-a-service (IaaS) clouds, 203

basics of, 203
EC2, 203-236

initializer arguments
add_file_common_args, 184
argument_spec, 184
bypass_checks, 184
check_invalid_arguments, 184
mutually_exclusive, 184

no_log, 184
required_one_of, 184
required_together, 184
supports_check_mode, 184

inode return value, 265
installation, Ansible, 10
instance groups, 210
instance profiles, 290
instance type groups, 210
instance(s)

adding to group, 221
EC2 definition, 205
idempotent playbooks for, 225-226
launching new, 215

instances module, 222
instance_ids module, 222
instance_type, 222
instance_type parameter, 215
inventory

adding entries at runtime with add_host
and group_by, 65-68

aliases and ports, 54
and inventory files, 45
behavioral inventory parameters, 49-51
breaking out into multiple files, 65
Django app with, 52-54
dynamic, 59-63
for multiple Vagrant machines, 46-48
group variables inside inventory, 56-59
group variables inside their own files, 57
groups of groups, 55
hosts inside inventory, 56-59
hosts inside their own files, 57
numbered hosts, 55
of servers, 45-68
Vagrants generation of, 198
with groups of hosts, 51-56

inventory caching, 210
inventory files, 17, 45

dynamic, 60
file format, 25

inventory_hostname, 79, 80
invoke lookups, 137
IP addresses

in EC2, 219
private, for Vagrant, 196
retrieving from host, 128

isblk return value, 265
ischr return value, 265

304 | Index

isdir return value, 265
isfifo return value, 265
isgid return value, 265
islnk return value, 265
isreg return value, 265
issock return value, 265
isuid return value, 265
italics documentation markup, 191
iteration, 92

J
Jaynes, Matt, 9
Jinja2, 10, 24, 40, 105, 132
jinja2_extensions configuration, 283
Joyent, 204
JSON file fact-caching backend, 168
JSON, YAML equivalents, 28-30

K
Kay, Alan, 6
keep_remote files configuration, 283
kernel, dict instance, 222
key pairs, EC2, 216
key variable, 145
keypair groups, 210
key_file variable, 41
key_name, 222
key_name parameter, 216

L
launching instances, 205
launch_time, 222
layers of abstraction, 7
Le Guin, Ursula K., 2
library configuration, 283
line folding, 30
Linode, 3, 11, 204
Linux, 10, 161, 275
list hosts, 267
list tasks, 268
list(s), YAML syntax, 29
load balancers, 1
load_file_common_arguments method, 186
local facts, 77
local-hosts, 45
local_action clause, 101, 121
local_settings.py, 103
login variable, 70

log_path configuration, 283
lookup(s), 136-136

csvfile, 136
dnstxt, 136
env, 136
etcd, 136
file, 136
invoke, 137
password, 136
pipe, 136
redis_ky, 136
template, 136

lookup_plugins configuration, 283
looping constructs, 143-146

with_dict, 143
with_fileglob, 143
with_first_found, 143
with_flattened, 143
with_indexed_items, 143
with_inventory_hostnames, 143
with_items, 143
with_lines, 143
with_nested, 143
with_random_choice, 143
with_sequence, 143
with_subelements, 143
with_together, 143

M
Mac OS X, 161, 251, 275
madule_args configuration, 283
manage.py, 106
mappings, 30
max_fail_percentage clause, 124
Memcached

Docker and, 247
fact caching backend, 170
starting the container, 258

memory-based caching systems, 1
message queues, 1
Mezzanine

adding sudo clause to task, 94
and PostgreSQL, 86
application server, 87
as test application, 83-88
checking out project using Git, 96
complex arguments in tasks, 99-102
container image in Docker, 242-247
creating database and database user, 102

Index | 305

deploying in Docker containers, 240-241
deploying on multiple machines, 119
deploying with Ansible, 89-119
development mode vs. production mode,

83-88
Django and, 87, 106
enabling nginx configuration, 113
Fabric scripts, 113
full playbook, 115
generating local_settings.py from template,

103
Gunicorn and, 87
installing into a virtualenv, 97-99
installing TLS certificates, 113
installing twitter cron job, 114
listing tasks in playbook, 89
Nginx and, 87
organization of deployed files, 90
process manager, 88
roles, 148-153, 153-157
running custom Python scripts, 107-111
running django-manage commands, 106
running playbook against a Vagrant

machine, 118
setting service configuration files, 110
simplifications, 85
starting container in Docker, 258
Supervisor and, 88
updating Apt cache, 94
using iteration to install multiple packages,

92
variables and secret variables, 90-92
web server, 87

mezzanine-project command, 85
Microsoft, 55
Microsoft Azure, 11, 204
migrate command, 107
mode return value, 265
module documentation markup, 191
modules, 6, 35

built-in, 6
declarative, 6
documentation, 35
facts returned by, 76
idempotent, 6
in playbooks, 34

module_lang configuration, 283
module_name configuration, 283
msg (variable), 177

mtime return value, 265
multiple remote servers, 3
Mustache, 40
mutually_exclusive, 184, 185

N
Nagios, 122
name setting, 33
native SSH, 273
network address translation (NAT), 173
Nginx, 87

Docker and, 248-249
starting container in Docker, 259

nginx config file, 24, 40, 113
nlink return value, 265
nocolor configuration, 283
nocows configuration, 283
non-Python-based modules, 176
NoSQL databases, 1
no_log, 184
numbered hosts, 55

O
OpenSSH, 161
OpenStack APIs, 3, 204
operating system virtualization, 237
optional settings, 33
orchestration, 3
output variables, custom module, 177
outputs, custom module, 176

P
packages

dependencies, 97
Python, 92
system level, 92

Packer, building AMI with, 232-236
parallel provisioning, 199
parallelism, 170
paramiko, 10, 50
paramiko configurations

pty, 286
record_host_keys, 286

parsing arguments, 179
password lookup, 138
path_prefix run_command argument, 188
pattern configuration, 283
pattern, for specifying hosts, 131

306 | Index

pets (numbered hosts), 55
ping module, 19
pip, 10, 92
pip freeze command, 99
pip module, 97
pipe lookup, 138
pipelining, 165
pipelining connection, 286
pipsi, 11
placement, dict instance, 222
play(s), 32
playbook(s)

anatomy of, 31-35
assigning roles to hosts in, 148-150
basics of, 21-44
checking before execution, 267-269
configuring Vagrant for, 21
custom homepage for, 25
debugging, 263-270
defining variables in, 69
deploying Mezzanine against Vagrant

machine, 118
Docker, 260
EC2, 221
full Mezzanine playbook, 115
generating TLS certificate, 38
handlers, 41-43
idempotent, with EC2, 225-226
listing tasks in, 89
Mezzanine deployment, 89-119
modules in, 34
nginx config file for, 24, 40
plays in, 32
reducing execution time of, 161-171
running simple example, 26-28
running the TLS support example, 43
simple example, 22-28
tasks in, 33
TLS support example, 36-44
tracking host state, 36
webservers group for, 25
YAML syntax for, 28-30

play_hosts varaible, 79
poll_interval configuration, 283
port forwarding, 196
port(s)

and hosts, 54
for EC2 security groups, 220

post-tasks, 150

Postgres, 56, 102
customized configuration files, 151
database container, 251
Docker image, 247
retrieving database container IP address and

mapped port, 252-255
waiting for database to start up, 256-262

Postgres database, 52
PostgreSQL, 86
Power User Access, 289
powershell, 50
pre-tasks, 150
precedence rules, 82
private ip, 222
private networks, 197
private_dns_name, 222
private_key_file configuration, 283
process manager, 88
production environments, 52
production mode, development mode vs.,

83-88
proto parameter, 219
provisioner, 3, 234

Ansible, for Vagrant, 197
provisioning in parallel, 199

provisioning, 3
proxies, reverse, 87
pty configuration, 286
public_dns_name, 222
public_ip, 222
pull-based, 5
Puppet, 2
push-based agents, 5
pw_name return value, 265
Python, 9

Boto library for EC2, 207
custom modules written in, 175
module implementation in, 178-190
package manager, 10
packages, 92
running custom scripts in Mezzanine,

107-111
virtualenv, 11

Python Memchached package, 170
Python Paramiko library, 63

Q
quoting, 39

Index | 307

R
RabbitMQ, 52, 56
Rackspace, 3, 11, 204, 204
ramdisk, 222
record_host_keys configuration, 286
Redis fact caching backend, 169
redis Python package, 141
redis_kv lookup, 142
redundancies, 1
region groups, 210
region parameter, 215
registered variables, 70, 133
registries, 239
remote hosts, 5
remote servers, 173
remote_port configuration, 283
remote_tmp configuration, 283
remote_user configuration, 283
required (option), 181
required_one_of, 184, 185
required_together initializer argument, 184
requires argument options, 181
reverse proxies, 87
rgrp return value, 265
Rocannons World (book), 2
roles, 8

assigning to hosts in playbooks, 148-150
basic structure, 147-160
creating role files/directories with ansible-

galaxy, 157
database, 148-153
defining variables in, 153
dependent, 158
directories for, 148
for deploying database, 150-153
for scaling up playbooks, 147-160
IAM, 289-292
in Ansible Galaxy, 159
Mezzanine, 148-153, 153-157
pre-tasks and post-tasks, 150

roles_path configuration, 283
root_device_name, 222
root_device_type, 222
roth return value, 265
Ruby, 192
running instances, 205
run_command arguments

args, 188
binary_data, 188

check_rc, 188
close_fds, 188
cwd, 188
data, 188
executable, 188
path_prefix, 188
use_unsafe_shell, 188

rusr return value, 265

S
Salt, 2
scalability, 6
scaling down, 6
scp_if_ssh connection, 286
script modules, 108, 174
secret variables, 90-92
security group rule parameters, 219

cidr_ip, 219
from_port, 219
proto, 219
to_port, 219

security groups, 210, 218, 220
sensitive data, encrypting, 129-131
sequences, 29
serial clause, 123
server(s)

custom modules for checking reachability
of, 173

for testing, 11-20
inventory of, 45-68
viewing all facts associated with, 75
waiting for, in EC2, 224

server_name variable, 41
service, 88
service configuration files, 110
service discovery mechanism, 245
service module, 34
setup module, 75
set_fact, 78
set_fs_attributes_if_different method, 186
shell module, 72, 173
shorthand input, Bash modules, 193
simplejson library, 5
size return value, 265
smart transport, 49
SoftLayer, 11, 204
software, development mode vs. production

mode, 83-88
SQL databases, 1

308 | Index

SSH
agent forwarding, 275-278
debugging, 263
features of, 273-282
host keys, 279-282
native, 273
ssh-agent, 273-275, 275

SSH key pairs, 216
SSH multiplexing, 161-164, 161

ControlMaster, 163
ControlPath, 163
ControlPersist, 163
manually enabling, 162
options in Ansible, 163

ssh-agent program, 15
ssh_args connection, 286
ssh_connections

control_path, 286
pipelining, 286
scp_if_ssh, 286
ssh_args, 286

SSL, TLS vs., 37
staging environments, 52
stale data, 167
start at task, 270
start of file, YAML syntax, 28
stat module return values, 265
state, dict instance, 222
state_code, 222
static assets, 87
step flag, 269
strings, YAML syntax, 28
su configuration, 283
subsets, fact, 75
Sudo, 277
sudo clause, 94
sudo configuration, 283
sudo setting, 33
sudo_exe configuration, 283
sudo_flags configuration, 283
sudo_user configuration, 283
Supervisor, 110

as Mezzanine process manager, 88
Docker alternative to, 245

supports_check_mode initializer argument, 184
surround_by_quote function, 135
su_exe configuration, 283
su_flag configuration, 283
su_user configuration, 283

syncdb command, 107
syntax check, 267
syntax, Ansible, 5
syslog_facility configuration, 283
system-level packages, 92
system_warnings configuration, 283

T
tag groups, 210
tag(s)

added to task/play for debugging, 270
applying to existing EC2 resources, 212
defining EC2 dynamic groups with, 211-213
group names for, 213
in EC2, 205

tagged_instances module, 222
task queues, 1
task(s), 3, 33, 35

adding sudo clause, 94
changed_when and failed_when clauses,

125-128
complex arguments in, 99-102
in playbooks, 33
limiting, for debugging, 269
listing in playbook, 89
running on control machine, 121
running on machine other than host, 122
running on one host at a time, 123
running only once, 124

Taste Test: Puppet, Chef, Salt, Ansible (books),
9

template lookup, 136, 139
template module, 34, 277
template, generating local_settings.py from, 103
templates, 24

Django, 40
ERB, 40
Mustache, 40

test server, Ansible
inventory files and, 15
setup, 11-20
simplifying with ansible.cfg file, 16-20
Vagrant for, 12-14

testserver, 25
timeout configuration, 283
TLS

playbooks and, 36-44
SSL vs., 37

TLS certificate

Index | 309

generating, 38
installing in Mezzanine, 113

TLS-supported playbook, 36-44
to_port parameter, 219
transports, 49
true, yes vs., 23
twitter cron job, 114
type argument options, 181
type option, 182

U
Ubuntu, 4, 92

images, 214
MAAS, 59

uid return value, 265
URL documentation markup, 191
use_unsafe_shell run_command argument, 188

V
Vagrant, 3, 105, 195-202

agent forwarding, 197
Ansible provisioner, 197
configuring for playbooks, 21
convenient configuration options for,

195-197
inventory for multiple machines, 46-48
inventory generated by, 198
port forwarding, 196
private IP addresses, 196
provisioner, 197
provisioning in parallel, 199
running Mezzanine playbook against, 118
setting up test server with, 12-14
specifying groups, 200-202

Vagrant environments, 52
vagrant status command, 61
validate clause, 277
value variable, 145
variables, 69-74

accessing dictionary keys in, 73
built-in, 79
custom module output, 177
defining in playbooks, 69
defining in roles, 153
defining with set_fact, 78
environment for EC2 credentials, 206
filters for registered, 133
groups variable, 80
hostvars, 79

in Mezzanine, 90-92
in playbook with TLS, 38-39
inventory_hostname, 80
precedence rules, 82
registering, 70-74
setting on command line, 81
viewing values of, 70

vars setting, 33
vars_plugins configuration, 283
vault, encrypting data with, 129-131
vault_password_file configuration, 283
version control, 17
Virtual Private Cloud (VPC), 213

basics, 228
dynamic inventory and, 231
specifying, 228-232

VirtualBox, 12
virtualenv, 97-99
virtualization

hardware, 237
operating system, 237

VMWare vSphere, 204
volumes_from parameter, 251
VPC groups, 210

W
wait_for module, 121, 256
Web Server Gateway Interface (WSGI), 87
web servers, 1
webservers group, 25
wgrp return value, 265
whoami command, 70
Windows, 50
with_dict looping construct, 145
with_fileglob looping construct, 144
with_flattened loop, 143
with_indexed_items loop, 143
with_inventory_hostnames loop, 143
with_items, 92
with_items loop, 143
with_lines looping construct, 144
with_nested loop, 143
with_random_choice loop, 143
with_sequence loop, 143
with_subelements loop, 143
with_together loop, 143
woth return value, 265
wusr return value, 265

310 | Index

X
xgrp return value, 265
xip.io, 105
xusr return value, 265

Y
YAML, 28-30
yes, true vs., 23

Index | 311

About the Author
Lorin Hochstein was born and raised in Montreal, Quebec, though you’d never guess
he was a Canadian by his accent, other than his occasional tendency to say “close the
light.” He is a recovering academic, having spent two years on the tenure track as an
assistant professor of computer science and engineering at the University of
Nebraska-Lincoln, and another four years as a computer scientist at the University of
Southern California’s Information Sciences Institute. He earned his BEng. in Com‐
puter Engineering at McGill University, his MS in Electrical Engineering at Boston
University, and his PhD in Computer Science at the University of Maryland, College
Park. He is currently a Senior Software Engineer at SendGrid, where he works on new
product development for SendGrid Labs.

Colophon
The animal on the cover of Ansible: Up and Running is a Holstein Friesian (Bos primi‐
genius), often shortened to Holstein in North America and Friesian in Europe. This
breed of cattle originated in Europe in what is now the Netherlands, bred with the
goal of obtaining animals that could exclusively eat grass—the area’s most abundant
resource—resulting in a high-producing, black-and-white dairy cow. Holstein-
Friesians were introduced to the US from 1621 to 1664, but American breeders didn’t
become interested in the breed until the 1830s.

Holsteins are known for their large size, distinct black-and-white markings, and their
high production of milk. The black and white coloring is a result of artificial selection
by the breeders. Healthy calves weigh 90–100 pounds at birth; mature Holsteins can
weigh up to 1280 pounds and stand at 58 inches tall. Heifers of this breed are typically
bred by 13 to 15 months; their gestation period is nine and a half months.

This breed of cattle averages about 2022 gallons of milk per year; pedigree animals
average 2146 gallons per year, and can produce up to 6898 gallons in a lifetime.

In September 2000, the Holstein became the center of controversy when one of its
own, Hanoverhill Starbuck, was cloned from frozen fibroblast cells recovered one
month before his death, birthing Starbuck II. The cloned calf was born 21 years and 5
months after the original Starbuck.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History, Vol. 2. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Why I Wrote This Book
	Who Should Read This Book
	Navigating This Book
	Conventions Used in This Book
	Online Resources
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	A Note About Versions
	Ansible: What Is It Good For?
	How Ansible Works
	What’s So Great About Ansible?
	Easy-to-Read Syntax
	Nothing to Install on the Remote Hosts
	Push-Based
	Ansible Scales Down
	Built-in Modules
	Very Thin Layer of Abstraction

	Is Ansible Too Simple?
	What Do I Need to Know?
	What Isn’t Covered
	Installing Ansible
	Setting Up a Server for Testing
	Using Vagrant to Set Up a Test Server
	Telling Ansible About Your Test Server
	Simplifying with the ansible.cfg File

	Moving Forward

	Chapter 2. Playbooks: A Beginning
	Some Preliminaries
	A Very Simple Playbook
	Specifying an nginx Config File
	Creating a Custom Homepage
	Creating a Webservers Group

	Running the Playbook
	Playbooks Are YAML
	Start of File
	Comments
	Strings
	Booleans
	Lists
	Dictionaries
	Line Folding

	Anatomy of a Playbook
	Plays
	Tasks
	Modules
	Putting It All Together

	Did Anything Change? Tracking Host State
	Getting Fancier: TLS Support
	Generating TLS certificate
	Variables
	Generating the Nginx Configuration Template
	Handlers
	Running the Playbook

	Chapter 3. Inventory: Describing Your Servers
	The Inventory File
	Preliminaries: Multiple Vagrant Machines
	Behavioral Inventory Parameters
	ansible_connection
	ansible_shell_type
	ansible_python_interpreter
	ansible_*_interpreter
	Changing Behavioral Parameter Defaults

	Groups and Groups and Groups
	Example: Deploying a Django App
	Aliases and Ports
	Groups of Groups
	Numbered Hosts (Pets versus Cattle)

	Hosts and Group Variables: Inside the Inventory
	Host and Group Variables: In Their Own Files
	Dynamic Inventory
	The Interface for a Dynamic Inventory Script
	Writing a Dynamic Inventory Script
	Pre-Existing Inventory Scripts

	Breaking Out the Inventory into Multiple Files
	Adding Entries at Runtime with add_host and group_by
	add_host
	group_by

	Chapter 4. Variables and Facts
	Defining Variables in Playbooks
	Viewing the Values of Variables
	Registering Variables
	Facts
	Viewing All Facts Associated with a Server
	Viewing a Subset of Facts
	Any Module Can Return Facts
	Local Facts

	Using set_fact to Define a New Variable
	Built-in Variables
	hostvars
	inventory_hostname
	Groups

	Setting Variables on the Command Line
	Precedence

	Chapter 5. Introducing Mezzanine: Our Test Application
	Why Deploying to Production Is Complicated
	PostgreSQL: The Database
	Gunicorn: The Application Server
	Nginx: The Web Server
	Supervisor: The Process Manager

	Chapter 6. Deploying Mezzanine with Ansible
	Listing Tasks in a Playbook
	Organization of Deployed Files
	Variables and Secret Variables
	Using Iteration (with_items) to Install Multiple Packages
	Adding the Sudo Clause to a Task
	Updating the Apt Cache
	Checking Out the Project Using Git
	Installing Mezzanine and Other Packages into a virtualenv
	Complex Arguments in Tasks: A Brief Digression
	Creating the Database and Database User
	Generating the local_settings.py File from a Template
	Running django-manage Commands
	Running Custom Python Scripts in the Context of the Application
	Setting Service Configuration Files

	Enabling the Nginx Configuration
	Installing TLS Certificates
	Installing Twitter Cron Job
	The Full Playbook
	Running the Playbook Against a Vagrant Machine
	Deploying Mezzanine on Multiple Machines

	Chapter 7. Complex Playbooks
	Running a Task on the Control Machine
	Running a Task on a Machine Other Than the Host
	Manually Gathering Facts
	Running on One Host at a Time
	Running Only Once
	Dealing with Badly Behaved Commands: changed_when and failed_when
	Retrieving the IP Address from the Host
	Encrypting Sensitive Data with Vault
	Patterns for Specifying Hosts
	Limiting Which Hosts Run
	Filters
	The Default Filter
	Filters for Registered Variables
	Filters That Apply to File Paths
	Writing Your Own Filter

	Lookups
	file
	pipe
	env
	password
	template
	csvfile
	dnstxt
	redis_kv
	etcd
	Writing Your Own Lookup Plug-in

	More Complicated Loops
	with_lines
	with_fileglob
	with_dict
	Looping Constructs as Lookup Plug-ins

	Chapter 8. Roles: Scaling Up Your Playbooks
	Basic Structure of a Role
	Example: Database and Mezzanine Roles
	Using Roles in Your Playbooks
	Pre-Tasks and Post-Tasks
	A “Database” Role for Deploying the Database
	A “Mezzanine” Role for Deploying Mezzanine
	Creating Role Files and Directories with ansible-galaxy
	Dependent Roles
	Ansible Galaxy
	Web Interface
	Command-Line Interface
	Contributing Your Own Role

	Chapter 9. Making Ansible Go Even Faster
	SSH Multiplexing and ControlPersist
	Manually Enabling SSH Multiplexing
	SSH Multiplexing Options in Ansible

	Pipelining
	Enabling Pipelining
	Configuring Hosts for Pipelining

	Fact Caching
	JSON File Fact-Caching Backend
	Redis Fact Caching Backend
	Memcached Fact Caching Backend

	Parallelism
	Accelerated Mode
	Fireball Mode

	Chapter 10. Custom Modules
	Example: Checking That We Can Reach a Remote Server
	Using the Script Module Instead of Writing Your Own
	can_reach as a Module
	Where to Put Custom Modules
	How Ansible Invokes Modules
	Generate a Standalone Python Script with the Arguments (Python Only)
	Copy the Module to the Host
	Create an Arguments File on the Host (Non-Python Only)
	Invoke the Module

	Expected Outputs
	Output Variables Ansible Expects

	Implementing Modules in Python
	Parsing Arguments
	Accessing Parameters
	Importing the AnsibleModule Helper Class
	Argument Options
	AnsibleModule Initializer Parameters
	Returning Success or Failure
	Invoking External Commands
	Check Mode (Dry Run)

	Documenting Your Module
	Debugging Your Module
	Implementing the Module in Bash
	Specifying an Alternaive Location for Bash
	Example Modules

	Chapter 11. Vagrant
	Convenient Vagrant Configuration Options
	Port Forwarding and Private IP Addresses
	Enabling Agent Forwarding

	The Ansible Provisioner
	When the Provisioner Runs
	Inventory Generated by Vagrant
	Provisioning in Parallel
	Specifying Groups

	Chapter 12. Amazon EC2
	Terminology
	Instance
	Amazon Machine Image
	Tags

	Specifying Credentials
	Environment Variables
	Configuration Files

	Prerequisite: Boto Python Library
	Dynamic Inventory
	Inventory Caching
	Other Configuration Options
	Auto-Generated Groups

	Defining Dynamic Groups with Tags
	Applying Tags to Existing Resources
	Nicer Group Names

	EC2 Virtual Private Cloud (VPC) and EC2 Classic
	Configuring ansible.cfg for Use with ec2
	Launching New Instances
	EC2 Key Pairs
	Creating a New Key
	Upload an Existing Key

	Security Groups
	Permitted IP Addresses
	Security Group Ports

	Getting the Latest AMI
	Adding a New Instance to a Group
	Waiting for the Server to Come Up
	Creating Instances the Idempotent Way
	Putting It All Together
	Specifying a Virtual Private Cloud
	Dynamic Inventory and VPC

	Building AMIs
	With the ec2_ami Module
	With Packer

	Other Modules

	Chapter 13. Docker
	The Case for Pairing Docker with Ansible
	Docker Application Life Cycle
	Dockerizing Our Mezzanine Application
	Creating Docker Images with Ansible
	Mezzanine

	The Other Container Images
	Postgres
	Memcached
	Nginx
	Certs
	Building the Images

	Deploying the Dockerized Application
	Starting the Database Container
	Retrieving the Database Container IP Address and Mapped Port
	Waiting for the Database to Start Up
	Initializing the Database
	Starting the Memcached Container
	Starting the Mezzanine Container
	Starting the Certificate Container
	Starting the Nginx Container

	The Entire Playbook

	Chapter 14. Debugging Ansible Playbooks
	Debugging SSH Issues
	The Debug Module
	The Assert Module
	Checking Your Playbook Before Execution
	Syntax Check
	List Hosts
	List Tasks
	Check Mode
	Diff (Show File Changes)

	Limiting Which Tasks Run
	Step
	Start-at-Task
	Tags

	Onward

	Appendix A. SSH
	Native SSH
	SSH Agent
	Starting Up ssh-agent
	Mac OS X
	Linux

	Agent Forwarding
	Sudo and Agent Forwarding

	Host Keys

	Appendix B. Default Settings
	Appendix C. Using IAM Roles for EC2 Credentials
	AWS Management Console
	Command-Line

	Glossary
	Bibliography
	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

